Merge remote-tracking branches 'spi/topic/octeon', 'spi/topic/omap2-mcspi', 'spi...
[cascardo/linux.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71 static void check_if_tm_restore_required(struct task_struct *tsk)
72 {
73         /*
74          * If we are saving the current thread's registers, and the
75          * thread is in a transactional state, set the TIF_RESTORE_TM
76          * bit so that we know to restore the registers before
77          * returning to userspace.
78          */
79         if (tsk == current && tsk->thread.regs &&
80             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
81             !test_thread_flag(TIF_RESTORE_TM)) {
82                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83                 set_thread_flag(TIF_RESTORE_TM);
84         }
85 }
86 #else
87 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
89
90 bool strict_msr_control;
91 EXPORT_SYMBOL(strict_msr_control);
92
93 static int __init enable_strict_msr_control(char *str)
94 {
95         strict_msr_control = true;
96         pr_info("Enabling strict facility control\n");
97
98         return 0;
99 }
100 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
101
102 void msr_check_and_set(unsigned long bits)
103 {
104         unsigned long oldmsr = mfmsr();
105         unsigned long newmsr;
106
107         newmsr = oldmsr | bits;
108
109 #ifdef CONFIG_VSX
110         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111                 newmsr |= MSR_VSX;
112 #endif
113
114         if (oldmsr != newmsr)
115                 mtmsr_isync(newmsr);
116 }
117
118 void __msr_check_and_clear(unsigned long bits)
119 {
120         unsigned long oldmsr = mfmsr();
121         unsigned long newmsr;
122
123         newmsr = oldmsr & ~bits;
124
125 #ifdef CONFIG_VSX
126         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127                 newmsr &= ~MSR_VSX;
128 #endif
129
130         if (oldmsr != newmsr)
131                 mtmsr_isync(newmsr);
132 }
133 EXPORT_SYMBOL(__msr_check_and_clear);
134
135 #ifdef CONFIG_PPC_FPU
136 void __giveup_fpu(struct task_struct *tsk)
137 {
138         save_fpu(tsk);
139         tsk->thread.regs->msr &= ~MSR_FP;
140 #ifdef CONFIG_VSX
141         if (cpu_has_feature(CPU_FTR_VSX))
142                 tsk->thread.regs->msr &= ~MSR_VSX;
143 #endif
144 }
145
146 void giveup_fpu(struct task_struct *tsk)
147 {
148         check_if_tm_restore_required(tsk);
149
150         msr_check_and_set(MSR_FP);
151         __giveup_fpu(tsk);
152         msr_check_and_clear(MSR_FP);
153 }
154 EXPORT_SYMBOL(giveup_fpu);
155
156 /*
157  * Make sure the floating-point register state in the
158  * the thread_struct is up to date for task tsk.
159  */
160 void flush_fp_to_thread(struct task_struct *tsk)
161 {
162         if (tsk->thread.regs) {
163                 /*
164                  * We need to disable preemption here because if we didn't,
165                  * another process could get scheduled after the regs->msr
166                  * test but before we have finished saving the FP registers
167                  * to the thread_struct.  That process could take over the
168                  * FPU, and then when we get scheduled again we would store
169                  * bogus values for the remaining FP registers.
170                  */
171                 preempt_disable();
172                 if (tsk->thread.regs->msr & MSR_FP) {
173                         /*
174                          * This should only ever be called for current or
175                          * for a stopped child process.  Since we save away
176                          * the FP register state on context switch,
177                          * there is something wrong if a stopped child appears
178                          * to still have its FP state in the CPU registers.
179                          */
180                         BUG_ON(tsk != current);
181                         giveup_fpu(tsk);
182                 }
183                 preempt_enable();
184         }
185 }
186 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
187
188 void enable_kernel_fp(void)
189 {
190         WARN_ON(preemptible());
191
192         msr_check_and_set(MSR_FP);
193
194         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
195                 check_if_tm_restore_required(current);
196                 __giveup_fpu(current);
197         }
198 }
199 EXPORT_SYMBOL(enable_kernel_fp);
200
201 static int restore_fp(struct task_struct *tsk) {
202         if (tsk->thread.load_fp) {
203                 load_fp_state(&current->thread.fp_state);
204                 current->thread.load_fp++;
205                 return 1;
206         }
207         return 0;
208 }
209 #else
210 static int restore_fp(struct task_struct *tsk) { return 0; }
211 #endif /* CONFIG_PPC_FPU */
212
213 #ifdef CONFIG_ALTIVEC
214 #define loadvec(thr) ((thr).load_vec)
215
216 static void __giveup_altivec(struct task_struct *tsk)
217 {
218         save_altivec(tsk);
219         tsk->thread.regs->msr &= ~MSR_VEC;
220 #ifdef CONFIG_VSX
221         if (cpu_has_feature(CPU_FTR_VSX))
222                 tsk->thread.regs->msr &= ~MSR_VSX;
223 #endif
224 }
225
226 void giveup_altivec(struct task_struct *tsk)
227 {
228         check_if_tm_restore_required(tsk);
229
230         msr_check_and_set(MSR_VEC);
231         __giveup_altivec(tsk);
232         msr_check_and_clear(MSR_VEC);
233 }
234 EXPORT_SYMBOL(giveup_altivec);
235
236 void enable_kernel_altivec(void)
237 {
238         WARN_ON(preemptible());
239
240         msr_check_and_set(MSR_VEC);
241
242         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
243                 check_if_tm_restore_required(current);
244                 __giveup_altivec(current);
245         }
246 }
247 EXPORT_SYMBOL(enable_kernel_altivec);
248
249 /*
250  * Make sure the VMX/Altivec register state in the
251  * the thread_struct is up to date for task tsk.
