spi: pl022: Remove obsolete struct pl022 members from kerneldoc
[cascardo/linux.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71 static void check_if_tm_restore_required(struct task_struct *tsk)
72 {
73         /*
74          * If we are saving the current thread's registers, and the
75          * thread is in a transactional state, set the TIF_RESTORE_TM
76          * bit so that we know to restore the registers before
77          * returning to userspace.
78          */
79         if (tsk == current && tsk->thread.regs &&
80             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
81             !test_thread_flag(TIF_RESTORE_TM)) {
82                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83                 set_thread_flag(TIF_RESTORE_TM);
84         }
85 }
86 #else
87 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
89
90 bool strict_msr_control;
91 EXPORT_SYMBOL(strict_msr_control);
92
93 static int __init enable_strict_msr_control(char *str)
94 {
95         strict_msr_control = true;
96         pr_info("Enabling strict facility control\n");
97
98         return 0;
99 }
100 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
101
102 void msr_check_and_set(unsigned long bits)
103 {
104         unsigned long oldmsr = mfmsr();
105         unsigned long newmsr;
106
107         newmsr = oldmsr | bits;
108
109 #ifdef CONFIG_VSX
110         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111                 newmsr |= MSR_VSX;
112 #endif
113
114         if (oldmsr != newmsr)
115                 mtmsr_isync(newmsr);
116 }
117
118 void __msr_check_and_clear(unsigned long bits)
119 {
120         unsigned long oldmsr = mfmsr();
121         unsigned long newmsr;
122
123         newmsr = oldmsr & ~bits;
124
125 #ifdef CONFIG_VSX
126         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127                 newmsr &= ~MSR_VSX;
128 #endif
129
130         if (oldmsr != newmsr)
131                 mtmsr_isync(newmsr);
132 }
133 EXPORT_SYMBOL(__msr_check_and_clear);
134
135 #ifdef CONFIG_PPC_FPU
136 void giveup_fpu(struct task_struct *tsk)
137 {
138         check_if_tm_restore_required(tsk);
139
140         msr_check_and_set(MSR_FP);
141         __giveup_fpu(tsk);
142         msr_check_and_clear(MSR_FP);
143 }
144 EXPORT_SYMBOL(giveup_fpu);
145
146 /*
147  * Make sure the floating-point register state in the
148  * the thread_struct is up to date for task tsk.
149  */
150 void flush_fp_to_thread(struct task_struct *tsk)
151 {
152         if (tsk->thread.regs) {
153                 /*
154                  * We need to disable preemption here because if we didn't,
155                  * another process could get scheduled after the regs->msr
156                  * test but before we have finished saving the FP registers
157                  * to the thread_struct.  That process could take over the
158                  * FPU, and then when we get scheduled again we would store
159                  * bogus values for the remaining FP registers.
160                  */
161                 preempt_disable();
162                 if (tsk->thread.regs->msr & MSR_FP) {
163                         /*
164                          * This should only ever be called for current or
165                          * for a stopped child process.  Since we save away
166                          * the FP register state on context switch,
167                          * there is something wrong if a stopped child appears
168                          * to still have its FP state in the CPU registers.
169                          */
170                         BUG_ON(tsk != current);
171                         giveup_fpu(tsk);
172                 }
173                 preempt_enable();
174         }
175 }
176 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
177
178 void enable_kernel_fp(void)
179 {
180         WARN_ON(preemptible());
181
182         msr_check_and_set(MSR_FP);
183
184         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
185                 check_if_tm_restore_required(current);
186                 __giveup_fpu(current);
187         }
188 }
189 EXPORT_SYMBOL(enable_kernel_fp);
190 #endif /* CONFIG_PPC_FPU */
191
192 #ifdef CONFIG_ALTIVEC
193 void giveup_altivec(struct task_struct *tsk)
194 {
195         check_if_tm_restore_required(tsk);
196
197         msr_check_and_set(MSR_VEC);
198         __giveup_altivec(tsk);
199         msr_check_and_clear(MSR_VEC);
200 }
201 EXPORT_SYMBOL(giveup_altivec);
202
203 void enable_kernel_altivec(void)
204 {
205         WARN_ON(preemptible());
206
207         msr_check_and_set(MSR_VEC);
208
209         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
210                 check_if_tm_restore_required(current);
211                 __giveup_altivec(current);
212         }
213 }
214 EXPORT_SYMBOL(enable_kernel_altivec);
215
216 /*
217  * Make sure the VMX/Altivec register state in the
218  * the thread_struct is up to date for task tsk.
