Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / powerpc / kernel / kgdb.c
1 /*
2  * PowerPC backend to the KGDB stub.
3  *
4  * 1998 (c) Michael AK Tesch (tesch@cs.wisc.edu)
5  * Copyright (C) 2003 Timesys Corporation.
6  * Copyright (C) 2004-2006 MontaVista Software, Inc.
7  * PPC64 Mods (C) 2005 Frank Rowand (frowand@mvista.com)
8  * PPC32 support restored by Vitaly Wool <vwool@ru.mvista.com> and
9  * Sergei Shtylyov <sshtylyov@ru.mvista.com>
10  * Copyright (C) 2007-2008 Wind River Systems, Inc.
11  *
12  * This file is licensed under the terms of the GNU General Public License
13  * version 2. This program as licensed "as is" without any warranty of any
14  * kind, whether express or implied.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/kgdb.h>
19 #include <linux/smp.h>
20 #include <linux/signal.h>
21 #include <linux/ptrace.h>
22 #include <linux/kdebug.h>
23 #include <asm/current.h>
24 #include <asm/processor.h>
25 #include <asm/machdep.h>
26 #include <asm/debug.h>
27 #include <linux/slab.h>
28
29 /*
30  * This table contains the mapping between PowerPC hardware trap types, and
31  * signals, which are primarily what GDB understands.  GDB and the kernel
32  * don't always agree on values, so we use constants taken from gdb-6.2.
33  */
34 static struct hard_trap_info
35 {
36         unsigned int tt;                /* Trap type code for powerpc */
37         unsigned char signo;            /* Signal that we map this trap into */
38 } hard_trap_info[] = {
39         { 0x0100, 0x02 /* SIGINT */  },         /* system reset */
40         { 0x0200, 0x0b /* SIGSEGV */ },         /* machine check */
41         { 0x0300, 0x0b /* SIGSEGV */ },         /* data access */
42         { 0x0400, 0x0b /* SIGSEGV */ },         /* instruction access */
43         { 0x0500, 0x02 /* SIGINT */  },         /* external interrupt */
44         { 0x0600, 0x0a /* SIGBUS */  },         /* alignment */
45         { 0x0700, 0x05 /* SIGTRAP */ },         /* program check */
46         { 0x0800, 0x08 /* SIGFPE */  },         /* fp unavailable */
47         { 0x0900, 0x0e /* SIGALRM */ },         /* decrementer */
48         { 0x0c00, 0x14 /* SIGCHLD */ },         /* system call */
49 #if defined(CONFIG_40x) || defined(CONFIG_BOOKE)
50         { 0x2002, 0x05 /* SIGTRAP */ },         /* debug */
51 #if defined(CONFIG_FSL_BOOKE)
52         { 0x2010, 0x08 /* SIGFPE */  },         /* spe unavailable */
53         { 0x2020, 0x08 /* SIGFPE */  },         /* spe unavailable */
54         { 0x2030, 0x08 /* SIGFPE */  },         /* spe fp data */
55         { 0x2040, 0x08 /* SIGFPE */  },         /* spe fp data */
56         { 0x2050, 0x08 /* SIGFPE */  },         /* spe fp round */
57         { 0x2060, 0x0e /* SIGILL */  },         /* performance monitor */
58         { 0x2900, 0x08 /* SIGFPE */  },         /* apu unavailable */
59         { 0x3100, 0x0e /* SIGALRM */ },         /* fixed interval timer */
60         { 0x3200, 0x02 /* SIGINT */  },         /* watchdog */
61 #else /* ! CONFIG_FSL_BOOKE */
62         { 0x1000, 0x0e /* SIGALRM */ },         /* prog interval timer */
63         { 0x1010, 0x0e /* SIGALRM */ },         /* fixed interval timer */
64         { 0x1020, 0x02 /* SIGINT */  },         /* watchdog */
65         { 0x2010, 0x08 /* SIGFPE */  },         /* fp unavailable */
66         { 0x2020, 0x08 /* SIGFPE */  },         /* ap unavailable */
67 #endif
68 #else /* ! (defined(CONFIG_40x) || defined(CONFIG_BOOKE)) */
69         { 0x0d00, 0x05 /* SIGTRAP */ },         /* single-step */
70 #if defined(CONFIG_8xx)
71         { 0x1000, 0x04 /* SIGILL */  },         /* software emulation */
72 #else /* ! CONFIG_8xx */
