powerpc: implement arch_reserved_kernel_pages
[cascardo/linux.git] / arch / powerpc / kernel / fadump.c
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/debug.h>
44 #include <asm/setup.h>
45
46 static struct fw_dump fw_dump;
47 static struct fadump_mem_struct fdm;
48 static const struct fadump_mem_struct *fdm_active;
49
50 static DEFINE_MUTEX(fadump_mutex);
51 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
52 int crash_mem_ranges;
53
54 /* Scan the Firmware Assisted dump configuration details. */
55 int __init early_init_dt_scan_fw_dump(unsigned long node,
56                         const char *uname, int depth, void *data)
57 {
58         const __be32 *sections;
59         int i, num_sections;
60         int size;
61         const __be32 *token;
62
63         if (depth != 1 || strcmp(uname, "rtas") != 0)
64                 return 0;
65
66         /*
67          * Check if Firmware Assisted dump is supported. if yes, check
68          * if dump has been initiated on last reboot.
69          */
70         token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
71         if (!token)
72                 return 1;
73
74         fw_dump.fadump_supported = 1;
75         fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
76
77         /*
78          * The 'ibm,kernel-dump' rtas node is present only if there is
79          * dump data waiting for us.
80          */
81         fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
82         if (fdm_active)
83                 fw_dump.dump_active = 1;
84
85         /* Get the sizes required to store dump data for the firmware provided
86          * dump sections.
87          * For each dump section type supported, a 32bit cell which defines
88          * the ID of a supported section followed by two 32 bit cells which
89          * gives teh size of the section in bytes.
90          */
91         sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
92                                         &size);
93
94         if (!sections)
95                 return 1;
96
97         num_sections = size / (3 * sizeof(u32));
98
99         for (i = 0; i < num_sections; i++, sections += 3) {
100                 u32 type = (u32)of_read_number(sections, 1);
101
102                 switch (type) {
103                 case FADUMP_CPU_STATE_DATA:
104                         fw_dump.cpu_state_data_size =
105                                         of_read_ulong(&sections[1], 2);
106                         break;
107                 case FADUMP_HPTE_REGION:
108                         fw_dump.hpte_region_size =
109                                         of_read_ulong(&sections[1], 2);
110                         break;
111                 }
112         }
113
114         return 1;
115 }
116
117 int is_fadump_active(void)
118 {
119         return fw_dump.dump_active;
120 }
121
122 /* Print firmware assisted dump configurations for debugging purpose. */
123 static void fadump_show_config(void)
124 {
125         pr_debug("Support for firmware-assisted dump (fadump): %s\n",
126                         (fw_dump.fadump_supported ? "present" : "no support"));
127
128         if (!fw_dump.fadump_supported)
129                 return;
130
131         pr_debug("Fadump enabled    : %s\n",
132                                 (fw_dump.fadump_enabled ? "yes" : "no"));
133         pr_debug("Dump Active       : %s\n",
134                                 (fw_dump.dump_active ? "yes" : "no"));
135         pr_debug("Dump section sizes:\n");
136         pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
137         pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
138         pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
139 }
140
141 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
142                                 unsigned long addr)
143 {
144         if (!fdm)
145                 return 0;
146
147         memset(fdm, 0, sizeof(struct fadump_mem_struct));
148         addr = addr & PAGE_MASK;
149
150         fdm->header.dump_format_version = cpu_to_be32(0x00000001);
151         fdm->header.dump_num_sections = cpu_to_be16(3);
152         fdm->header.dump_status_flag = 0;
153         fdm->header.offset_first_dump_section =
154                 cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
155
156         /*
157          * Fields for disk dump option.
158          * We are not using disk dump option, hence set these fields to 0.
159          */
160         fdm->header.dd_block_size = 0;
161         fdm->header.dd_block_offset = 0;
162         fdm->header.dd_num_blocks = 0;
163         fdm->header.dd_offset_disk_path = 0;
164
165         /* set 0 to disable an automatic dump-reboot. */
166         fdm->header.max_time_auto = 0;
167
168         /* Kernel dump sections */
169         /* cpu state data section. */
170         fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
171         fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
172         fdm->cpu_state_data.source_address = 0;
173         fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
174         fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
175         addr += fw_dump.cpu_state_data_size;
176
177         /* hpte region section */
178         fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
179         fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
180         fdm->hpte_region.source_address = 0;
181         fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
182         fdm->hpte_region.destination_address = cpu_to_be64(addr);
183         addr += fw_dump.hpte_region_size;
184
185         /* RMA region section */
186         fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
187         fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
188         fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
189         fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
190         fdm->rmr_region.destination_address = cpu_to_be64(addr);
191         addr += fw_dump.boot_memory_size;
192
193         return addr;
194 }
195
196 /**
197  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
198  *
199  * Function to find the largest memory size we need to reserve during early
200  * boot process. This will be the size of the memory that is required for a
201  * kernel to boot successfully.
202  *
203  * This function has been taken from phyp-assisted dump feature implementation.
204  *
205  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
206  *
207  * TODO: Come up with better approach to find out more accurate memory size
208  * that is required for a kernel to boot successfully.
