parisc: Drop bootmem and switch to memblock
[cascardo/linux.git] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
22 #include <linux/initrd.h>
23 #include <linux/swap.h>
24 #include <linux/unistd.h>
25 #include <linux/nodemask.h>     /* for node_online_map */
26 #include <linux/pagemap.h>      /* for release_pages */
27 #include <linux/compat.h>
28
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32 #include <asm/pdc_chassis.h>
33 #include <asm/mmzone.h>
34 #include <asm/sections.h>
35 #include <asm/msgbuf.h>
36
37 extern int  data_start;
38 extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
39
40 #if CONFIG_PGTABLE_LEVELS == 3
41 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
42  * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
43  * guarantee that global objects will be laid out in memory in the same order
44  * as the order of declaration, so put these in different sections and use
45  * the linker script to order them. */
46 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
47 #endif
48
49 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
50 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
51
52 #ifdef CONFIG_DISCONTIGMEM
53 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
54 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
55 #endif
56
57 static struct resource data_resource = {
58         .name   = "Kernel data",
59         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
60 };
61
62 static struct resource code_resource = {
63         .name   = "Kernel code",
64         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 };
66
67 static struct resource pdcdata_resource = {
68         .name   = "PDC data (Page Zero)",
69         .start  = 0,
70         .end    = 0x9ff,
71         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
72 };
73
74 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
75
76 /* The following array is initialized from the firmware specific
77  * information retrieved in kernel/inventory.c.
78  */
79
80 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
81 int npmem_ranges __read_mostly;
82
83 /*
84  * get_memblock() allocates pages via memblock.
85  * We can't use memblock_find_in_range(0, KERNEL_INITIAL_SIZE) here since it
86  * doesn't allocate from bottom to top which is needed because we only created
87  * the initial mapping up to KERNEL_INITIAL_SIZE in the assembly bootup code.
88  */
89 static void * __init get_memblock(unsigned long size)
90 {
91         static phys_addr_t search_addr __initdata;
92         phys_addr_t phys;
93
94         if (!search_addr)
95                 search_addr = PAGE_ALIGN(__pa((unsigned long) &_end));
96         search_addr = ALIGN(search_addr, size);
97         while (!memblock_is_region_memory(search_addr, size) ||
98                 memblock_is_region_reserved(search_addr, size)) {
99                 search_addr += size;
100         }
101         phys = search_addr;
102
103         if (phys)
104                 memblock_reserve(phys, size);
105         else
106                 panic("get_memblock() failed.\n");
107
108         return __va(phys);
109 }
110
111 #ifdef CONFIG_64BIT
112 #define MAX_MEM         (~0UL)
113 #else /* !CONFIG_64BIT */
114 #define MAX_MEM         (3584U*1024U*1024U)
115 #endif /* !CONFIG_64BIT */
116
117 static unsigned long mem_limit __read_mostly = MAX_MEM;
118
119 static void __init mem_limit_func(void)
120 {
121         char *cp, *end;
122         unsigned long limit;
123
124         /* We need this before __setup() functions are called */
125
126         limit = MAX_MEM;
127         for (cp = boot_command_line; *cp; ) {
128                 if (memcmp(cp, "mem=", 4) == 0) {
129                         cp += 4;
130                         limit = memparse(cp, &end);
131                         if (end != cp)
132                                 break;
133                         cp = end;
134                 } else {
135                         while (*cp != ' ' && *cp)
136                                 ++cp;
137                         while (*cp == ' ')
138                                 ++cp;
139                 }
140         }
141
142         if (limit < mem_limit)
143                 mem_limit = limit;
144 }
145
146 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
147
148 static void __init setup_bootmem(void)
149 {
150         unsigned long mem_max;
151 #ifndef CONFIG_DISCONTIGMEM
152         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
153         int npmem_holes;
154 #endif
155         int i, sysram_resource_count;
156
157         disable_sr_hashing(); /* Turn off space register hashing */
158
159         /*
160          * Sort the ranges. Since the number of ranges is typically
161          * small, and performance is not an issue here, just do
162          * a simple insertion sort.