219  */
220 void flush_altivec_to_thread(struct task_struct *tsk)
221 {
222         if (tsk->thread.regs) {
223                 preempt_disable();
224                 if (tsk->thread.regs->msr & MSR_VEC) {
225                         BUG_ON(tsk != current);
226                         giveup_altivec(tsk);
227                 }
228                 preempt_enable();
229         }
230 }
231 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
232 #endif /* CONFIG_ALTIVEC */
233
234 #ifdef CONFIG_VSX
235 void giveup_vsx(struct task_struct *tsk)
236 {
237         check_if_tm_restore_required(tsk);
238
239         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
240         if (tsk->thread.regs->msr & MSR_FP)
241                 __giveup_fpu(tsk);
242         if (tsk->thread.regs->msr & MSR_VEC)
243                 __giveup_altivec(tsk);
244         __giveup_vsx(tsk);
245         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
246 }
247 EXPORT_SYMBOL(giveup_vsx);
248
249 void enable_kernel_vsx(void)
250 {
251         WARN_ON(preemptible());
252
253         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
254
255         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
256                 check_if_tm_restore_required(current);
257                 if (current->thread.regs->msr & MSR_FP)
258                         __giveup_fpu(current);
259                 if (current->thread.regs->msr & MSR_VEC)
260                         __giveup_altivec(current);
261                 __giveup_vsx(current);
262         }
263 }
264 EXPORT_SYMBOL(enable_kernel_vsx);
265
266 void flush_vsx_to_thread(struct task_struct *tsk)
267 {
268         if (tsk->thread.regs) {
269                 preempt_disable();
270                 if (tsk->thread.regs->msr & MSR_VSX) {
271                         BUG_ON(tsk != current);
272                         giveup_vsx(tsk);
273                 }
274                 preempt_enable();
275         }
276 }
277 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
278 #endif /* CONFIG_VSX */
279
280 #ifdef CONFIG_SPE
281 void giveup_spe(struct task_struct *tsk)
282 {
283         check_if_tm_restore_required(tsk);
284
285         msr_check_and_set(MSR_SPE);
286         __giveup_spe(tsk);
287         msr_check_and_clear(MSR_SPE);
288 }
289 EXPORT_SYMBOL(giveup_spe);
290
291 void enable_kernel_spe(void)
292 {
293         WARN_ON(preemptible());
294
295         msr_check_and_set(MSR_SPE);
296
297         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
298                 check_if_tm_restore_required(current);
299                 __giveup_spe(current);
300         }
301 }
302 EXPORT_SYMBOL(enable_kernel_spe);
303
304 void flush_spe_to_thread(struct task_struct *tsk)
305 {
306         if (tsk->thread.regs) {
307                 preempt_disable();
308                 if (tsk->thread.regs->msr & MSR_SPE) {
309                         BUG_ON(tsk != current);
310                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
311                         giveup_spe(tsk);
312                 }
313                 preempt_enable();
314         }
315 }
316 #endif /* CONFIG_SPE */
317
318 static unsigned long msr_all_available;
319
320 static int __init init_msr_all_available(void)
321 {
322 #ifdef CONFIG_PPC_FPU
323         msr_all_available |= MSR_FP;
324 #endif
325 #ifdef CONFIG_ALTIVEC
326         if (cpu_has_feature(CPU_FTR_ALTIVEC))
327                 msr_all_available |= MSR_VEC;
328 #endif
329 #ifdef CONFIG_VSX
330         if (cpu_has_feature(CPU_FTR_VSX))
331                 msr_all_available |= MSR_VSX;
332 #endif
333 #ifdef CONFIG_SPE
334         if (cpu_has_feature(CPU_FTR_SPE))
335                 msr_all_available |= MSR_SPE;
336 #endif
337
338         return 0;
339 }
340 early_initcall(init_msr_all_available);
341
342 void giveup_all(struct task_struct *tsk)
343 {
344         unsigned long usermsr;
345
346         if (!tsk->thread.regs)
347                 return;
348
349         usermsr = tsk->thread.regs->msr;
350
351         if ((usermsr & msr_all_available) == 0)
352                 return;
353
354         msr_check_and_set(msr_all_available);
355
356 #ifdef CONFIG_PPC_FPU