209  *
210  */
211 static inline unsigned long fadump_calculate_reserve_size(void)
212 {
213         unsigned long size;
214
215         /*
216          * Check if the size is specified through fadump_reserve_mem= cmdline
217          * option. If yes, then use that.
218          */
219         if (fw_dump.reserve_bootvar)
220                 return fw_dump.reserve_bootvar;
221
222         /* divide by 20 to get 5% of value */
223         size = memblock_end_of_DRAM() / 20;
224
225         /* round it down in multiples of 256 */
226         size = size & ~0x0FFFFFFFUL;
227
228         /* Truncate to memory_limit. We don't want to over reserve the memory.*/
229         if (memory_limit && size > memory_limit)
230                 size = memory_limit;
231
232         return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
233 }
234
235 /*
236  * Calculate the total memory size required to be reserved for
237  * firmware-assisted dump registration.
238  */
239 static unsigned long get_fadump_area_size(void)
240 {
241         unsigned long size = 0;
242
243         size += fw_dump.cpu_state_data_size;
244         size += fw_dump.hpte_region_size;
245         size += fw_dump.boot_memory_size;
246         size += sizeof(struct fadump_crash_info_header);
247         size += sizeof(struct elfhdr); /* ELF core header.*/
248         size += sizeof(struct elf_phdr); /* place holder for cpu notes */
249         /* Program headers for crash memory regions. */
250         size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
251
252         size = PAGE_ALIGN(size);
253         return size;
254 }
255
256 int __init fadump_reserve_mem(void)
257 {
258         unsigned long base, size, memory_boundary;
259
260         if (!fw_dump.fadump_enabled)
261                 return 0;
262
263         if (!fw_dump.fadump_supported) {
264                 printk(KERN_INFO "Firmware-assisted dump is not supported on"
265                                 " this hardware\n");
266                 fw_dump.fadump_enabled = 0;
267                 return 0;
268         }
269         /*
270          * Initialize boot memory size
271          * If dump is active then we have already calculated the size during
272          * first kernel.
273          */
274         if (fdm_active)
275                 fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
276         else
277                 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
278
279         /*
280          * Calculate the memory boundary.
281          * If memory_limit is less than actual memory boundary then reserve
282          * the memory for fadump beyond the memory_limit and adjust the
283          * memory_limit accordingly, so that the running kernel can run with
284          * specified memory_limit.
285          */
286         if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
287                 size = get_fadump_area_size();
288                 if ((memory_limit + size) < memblock_end_of_DRAM())
289                         memory_limit += size;
290                 else
291                         memory_limit = memblock_end_of_DRAM();
292                 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
293                                 " dump, now %#016llx\n", memory_limit);
294         }
295         if (memory_limit)
296                 memory_boundary = memory_limit;
297         else
298                 memory_boundary = memblock_end_of_DRAM();
299
300         if (fw_dump.dump_active) {
301                 printk(KERN_INFO "Firmware-assisted dump is active.\n");
302                 /*
303                  * If last boot has crashed then reserve all the memory
304                  * above boot_memory_size so that we don't touch it until
305                  * dump is written to disk by userspace tool. This memory
306                  * will be released for general use once the dump is saved.
307                  */
308                 base = fw_dump.boot_memory_size;
309                 size = memory_boundary - base;
310                 memblock_reserve(base, size);
311                 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
312                                 "for saving crash dump\n",
313                                 (unsigned long)(size >> 20),
314                                 (unsigned long)(base >> 20));
315
316                 fw_dump.fadumphdr_addr =
317                                 be64_to_cpu(fdm_active->rmr_region.destination_address) +
318                                 be64_to_cpu(fdm_active->rmr_region.source_len);
319                 pr_debug("fadumphdr_addr = %p\n",
320                                 (void *) fw_dump.fadumphdr_addr);
321         } else {
322                 /* Reserve the memory at the top of memory. */
323                 size = get_fadump_area_size();
324                 base = memory_boundary - size;
325                 memblock_reserve(base, size);
326                 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
327                                 "for firmware-assisted dump\n",
328                                 (unsigned long)(size >> 20),
329                                 (unsigned long)(base >> 20));
330         }
331         fw_dump.reserve_dump_area_start = base;
332         fw_dump.reserve_dump_area_size = size;
333         return 1;
334 }
335
336 unsigned long __init arch_reserved_kernel_pages(void)
337 {
338         return memblock_reserved_size() / PAGE_SIZE;
339 }
340
341 /* Look for fadump= cmdline option. */
342 static int __init early_fadump_param(char *p)
343 {
344         if (!p)
345                 return 1;
346
347         if (strncmp(p, "on", 2) == 0)
348                 fw_dump.fadump_enabled = 1;
349         else if (strncmp(p, "off", 3) == 0)
350                 fw_dump.fadump_enabled = 0;
351
352         return 0;
353 }