163          */
164
165         for (i = 1; i < npmem_ranges; i++) {
166                 int j;
167
168                 for (j = i; j > 0; j--) {
169                         unsigned long tmp;
170
171                         if (pmem_ranges[j-1].start_pfn <
172                             pmem_ranges[j].start_pfn) {
173
174                                 break;
175                         }
176                         tmp = pmem_ranges[j-1].start_pfn;
177                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
178                         pmem_ranges[j].start_pfn = tmp;
179                         tmp = pmem_ranges[j-1].pages;
180                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
181                         pmem_ranges[j].pages = tmp;
182                 }
183         }
184
185 #ifndef CONFIG_DISCONTIGMEM
186         /*
187          * Throw out ranges that are too far apart (controlled by
188          * MAX_GAP).
189          */
190
191         for (i = 1; i < npmem_ranges; i++) {
192                 if (pmem_ranges[i].start_pfn -
193                         (pmem_ranges[i-1].start_pfn +
194                          pmem_ranges[i-1].pages) > MAX_GAP) {
195                         npmem_ranges = i;
196                         printk("Large gap in memory detected (%ld pages). "
197                                "Consider turning on CONFIG_DISCONTIGMEM\n",
198                                pmem_ranges[i].start_pfn -
199                                (pmem_ranges[i-1].start_pfn +
200                                 pmem_ranges[i-1].pages));
201                         break;
202                 }
203         }
204 #endif
205
206         /* Print the memory ranges */
207         pr_info("Memory Ranges:\n");
208
209         for (i = 0; i < npmem_ranges; i++) {
210                 struct resource *res = &sysram_resources[i];
211                 unsigned long start;
212                 unsigned long size;
213
214                 size = (pmem_ranges[i].pages << PAGE_SHIFT);
215                 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
216                 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
217                         i, start, start + (size - 1), size >> 20);
218
219                 /* request memory resource */
220                 res->name = "System RAM";
221                 res->start = start;
222                 res->end = start + size - 1;
223                 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
224                 request_resource(&iomem_resource, res);
225         }
226
227         sysram_resource_count = npmem_ranges;
228
229         /*
230          * For 32 bit kernels we limit the amount of memory we can
231          * support, in order to preserve enough kernel address space
232          * for other purposes. For 64 bit kernels we don't normally
233          * limit the memory, but this mechanism can be used to
234          * artificially limit the amount of memory (and it is written
235          * to work with multiple memory ranges).
236          */
237
238         mem_limit_func();       /* check for "mem=" argument */
239
240         mem_max = 0;
241         for (i = 0; i < npmem_ranges; i++) {
242                 unsigned long rsize;
243
244                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
245                 if ((mem_max + rsize) > mem_limit) {
246                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
247                         if (mem_max == mem_limit)
248                                 npmem_ranges = i;
249                         else {
250                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
251                                                        - (mem_max >> PAGE_SHIFT);
252                                 npmem_ranges = i + 1;
253                                 mem_max = mem_limit;
254                         }
255                         break;
256                 }
257                 mem_max += rsize;
258         }
259
260         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
261
262 #ifndef CONFIG_DISCONTIGMEM
263         /* Merge the ranges, keeping track of the holes */
264
265         {
266                 unsigned long end_pfn;
267                 unsigned long hole_pages;
268
269                 npmem_holes = 0;
270                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
271                 for (i = 1; i < npmem_ranges; i++) {
272
273                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
274                         if (hole_pages) {
275                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
276                                 pmem_holes[npmem_holes++].pages = hole_pages;
277                                 end_pfn += hole_pages;
278                         }
279                         end_pfn += pmem_ranges[i].pages;
280                 }
281
282                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
283                 npmem_ranges = 1;
284         }
285 #endif
286
287 #ifdef CONFIG_DISCONTIGMEM
288         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
289                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
290         }
291         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
292
293         for (i = 0; i < npmem_ranges; i++) {
294                 node_set_state(i, N_NORMAL_MEMORY);
295                 node_set_online(i);
296         }
297 #endif
298
299         /*
300          * Initialize and free the full range of memory in each range.