73         { 0x0f00, 0x04 /* SIGILL */  },         /* performance monitor */
74         { 0x0f20, 0x08 /* SIGFPE */  },         /* altivec unavailable */
75         { 0x1300, 0x05 /* SIGTRAP */ },         /* instruction address break */
76 #if defined(CONFIG_PPC64)
77         { 0x1200, 0x05 /* SIGILL */  },         /* system error */
78         { 0x1500, 0x04 /* SIGILL */  },         /* soft patch */
79         { 0x1600, 0x04 /* SIGILL */  },         /* maintenance */
80         { 0x1700, 0x08 /* SIGFPE */  },         /* altivec assist */
81         { 0x1800, 0x04 /* SIGILL */  },         /* thermal */
82 #else /* ! CONFIG_PPC64 */
83         { 0x1400, 0x02 /* SIGINT */  },         /* SMI */
84         { 0x1600, 0x08 /* SIGFPE */  },         /* altivec assist */
85         { 0x1700, 0x04 /* SIGILL */  },         /* TAU */
86         { 0x2000, 0x05 /* SIGTRAP */ },         /* run mode */
87 #endif
88 #endif
89 #endif
90         { 0x0000, 0x00 }                        /* Must be last */
91 };
92
93 static int computeSignal(unsigned int tt)
94 {
95         struct hard_trap_info *ht;
96
97         for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
98                 if (ht->tt == tt)
99                         return ht->signo;
100
101         return SIGHUP;          /* default for things we don't know about */
102 }
103
104 /**
105  *
106  *      kgdb_skipexception - Bail out of KGDB when we've been triggered.
107  *      @exception: Exception vector number
108  *      @regs: Current &struct pt_regs.
109  *
110  *      On some architectures we need to skip a breakpoint exception when
111  *      it occurs after a breakpoint has been removed.
112  *
113  */
114 int kgdb_skipexception(int exception, struct pt_regs *regs)
115 {
116         return kgdb_isremovedbreak(regs->nip);
117 }
118
119 static int kgdb_call_nmi_hook(struct pt_regs *regs)
120 {
121         kgdb_nmicallback(raw_smp_processor_id(), regs);
122         return 0;
123 }
124
125 #ifdef CONFIG_SMP
126 void kgdb_roundup_cpus(unsigned long flags)
127 {
128         smp_send_debugger_break();
129 }
130 #endif
131
132 /* KGDB functions to use existing PowerPC64 hooks. */
133 static int kgdb_debugger(struct pt_regs *regs)
134 {
135         return !kgdb_handle_exception(1, computeSignal(TRAP(regs)),
136                                       DIE_OOPS, regs);
137 }
138
139 static int kgdb_handle_breakpoint(struct pt_regs *regs)
140 {
141         if (user_mode(regs))
142                 return 0;
143
144         if (kgdb_handle_exception(1, SIGTRAP, 0, regs) != 0)
145                 return 0;
146
147         if (*(u32 *) (regs->nip) == *(u32 *) (&arch_kgdb_ops.gdb_bpt_instr))
148                 regs->nip += BREAK_INSTR_SIZE;
149
150         return 1;
151 }
152
153 static DEFINE_PER_CPU(struct thread_info, kgdb_thread_info);
154 static int kgdb_singlestep(struct pt_regs *regs)
155 {
156         struct thread_info *thread_info, *exception_thread_info;
157         struct thread_info *backup_current_thread_info =
158                 this_cpu_ptr(&kgdb_thread_info);
159
160         if (user_mode(regs))
161                 return 0;
162
163         /*
164          * On Book E and perhaps other processors, singlestep is handled on
165          * the critical exception stack.  This causes current_thread_info()
166          * to fail, since it it locates the thread_info by masking off
167          * the low bits of the current stack pointer.  We work around
168          * this issue by copying the thread_info from the kernel stack
169          * before calling kgdb_handle_exception, and copying it back
170          * afterwards.  On most processors the copy is avoided since
171          * exception_thread_info == thread_info.