252  */
253 void flush_altivec_to_thread(struct task_struct *tsk)
254 {
255         if (tsk->thread.regs) {
256                 preempt_disable();
257                 if (tsk->thread.regs->msr & MSR_VEC) {
258                         BUG_ON(tsk != current);
259                         giveup_altivec(tsk);
260                 }
261                 preempt_enable();
262         }
263 }
264 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
265
266 static int restore_altivec(struct task_struct *tsk)
267 {
268         if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
269                 load_vr_state(&tsk->thread.vr_state);
270                 tsk->thread.used_vr = 1;
271                 tsk->thread.load_vec++;
272
273                 return 1;
274         }
275         return 0;
276 }
277 #else
278 #define loadvec(thr) 0
279 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
280 #endif /* CONFIG_ALTIVEC */
281
282 #ifdef CONFIG_VSX
283 static void __giveup_vsx(struct task_struct *tsk)
284 {
285         if (tsk->thread.regs->msr & MSR_FP)
286                 __giveup_fpu(tsk);
287         if (tsk->thread.regs->msr & MSR_VEC)
288                 __giveup_altivec(tsk);
289         tsk->thread.regs->msr &= ~MSR_VSX;
290 }
291
292 static void giveup_vsx(struct task_struct *tsk)
293 {
294         check_if_tm_restore_required(tsk);
295
296         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
297         __giveup_vsx(tsk);
298         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
299 }
300
301 static void save_vsx(struct task_struct *tsk)
302 {
303         if (tsk->thread.regs->msr & MSR_FP)
304                 save_fpu(tsk);
305         if (tsk->thread.regs->msr & MSR_VEC)
306                 save_altivec(tsk);
307 }
308
309 void enable_kernel_vsx(void)
310 {
311         WARN_ON(preemptible());
312
313         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
314
315         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
316                 check_if_tm_restore_required(current);
317                 if (current->thread.regs->msr & MSR_FP)
318                         __giveup_fpu(current);
319                 if (current->thread.regs->msr & MSR_VEC)
320                         __giveup_altivec(current);
321                 __giveup_vsx(current);
322         }
323 }
324 EXPORT_SYMBOL(enable_kernel_vsx);
325
326 void flush_vsx_to_thread(struct task_struct *tsk)
327 {
328         if (tsk->thread.regs) {
329                 preempt_disable();
330                 if (tsk->thread.regs->msr & MSR_VSX) {
331                         BUG_ON(tsk != current);
332                         giveup_vsx(tsk);
333                 }
334                 preempt_enable();
335         }
336 }
337 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
338
339 static int restore_vsx(struct task_struct *tsk)
340 {
341         if (cpu_has_feature(CPU_FTR_VSX)) {
342                 tsk->thread.used_vsr = 1;
343                 return 1;
344         }
345
346         return 0;
347 }
348 #else
349 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
350 static inline void save_vsx(struct task_struct *tsk) { }
351 #endif /* CONFIG_VSX */
352
353 #ifdef CONFIG_SPE
354 void giveup_spe(struct task_struct *tsk)
355 {
356         check_if_tm_restore_required(tsk);
357
358         msr_check_and_set(MSR_SPE);
359         __giveup_spe(tsk);
360         msr_check_and_clear(MSR_SPE);
361 }
362 EXPORT_SYMBOL(giveup_spe);
363
364 void enable_kernel_spe(void)
365 {
366         WARN_ON(preemptible());
367
368         msr_check_and_set(MSR_SPE);
369
370         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
371                 check_if_tm_restore_required(current);
372                 __giveup_spe(current);
373         }
374 }
375 EXPORT_SYMBOL(enable_kernel_spe);
376
377 void flush_spe_to_thread(struct task_struct *tsk)
378 {
379         if (tsk->thread.regs) {
380                 preempt_disable();
381                 if (tsk->thread.regs->msr & MSR_SPE) {
382                         BUG_ON(tsk != current);
383                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
384                         giveup_spe(tsk);
385                 }
386                 preempt_enable();
387         }
388 }
389 #endif /* CONFIG_SPE */
390
391 static unsigned long msr_all_available;
392
393 static int __init init_msr_all_available(void)
394 {
395 #ifdef CONFIG_PPC_FPU
396         msr_all_available |= MSR_FP;
397 #endif
398 #ifdef CONFIG_ALTIVEC
399         if (cpu_has_feature(CPU_FTR_ALTIVEC))
400                 msr_all_available |= MSR_VEC;
401 #endif
402 #ifdef CONFIG_VSX
403         if (cpu_has_feature(CPU_FTR_VSX))
404                 msr_all_available |= MSR_VSX;
405 #endif
406 #ifdef CONFIG_SPE
407         if (cpu_has_feature(CPU_FTR_SPE))
408                 msr_all_available |= MSR_SPE;
409 #endif
410
411         return 0;
412 }
413 early_initcall(init_msr_all_available);
414
415 void giveup_all(struct task_struct *tsk)
416 {
417         unsigned long usermsr;
418
419         if (!tsk->thread.regs)
420                 return;
421
422         usermsr = tsk->thread.regs->msr;
423
424         if ((usermsr & msr_all_available) == 0)
425                 return;
426
427         msr_check_and_set(msr_all_available);
428
429 #ifdef CONFIG_PPC_FPU
430         if (usermsr & MSR_FP)
431                 __giveup_fpu(tsk);
432 #endif
433 #ifdef CONFIG_ALTIVEC
434         if (usermsr & MSR_VEC)
435                 __giveup_altivec(tsk);
436 #endif
437 #ifdef CONFIG_VSX
438         if (usermsr & MSR_VSX)
439                 __giveup_vsx(tsk);
440 #endif
441 #ifdef CONFIG_SPE
442         if (usermsr & MSR_SPE)
443                 __giveup_spe(tsk);
444 #endif
445
446         msr_check_and_clear(msr_all_available);
447 }
448 EXPORT_SYMBOL(giveup_all);
449
450 void restore_math(struct pt_regs *regs)
451 {
452         unsigned long msr;
453
454         if (!current->thread.load_fp && !loadvec(current->thread))
455                 return;
456
457         msr = regs->msr;
458         msr_check_and_set(msr_all_available);
459
460         /*
461          * Only reload if the bit is not set in the user MSR, the bit BEING set
462          * indicates that the registers are hot
463          */
464         if ((!(msr & MSR_FP)) && restore_fp(current))
465                 msr |= MSR_FP | current->thread.fpexc_mode;
466
467         if ((!(msr & MSR_VEC)) && restore_altivec(current))
468                 msr |= MSR_VEC;
469
470         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
471                         restore_vsx(current)) {
472                 msr |= MSR_VSX;
473         }
474
475         msr_check_and_clear(msr_all_available);
476
477         regs->msr = msr;
478 }
479
480 void save_all(struct task_struct *tsk)
481 {
482         unsigned long usermsr;
483
484         if (!tsk->thread.regs)
485                 return;
486
487         usermsr = tsk->thread.regs->msr;
488
489         if ((usermsr & msr_all_available) == 0)
490                 return;
491
492         msr_check_and_set(msr_all_available);
493
494         /*
495          * Saving the way the register space is in hardware, save_vsx boils
496          * down to a save_fpu() and save_altivec()
497          */
498         if (usermsr & MSR_VSX) {
499                 save_vsx(tsk);
500         } else {
501                 if (usermsr & MSR_FP)
502                         save_fpu(tsk);
503
504                 if (usermsr & MSR_VEC)
505                         save_altivec(tsk);
506         }
507
508         if (usermsr & MSR_SPE)
509                 __giveup_spe(tsk);
510
511         msr_check_and_clear(msr_all_available);
512 }
513
514 void flush_all_to_thread(struct task_struct *tsk)
515 {
516         if (tsk->thread.regs) {
517                 preempt_disable();
518                 BUG_ON(tsk != current);
519                 save_all(tsk);
520
521 #ifdef CONFIG_SPE
522                 if (tsk->thread.regs->msr & MSR_SPE)
523                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
524 #endif
525
526                 preempt_enable();
527         }
528 }
529 EXPORT_SYMBOL(flush_all_to_thread);
530
531 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
532 void do_send_trap(struct pt_regs *regs, unsigned long address,
533                   unsigned long error_code, int signal_code, int breakpt)
534 {
535         siginfo_t info;
536
537         current->thread.trap_nr = signal_code;
538         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
539                         11, SIGSEGV) == NOTIFY_STOP)
540                 return;
541
542         /* Deliver the signal to userspace */
543         info.si_signo = SIGTRAP;
544         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
545         info.si_code = signal_code;
546         info.si_addr = (void __user *)address;
547         force_sig_info(SIGTRAP, &info, current);
548 }
549 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
550 void do_break (struct pt_regs *regs, unsigned long address,
551                     unsigned long error_code)
552 {
553         siginfo_t info;
554
555         current->thread.trap_nr = TRAP_HWBKPT;
556         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
557                         11, SIGSEGV) == NOTIFY_STOP)
558                 return;
559
560         if (debugger_break_match(regs))
561                 return;
562
563         /* Clear the breakpoint */
564         hw_breakpoint_disable();
565
566         /* Deliver the signal to userspace */
567         info.si_signo = SIGTRAP;
568         info.si_errno = 0;
569         info.si_code = TRAP_HWBKPT;
570         info.si_addr = (void __user *)address;
571         force_sig_info(SIGTRAP, &info, current);
572 }
573 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
574
575 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
576
577 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
578 /*
579  * Set the debug registers back to their default "safe" values.