354 early_param("fadump", early_fadump_param);
355
356 /* Look for fadump_reserve_mem= cmdline option */
357 static int __init early_fadump_reserve_mem(char *p)
358 {
359         if (p)
360                 fw_dump.reserve_bootvar = memparse(p, &p);
361         return 0;
362 }
363 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
364
365 static void register_fw_dump(struct fadump_mem_struct *fdm)
366 {
367         int rc;
368         unsigned int wait_time;
369
370         pr_debug("Registering for firmware-assisted kernel dump...\n");
371
372         /* TODO: Add upper time limit for the delay */
373         do {
374                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
375                         FADUMP_REGISTER, fdm,
376                         sizeof(struct fadump_mem_struct));
377
378                 wait_time = rtas_busy_delay_time(rc);
379                 if (wait_time)
380                         mdelay(wait_time);
381
382         } while (wait_time);
383
384         switch (rc) {
385         case -1:
386                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
387                         " dump. Hardware Error(%d).\n", rc);
388                 break;
389         case -3:
390                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
391                         " dump. Parameter Error(%d).\n", rc);
392                 break;
393         case -9:
394                 printk(KERN_ERR "firmware-assisted kernel dump is already "
395                         " registered.");
396                 fw_dump.dump_registered = 1;
397                 break;
398         case 0:
399                 printk(KERN_INFO "firmware-assisted kernel dump registration"
400                         " is successful\n");
401                 fw_dump.dump_registered = 1;
402                 break;
403         }
404 }
405
406 void crash_fadump(struct pt_regs *regs, const char *str)
407 {
408         struct fadump_crash_info_header *fdh = NULL;
409
410         if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
411                 return;
412
413         fdh = __va(fw_dump.fadumphdr_addr);
414         crashing_cpu = smp_processor_id();
415         fdh->crashing_cpu = crashing_cpu;
416         crash_save_vmcoreinfo();
417
418         if (regs)
419                 fdh->regs = *regs;
420         else
421                 ppc_save_regs(&fdh->regs);
422
423         fdh->online_mask = *cpu_online_mask;
424
425         /* Call ibm,os-term rtas call to trigger firmware assisted dump */
426         rtas_os_term((char *)str);
427 }
428
429 #define GPR_MASK        0xffffff0000000000
430 static inline int fadump_gpr_index(u64 id)
431 {
432         int i = -1;
433         char str[3];
434
435         if ((id & GPR_MASK) == REG_ID("GPR")) {
436                 /* get the digits at the end */
437                 id &= ~GPR_MASK;
438                 id >>= 24;
439                 str[2] = '\0';
440                 str[1] = id & 0xff;
441                 str[0] = (id >> 8) & 0xff;
442                 sscanf(str, "%d", &i);
443                 if (i > 31)
444                         i = -1;
445         }
446         return i;
447 }
448
449 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
450                                                                 u64 reg_val)
451 {
452         int i;
453
454         i = fadump_gpr_index(reg_id);
455         if (i >= 0)
456                 regs->gpr[i] = (unsigned long)reg_val;
457         else if (reg_id == REG_ID("NIA"))
458                 regs->nip = (unsigned long)reg_val;
459         else if (reg_id == REG_ID("MSR"))
460                 regs->msr = (unsigned long)reg_val;
461         else if (reg_id == REG_ID("CTR"))
462                 regs->ctr = (unsigned long)reg_val;
463         else if (reg_id == REG_ID("LR"))
464                 regs->link = (unsigned long)reg_val;
465         else if (reg_id == REG_ID("XER"))
466                 regs->xer = (unsigned long)reg_val;
467         else if (reg_id == REG_ID("CR"))
468                 regs->ccr = (unsigned long)reg_val;
469         else if (reg_id == REG_ID("DAR"))
470                 regs->dar = (unsigned long)reg_val;
471         else if (reg_id == REG_ID("DSISR"))
472                 regs->dsisr = (unsigned long)reg_val;
473 }
474
475 static struct fadump_reg_entry*
476 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
477 {
478         memset(regs, 0, sizeof(struct pt_regs));
479
480         while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
481                 fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
482                                         be64_to_cpu(reg_entry->reg_value));
483                 reg_entry++;
484         }
485         reg_entry++;
486         return reg_entry;
487 }
488
489 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
490                                                 void *data, size_t data_len)
491 {
492         struct elf_note note;
493
494         note.n_namesz = strlen(name) + 1;
495         note.n_descsz = data_len;
496         note.n_type   = type;
497         memcpy(buf, &note, sizeof(note));
498         buf += (sizeof(note) + 3)/4;
499         memcpy(buf, name, note.n_namesz);
500         buf += (note.n_namesz + 3)/4;
501         memcpy(buf, data, note.n_descsz);
502         buf += (note.n_descsz + 3)/4;
503
504         return buf;
505 }
506
507 static void fadump_final_note(u32 *buf)
508 {
509         struct elf_note note;
510
511         note.n_namesz = 0;
512         note.n_descsz = 0;
513         note.n_type   = 0;
514         memcpy(buf, &note, sizeof(note));
515 }
516
517 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
518 {
519         struct elf_prstatus prstatus;
520
521         memset(&prstatus, 0, sizeof(prstatus));
522         /*
523          * FIXME: How do i get PID? Do I really need it?
524          * prstatus.pr_pid = ????
