ext4: verify extent header depth
[cascardo/linux.git] / arch / parisc / kernel / time.c
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/page.h>
33 #include <asm/param.h>
34 #include <asm/pdc.h>
35 #include <asm/led.h>
36
37 #include <linux/timex.h>
38
39 static unsigned long clocktick __read_mostly;   /* timer cycles per tick */
40
41 #ifndef CONFIG_64BIT
42 /*
43  * The processor-internal cycle counter (Control Register 16) is used as time
44  * source for the sched_clock() function.  This register is 64bit wide on a
45  * 64-bit kernel and 32bit on a 32-bit kernel. Since sched_clock() always
46  * requires a 64bit counter we emulate on the 32-bit kernel the higher 32bits
47  * with a per-cpu variable which we increase every time the counter
48  * wraps-around (which happens every ~4 secounds).
49  */
50 static DEFINE_PER_CPU(unsigned long, cr16_high_32_bits);
51 #endif
52
53 /*
54  * We keep time on PA-RISC Linux by using the Interval Timer which is
55  * a pair of registers; one is read-only and one is write-only; both
56  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
57  * and increments by 1 every CPU clock tick.  The architecture only
58  * guarantees us a rate between 0.5 and 2, but all implementations use a
59  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
60  * 32 bits of the read-only register compare equal to the write-only
61  * register, it raises a maskable external interrupt.  Each processor has
62  * an Interval Timer of its own and they are not synchronised.  
63  *
64  * We want to generate an interrupt every 1/HZ seconds.  So we program
65  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
66  * is programmed with the intended time of the next tick.  We can be
67  * held off for an arbitrarily long period of time by interrupts being
68  * disabled, so we may miss one or more ticks.
69  */
70 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
71 {
72         unsigned long now, now2;
73         unsigned long next_tick;
74         unsigned long cycles_elapsed, ticks_elapsed = 1;
75         unsigned long cycles_remainder;
76         unsigned int cpu = smp_processor_id();
77         struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
78
79         /* gcc can optimize for "read-only" case with a local clocktick */
80         unsigned long cpt = clocktick;
81
82         profile_tick(CPU_PROFILING);
83
84         /* Initialize next_tick to the expected tick time. */
85         next_tick = cpuinfo->it_value;
86
87         /* Get current cycle counter (Control Register 16). */
88         now = mfctl(16);
89
90         cycles_elapsed = now - next_tick;
91
92         if ((cycles_elapsed >> 6) < cpt) {
93                 /* use "cheap" math (add/subtract) instead
94                  * of the more expensive div/mul method
95                  */
96                 cycles_remainder = cycles_elapsed;
97                 while (cycles_remainder > cpt) {
98                         cycles_remainder -= cpt;
99                         ticks_elapsed++;
100                 }
101         } else {
102                 /* TODO: Reduce this to one fdiv op */
103                 cycles_remainder = cycles_elapsed % cpt;
104                 ticks_elapsed += cycles_elapsed / cpt;
105         }
106
107         /* convert from "division remainder" to "remainder of clock tick" */
108         cycles_remainder = cpt - cycles_remainder;
109
110         /* Determine when (in CR16 cycles) next IT interrupt will fire.
111          * We want IT to fire modulo clocktick even if we miss/skip some.
112          * But those interrupts don't in fact get delivered that regularly.
113          */
114         next_tick = now + cycles_remainder;
115
116         cpuinfo->it_value = next_tick;
117
118         /* Program the IT when to deliver the next interrupt.
119          * Only bottom 32-bits of next_tick are writable in CR16!
120          */
121         mtctl(next_tick, 16);
122
123 #if !defined(CONFIG_64BIT)
124         /* check for overflow on a 32bit kernel (every ~4 seconds). */
125         if (unlikely(next_tick < now))
126                 this_cpu_inc(cr16_high_32_bits);
127 #endif
128
129         /* Skip one clocktick on purpose if we missed next_tick.
130          * The new CR16 must be "later" than current CR16 otherwise
131          * itimer would not fire until CR16 wrapped - e.g 4 seconds
132          * later on a 1Ghz processor. We'll account for the missed
133          * tick on the next timer interrupt.
134          *
135          * "next_tick - now" will always give the difference regardless
136          * if one or the other wrapped. If "now" is "bigger" we'll end up
137          * with a very large unsigned number.
138          */
139         now2 = mfctl(16);
140         if (next_tick - now2 > cpt)
141                 mtctl(next_tick+cpt, 16);
142
143 #if 1
144 /*
145  * GGG: DEBUG code for how many cycles programming CR16 used.
146  */
147         if (unlikely(now2 - now > 0x3000))      /* 12K cycles */
148                 printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
149                         " cyc %lX rem %lX "
150                         " next/now %lX/%lX\n",
151                         cpu, now2 - now, cycles_elapsed, cycles_remainder,
152                         next_tick, now );
153 #endif
154
155         /* Can we differentiate between "early CR16" (aka Scenario 1) and
156          * "long delay" (aka Scenario 3)? I don't think so.