580  */
581 static void set_debug_reg_defaults(struct thread_struct *thread)
582 {
583         thread->debug.iac1 = thread->debug.iac2 = 0;
584 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
585         thread->debug.iac3 = thread->debug.iac4 = 0;
586 #endif
587         thread->debug.dac1 = thread->debug.dac2 = 0;
588 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
589         thread->debug.dvc1 = thread->debug.dvc2 = 0;
590 #endif
591         thread->debug.dbcr0 = 0;
592 #ifdef CONFIG_BOOKE
593         /*
594          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
595          */
596         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
597                         DBCR1_IAC3US | DBCR1_IAC4US;
598         /*
599          * Force Data Address Compare User/Supervisor bits to be User-only
600          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
601          */
602         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
603 #else
604         thread->debug.dbcr1 = 0;
605 #endif
606 }
607
608 static void prime_debug_regs(struct debug_reg *debug)
609 {
610         /*
611          * We could have inherited MSR_DE from userspace, since
612          * it doesn't get cleared on exception entry.  Make sure
613          * MSR_DE is clear before we enable any debug events.
614          */
615         mtmsr(mfmsr() & ~MSR_DE);
616
617         mtspr(SPRN_IAC1, debug->iac1);
618         mtspr(SPRN_IAC2, debug->iac2);
619 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
620         mtspr(SPRN_IAC3, debug->iac3);
621         mtspr(SPRN_IAC4, debug->iac4);
622 #endif
623         mtspr(SPRN_DAC1, debug->dac1);
624         mtspr(SPRN_DAC2, debug->dac2);
625 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
626         mtspr(SPRN_DVC1, debug->dvc1);
627         mtspr(SPRN_DVC2, debug->dvc2);
628 #endif
629         mtspr(SPRN_DBCR0, debug->dbcr0);
630         mtspr(SPRN_DBCR1, debug->dbcr1);
631 #ifdef CONFIG_BOOKE
632         mtspr(SPRN_DBCR2, debug->dbcr2);
633 #endif
634 }
635 /*
636  * Unless neither the old or new thread are making use of the
637  * debug registers, set the debug registers from the values
638  * stored in the new thread.
639  */
640 void switch_booke_debug_regs(struct debug_reg *new_debug)
641 {
642         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
643                 || (new_debug->dbcr0 & DBCR0_IDM))
644                         prime_debug_regs(new_debug);
645 }
646 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
647 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
648 #ifndef CONFIG_HAVE_HW_BREAKPOINT
649 static void set_debug_reg_defaults(struct thread_struct *thread)
650 {
651         thread->hw_brk.address = 0;
652         thread->hw_brk.type = 0;
653         set_breakpoint(&thread->hw_brk);
654 }
655 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
656 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
657
658 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
659 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
660 {
661         mtspr(SPRN_DAC1, dabr);
662 #ifdef CONFIG_PPC_47x
663         isync();
664 #endif
665         return 0;
666 }
667 #elif defined(CONFIG_PPC_BOOK3S)
668 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
669 {
670         mtspr(SPRN_DABR, dabr);
671         if (cpu_has_feature(CPU_FTR_DABRX))
672                 mtspr(SPRN_DABRX, dabrx);
673         return 0;
674 }
675 #else
676 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
677 {
678         return -EINVAL;
679 }
680 #endif
681
682 static inline int set_dabr(struct arch_hw_breakpoint *brk)
683 {
684         unsigned long dabr, dabrx;
685
686         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
687         dabrx = ((brk->type >> 3) & 0x7);
688
689         if (ppc_md.set_dabr)
690                 return ppc_md.set_dabr(dabr, dabrx);
691
692         return __set_dabr(dabr, dabrx);
693 }
694
695 static inline int set_dawr(struct arch_hw_breakpoint *brk)
696 {
697         unsigned long dawr, dawrx, mrd;
698
699         dawr = brk->address;
700
701         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
702                                    << (63 - 58); //* read/write bits */
703         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
704                                    << (63 - 59); //* translate */
705         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
706                                    >> 3; //* PRIM bits */
707         /* dawr length is stored in field MDR bits 48:53.  Matches range in
708            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
709            0b111111=64DW.
710            brk->len is in bytes.
711            This aligns up to double word size, shifts and does the bias.
712         */
713         mrd = ((brk->len + 7) >> 3) - 1;
714         dawrx |= (mrd & 0x3f) << (63 - 53);
715
716         if (ppc_md.set_dawr)
717                 return ppc_md.set_dawr(dawr, dawrx);
718         mtspr(SPRN_DAWR, dawr);
719         mtspr(SPRN_DAWRX, dawrx);
720         return 0;
721 }
722
723 void __set_breakpoint(struct arch_hw_breakpoint *brk)
724 {
725         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
726
727         if (cpu_has_feature(CPU_FTR_DAWR))
728                 set_dawr(brk);
729         else
730                 set_dabr(brk);
731 }
732
733 void set_breakpoint(struct arch_hw_breakpoint *brk)
734 {
735         preempt_disable();
736         __set_breakpoint(brk);
737         preempt_enable();
738 }
739
740 #ifdef CONFIG_PPC64
741 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
742 #endif
743
744 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
745                               struct arch_hw_breakpoint *b)
746 {
747         if (a->address != b->address)
748                 return false;
749         if (a->type != b->type)
750                 return false;
751         if (a->len != b->len)
752                 return false;
753         return true;
754 }
755
756 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
757 static void tm_reclaim_thread(struct thread_struct *thr,
758                               struct thread_info *ti, uint8_t cause)
759 {
760         unsigned long msr_diff = 0;
761
762         /*
763          * If FP/VSX registers have been already saved to the
764          * thread_struct, move them to the transact_fp array.
765          * We clear the TIF_RESTORE_TM bit since after the reclaim
766          * the thread will no longer be transactional.
767          */
768         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
769                 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
770                 if (msr_diff & MSR_FP)
771                         memcpy(&thr->transact_fp, &thr->fp_state,
772                                sizeof(struct thread_fp_state));
773                 if (msr_diff & MSR_VEC)
774                         memcpy(&thr->transact_vr, &thr->vr_state,
775                                sizeof(struct thread_vr_state));
776                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
777                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
778         }
779
780         /*
781          * Use the current MSR TM suspended bit to track if we have
782          * checkpointed state outstanding.
783          * On signal delivery, we'd normally reclaim the checkpointed
784          * state to obtain stack pointer (see:get_tm_stackpointer()).
785          * This will then directly return to userspace without going
786          * through __switch_to(). However, if the stack frame is bad,
787          * we need to exit this thread which calls __switch_to() which
788          * will again attempt to reclaim the already saved tm state.