525          */
526         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
527         buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
528                                 &prstatus, sizeof(prstatus));
529         return buf;
530 }
531
532 static void fadump_update_elfcore_header(char *bufp)
533 {
534         struct elfhdr *elf;
535         struct elf_phdr *phdr;
536
537         elf = (struct elfhdr *)bufp;
538         bufp += sizeof(struct elfhdr);
539
540         /* First note is a place holder for cpu notes info. */
541         phdr = (struct elf_phdr *)bufp;
542
543         if (phdr->p_type == PT_NOTE) {
544                 phdr->p_paddr = fw_dump.cpu_notes_buf;
545                 phdr->p_offset  = phdr->p_paddr;
546                 phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
547                 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
548         }
549         return;
550 }
551
552 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
553 {
554         void *vaddr;
555         struct page *page;
556         unsigned long order, count, i;
557
558         order = get_order(size);
559         vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
560         if (!vaddr)
561                 return NULL;
562
563         count = 1 << order;
564         page = virt_to_page(vaddr);
565         for (i = 0; i < count; i++)
566                 SetPageReserved(page + i);
567         return vaddr;
568 }
569
570 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
571 {
572         struct page *page;
573         unsigned long order, count, i;
574
575         order = get_order(size);
576         count = 1 << order;
577         page = virt_to_page(vaddr);
578         for (i = 0; i < count; i++)
579                 ClearPageReserved(page + i);
580         __free_pages(page, order);
581 }
582
583 /*
584  * Read CPU state dump data and convert it into ELF notes.
585  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
586  * used to access the data to allow for additional fields to be added without
587  * affecting compatibility. Each list of registers for a CPU starts with
588  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
589  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
590  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
591  * of register value. For more details refer to PAPR document.
592  *
593  * Only for the crashing cpu we ignore the CPU dump data and get exact
594  * state from fadump crash info structure populated by first kernel at the
595  * time of crash.
596  */
597 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
598 {
599         struct fadump_reg_save_area_header *reg_header;
600         struct fadump_reg_entry *reg_entry;
601         struct fadump_crash_info_header *fdh = NULL;
602         void *vaddr;
603         unsigned long addr;
604         u32 num_cpus, *note_buf;
605         struct pt_regs regs;
606         int i, rc = 0, cpu = 0;
607
608         if (!fdm->cpu_state_data.bytes_dumped)
609                 return -EINVAL;
610
611         addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
612         vaddr = __va(addr);
613
614         reg_header = vaddr;
615         if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
616                 printk(KERN_ERR "Unable to read register save area.\n");
617                 return -ENOENT;
618         }
619         pr_debug("--------CPU State Data------------\n");
620         pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
621         pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
622
623         vaddr += be32_to_cpu(reg_header->num_cpu_offset);
624         num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
625         pr_debug("NumCpus     : %u\n", num_cpus);
626         vaddr += sizeof(u32);
627         reg_entry = (struct fadump_reg_entry *)vaddr;
628
629         /* Allocate buffer to hold cpu crash notes. */
630         fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
631         fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
632         note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
633         if (!note_buf) {
634                 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
635                         "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
636                 return -ENOMEM;
637         }
638         fw_dump.cpu_notes_buf = __pa(note_buf);
639
640         pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
641                         (num_cpus * sizeof(note_buf_t)), note_buf);
642
643         if (fw_dump.fadumphdr_addr)
644                 fdh = __va(fw_dump.fadumphdr_addr);
645
646         for (i = 0; i < num_cpus; i++) {
647                 if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
648                         printk(KERN_ERR "Unable to read CPU state data\n");
649                         rc = -ENOENT;
650                         goto error_out;
651                 }
652                 /* Lower 4 bytes of reg_value contains logical cpu id */
653                 cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
654                 if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
655                         SKIP_TO_NEXT_CPU(reg_entry);
656                         continue;
657                 }
658                 pr_debug("Reading register data for cpu %d...\n", cpu);
659                 if (fdh && fdh->crashing_cpu == cpu) {
660                         regs = fdh->regs;
661                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
662                         SKIP_TO_NEXT_CPU(reg_entry);
663                 } else {
664                         reg_entry++;
665                         reg_entry = fadump_read_registers(reg_entry, &regs);
666                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
667                 }
668         }
669         fadump_final_note(note_buf);
670
671         if (fdh) {
672                 pr_debug("Updating elfcore header (%llx) with cpu notes\n",
673                                                         fdh->elfcorehdr_addr);
674                 fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
675         }
676         return 0;
677
678 error_out:
679         fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
680                                         fw_dump.cpu_notes_buf_size);
681         fw_dump.cpu_notes_buf = 0;
682         fw_dump.cpu_notes_buf_size = 0;
683         return rc;
684
685 }
686
687 /*
688  * Validate and process the dump data stored by firmware before exporting
689  * it through '/proc/vmcore'.