172          */
173         thread_info = (struct thread_info *)(regs->gpr[1] & ~(THREAD_SIZE-1));
174         exception_thread_info = current_thread_info();
175
176         if (thread_info != exception_thread_info) {
177                 /* Save the original current_thread_info. */
178                 memcpy(backup_current_thread_info, exception_thread_info, sizeof *thread_info);
179                 memcpy(exception_thread_info, thread_info, sizeof *thread_info);
180         }
181
182         kgdb_handle_exception(0, SIGTRAP, 0, regs);
183
184         if (thread_info != exception_thread_info)
185                 /* Restore current_thread_info lastly. */
186                 memcpy(exception_thread_info, backup_current_thread_info, sizeof *thread_info);
187
188         return 1;
189 }
190
191 static int kgdb_iabr_match(struct pt_regs *regs)
192 {
193         if (user_mode(regs))
194                 return 0;
195
196         if (kgdb_handle_exception(0, computeSignal(TRAP(regs)), 0, regs) != 0)
197                 return 0;
198         return 1;
199 }
200
201 static int kgdb_break_match(struct pt_regs *regs)
202 {
203         if (user_mode(regs))
204                 return 0;
205
206         if (kgdb_handle_exception(0, computeSignal(TRAP(regs)), 0, regs) != 0)
207                 return 0;
208         return 1;
209 }
210
211 #define PACK64(ptr, src) do { *(ptr++) = (src); } while (0)
212
213 #define PACK32(ptr, src) do {          \
214         u32 *ptr32;                   \
215         ptr32 = (u32 *)ptr;           \
216         *(ptr32++) = (src);           \
217         ptr = (unsigned long *)ptr32; \
218         } while (0)
219
220 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
221 {
222         struct pt_regs *regs = (struct pt_regs *)(p->thread.ksp +
223                                                   STACK_FRAME_OVERHEAD);
224         unsigned long *ptr = gdb_regs;
225         int reg;
226
227         memset(gdb_regs, 0, NUMREGBYTES);
228
229         /* Regs GPR0-2 */
230         for (reg = 0; reg < 3; reg++)
231                 PACK64(ptr, regs->gpr[reg]);
232
233         /* Regs GPR3-13 are caller saved, not in regs->gpr[] */
234         ptr += 11;
235
236         /* Regs GPR14-31 */
237         for (reg = 14; reg < 32; reg++)
238                 PACK64(ptr, regs->gpr[reg]);
239
240 #ifdef CONFIG_FSL_BOOKE
241 #ifdef CONFIG_SPE
242         for (reg = 0; reg < 32; reg++)
243                 PACK64(ptr, p->thread.evr[reg]);
244 #else
245         ptr += 32;
246 #endif
247 #else
248         /* fp registers not used by kernel, leave zero */
249         ptr += 32 * 8 / sizeof(long);
250 #endif
251
252         PACK64(ptr, regs->nip);
253         PACK64(ptr, regs->msr);
254         PACK32(ptr, regs->ccr);
255         PACK64(ptr, regs->link);
256         PACK64(ptr, regs->ctr);
257         PACK32(ptr, regs->xer);
258
259         BUG_ON((unsigned long)ptr >
260                (unsigned long)(((void *)gdb_regs) + NUMREGBYTES));
261 }
262
263 #define GDB_SIZEOF_REG sizeof(unsigned long)
264 #define GDB_SIZEOF_REG_U32 sizeof(u32)
265
266 #ifdef CONFIG_FSL_BOOKE
267 #define GDB_SIZEOF_FLOAT_REG sizeof(unsigned long)
268 #else
269 #define GDB_SIZEOF_FLOAT_REG sizeof(u64)
270 #endif
271
272 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
273 {
274         { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[0]) },
275         { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[1]) },
276         { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[2]) },
277         { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[3]) },
278         { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[4]) },
279         { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[5]) },
280         { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[6]) },
281         { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[7]) },
282         { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[8]) },
283         { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[9]) },
284         { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[10]) },
285         { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[11]) },
286         { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[12]) },
287         { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[13]) },
288         { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[14]) },
289         { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[15]) },
290         { "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[16]) },
291         { "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[17]) },
292         { "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[18]) },
293         { "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[19]) },
294         { "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[20]) },