789          * Hence we need to check that we've not already reclaimed
790          * this state.
791          * We do this using the current MSR, rather tracking it in
792          * some specific thread_struct bit, as it has the additional
793          * benifit of checking for a potential TM bad thing exception.
794          */
795         if (!MSR_TM_SUSPENDED(mfmsr()))
796                 return;
797
798         tm_reclaim(thr, thr->regs->msr, cause);
799
800         /* Having done the reclaim, we now have the checkpointed
801          * FP/VSX values in the registers.  These might be valid
802          * even if we have previously called enable_kernel_fp() or
803          * flush_fp_to_thread(), so update thr->regs->msr to
804          * indicate their current validity.
805          */
806         thr->regs->msr |= msr_diff;
807 }
808
809 void tm_reclaim_current(uint8_t cause)
810 {
811         tm_enable();
812         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
813 }
814
815 static inline void tm_reclaim_task(struct task_struct *tsk)
816 {
817         /* We have to work out if we're switching from/to a task that's in the
818          * middle of a transaction.
819          *
820          * In switching we need to maintain a 2nd register state as
821          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
822          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
823          * (current) FPRs into oldtask->thread.transact_fpr[].
824          *
825          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
826          */
827         struct thread_struct *thr = &tsk->thread;
828
829         if (!thr->regs)
830                 return;
831
832         if (!MSR_TM_ACTIVE(thr->regs->msr))
833                 goto out_and_saveregs;
834
835         /* Stash the original thread MSR, as giveup_fpu et al will
836          * modify it.  We hold onto it to see whether the task used
837          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
838          * ckpt_regs.msr is already set.
839          */
840         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
841                 thr->ckpt_regs.msr = thr->regs->msr;
842
843         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
844                  "ccr=%lx, msr=%lx, trap=%lx)\n",
845                  tsk->pid, thr->regs->nip,
846                  thr->regs->ccr, thr->regs->msr,
847                  thr->regs->trap);
848
849         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
850
851         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
852                  tsk->pid);
853
854 out_and_saveregs:
855         /* Always save the regs here, even if a transaction's not active.
856          * This context-switches a thread's TM info SPRs.  We do it here to
857          * be consistent with the restore path (in recheckpoint) which
858          * cannot happen later in _switch().
859          */
860         tm_save_sprs(thr);
861 }
862
863 extern void __tm_recheckpoint(struct thread_struct *thread,
864                               unsigned long orig_msr);
865
866 void tm_recheckpoint(struct thread_struct *thread,
867                      unsigned long orig_msr)
868 {
869         unsigned long flags;
870
871         /* We really can't be interrupted here as the TEXASR registers can't
872          * change and later in the trecheckpoint code, we have a userspace R1.
873          * So let's hard disable over this region.
874          */
875         local_irq_save(flags);
876         hard_irq_disable();
877
878         /* The TM SPRs are restored here, so that TEXASR.FS can be set
879          * before the trecheckpoint and no explosion occurs.
880          */
881         tm_restore_sprs(thread);
882
883         __tm_recheckpoint(thread, orig_msr);
884
885         local_irq_restore(flags);
886 }
887
888 static inline void tm_recheckpoint_new_task(struct task_struct *new)
889 {
890         unsigned long msr;
891
892         if (!cpu_has_feature(CPU_FTR_TM))
893                 return;
894
895         /* Recheckpoint the registers of the thread we're about to switch to.
896          *
897          * If the task was using FP, we non-lazily reload both the original and
898          * the speculative FP register states.  This is because the kernel
899          * doesn't see if/when a TM rollback occurs, so if we take an FP
900          * unavoidable later, we are unable to determine which set of FP regs
901          * need to be restored.
902          */
903         if (!new->thread.regs)
904                 return;
905
906         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
907                 tm_restore_sprs(&new->thread);
908                 return;
909         }
910         msr = new->thread.ckpt_regs.msr;
911         /* Recheckpoint to restore original checkpointed register state. */
912         TM_DEBUG("*** tm_recheckpoint of pid %d "
913                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
914                  new->pid, new->thread.regs->msr, msr);
915
916         /* This loads the checkpointed FP/VEC state, if used */
917         tm_recheckpoint(&new->thread, msr);
918
919         /* This loads the speculative FP/VEC state, if used */
920         if (msr & MSR_FP) {
921                 do_load_up_transact_fpu(&new->thread);
922                 new->thread.regs->msr |=
923                         (MSR_FP | new->thread.fpexc_mode);
924         }
925 #ifdef CONFIG_ALTIVEC
926         if (msr & MSR_VEC) {
927                 do_load_up_transact_altivec(&new->thread);
928                 new->thread.regs->msr |= MSR_VEC;
929         }
930 #endif
931         /* We may as well turn on VSX too since all the state is restored now */
932         if (msr & MSR_VSX)
933                 new->thread.regs->msr |= MSR_VSX;
934
935         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
936                  "(kernel msr 0x%lx)\n",
937                  new->pid, mfmsr());
938 }
939
940 static inline void __switch_to_tm(struct task_struct *prev)
941 {
942         if (cpu_has_feature(CPU_FTR_TM)) {
943                 tm_enable();
944                 tm_reclaim_task(prev);
945         }
946 }
947
948 /*
949  * This is called if we are on the way out to userspace and the
950  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
951  * FP and/or vector state and does so if necessary.
952  * If userspace is inside a transaction (whether active or
953  * suspended) and FP/VMX/VSX instructions have ever been enabled
954  * inside that transaction, then we have to keep them enabled
955  * and keep the FP/VMX/VSX state loaded while ever the transaction
956  * continues.  The reason is that if we didn't, and subsequently
957  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
958  * we don't know whether it's the same transaction, and thus we
959  * don't know which of the checkpointed state and the transactional
960  * state to use.
961  */
962 void restore_tm_state(struct pt_regs *regs)
963 {
964         unsigned long msr_diff;
965
966         clear_thread_flag(TIF_RESTORE_TM);
967         if (!MSR_TM_ACTIVE(regs->msr))
968                 return;
969
970         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
971         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
972
973         restore_math(regs);
974
975         regs->msr |= msr_diff;
976 }
977
978 #else
979 #define tm_recheckpoint_new_task(new)
980 #define __switch_to_tm(prev)
981 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
982
983 static inline void save_sprs(struct thread_struct *t)
984 {
985 #ifdef CONFIG_ALTIVEC
986         if (cpu_has_feature(CPU_FTR_ALTIVEC))
987                 t->vrsave = mfspr(SPRN_VRSAVE);
988 #endif
989 #ifdef CONFIG_PPC_BOOK3S_64
990         if (cpu_has_feature(CPU_FTR_DSCR))
991                 t->dscr = mfspr(SPRN_DSCR);
992
993         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
994                 t->bescr = mfspr(SPRN_BESCR);
995                 t->ebbhr = mfspr(SPRN_EBBHR);
996                 t->ebbrr = mfspr(SPRN_EBBRR);
997
998                 t->fscr = mfspr(SPRN_FSCR);
999
1000                 /*
1001                  * Note that the TAR is not available for use in the kernel.
1002                  * (To provide this, the TAR should be backed up/restored on
1003                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1004                  * this should be in pt_regs anyway (for debug).)