690  */
691 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
692 {
693         struct fadump_crash_info_header *fdh;
694         int rc = 0;
695
696         if (!fdm_active || !fw_dump.fadumphdr_addr)
697                 return -EINVAL;
698
699         /* Check if the dump data is valid. */
700         if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
701                         (fdm_active->cpu_state_data.error_flags != 0) ||
702                         (fdm_active->rmr_region.error_flags != 0)) {
703                 printk(KERN_ERR "Dump taken by platform is not valid\n");
704                 return -EINVAL;
705         }
706         if ((fdm_active->rmr_region.bytes_dumped !=
707                         fdm_active->rmr_region.source_len) ||
708                         !fdm_active->cpu_state_data.bytes_dumped) {
709                 printk(KERN_ERR "Dump taken by platform is incomplete\n");
710                 return -EINVAL;
711         }
712
713         /* Validate the fadump crash info header */
714         fdh = __va(fw_dump.fadumphdr_addr);
715         if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
716                 printk(KERN_ERR "Crash info header is not valid.\n");
717                 return -EINVAL;
718         }
719
720         rc = fadump_build_cpu_notes(fdm_active);
721         if (rc)
722                 return rc;
723
724         /*
725          * We are done validating dump info and elfcore header is now ready
726          * to be exported. set elfcorehdr_addr so that vmcore module will
727          * export the elfcore header through '/proc/vmcore'.
728          */
729         elfcorehdr_addr = fdh->elfcorehdr_addr;
730
731         return 0;
732 }
733
734 static inline void fadump_add_crash_memory(unsigned long long base,
735                                         unsigned long long end)
736 {
737         if (base == end)
738                 return;
739
740         pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
741                 crash_mem_ranges, base, end - 1, (end - base));
742         crash_memory_ranges[crash_mem_ranges].base = base;
743         crash_memory_ranges[crash_mem_ranges].size = end - base;
744         crash_mem_ranges++;
745 }
746
747 static void fadump_exclude_reserved_area(unsigned long long start,
748                                         unsigned long long end)
749 {
750         unsigned long long ra_start, ra_end;
751
752         ra_start = fw_dump.reserve_dump_area_start;
753         ra_end = ra_start + fw_dump.reserve_dump_area_size;
754
755         if ((ra_start < end) && (ra_end > start)) {
756                 if ((start < ra_start) && (end > ra_end)) {
757                         fadump_add_crash_memory(start, ra_start);
758                         fadump_add_crash_memory(ra_end, end);
759                 } else if (start < ra_start) {
760                         fadump_add_crash_memory(start, ra_start);
761                 } else if (ra_end < end) {
762                         fadump_add_crash_memory(ra_end, end);
763                 }
764         } else
765                 fadump_add_crash_memory(start, end);
766 }
767
768 static int fadump_init_elfcore_header(char *bufp)
769 {
770         struct elfhdr *elf;
771
772         elf = (struct elfhdr *) bufp;
773         bufp += sizeof(struct elfhdr);
774         memcpy(elf->e_ident, ELFMAG, SELFMAG);
775         elf->e_ident[EI_CLASS] = ELF_CLASS;
776         elf->e_ident[EI_DATA] = ELF_DATA;
777         elf->e_ident[EI_VERSION] = EV_CURRENT;
778         elf->e_ident[EI_OSABI] = ELF_OSABI;
779         memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
780         elf->e_type = ET_CORE;
781         elf->e_machine = ELF_ARCH;
782         elf->e_version = EV_CURRENT;
783         elf->e_entry = 0;
784         elf->e_phoff = sizeof(struct elfhdr);
785         elf->e_shoff = 0;
786         elf->e_flags = ELF_CORE_EFLAGS;
787         elf->e_ehsize = sizeof(struct elfhdr);
788         elf->e_phentsize = sizeof(struct elf_phdr);
789         elf->e_phnum = 0;
790         elf->e_shentsize = 0;
791         elf->e_shnum = 0;
792         elf->e_shstrndx = 0;
793
794         return 0;
795 }
796
797 /*
798  * Traverse through memblock structure and setup crash memory ranges. These
799  * ranges will be used create PT_LOAD program headers in elfcore header.
800  */
801 static void fadump_setup_crash_memory_ranges(void)
802 {
803         struct memblock_region *reg;
804         unsigned long long start, end;
805
806         pr_debug("Setup crash memory ranges.\n");
807         crash_mem_ranges = 0;
808         /*
809          * add the first memory chunk (RMA_START through boot_memory_size) as
810          * a separate memory chunk. The reason is, at the time crash firmware
811          * will move the content of this memory chunk to different location
812          * specified during fadump registration. We need to create a separate
813          * program header for this chunk with the correct offset.
814          */
815         fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
816
817         for_each_memblock(memory, reg) {
818                 start = (unsigned long long)reg->base;
819                 end = start + (unsigned long long)reg->size;
820                 if (start == RMA_START && end >= fw_dump.boot_memory_size)
821                         start = fw_dump.boot_memory_size;
822
823                 /* add this range excluding the reserved dump area. */
824                 fadump_exclude_reserved_area(start, end);
825         }
826 }
827
828 /*
829  * If the given physical address falls within the boot memory region then
830  * return the relocated address that points to the dump region reserved
831  * for saving initial boot memory contents.