295         { "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[21]) },
296         { "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[22]) },
297         { "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[23]) },
298         { "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[24]) },
299         { "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[25]) },
300         { "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[26]) },
301         { "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[27]) },
302         { "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[28]) },
303         { "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[29]) },
304         { "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[30]) },
305         { "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[31]) },
306
307         { "f0", GDB_SIZEOF_FLOAT_REG, 0 },
308         { "f1", GDB_SIZEOF_FLOAT_REG, 1 },
309         { "f2", GDB_SIZEOF_FLOAT_REG, 2 },
310         { "f3", GDB_SIZEOF_FLOAT_REG, 3 },
311         { "f4", GDB_SIZEOF_FLOAT_REG, 4 },
312         { "f5", GDB_SIZEOF_FLOAT_REG, 5 },
313         { "f6", GDB_SIZEOF_FLOAT_REG, 6 },
314         { "f7", GDB_SIZEOF_FLOAT_REG, 7 },
315         { "f8", GDB_SIZEOF_FLOAT_REG, 8 },
316         { "f9", GDB_SIZEOF_FLOAT_REG, 9 },
317         { "f10", GDB_SIZEOF_FLOAT_REG, 10 },
318         { "f11", GDB_SIZEOF_FLOAT_REG, 11 },
319         { "f12", GDB_SIZEOF_FLOAT_REG, 12 },
320         { "f13", GDB_SIZEOF_FLOAT_REG, 13 },
321         { "f14", GDB_SIZEOF_FLOAT_REG, 14 },
322         { "f15", GDB_SIZEOF_FLOAT_REG, 15 },
323         { "f16", GDB_SIZEOF_FLOAT_REG, 16 },
324         { "f17", GDB_SIZEOF_FLOAT_REG, 17 },
325         { "f18", GDB_SIZEOF_FLOAT_REG, 18 },
326         { "f19", GDB_SIZEOF_FLOAT_REG, 19 },
327         { "f20", GDB_SIZEOF_FLOAT_REG, 20 },
328         { "f21", GDB_SIZEOF_FLOAT_REG, 21 },
329         { "f22", GDB_SIZEOF_FLOAT_REG, 22 },
330         { "f23", GDB_SIZEOF_FLOAT_REG, 23 },
331         { "f24", GDB_SIZEOF_FLOAT_REG, 24 },
332         { "f25", GDB_SIZEOF_FLOAT_REG, 25 },
333         { "f26", GDB_SIZEOF_FLOAT_REG, 26 },
334         { "f27", GDB_SIZEOF_FLOAT_REG, 27 },
335         { "f28", GDB_SIZEOF_FLOAT_REG, 28 },
336         { "f29", GDB_SIZEOF_FLOAT_REG, 29 },
337         { "f30", GDB_SIZEOF_FLOAT_REG, 30 },
338         { "f31", GDB_SIZEOF_FLOAT_REG, 31 },
339
340         { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, nip) },
341         { "msr", GDB_SIZEOF_REG, offsetof(struct pt_regs, msr) },
342         { "cr", GDB_SIZEOF_REG_U32, offsetof(struct pt_regs, ccr) },
343         { "lr", GDB_SIZEOF_REG, offsetof(struct pt_regs, link) },
344         { "ctr", GDB_SIZEOF_REG_U32, offsetof(struct pt_regs, ctr) },
345         { "xer", GDB_SIZEOF_REG, offsetof(struct pt_regs, xer) },
346 };
347
348 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
349 {
350         if (regno >= DBG_MAX_REG_NUM || regno < 0)
351                 return NULL;
352
353         if (regno < 32 || regno >= 64)
354                 /* First 0 -> 31 gpr registers*/
355                 /* pc, msr, ls... registers 64 -> 69 */
356                 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
357                                 dbg_reg_def[regno].size);
358
359         if (regno >= 32 && regno < 64) {
360                 /* FP registers 32 -> 63 */
361 #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_SPE)
362                 if (current)
363                         memcpy(mem, &current->thread.evr[regno-32],
364                                         dbg_reg_def[regno].size);
365 #else
366                 /* fp registers not used by kernel, leave zero */
367                 memset(mem, 0, dbg_reg_def[regno].size);
368 #endif
369         }
370
371         return dbg_reg_def[regno].name;
372 }
373
374 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
375 {
376         if (regno >= DBG_MAX_REG_NUM || regno < 0)
377                 return -EINVAL;
378
379         if (regno < 32 || regno >= 64)
380                 /* First 0 -> 31 gpr registers*/
381                 /* pc, msr, ls... registers 64 -> 69 */
382                 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
383                                 dbg_reg_def[regno].size);
384
385         if (regno >= 32 && regno < 64) {
386                 /* FP registers 32 -> 63 */
387 #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_SPE)
388                 memcpy(&current->thread.evr[regno-32], mem,
389                                 dbg_reg_def[regno].size);
390 #else
391                 /* fp registers not used by kernel, leave zero */
392                 return 0;
393 #endif
394         }
395
396         return 0;
397 }
398
399 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
400 {
401         regs->nip = pc;
402 }
403
404 /*
405  * This function does PowerPC specific procesing for interfacing to gdb.