1005                  */
1006                 t->tar = mfspr(SPRN_TAR);
1007         }
1008 #endif
1009 }
1010
1011 static inline void restore_sprs(struct thread_struct *old_thread,
1012                                 struct thread_struct *new_thread)
1013 {
1014 #ifdef CONFIG_ALTIVEC
1015         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1016             old_thread->vrsave != new_thread->vrsave)
1017                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1018 #endif
1019 #ifdef CONFIG_PPC_BOOK3S_64
1020         if (cpu_has_feature(CPU_FTR_DSCR)) {
1021                 u64 dscr = get_paca()->dscr_default;
1022                 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
1023
1024                 if (new_thread->dscr_inherit) {
1025                         dscr = new_thread->dscr;
1026                         fscr |= FSCR_DSCR;
1027                 }
1028
1029                 if (old_thread->dscr != dscr)
1030                         mtspr(SPRN_DSCR, dscr);
1031
1032                 if (old_thread->fscr != fscr)
1033                         mtspr(SPRN_FSCR, fscr);
1034         }
1035
1036         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1037                 if (old_thread->bescr != new_thread->bescr)
1038                         mtspr(SPRN_BESCR, new_thread->bescr);
1039                 if (old_thread->ebbhr != new_thread->ebbhr)
1040                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1041                 if (old_thread->ebbrr != new_thread->ebbrr)
1042                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1043
1044                 if (old_thread->tar != new_thread->tar)
1045                         mtspr(SPRN_TAR, new_thread->tar);
1046         }
1047 #endif
1048 }
1049
1050 struct task_struct *__switch_to(struct task_struct *prev,
1051         struct task_struct *new)
1052 {
1053         struct thread_struct *new_thread, *old_thread;
1054         struct task_struct *last;
1055 #ifdef CONFIG_PPC_BOOK3S_64
1056         struct ppc64_tlb_batch *batch;
1057 #endif
1058
1059         new_thread = &new->thread;
1060         old_thread = &current->thread;
1061
1062         WARN_ON(!irqs_disabled());
1063
1064 #ifdef CONFIG_PPC64
1065         /*
1066          * Collect processor utilization data per process
1067          */
1068         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1069                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1070                 long unsigned start_tb, current_tb;
1071                 start_tb = old_thread->start_tb;
1072                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1073                 old_thread->accum_tb += (current_tb - start_tb);
1074                 new_thread->start_tb = current_tb;
1075         }
1076 #endif /* CONFIG_PPC64 */
1077
1078 #ifdef CONFIG_PPC_BOOK3S_64
1079         batch = this_cpu_ptr(&ppc64_tlb_batch);
1080         if (batch->active) {
1081                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1082                 if (batch->index)
1083                         __flush_tlb_pending(batch);
1084                 batch->active = 0;
1085         }
1086 #endif /* CONFIG_PPC_BOOK3S_64 */
1087
1088 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1089         switch_booke_debug_regs(&new->thread.debug);
1090 #else
1091 /*
1092  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1093  * schedule DABR
1094  */
1095 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1096         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1097                 __set_breakpoint(&new->thread.hw_brk);
1098 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1099 #endif
1100
1101         /*
1102          * We need to save SPRs before treclaim/trecheckpoint as these will
1103          * change a number of them.
1104          */
1105         save_sprs(&prev->thread);
1106
1107         __switch_to_tm(prev);
1108
1109         /* Save FPU, Altivec, VSX and SPE state */
1110         giveup_all(prev);
1111
1112         /*
1113          * We can't take a PMU exception inside _switch() since there is a
1114          * window where the kernel stack SLB and the kernel stack are out
1115          * of sync. Hard disable here.
1116          */
1117         hard_irq_disable();
1118
1119         tm_recheckpoint_new_task(new);
1120
1121         /*
1122          * Call restore_sprs() before calling _switch(). If we move it after
1123          * _switch() then we miss out on calling it for new tasks. The reason
1124          * for this is we manually create a stack frame for new tasks that
1125          * directly returns through ret_from_fork() or
1126          * ret_from_kernel_thread(). See copy_thread() for details.
1127          */
1128         restore_sprs(old_thread, new_thread);
1129
1130         last = _switch(old_thread, new_thread);
1131
1132 #ifdef CONFIG_PPC_BOOK3S_64
1133         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1134                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1135                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1136                 batch->active = 1;
1137         }
1138
1139         if (current_thread_info()->task->thread.regs)
1140                 restore_math(current_thread_info()->task->thread.regs);
1141
1142 #endif /* CONFIG_PPC_BOOK3S_64 */
1143
1144         return last;
1145 }
1146
1147 static int instructions_to_print = 16;
1148
1149 static void show_instructions(struct pt_regs *regs)
1150 {
1151         int i;
1152         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1153                         sizeof(int));
1154
1155         printk("Instruction dump:");
1156
1157         for (i = 0; i < instructions_to_print; i++) {
1158                 int instr;
1159
1160                 if (!(i % 8))
1161                         printk("\n");
1162
1163 #if !defined(CONFIG_BOOKE)
1164                 /* If executing with the IMMU off, adjust pc rather
1165                  * than print XXXXXXXX.
1166                  */
1167                 if (!(regs->msr & MSR_IR))
1168                         pc = (unsigned long)phys_to_virt(pc);
1169 #endif
1170
1171                 if (!__kernel_text_address(pc) ||
1172                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1173                         printk(KERN_CONT "XXXXXXXX ");
1174                 } else {
1175                         if (regs->nip == pc)
1176                                 printk(KERN_CONT "<%08x> ", instr);
1177                         else
1178                                 printk(KERN_CONT "%08x ", instr);
1179                 }
1180
1181                 pc += sizeof(int);
1182         }
1183
1184         printk("\n");
1185 }
1186
1187 struct regbit {
1188         unsigned long bit;
1189         const char *name;
1190 };
1191
1192 static struct regbit msr_bits[] = {
1193 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1194         {MSR_SF,        "SF"},
1195         {MSR_HV,        "HV"},
1196 #endif
1197         {MSR_VEC,       "VEC"},
1198         {MSR_VSX,       "VSX"},
1199 #ifdef CONFIG_BOOKE
1200         {MSR_CE,        "CE"},
1201 #endif
1202         {MSR_EE,        "EE"},
1203         {MSR_PR,        "PR"},
1204         {MSR_FP,        "FP"},
1205         {MSR_ME,        "ME"},
1206 #ifdef CONFIG_BOOKE
1207         {MSR_DE,        "DE"},
1208 #else
1209         {MSR_SE,        "SE"},
1210         {MSR_BE,        "BE"},
1211 #endif
1212         {MSR_IR,        "IR"},
1213         {MSR_DR,        "DR"},
1214         {MSR_PMM,       "PMM"},
1215 #ifndef CONFIG_BOOKE
1216         {MSR_RI,        "RI"},
1217         {MSR_LE,        "LE"},
1218 #endif
1219         {0,             NULL}
1220 };
1221
1222 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1223 {
1224         const char *s = "";
1225
1226         for (; bits->bit; ++bits)
1227                 if (val & bits->bit) {
1228                         printk("%s%s", s, bits->name);
1229                         s = sep;
1230                 }
1231 }
1232
1233 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1234 static struct regbit msr_tm_bits[] = {
1235         {MSR_TS_T,      "T"},
1236         {MSR_TS_S,      "S"},
1237         {MSR_TM,        "E"},
1238         {0,             NULL}
1239 };
1240
1241 static void print_tm_bits(unsigned long val)
1242 {
1243 /*
1244  * This only prints something if at least one of the TM bit is set.