832  */
833 static inline unsigned long fadump_relocate(unsigned long paddr)
834 {
835         if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
836                 return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
837         else
838                 return paddr;
839 }
840
841 static int fadump_create_elfcore_headers(char *bufp)
842 {
843         struct elfhdr *elf;
844         struct elf_phdr *phdr;
845         int i;
846
847         fadump_init_elfcore_header(bufp);
848         elf = (struct elfhdr *)bufp;
849         bufp += sizeof(struct elfhdr);
850
851         /*
852          * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
853          * will be populated during second kernel boot after crash. Hence
854          * this PT_NOTE will always be the first elf note.
855          *
856          * NOTE: Any new ELF note addition should be placed after this note.
857          */
858         phdr = (struct elf_phdr *)bufp;
859         bufp += sizeof(struct elf_phdr);
860         phdr->p_type = PT_NOTE;
861         phdr->p_flags = 0;
862         phdr->p_vaddr = 0;
863         phdr->p_align = 0;
864
865         phdr->p_offset = 0;
866         phdr->p_paddr = 0;
867         phdr->p_filesz = 0;
868         phdr->p_memsz = 0;
869
870         (elf->e_phnum)++;
871
872         /* setup ELF PT_NOTE for vmcoreinfo */
873         phdr = (struct elf_phdr *)bufp;
874         bufp += sizeof(struct elf_phdr);
875         phdr->p_type    = PT_NOTE;
876         phdr->p_flags   = 0;
877         phdr->p_vaddr   = 0;
878         phdr->p_align   = 0;
879
880         phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
881         phdr->p_offset  = phdr->p_paddr;
882         phdr->p_memsz   = vmcoreinfo_max_size;
883         phdr->p_filesz  = vmcoreinfo_max_size;
884
885         /* Increment number of program headers. */
886         (elf->e_phnum)++;
887
888         /* setup PT_LOAD sections. */
889
890         for (i = 0; i < crash_mem_ranges; i++) {
891                 unsigned long long mbase, msize;
892                 mbase = crash_memory_ranges[i].base;
893                 msize = crash_memory_ranges[i].size;
894
895                 if (!msize)
896                         continue;
897
898                 phdr = (struct elf_phdr *)bufp;
899                 bufp += sizeof(struct elf_phdr);
900                 phdr->p_type    = PT_LOAD;
901                 phdr->p_flags   = PF_R|PF_W|PF_X;
902                 phdr->p_offset  = mbase;
903
904                 if (mbase == RMA_START) {
905                         /*
906                          * The entire RMA region will be moved by firmware
907                          * to the specified destination_address. Hence set
908                          * the correct offset.
909                          */
910                         phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
911                 }
912
913                 phdr->p_paddr = mbase;
914                 phdr->p_vaddr = (unsigned long)__va(mbase);
915                 phdr->p_filesz = msize;
916                 phdr->p_memsz = msize;
917                 phdr->p_align = 0;
918
919                 /* Increment number of program headers. */
920                 (elf->e_phnum)++;
921         }
922         return 0;
923 }
924
925 static unsigned long init_fadump_header(unsigned long addr)
926 {
927         struct fadump_crash_info_header *fdh;
928
929         if (!addr)
930                 return 0;
931
932         fw_dump.fadumphdr_addr = addr;
933         fdh = __va(addr);
934         addr += sizeof(struct fadump_crash_info_header);
935
936         memset(fdh, 0, sizeof(struct fadump_crash_info_header));
937         fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
938         fdh->elfcorehdr_addr = addr;
939         /* We will set the crashing cpu id in crash_fadump() during crash. */
940         fdh->crashing_cpu = CPU_UNKNOWN;
941
942         return addr;
943 }
944
945 static void register_fadump(void)
946 {
947         unsigned long addr;
948         void *vaddr;
949
950         /*
951          * If no memory is reserved then we can not register for firmware-
952          * assisted dump.
953          */
954         if (!fw_dump.reserve_dump_area_size)
955                 return;
956
957         fadump_setup_crash_memory_ranges();
958
959         addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
960         /* Initialize fadump crash info header. */
961         addr = init_fadump_header(addr);
962         vaddr = __va(addr);
963
964         pr_debug("Creating ELF core headers at %#016lx\n", addr);
965         fadump_create_elfcore_headers(vaddr);
966
967         /* register the future kernel dump with firmware. */
968         register_fw_dump(&fdm);
969 }
970
971 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
972 {
973         int rc = 0;
974         unsigned int wait_time;
975
976         pr_debug("Un-register firmware-assisted dump\n");
977
978         /* TODO: Add upper time limit for the delay */
979         do {
980                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
981                         FADUMP_UNREGISTER, fdm,
982                         sizeof(struct fadump_mem_struct));
983
984                 wait_time = rtas_busy_delay_time(rc);
985                 if (wait_time)
986                         mdelay(wait_time);
987         } while (wait_time);
988
989         if (rc) {
990                 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
991                         " unexpected error(%d).\n", rc);
992                 return rc;
993         }
994         fw_dump.dump_registered = 0;
995         return 0;
996 }
997
998 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
999 {
1000         int rc = 0;
1001         unsigned int wait_time;
1002
1003         pr_debug("Invalidating firmware-assisted dump registration\n");
1004
1005         /* TODO: Add upper time limit for the delay */
1006         do {
1007                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1008                         FADUMP_INVALIDATE, fdm,
1009                         sizeof(struct fadump_mem_struct));
1010
1011                 wait_time = rtas_busy_delay_time(rc);
1012                 if (wait_time)
1013                         mdelay(wait_time);
1014         } while (wait_time);
1015
1016         if (rc) {
1017                 pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1018                 return rc;
1019         }
1020         fw_dump.dump_active = 0;
1021         fdm_active = NULL;
1022         return 0;
1023 }
1024
1025 void fadump_cleanup(void)
1026 {
1027         /* Invalidate the registration only if dump is active. */
1028         if (fw_dump.dump_active) {
1029                 init_fadump_mem_struct(&fdm,
1030                         be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1031                 fadump_invalidate_dump(&fdm);
1032         }
1033 }
1034
1035 /*
1036  * Release the memory that was reserved in early boot to preserve the memory
1037  * contents. The released memory will be available for general use.