301          */
302
303         max_pfn = 0;
304         for (i = 0; i < npmem_ranges; i++) {
305                 unsigned long start_pfn;
306                 unsigned long npages;
307                 unsigned long start;
308                 unsigned long size;
309
310                 start_pfn = pmem_ranges[i].start_pfn;
311                 npages = pmem_ranges[i].pages;
312
313                 start = start_pfn << PAGE_SHIFT;
314                 size = npages << PAGE_SHIFT;
315
316                 /* add system RAM memblock */
317                 memblock_add(start, size);
318
319                 if ((start_pfn + npages) > max_pfn)
320                         max_pfn = start_pfn + npages;
321         }
322
323         /* IOMMU is always used to access "high mem" on those boxes
324          * that can support enough mem that a PCI device couldn't
325          * directly DMA to any physical addresses.
326          * ISA DMA support will need to revisit this.
327          */
328         max_low_pfn = max_pfn;
329
330         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
331
332 #define PDC_CONSOLE_IO_IODC_SIZE 32768
333
334         memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
335                                 PDC_CONSOLE_IO_IODC_SIZE));
336         memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
337                         (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
338
339 #ifndef CONFIG_DISCONTIGMEM
340
341         /* reserve the holes */
342
343         for (i = 0; i < npmem_holes; i++) {
344                 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
345                                 (pmem_holes[i].pages << PAGE_SHIFT));
346         }
347 #endif
348
349 #ifdef CONFIG_BLK_DEV_INITRD
350         if (initrd_start) {
351                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
352                 if (__pa(initrd_start) < mem_max) {
353                         unsigned long initrd_reserve;
354
355                         if (__pa(initrd_end) > mem_max) {
356                                 initrd_reserve = mem_max - __pa(initrd_start);
357                         } else {
358                                 initrd_reserve = initrd_end - initrd_start;
359                         }
360                         initrd_below_start_ok = 1;
361                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
362
363                         memblock_reserve(__pa(initrd_start), initrd_reserve);
364                 }
365         }
366 #endif
367
368         data_resource.start =  virt_to_phys(&data_start);
369         data_resource.end = virt_to_phys(_end) - 1;
370         code_resource.start = virt_to_phys(_text);
371         code_resource.end = virt_to_phys(&data_start)-1;
372
373         /* We don't know which region the kernel will be in, so try
374          * all of them.
375          */
376         for (i = 0; i < sysram_resource_count; i++) {
377                 struct resource *res = &sysram_resources[i];
378                 request_resource(res, &code_resource);
379                 request_resource(res, &data_resource);
380         }
381         request_resource(&sysram_resources[0], &pdcdata_resource);
382 }
383
384 static int __init parisc_text_address(unsigned long vaddr)
385 {
386         static unsigned long head_ptr __initdata;
387
388         if (!head_ptr)
389                 head_ptr = PAGE_MASK & (unsigned long)
390                         dereference_function_descriptor(&parisc_kernel_start);
391
392         return core_kernel_text(vaddr) || vaddr == head_ptr;
393 }
394
395 static void __init map_pages(unsigned long start_vaddr,
396                              unsigned long start_paddr, unsigned long size,
397                              pgprot_t pgprot, int force)
398 {
399         pgd_t *pg_dir;
400         pmd_t *pmd;
401         pte_t *pg_table;
402         unsigned long end_paddr;
403         unsigned long start_pmd;
404         unsigned long start_pte;
405         unsigned long tmp1;
406         unsigned long tmp2;
407         unsigned long address;
408         unsigned long vaddr;
409         unsigned long ro_start;
410         unsigned long ro_end;
411         unsigned long kernel_end;
412
413         ro_start = __pa((unsigned long)_text);
414         ro_end   = __pa((unsigned long)&data_start);
415         kernel_end  = __pa((unsigned long)&_end);
416
417         end_paddr = start_paddr + size;
418
419         pg_dir = pgd_offset_k(start_vaddr);
420
421 #if PTRS_PER_PMD == 1
422         start_pmd = 0;
423 #else
424         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
425 #endif
426         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
427
428         address = start_paddr;
429         vaddr = start_vaddr;
430         while (address < end_paddr) {
431 #if PTRS_PER_PMD == 1
432                 pmd = (pmd_t *)__pa(pg_dir);
433 #else
434                 pmd = (pmd_t *)pgd_address(*pg_dir);
435
436                 /*
437                  * pmd is physical at this point
438                  */
439
440                 if (!pmd) {
441                         pmd = (pmd_t *) get_memblock(PAGE_SIZE << PMD_ORDER);