1245  * Inside the TM[], the output means:
1246  *   E: Enabled         (bit 32)
1247  *   S: Suspended       (bit 33)
1248  *   T: Transactional   (bit 34)
1249  */
1250         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1251                 printk(",TM[");
1252                 print_bits(val, msr_tm_bits, "");
1253                 printk("]");
1254         }
1255 }
1256 #else
1257 static void print_tm_bits(unsigned long val) {}
1258 #endif
1259
1260 static void print_msr_bits(unsigned long val)
1261 {
1262         printk("<");
1263         print_bits(val, msr_bits, ",");
1264         print_tm_bits(val);
1265         printk(">");
1266 }
1267
1268 #ifdef CONFIG_PPC64
1269 #define REG             "%016lx"
1270 #define REGS_PER_LINE   4
1271 #define LAST_VOLATILE   13
1272 #else
1273 #define REG             "%08lx"
1274 #define REGS_PER_LINE   8
1275 #define LAST_VOLATILE   12
1276 #endif
1277
1278 void show_regs(struct pt_regs * regs)
1279 {
1280         int i, trap;
1281
1282         show_regs_print_info(KERN_DEFAULT);
1283
1284         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1285                regs->nip, regs->link, regs->ctr);
1286         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1287                regs, regs->trap, print_tainted(), init_utsname()->release);
1288         printk("MSR: "REG" ", regs->msr);
1289         print_msr_bits(regs->msr);
1290         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1291         trap = TRAP(regs);
1292         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1293                 printk("CFAR: "REG" ", regs->orig_gpr3);
1294         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1295 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1296                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1297 #else
1298                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1299 #endif
1300 #ifdef CONFIG_PPC64
1301         printk("SOFTE: %ld ", regs->softe);
1302 #endif
1303 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1304         if (MSR_TM_ACTIVE(regs->msr))
1305                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1306 #endif
1307
1308         for (i = 0;  i < 32;  i++) {
1309                 if ((i % REGS_PER_LINE) == 0)
1310                         printk("\nGPR%02d: ", i);
1311                 printk(REG " ", regs->gpr[i]);
1312                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1313                         break;
1314         }
1315         printk("\n");
1316 #ifdef CONFIG_KALLSYMS
1317         /*
1318          * Lookup NIP late so we have the best change of getting the
1319          * above info out without failing
1320          */
1321         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1322         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1323 #endif
1324         show_stack(current, (unsigned long *) regs->gpr[1]);
1325         if (!user_mode(regs))
1326                 show_instructions(regs);
1327 }
1328
1329 void exit_thread(void)
1330 {
1331 }
1332
1333 void flush_thread(void)
1334 {
1335 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1336         flush_ptrace_hw_breakpoint(current);
1337 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1338         set_debug_reg_defaults(&current->thread);
1339 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1340 }
1341
1342 void
1343 release_thread(struct task_struct *t)
1344 {
1345 }
1346
1347 /*
1348  * this gets called so that we can store coprocessor state into memory and
1349  * copy the current task into the new thread.
1350  */
1351 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1352 {
1353         flush_all_to_thread(src);
1354         /*
1355          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1356          * flush but it removes the checkpointed state from the current CPU and
1357          * transitions the CPU out of TM mode.  Hence we need to call
1358          * tm_recheckpoint_new_task() (on the same task) to restore the
1359          * checkpointed state back and the TM mode.
1360          */
1361         __switch_to_tm(src);
1362         tm_recheckpoint_new_task(src);
1363
1364         *dst = *src;
1365
1366         clear_task_ebb(dst);
1367
1368         return 0;
1369 }
1370
1371 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1372 {
1373 #ifdef CONFIG_PPC_STD_MMU_64
1374         unsigned long sp_vsid;
1375         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1376
1377         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1378                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1379                         << SLB_VSID_SHIFT_1T;
1380         else
1381                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1382                         << SLB_VSID_SHIFT;
1383         sp_vsid |= SLB_VSID_KERNEL | llp;
1384         p->thread.ksp_vsid = sp_vsid;
1385 #endif
1386 }
1387
1388 /*
1389  * Copy a thread..
1390  */
1391
1392 /*
1393  * Copy architecture-specific thread state
1394  */
1395 int copy_thread(unsigned long clone_flags, unsigned long usp,
1396                 unsigned long kthread_arg, struct task_struct *p)
1397 {
1398         struct pt_regs *childregs, *kregs;
1399         extern void ret_from_fork(void);
1400         extern void ret_from_kernel_thread(void);
1401         void (*f)(void);
1402         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1403
1404         /* Copy registers */
1405         sp -= sizeof(struct pt_regs);
1406         childregs = (struct pt_regs *) sp;
1407         if (unlikely(p->flags & PF_KTHREAD)) {
1408                 /* kernel thread */
1409                 struct thread_info *ti = (void *)task_stack_page(p);
1410                 memset(childregs, 0, sizeof(struct pt_regs));
1411                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1412                 /* function */
1413                 if (usp)
1414                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1415 #ifdef CONFIG_PPC64
1416                 clear_tsk_thread_flag(p, TIF_32BIT);
1417                 childregs->softe = 1;
1418 #endif
1419                 childregs->gpr[15] = kthread_arg;
1420                 p->thread.regs = NULL;  /* no user register state */
1421                 ti->flags |= _TIF_RESTOREALL;
1422                 f = ret_from_kernel_thread;
1423         } else {
1424                 /* user thread */
1425                 struct pt_regs *regs = current_pt_regs();
1426                 CHECK_FULL_REGS(regs);
1427                 *childregs = *regs;
1428                 if (usp)
1429                         childregs->gpr[1] = usp;
1430                 p->thread.regs = childregs;
1431                 childregs->gpr[3] = 0;  /* Result from fork() */
1432                 if (clone_flags & CLONE_SETTLS) {
1433 #ifdef CONFIG_PPC64
1434                         if (!is_32bit_task())
1435                                 childregs->gpr[13] = childregs->gpr[6];
1436                         else
1437 #endif
1438                                 childregs->gpr[2] = childregs->gpr[6];
1439                 }
1440
1441                 f = ret_from_fork;
1442         }
1443         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1444         sp -= STACK_FRAME_OVERHEAD;
1445
1446         /*
1447          * The way this works is that at some point in the future
1448          * some task will call _switch to switch to the new task.
1449          * That will pop off the stack frame created below and start
1450          * the new task running at ret_from_fork.  The new task will
1451          * do some house keeping and then return from the fork or clone
1452          * system call, using the stack frame created above.