1038  */
1039 static void fadump_release_memory(unsigned long begin, unsigned long end)
1040 {
1041         unsigned long addr;
1042         unsigned long ra_start, ra_end;
1043
1044         ra_start = fw_dump.reserve_dump_area_start;
1045         ra_end = ra_start + fw_dump.reserve_dump_area_size;
1046
1047         for (addr = begin; addr < end; addr += PAGE_SIZE) {
1048                 /*
1049                  * exclude the dump reserve area. Will reuse it for next
1050                  * fadump registration.
1051                  */
1052                 if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1053                         continue;
1054
1055                 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1056         }
1057 }
1058
1059 static void fadump_invalidate_release_mem(void)
1060 {
1061         unsigned long reserved_area_start, reserved_area_end;
1062         unsigned long destination_address;
1063
1064         mutex_lock(&fadump_mutex);
1065         if (!fw_dump.dump_active) {
1066                 mutex_unlock(&fadump_mutex);
1067                 return;
1068         }
1069
1070         destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1071         fadump_cleanup();
1072         mutex_unlock(&fadump_mutex);
1073
1074         /*
1075          * Save the current reserved memory bounds we will require them
1076          * later for releasing the memory for general use.
1077          */
1078         reserved_area_start = fw_dump.reserve_dump_area_start;
1079         reserved_area_end = reserved_area_start +
1080                         fw_dump.reserve_dump_area_size;
1081         /*
1082          * Setup reserve_dump_area_start and its size so that we can
1083          * reuse this reserved memory for Re-registration.
1084          */
1085         fw_dump.reserve_dump_area_start = destination_address;
1086         fw_dump.reserve_dump_area_size = get_fadump_area_size();
1087
1088         fadump_release_memory(reserved_area_start, reserved_area_end);
1089         if (fw_dump.cpu_notes_buf) {
1090                 fadump_cpu_notes_buf_free(
1091                                 (unsigned long)__va(fw_dump.cpu_notes_buf),
1092                                 fw_dump.cpu_notes_buf_size);
1093                 fw_dump.cpu_notes_buf = 0;
1094                 fw_dump.cpu_notes_buf_size = 0;
1095         }
1096         /* Initialize the kernel dump memory structure for FAD registration. */
1097         init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1098 }
1099
1100 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1101                                         struct kobj_attribute *attr,
1102                                         const char *buf, size_t count)
1103 {
1104         if (!fw_dump.dump_active)
1105                 return -EPERM;
1106
1107         if (buf[0] == '1') {
1108                 /*
1109                  * Take away the '/proc/vmcore'. We are releasing the dump
1110                  * memory, hence it will not be valid anymore.