157          *
158          * Timer_interrupt will be delivered at least a few hundred cycles
159          * after the IT fires. But it's arbitrary how much time passes
160          * before we call it "late". I've picked one second.
161          *
162          * It's important NO printk's are between reading CR16 and
163          * setting up the next value. May introduce huge variance.
164          */
165         if (unlikely(ticks_elapsed > HZ)) {
166                 /* Scenario 3: very long delay?  bad in any case */
167                 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
168                         " cycles %lX rem %lX "
169                         " next/now %lX/%lX\n",
170                         cpu,
171                         cycles_elapsed, cycles_remainder,
172                         next_tick, now );
173         }
174
175         /* Done mucking with unreliable delivery of interrupts.
176          * Go do system house keeping.
177          */
178
179         if (!--cpuinfo->prof_counter) {
180                 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
181                 update_process_times(user_mode(get_irq_regs()));
182         }
183
184         if (cpu == 0)
185                 xtime_update(ticks_elapsed);
186
187         return IRQ_HANDLED;
188 }
189
190
191 unsigned long profile_pc(struct pt_regs *regs)
192 {
193         unsigned long pc = instruction_pointer(regs);
194
195         if (regs->gr[0] & PSW_N)
196                 pc -= 4;
197
198 #ifdef CONFIG_SMP
199         if (in_lock_functions(pc))
200                 pc = regs->gr[2];
201 #endif
202
203         return pc;
204 }
205 EXPORT_SYMBOL(profile_pc);
206
207
208 /* clock source code */
209
210 static cycle_t read_cr16(struct clocksource *cs)
211 {
212         return get_cycles();
213 }
214
215 static struct clocksource clocksource_cr16 = {
216         .name                   = "cr16",
217         .rating                 = 300,
218         .read                   = read_cr16,
219         .mask                   = CLOCKSOURCE_MASK(BITS_PER_LONG),
220         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
221 };
222
223 int update_cr16_clocksource(void)
224 {
225         /* since the cr16 cycle counters are not synchronized across CPUs,
226            we'll check if we should switch to a safe clocksource: */
227         if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
228                 clocksource_change_rating(&clocksource_cr16, 0);
229                 return 1;
230         }
231
232         return 0;
233 }
234
235 void __init start_cpu_itimer(void)
236 {
237         unsigned int cpu = smp_processor_id();
238         unsigned long next_tick = mfctl(16) + clocktick;
239
240 #if defined(CONFIG_HAVE_UNSTABLE_SCHED_CLOCK) && defined(CONFIG_64BIT)
241         /* With multiple 64bit CPUs online, the cr16's are not syncronized. */
242         if (cpu != 0)
243                 clear_sched_clock_stable();
244 #endif
245
246         mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
247
248         per_cpu(cpu_data, cpu).it_value = next_tick;
249 }
250
251 static int __init rtc_init(void)
252 {
253         struct platform_device *pdev;
254
255         pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
256         return PTR_ERR_OR_ZERO(pdev);
257 }
258 device_initcall(rtc_init);
259
260 void read_persistent_clock(struct timespec *ts)
261 {
262         static struct pdc_tod tod_data;
263         if (pdc_tod_read(&tod_data) == 0) {
264                 ts->tv_sec = tod_data.tod_sec;
265                 ts->tv_nsec = tod_data.tod_usec * 1000;
266         } else {
267                 printk(KERN_ERR "Error reading tod clock\n");
268                 ts->tv_sec = 0;
269                 ts->tv_nsec = 0;
270         }
271 }
272
273
274 /*
275  * sched_clock() framework
276  */
277
278 static u32 cyc2ns_mul __read_mostly;
279 static u32 cyc2ns_shift __read_mostly;
280
281 u64 sched_clock(void)
282 {
283         u64 now;
284
285         /* Get current cycle counter (Control Register 16). */
286 #ifdef CONFIG_64BIT
287         now = mfctl(16);
288 #else
289         now = mfctl(16) + (((u64) this_cpu_read(cr16_high_32_bits)) << 32);
290 #endif
291
292         /* return the value in ns (cycles_2_ns) */
293         return mul_u64_u32_shr(now, cyc2ns_mul, cyc2ns_shift);
294 }
295
296
297 /*
298  * timer interrupt and sched_clock() initialization
299  */
300
301 void __init time_init(void)
302 {
303         unsigned long current_cr16_khz;
304
305         current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
306         clocktick = (100 * PAGE0->mem_10msec) / HZ;
307
308         /* calculate mult/shift values for cr16 */
309         clocks_calc_mult_shift(&cyc2ns_mul, &cyc2ns_shift, current_cr16_khz,
310                                 NSEC_PER_MSEC, 0);
311
312 #if defined(CONFIG_HAVE_UNSTABLE_SCHED_CLOCK) && defined(CONFIG_64BIT)
313         /* At bootup only one 64bit CPU is online and cr16 is "stable" */
314         set_sched_clock_stable();
315 #endif
316
317         start_cpu_itimer();     /* get CPU 0 started */
318
319         /* register at clocksource framework */
320         clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
321 }