1453          */
1454         ((unsigned long *)sp)[0] = 0;
1455         sp -= sizeof(struct pt_regs);
1456         kregs = (struct pt_regs *) sp;
1457         sp -= STACK_FRAME_OVERHEAD;
1458         p->thread.ksp = sp;
1459 #ifdef CONFIG_PPC32
1460         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1461                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1462 #endif
1463 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1464         p->thread.ptrace_bps[0] = NULL;
1465 #endif
1466
1467         p->thread.fp_save_area = NULL;
1468 #ifdef CONFIG_ALTIVEC
1469         p->thread.vr_save_area = NULL;
1470 #endif
1471
1472         setup_ksp_vsid(p, sp);
1473
1474 #ifdef CONFIG_PPC64 
1475         if (cpu_has_feature(CPU_FTR_DSCR)) {
1476                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1477                 p->thread.dscr = mfspr(SPRN_DSCR);
1478         }
1479         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1480                 p->thread.ppr = INIT_PPR;
1481 #endif
1482         kregs->nip = ppc_function_entry(f);
1483         return 0;
1484 }
1485
1486 /*
1487  * Set up a thread for executing a new program
1488  */
1489 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1490 {
1491 #ifdef CONFIG_PPC64
1492         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1493 #endif
1494
1495         /*
1496          * If we exec out of a kernel thread then thread.regs will not be
1497          * set.  Do it now.
1498          */
1499         if (!current->thread.regs) {
1500                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1501                 current->thread.regs = regs - 1;
1502         }
1503
1504         memset(regs->gpr, 0, sizeof(regs->gpr));
1505         regs->ctr = 0;
1506         regs->link = 0;
1507         regs->xer = 0;
1508         regs->ccr = 0;
1509         regs->gpr[1] = sp;
1510
1511         /*
1512          * We have just cleared all the nonvolatile GPRs, so make
1513          * FULL_REGS(regs) return true.  This is necessary to allow
1514          * ptrace to examine the thread immediately after exec.
1515          */
1516         regs->trap &= ~1UL;
1517
1518 #ifdef CONFIG_PPC32
1519         regs->mq = 0;
1520         regs->nip = start;
1521         regs->msr = MSR_USER;
1522 #else
1523         if (!is_32bit_task()) {
1524                 unsigned long entry;
1525
1526                 if (is_elf2_task()) {
1527                         /* Look ma, no function descriptors! */
1528                         entry = start;
1529
1530                         /*
1531                          * Ulrich says:
1532                          *   The latest iteration of the ABI requires that when
1533                          *   calling a function (at its global entry point),
1534                          *   the caller must ensure r12 holds the entry point
1535                          *   address (so that the function can quickly
1536                          *   establish addressability).
1537                          */
1538                         regs->gpr[12] = start;
1539                         /* Make sure that's restored on entry to userspace. */
1540                         set_thread_flag(TIF_RESTOREALL);
1541                 } else {
1542                         unsigned long toc;
1543
1544                         /* start is a relocated pointer to the function
1545                          * descriptor for the elf _start routine.  The first
1546                          * entry in the function descriptor is the entry
1547                          * address of _start and the second entry is the TOC
1548                          * value we need to use.
1549                          */
1550                         __get_user(entry, (unsigned long __user *)start);
1551                         __get_user(toc, (unsigned long __user *)start+1);
1552
1553                         /* Check whether the e_entry function descriptor entries
1554                          * need to be relocated before we can use them.
1555                          */
1556                         if (load_addr != 0) {
1557                                 entry += load_addr;
1558                                 toc   += load_addr;
1559                         }
1560                         regs->gpr[2] = toc;
1561                 }
1562                 regs->nip = entry;
1563                 regs->msr = MSR_USER64;
1564         } else {
1565                 regs->nip = start;
1566                 regs->gpr[2] = 0;
1567                 regs->msr = MSR_USER32;
1568         }
1569 #endif
1570 #ifdef CONFIG_VSX
1571         current->thread.used_vsr = 0;
1572 #endif
1573         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1574         current->thread.fp_save_area = NULL;
1575 #ifdef CONFIG_ALTIVEC
1576         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1577         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1578         current->thread.vr_save_area = NULL;
1579         current->thread.vrsave = 0;
1580         current->thread.used_vr = 0;
1581 #endif /* CONFIG_ALTIVEC */
1582 #ifdef CONFIG_SPE
1583         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1584         current->thread.acc = 0;
1585         current->thread.spefscr = 0;
1586         current->thread.used_spe = 0;
1587 #endif /* CONFIG_SPE */
1588 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1589         if (cpu_has_feature(CPU_FTR_TM))
1590                 regs->msr |= MSR_TM;
1591         current->thread.tm_tfhar = 0;
1592         current->thread.tm_texasr = 0;
1593         current->thread.tm_tfiar = 0;
1594 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1595 }
1596 EXPORT_SYMBOL(start_thread);
1597
1598 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1599                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1600
1601 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1602 {
1603         struct pt_regs *regs = tsk->thread.regs;
1604
1605         /* This is a bit hairy.  If we are an SPE enabled  processor
1606          * (have embedded fp) we store the IEEE exception enable flags in
1607          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1608          * mode (asyn, precise, disabled) for 'Classic' FP. */
1609         if (val & PR_FP_EXC_SW_ENABLE) {
1610 #ifdef CONFIG_SPE
1611                 if (cpu_has_feature(CPU_FTR_SPE)) {
1612                         /*
1613                          * When the sticky exception bits are set
1614                          * directly by userspace, it must call prctl
1615                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1616                          * in the existing prctl settings) or
1617                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1618                          * the bits being set).  <fenv.h> functions
1619                          * saving and restoring the whole
1620                          * floating-point environment need to do so
1621                          * anyway to restore the prctl settings from
1622                          * the saved environment.
1623                          */
1624                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1625                         tsk->thread.fpexc_mode = val &
1626                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1627                         return 0;
1628                 } else {
1629                         return -EINVAL;
1630                 }
1631 #else
1632                 return -EINVAL;
1633 #endif
1634         }
1635
1636         /* on a CONFIG_SPE this does not hurt us.  The bits that
1637          * __pack_fe01 use do not overlap with bits used for
1638          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1639          * on CONFIG_SPE implementations are reserved so writing to
1640          * them does not change anything */
1641         if (val > PR_FP_EXC_PRECISE)
1642                 return -EINVAL;
1643         tsk->thread.fpexc_mode = __pack_fe01(val);
1644         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1645                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1646                         | tsk->thread.fpexc_mode;
1647         return 0;
1648 }
1649
1650 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1651 {
1652         unsigned int val;
1653
1654         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1655 #ifdef CONFIG_SPE
1656                 if (cpu_has_feature(CPU_FTR_SPE)) {
1657                         /*
1658                          * When the sticky exception bits are set
1659                          * directly by userspace, it must call prctl
1660                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1661                          * in the existing prctl settings) or
1662                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1663                          * the bits being set).  <fenv.h> functions
1664                          * saving and restoring the whole
1665                          * floating-point environment need to do so
1666                          * anyway to restore the prctl settings from
1667                          * the saved environment.