1111                  */
1112                 vmcore_cleanup();
1113                 fadump_invalidate_release_mem();
1114
1115         } else
1116                 return -EINVAL;
1117         return count;
1118 }
1119
1120 static ssize_t fadump_enabled_show(struct kobject *kobj,
1121                                         struct kobj_attribute *attr,
1122                                         char *buf)
1123 {
1124         return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1125 }
1126
1127 static ssize_t fadump_register_show(struct kobject *kobj,
1128                                         struct kobj_attribute *attr,
1129                                         char *buf)
1130 {
1131         return sprintf(buf, "%d\n", fw_dump.dump_registered);
1132 }
1133
1134 static ssize_t fadump_register_store(struct kobject *kobj,
1135                                         struct kobj_attribute *attr,
1136                                         const char *buf, size_t count)
1137 {
1138         int ret = 0;
1139
1140         if (!fw_dump.fadump_enabled || fdm_active)
1141                 return -EPERM;
1142
1143         mutex_lock(&fadump_mutex);
1144
1145         switch (buf[0]) {
1146         case '0':
1147                 if (fw_dump.dump_registered == 0) {
1148                         ret = -EINVAL;
1149                         goto unlock_out;
1150                 }
1151                 /* Un-register Firmware-assisted dump */
1152                 fadump_unregister_dump(&fdm);
1153                 break;
1154         case '1':
1155                 if (fw_dump.dump_registered == 1) {
1156                         ret = -EINVAL;
1157                         goto unlock_out;
1158                 }
1159                 /* Register Firmware-assisted dump */
1160                 register_fadump();
1161                 break;
1162         default:
1163                 ret = -EINVAL;
1164                 break;
1165         }
1166
1167 unlock_out:
1168         mutex_unlock(&fadump_mutex);
1169         return ret < 0 ? ret : count;
1170 }
1171
1172 static int fadump_region_show(struct seq_file *m, void *private)
1173 {
1174         const struct fadump_mem_struct *fdm_ptr;
1175
1176         if (!fw_dump.fadump_enabled)
1177                 return 0;
1178
1179         mutex_lock(&fadump_mutex);
1180         if (fdm_active)
1181                 fdm_ptr = fdm_active;
1182         else {
1183                 mutex_unlock(&fadump_mutex);
1184                 fdm_ptr = &fdm;
1185         }
1186
1187         seq_printf(m,
1188                         "CPU : [%#016llx-%#016llx] %#llx bytes, "
1189                         "Dumped: %#llx\n",
1190                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1191                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1192                         be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1193                         be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1194                         be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1195         seq_printf(m,
1196                         "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1197                         "Dumped: %#llx\n",
1198                         be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1199                         be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1200                         be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1201                         be64_to_cpu(fdm_ptr->hpte_region.source_len),
1202                         be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1203         seq_printf(m,
1204                         "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1205                         "Dumped: %#llx\n",
1206                         be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1207                         be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1208                         be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1209                         be64_to_cpu(fdm_ptr->rmr_region.source_len),
1210                         be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1211
1212         if (!fdm_active ||
1213                 (fw_dump.reserve_dump_area_start ==
1214                 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1215                 goto out;
1216
1217         /* Dump is active. Show reserved memory region. */
1218         seq_printf(m,
1219                         "    : [%#016llx-%#016llx] %#llx bytes, "
1220                         "Dumped: %#llx\n",
1221                         (unsigned long long)fw_dump.reserve_dump_area_start,
1222                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1223                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1224                         fw_dump.reserve_dump_area_start,
1225                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1226                         fw_dump.reserve_dump_area_start);
1227 out:
1228         if (fdm_active)
1229                 mutex_unlock(&fadump_mutex);
1230         return 0;
1231 }
1232
1233 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1234                                                 0200, NULL,
1235                                                 fadump_release_memory_store);
1236 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1237                                                 0444, fadump_enabled_show,
1238                                                 NULL);
1239 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1240                                                 0644, fadump_register_show,
1241                                                 fadump_register_store);
1242
1243 static int fadump_region_open(struct inode *inode, struct file *file)
1244 {
1245         return single_open(file, fadump_region_show, inode->i_private);
1246 }
1247
1248 static const struct file_operations fadump_region_fops = {
1249         .open    = fadump_region_open,
1250         .read    = seq_read,
1251         .llseek  = seq_lseek,
1252         .release = single_release,
1253 };
1254
1255 static void fadump_init_files(void)
1256 {
1257         struct dentry *debugfs_file;
1258         int rc = 0;
1259
1260         rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1261         if (rc)
1262                 printk(KERN_ERR "fadump: unable to create sysfs file"
1263                         " fadump_enabled (%d)\n", rc);
1264
1265         rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1266         if (rc)
1267                 printk(KERN_ERR "fadump: unable to create sysfs file"
1268                         " fadump_registered (%d)\n", rc);
1269
1270         debugfs_file = debugfs_create_file("fadump_region", 0444,
1271                                         powerpc_debugfs_root, NULL,
1272                                         &fadump_region_fops);
1273         if (!debugfs_file)
1274                 printk(KERN_ERR "fadump: unable to create debugfs file"
1275                                 " fadump_region\n");
1276
1277         if (fw_dump.dump_active) {
1278                 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1279                 if (rc)
1280                         printk(KERN_ERR "fadump: unable to create sysfs file"
1281                                 " fadump_release_mem (%d)\n", rc);
1282         }
1283         return;
1284 }
1285
1286 /*
1287  * Prepare for firmware-assisted dump.
1288  */
1289 int __init setup_fadump(void)
1290 {
1291         if (!fw_dump.fadump_enabled)
1292                 return 0;
1293
1294         if (!fw_dump.fadump_supported) {
1295                 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1296                         " this hardware\n");
1297                 return 0;
1298         }
1299
1300         fadump_show_config();
1301         /*
1302          * If dump data is available then see if it is valid and prepare for
1303          * saving it to the disk.
1304          */
1305         if (fw_dump.dump_active) {
1306                 /*
1307                  * if dump process fails then invalidate the registration
1308                  * and release memory before proceeding for re-registration.
1309                  */
1310                 if (process_fadump(fdm_active) < 0)
1311                         fadump_invalidate_release_mem();
1312         }
1313         /* Initialize the kernel dump memory structure for FAD registration. */
1314         else if (fw_dump.reserve_dump_area_size)
1315                 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1316         fadump_init_files();
1317
1318         return 1;
1319 }
1320 subsys_initcall(setup_fadump);