442                         pmd = (pmd_t *) __pa(pmd);
443                 }
444
445                 pgd_populate(NULL, pg_dir, __va(pmd));
446 #endif
447                 pg_dir++;
448
449                 /* now change pmd to kernel virtual addresses */
450
451                 pmd = (pmd_t *)__va(pmd) + start_pmd;
452                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
453
454                         /*
455                          * pg_table is physical at this point
456                          */
457
458                         pg_table = (pte_t *)pmd_address(*pmd);
459                         if (!pg_table) {
460                                 pg_table = (pte_t *) get_memblock(PAGE_SIZE);
461                                 pg_table = (pte_t *) __pa(pg_table);
462                         }
463
464                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
465
466                         /* now change pg_table to kernel virtual addresses */
467
468                         pg_table = (pte_t *) __va(pg_table) + start_pte;
469                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
470                                 pte_t pte;
471
472                                 if (force)
473                                         pte =  __mk_pte(address, pgprot);
474                                 else if (parisc_text_address(vaddr)) {
475                                         pte = __mk_pte(address, PAGE_KERNEL_EXEC);
476                                         if (address >= ro_start && address < kernel_end)
477                                                 pte = pte_mkhuge(pte);
478                                 }
479                                 else
480 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
481                                 if (address >= ro_start && address < ro_end) {
482                                         pte = __mk_pte(address, PAGE_KERNEL_EXEC);
483                                         pte = pte_mkhuge(pte);
484                                 } else
485 #endif
486                                 {
487                                         pte = __mk_pte(address, pgprot);
488                                         if (address >= ro_start && address < kernel_end)
489                                                 pte = pte_mkhuge(pte);
490                                 }
491
492                                 if (address >= end_paddr) {
493                                         if (force)
494                                                 break;
495                                         else
496                                                 pte_val(pte) = 0;
497                                 }
498
499                                 set_pte(pg_table, pte);
500
501                                 address += PAGE_SIZE;
502                                 vaddr += PAGE_SIZE;
503                         }
504                         start_pte = 0;
505
506                         if (address >= end_paddr)
507                             break;
508                 }
509                 start_pmd = 0;
510         }
511 }
512
513 void free_initmem(void)
514 {
515         unsigned long init_begin = (unsigned long)__init_begin;
516         unsigned long init_end = (unsigned long)__init_end;
517
518         /* The init text pages are marked R-X.  We have to
519          * flush the icache and mark them RW-
520          *
521          * This is tricky, because map_pages is in the init section.
522          * Do a dummy remap of the data section first (the data
523          * section is already PAGE_KERNEL) to pull in the TLB entries
524          * for map_kernel */
525         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
526                   PAGE_KERNEL_RWX, 1);
527         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
528          * map_pages */
529         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
530                   PAGE_KERNEL, 1);
531
532         /* force the kernel to see the new TLB entries */
533         __flush_tlb_range(0, init_begin, init_end);
534
535         /* finally dump all the instructions which were cached, since the
536          * pages are no-longer executable */
537         flush_icache_range(init_begin, init_end);
538         
539         free_initmem_default(POISON_FREE_INITMEM);
540
541         /* set up a new led state on systems shipped LED State panel */
542         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
543 }
544
545
546 #ifdef CONFIG_DEBUG_RODATA
547 void mark_rodata_ro(void)
548 {
549         /* rodata memory was already mapped with KERNEL_RO access rights by
550            pagetable_init() and map_pages(). No need to do additional stuff here */
551         printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
552                 (unsigned long)(__end_rodata - __start_rodata) >> 10);
553 }
554 #endif
555
556
557 /*
558  * Just an arbitrary offset to serve as a "hole" between mapping areas
559  * (between top of physical memory and a potential pcxl dma mapping
560  * area, and below the vmalloc mapping area).