1668                          */
1669                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1670                         val = tsk->thread.fpexc_mode;
1671                 } else
1672                         return -EINVAL;
1673 #else
1674                 return -EINVAL;
1675 #endif
1676         else
1677                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1678         return put_user(val, (unsigned int __user *) adr);
1679 }
1680
1681 int set_endian(struct task_struct *tsk, unsigned int val)
1682 {
1683         struct pt_regs *regs = tsk->thread.regs;
1684
1685         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1686             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1687                 return -EINVAL;
1688
1689         if (regs == NULL)
1690                 return -EINVAL;
1691
1692         if (val == PR_ENDIAN_BIG)
1693                 regs->msr &= ~MSR_LE;
1694         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1695                 regs->msr |= MSR_LE;
1696         else
1697                 return -EINVAL;
1698
1699         return 0;
1700 }
1701
1702 int get_endian(struct task_struct *tsk, unsigned long adr)
1703 {
1704         struct pt_regs *regs = tsk->thread.regs;
1705         unsigned int val;
1706
1707         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1708             !cpu_has_feature(CPU_FTR_REAL_LE))
1709                 return -EINVAL;
1710
1711         if (regs == NULL)
1712                 return -EINVAL;
1713
1714         if (regs->msr & MSR_LE) {
1715                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1716                         val = PR_ENDIAN_LITTLE;
1717                 else
1718                         val = PR_ENDIAN_PPC_LITTLE;
1719         } else
1720                 val = PR_ENDIAN_BIG;
1721
1722         return put_user(val, (unsigned int __user *)adr);
1723 }
1724
1725 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1726 {
1727         tsk->thread.align_ctl = val;
1728         return 0;
1729 }
1730
1731 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1732 {
1733         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1734 }
1735
1736 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1737                                   unsigned long nbytes)
1738 {
1739         unsigned long stack_page;
1740         unsigned long cpu = task_cpu(p);
1741
1742         /*
1743          * Avoid crashing if the stack has overflowed and corrupted
1744          * task_cpu(p), which is in the thread_info struct.
1745          */
1746         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1747                 stack_page = (unsigned long) hardirq_ctx[cpu];
1748                 if (sp >= stack_page + sizeof(struct thread_struct)
1749                     && sp <= stack_page + THREAD_SIZE - nbytes)
1750                         return 1;
1751
1752                 stack_page = (unsigned long) softirq_ctx[cpu];
1753                 if (sp >= stack_page + sizeof(struct thread_struct)
1754                     && sp <= stack_page + THREAD_SIZE - nbytes)
1755                         return 1;
1756         }
1757         return 0;
1758 }
1759
1760 int validate_sp(unsigned long sp, struct task_struct *p,
1761                        unsigned long nbytes)
1762 {
1763         unsigned long stack_page = (unsigned long)task_stack_page(p);
1764
1765         if (sp >= stack_page + sizeof(struct thread_struct)
1766             && sp <= stack_page + THREAD_SIZE - nbytes)
1767                 return 1;
1768
1769         return valid_irq_stack(sp, p, nbytes);
1770 }
1771
1772 EXPORT_SYMBOL(validate_sp);
1773
1774 unsigned long get_wchan(struct task_struct *p)
1775 {
1776         unsigned long ip, sp;
1777         int count = 0;
1778
1779         if (!p || p == current || p->state == TASK_RUNNING)
1780                 return 0;
1781
1782         sp = p->thread.ksp;
1783         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1784                 return 0;
1785
1786         do {
1787                 sp = *(unsigned long *)sp;
1788                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1789                         return 0;
1790                 if (count > 0) {
1791                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1792                         if (!in_sched_functions(ip))
1793                                 return ip;
1794                 }
1795         } while (count++ < 16);
1796         return 0;
1797 }
1798
1799 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1800
1801 void show_stack(struct task_struct *tsk, unsigned long *stack)
1802 {
1803         unsigned long sp, ip, lr, newsp;
1804         int count = 0;
1805         int firstframe = 1;
1806 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1807         int curr_frame = current->curr_ret_stack;
1808         extern void return_to_handler(void);
1809         unsigned long rth = (unsigned long)return_to_handler;
1810 #endif
1811
1812         sp = (unsigned long) stack;
1813         if (tsk == NULL)
1814                 tsk = current;
1815         if (sp == 0) {
1816                 if (tsk == current)
1817                         sp = current_stack_pointer();
1818                 else
1819                         sp = tsk->thread.ksp;
1820         }
1821
1822         lr = 0;
1823         printk("Call Trace:\n");
1824         do {
1825                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1826                         return;
1827
1828                 stack = (unsigned long *) sp;
1829                 newsp = stack[0];
1830                 ip = stack[STACK_FRAME_LR_SAVE];
1831                 if (!firstframe || ip != lr) {
1832                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1833 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1834                         if ((ip == rth) && curr_frame >= 0) {
1835                                 printk(" (%pS)",
1836                                        (void *)current->ret_stack[curr_frame].ret);
1837                                 curr_frame--;
1838                         }
1839 #endif
1840                         if (firstframe)
1841                                 printk(" (unreliable)");
1842                         printk("\n");
1843                 }
1844                 firstframe = 0;
1845
1846                 /*
1847                  * See if this is an exception frame.
1848                  * We look for the "regshere" marker in the current frame.
1849                  */
1850                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1851                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1852                         struct pt_regs *regs = (struct pt_regs *)
1853                                 (sp + STACK_FRAME_OVERHEAD);
1854                         lr = regs->link;
1855                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1856                                regs->trap, (void *)regs->nip, (void *)lr);
1857                         firstframe = 1;
1858                 }
1859
1860                 sp = newsp;
1861         } while (count++ < kstack_depth_to_print);
1862 }
1863
1864 #ifdef CONFIG_PPC64
1865 /* Called with hard IRQs off */
1866 void notrace __ppc64_runlatch_on(void)
1867 {
1868         struct thread_info *ti = current_thread_info();
1869         unsigned long ctrl;
1870
1871         ctrl = mfspr(SPRN_CTRLF);
1872         ctrl |= CTRL_RUNLATCH;
1873         mtspr(SPRN_CTRLT, ctrl);
1874
1875         ti->local_flags |= _TLF_RUNLATCH;
1876 }
1877
1878 /* Called with hard IRQs off */
1879 void notrace __ppc64_runlatch_off(void)
1880 {
1881         struct thread_info *ti = current_thread_info();
1882         unsigned long ctrl;
1883
1884         ti->local_flags &= ~_TLF_RUNLATCH;
1885
1886         ctrl = mfspr(SPRN_CTRLF);
1887         ctrl &= ~CTRL_RUNLATCH;
1888         mtspr(SPRN_CTRLT, ctrl);
1889 }
1890 #endif /* CONFIG_PPC64 */
1891
1892 unsigned long arch_align_stack(unsigned long sp)
1893 {
1894         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1895                 sp -= get_random_int() & ~PAGE_MASK;
1896         return sp & ~0xf;
1897 }
1898
1899 static inline unsigned long brk_rnd(void)
1900 {
1901         unsigned long rnd = 0;
1902
1903         /* 8MB for 32bit, 1GB for 64bit */
1904         if (is_32bit_task())
1905                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1906         else
1907                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1908
1909         return rnd << PAGE_SHIFT;
1910 }
1911
1912 unsigned long arch_randomize_brk(struct mm_struct *mm)
1913 {
1914         unsigned long base = mm->brk;
1915         unsigned long ret;
1916
1917 #ifdef CONFIG_PPC_STD_MMU_64
1918         /*
1919          * If we are using 1TB segments and we are allowed to randomise
1920          * the heap, we can put it above 1TB so it is backed by a 1TB
1921          * segment. Otherwise the heap will be in the bottom 1TB
1922          * which always uses 256MB segments and this may result in a
1923          * performance penalty.
1924          */
1925         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1926                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1927 #endif
1928
1929         ret = PAGE_ALIGN(base + brk_rnd());
1930
1931         if (ret < mm->brk)
1932                 return mm->brk;
1933
1934         return ret;
1935 }
1936