406  */
407 int kgdb_arch_handle_exception(int vector, int signo, int err_code,
408                                char *remcom_in_buffer, char *remcom_out_buffer,
409                                struct pt_regs *linux_regs)
410 {
411         char *ptr = &remcom_in_buffer[1];
412         unsigned long addr;
413
414         switch (remcom_in_buffer[0]) {
415                 /*
416                  * sAA..AA   Step one instruction from AA..AA
417                  * This will return an error to gdb ..
418                  */
419         case 's':
420         case 'c':
421                 /* handle the optional parameter */
422                 if (kgdb_hex2long(&ptr, &addr))
423                         linux_regs->nip = addr;
424
425                 atomic_set(&kgdb_cpu_doing_single_step, -1);
426                 /* set the trace bit if we're stepping */
427                 if (remcom_in_buffer[0] == 's') {
428 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
429                         mtspr(SPRN_DBCR0,
430                               mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
431                         linux_regs->msr |= MSR_DE;
432 #else
433                         linux_regs->msr |= MSR_SE;
434 #endif
435                         atomic_set(&kgdb_cpu_doing_single_step,
436                                    raw_smp_processor_id());
437                 }
438                 return 0;
439         }
440
441         return -1;
442 }
443
444 /*
445  * Global data
446  */
447 struct kgdb_arch arch_kgdb_ops = {
448         .gdb_bpt_instr = {0x7d, 0x82, 0x10, 0x08},
449 };
450
451 static int kgdb_not_implemented(struct pt_regs *regs)
452 {
453         return 0;
454 }
455
456 static void *old__debugger_ipi;
457 static void *old__debugger;
458 static void *old__debugger_bpt;
459 static void *old__debugger_sstep;
460 static void *old__debugger_iabr_match;
461 static void *old__debugger_break_match;
462 static void *old__debugger_fault_handler;
463
464 int kgdb_arch_init(void)
465 {
466         old__debugger_ipi = __debugger_ipi;
467         old__debugger = __debugger;
468         old__debugger_bpt = __debugger_bpt;
469         old__debugger_sstep = __debugger_sstep;
470         old__debugger_iabr_match = __debugger_iabr_match;
471         old__debugger_break_match = __debugger_break_match;
472         old__debugger_fault_handler = __debugger_fault_handler;
473
474         __debugger_ipi = kgdb_call_nmi_hook;
475         __debugger = kgdb_debugger;
476         __debugger_bpt = kgdb_handle_breakpoint;
477         __debugger_sstep = kgdb_singlestep;
478         __debugger_iabr_match = kgdb_iabr_match;
479         __debugger_break_match = kgdb_break_match;
480         __debugger_fault_handler = kgdb_not_implemented;
481
482         return 0;
483 }
484
485 void kgdb_arch_exit(void)
486 {
487         __debugger_ipi = old__debugger_ipi;
488         __debugger = old__debugger;
489         __debugger_bpt = old__debugger_bpt;
490         __debugger_sstep = old__debugger_sstep;
491         __debugger_iabr_match = old__debugger_iabr_match;
492         __debugger_break_match = old__debugger_break_match;
493         __debugger_fault_handler = old__debugger_fault_handler;
494 }