561  *
562  * The current 32K value just means that there will be a 32K "hole"
563  * between mapping areas. That means that  any out-of-bounds memory
564  * accesses will hopefully be caught. The vmalloc() routines leaves
565  * a hole of 4kB between each vmalloced area for the same reason.
566  */
567
568  /* Leave room for gateway page expansion */
569 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
570 #error KERNEL_MAP_START is in gateway reserved region
571 #endif
572 #define MAP_START (KERNEL_MAP_START)
573
574 #define VM_MAP_OFFSET  (32*1024)
575 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
576                                      & ~(VM_MAP_OFFSET-1)))
577
578 void *parisc_vmalloc_start __read_mostly;
579 EXPORT_SYMBOL(parisc_vmalloc_start);
580
581 #ifdef CONFIG_PA11
582 unsigned long pcxl_dma_start __read_mostly;
583 #endif
584
585 void __init mem_init(void)
586 {
587         /* Do sanity checks on IPC (compat) structures */
588         BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
589 #ifndef CONFIG_64BIT
590         BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
591         BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
592         BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
593 #endif
594 #ifdef CONFIG_COMPAT
595         BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
596         BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
597         BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
598         BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
599 #endif
600
601         /* Do sanity checks on page table constants */
602         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
603         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
604         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
605         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
606                         > BITS_PER_LONG);
607
608         high_memory = __va((max_pfn << PAGE_SHIFT));
609         set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
610         free_all_bootmem();
611
612 #ifdef CONFIG_PA11
613         if (hppa_dma_ops == &pcxl_dma_ops) {
614                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
615                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
616                                                 + PCXL_DMA_MAP_SIZE);
617         } else {
618                 pcxl_dma_start = 0;
619                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
620         }
621 #else
622         parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
623 #endif
624
625         mem_init_print_info(NULL);
626 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
627         printk("virtual kernel memory layout:\n"
628                "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
629                "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
630                "      .init : 0x%p - 0x%p   (%4ld kB)\n"
631                "      .data : 0x%p - 0x%p   (%4ld kB)\n"
632                "      .text : 0x%p - 0x%p   (%4ld kB)\n",
633
634                (void*)VMALLOC_START, (void*)VMALLOC_END,
635                (VMALLOC_END - VMALLOC_START) >> 20,
636
637                __va(0), high_memory,
638                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
639
640                __init_begin, __init_end,
641                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
642
643                _etext, _edata,
644                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
645
646                _text, _etext,
647                ((unsigned long)_etext - (unsigned long)_text) >> 10);
648 #endif
649 }
650
651 unsigned long *empty_zero_page __read_mostly;
652 EXPORT_SYMBOL(empty_zero_page);
653
654 void show_mem(unsigned int filter)
655 {
656         int total = 0,reserved = 0;
657         pg_data_t *pgdat;
658
659         printk(KERN_INFO "Mem-info:\n");
660         show_free_areas(filter);
661
662         for_each_online_pgdat(pgdat) {
663                 unsigned long flags;
664                 int zoneid;
665
666                 pgdat_resize_lock(pgdat, &flags);
667                 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
668                         struct zone *zone = &pgdat->node_zones[zoneid];
669                         if (!populated_zone(zone))
670                                 continue;
671
672                         total += zone->present_pages;
673                         reserved = zone->present_pages - zone->managed_pages;
674                 }
675                 pgdat_resize_unlock(pgdat, &flags);
676         }
677
678         printk(KERN_INFO "%d pages of RAM\n", total);
679         printk(KERN_INFO "%d reserved pages\n", reserved);
680
681 #ifdef CONFIG_DISCONTIGMEM
682         {
683                 struct zonelist *zl;
684                 int i, j;
685
686                 for (i = 0; i < npmem_ranges; i++) {
687                         zl = node_zonelist(i, 0);
688                         for (j = 0; j < MAX_NR_ZONES; j++) {
689                                 struct zoneref *z;
690                                 struct zone *zone;
691
692                                 printk("Zone list for zone %d on node %d: ", j, i);
693                                 for_each_zone_zonelist(zone, z, zl, j)
694                                         printk("[%d/%s] ", zone_to_nid(zone),
695                                                                 zone->name);
696                                 printk("\n");
697                         }
698                 }
699         }
700 #endif
701 }
702
703 /*
704  * pagetable_init() sets up the page tables
705  *
706  * Note that gateway_init() places the Linux gateway page at page 0.
707  * Since gateway pages cannot be dereferenced this has the desirable
708  * side effect of trapping those pesky NULL-reference errors in the
709  * kernel.
710  */
711 static void __init pagetable_init(void)
712 {
713         int range;
714
715         /* Map each physical memory range to its kernel vaddr */
716
717         for (range = 0; range < npmem_ranges; range++) {
718                 unsigned long start_paddr;
719                 unsigned long end_paddr;
720                 unsigned long size;
721
722                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
723                 size = pmem_ranges[range].pages << PAGE_SHIFT;
724                 end_paddr = start_paddr + size;
725
726                 map_pages((unsigned long)__va(start_paddr), start_paddr,
727                           size, PAGE_KERNEL, 0);
728         }
729
730 #ifdef CONFIG_BLK_DEV_INITRD
731         if (initrd_end && initrd_end > mem_limit) {
732                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
733                 map_pages(initrd_start, __pa(initrd_start),
734                           initrd_end - initrd_start, PAGE_KERNEL, 0);
735         }
736 #endif
737
738         empty_zero_page = get_memblock(PAGE_SIZE);
739 }
740
741 static void __init gateway_init(void)
742 {
743         unsigned long linux_gateway_page_addr;
744         /* FIXME: This is 'const' in order to trick the compiler
745            into not treating it as DP-relative data. */
746         extern void * const linux_gateway_page;
747
748         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
749
750         /*
751          * Setup Linux Gateway page.
752          *
753          * The Linux gateway page will reside in kernel space (on virtual
754          * page 0), so it doesn't need to be aliased into user space.
755          */
756
757         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
758                   PAGE_SIZE, PAGE_GATEWAY, 1);
759 }
760
761 void __init paging_init(void)
762 {
763         int i;
764
765         setup_bootmem();
766         pagetable_init();
767         gateway_init();
768         flush_cache_all_local(); /* start with known state */
769         flush_tlb_all_local(NULL);
770
771         for (i = 0; i < npmem_ranges; i++) {
772                 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
773
774                 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
775
776 #ifdef CONFIG_DISCONTIGMEM
777                 /* Need to initialize the pfnnid_map before we can initialize
778                    the zone */
779                 {
780                     int j;
781                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
782                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
783                          j++) {
784                         pfnnid_map[j] = i;
785                     }
786                 }
787 #endif
788
789                 free_area_init_node(i, zones_size,
790                                 pmem_ranges[i].start_pfn, NULL);
791         }
792 }
793
794 #ifdef CONFIG_PA20
795
796 /*
797  * Currently, all PA20 chips have 18 bit protection IDs, which is the
798  * limiting factor (space ids are 32 bits).
799  */
800
801 #define NR_SPACE_IDS 262144
802
803 #else
804
805 /*
806  * Currently we have a one-to-one relationship between space IDs and
807  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
808  * support 15 bit protection IDs, so that is the limiting factor.
809  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
810  * probably not worth the effort for a special case here.
811  */
812
813 #define NR_SPACE_IDS 32768
814
815 #endif  /* !CONFIG_PA20 */
816
817 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
818 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
819
820 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
821 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
822 static unsigned long space_id_index;
823 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
824 static unsigned long dirty_space_ids = 0;
825
826 static DEFINE_SPINLOCK(sid_lock);
827
828 unsigned long alloc_sid(void)
829 {
830         unsigned long index;
831
832         spin_lock(&sid_lock);
833
834         if (free_space_ids == 0) {
835                 if (dirty_space_ids != 0) {
836                         spin_unlock(&sid_lock);
837                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
838                         spin_lock(&sid_lock);
839                 }
840                 BUG_ON(free_space_ids == 0);
841         }
842
843         free_space_ids--;
844
845         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
846         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
847         space_id_index = index;
848
849         spin_unlock(&sid_lock);
850
851         return index << SPACEID_SHIFT;
852 }
853
854 void free_sid(unsigned long spaceid)
855 {
856         unsigned long index = spaceid >> SPACEID_SHIFT;
857         unsigned long *dirty_space_offset;
858
859         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
860         index &= (BITS_PER_LONG - 1);
861
862         spin_lock(&sid_lock);
863
864         BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
865
866         *dirty_space_offset |= (1L << index);
867         dirty_space_ids++;
868
869         spin_unlock(&sid_lock);
870 }
871
872
873 #ifdef CONFIG_SMP
874 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
875 {
876         int i;
877
878         /* NOTE: sid_lock must be held upon entry */
879
880         *ndirtyptr = dirty_space_ids;
881         if (dirty_space_ids != 0) {
882             for (i = 0; i < SID_ARRAY_SIZE; i++) {
883                 dirty_array[i] = dirty_space_id[i];
884                 dirty_space_id[i] = 0;
885             }
886             dirty_space_ids = 0;
887         }
888
889         return;
890 }
891
892 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
893 {
894         int i;
895
896         /* NOTE: sid_lock must be held upon entry */
897
898         if (ndirty != 0) {
899                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
900                         space_id[i] ^= dirty_array[i];
901                 }
902
903                 free_space_ids += ndirty;
904                 space_id_index = 0;
905         }
906 }
907
908 #else /* CONFIG_SMP */
909
910 static void recycle_sids(void)
911 {
912         int i;
913
914         /* NOTE: sid_lock must be held upon entry */
915
916         if (dirty_space_ids != 0) {
917                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
918                         space_id[i] ^= dirty_space_id[i];
919                         dirty_space_id[i] = 0;
920                 }
921
922                 free_space_ids += dirty_space_ids;
923                 dirty_space_ids = 0;
924                 space_id_index = 0;
925         }
926 }
927 #endif
928
929 /*
930  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
931  * purged, we can safely reuse the space ids that were released but
932  * not flushed from the tlb.
933  */
934
935 #ifdef CONFIG_SMP
936
937 static unsigned long recycle_ndirty;
938 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
939 static unsigned int recycle_inuse;
940
941 void flush_tlb_all(void)
942 {
943         int do_recycle;
944
945         __inc_irq_stat(irq_tlb_count);
946         do_recycle = 0;
947         spin_lock(&sid_lock);
948         if (dirty_space_ids > RECYCLE_THRESHOLD) {
949             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
950             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
951             recycle_inuse++;
952             do_recycle++;
953         }
954         spin_unlock(&sid_lock);
955         on_each_cpu(flush_tlb_all_local, NULL, 1);
956         if (do_recycle) {
957             spin_lock(&sid_lock);
958             recycle_sids(recycle_ndirty,recycle_dirty_array);
959             recycle_inuse = 0;
960             spin_unlock(&sid_lock);
961         }
962 }
963 #else
964 void flush_tlb_all(void)
965 {
966         __inc_irq_stat(irq_tlb_count);
967         spin_lock(&sid_lock);
968         flush_tlb_all_local(NULL);
969         recycle_sids();
970         spin_unlock(&sid_lock);
971 }
972 #endif
973
974 #ifdef CONFIG_BLK_DEV_INITRD
975 void free_initrd_mem(unsigned long start, unsigned long end)
976 {
977         free_reserved_area((void *)start, (void *)end, -1, "initrd");
978 }
979 #endif