357         if (usermsr & MSR_FP)
358                 __giveup_fpu(tsk);
359 #endif
360 #ifdef CONFIG_ALTIVEC
361         if (usermsr & MSR_VEC)
362                 __giveup_altivec(tsk);
363 #endif
364 #ifdef CONFIG_VSX
365         if (usermsr & MSR_VSX)
366                 __giveup_vsx(tsk);
367 #endif
368 #ifdef CONFIG_SPE
369         if (usermsr & MSR_SPE)
370                 __giveup_spe(tsk);
371 #endif
372
373         msr_check_and_clear(msr_all_available);
374 }
375 EXPORT_SYMBOL(giveup_all);
376
377 void flush_all_to_thread(struct task_struct *tsk)
378 {
379         if (tsk->thread.regs) {
380                 preempt_disable();
381                 BUG_ON(tsk != current);
382                 giveup_all(tsk);
383
384 #ifdef CONFIG_SPE
385                 if (tsk->thread.regs->msr & MSR_SPE)
386                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
387 #endif
388
389                 preempt_enable();
390         }
391 }
392 EXPORT_SYMBOL(flush_all_to_thread);
393
394 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
395 void do_send_trap(struct pt_regs *regs, unsigned long address,
396                   unsigned long error_code, int signal_code, int breakpt)
397 {
398         siginfo_t info;
399
400         current->thread.trap_nr = signal_code;
401         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
402                         11, SIGSEGV) == NOTIFY_STOP)
403                 return;
404
405         /* Deliver the signal to userspace */
406         info.si_signo = SIGTRAP;
407         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
408         info.si_code = signal_code;
409         info.si_addr = (void __user *)address;
410         force_sig_info(SIGTRAP, &info, current);
411 }
412 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
413 void do_break (struct pt_regs *regs, unsigned long address,
414                     unsigned long error_code)
415 {
416         siginfo_t info;
417
418         current->thread.trap_nr = TRAP_HWBKPT;
419         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
420                         11, SIGSEGV) == NOTIFY_STOP)
421                 return;
422
423         if (debugger_break_match(regs))
424                 return;
425
426         /* Clear the breakpoint */
427         hw_breakpoint_disable();
428
429         /* Deliver the signal to userspace */
430         info.si_signo = SIGTRAP;
431         info.si_errno = 0;
432         info.si_code = TRAP_HWBKPT;
433         info.si_addr = (void __user *)address;
434         force_sig_info(SIGTRAP, &info, current);
435 }
436 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
437
438 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
439
440 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
441 /*
442  * Set the debug registers back to their default "safe" values.
443  */
444 static void set_debug_reg_defaults(struct thread_struct *thread)
445 {
446         thread->debug.iac1 = thread->debug.iac2 = 0;
447 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
448         thread->debug.iac3 = thread->debug.iac4 = 0;
449 #endif
450         thread->debug.dac1 = thread->debug.dac2 = 0;
451 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
452         thread->debug.dvc1 = thread->debug.dvc2 = 0;
453 #endif
454         thread->debug.dbcr0 = 0;
455 #ifdef CONFIG_BOOKE
456         /*
457          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
458          */
459         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
460                         DBCR1_IAC3US | DBCR1_IAC4US;
461         /*
462          * Force Data Address Compare User/Supervisor bits to be User-only
463          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
464          */
465         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
466 #else
467         thread->debug.dbcr1 = 0;
468 #endif
469 }
470
471 static void prime_debug_regs(struct debug_reg *debug)
472 {
473         /*
474          * We could have inherited MSR_DE from userspace, since
475          * it doesn't get cleared on exception entry.  Make sure
476          * MSR_DE is clear before we enable any debug events.
477          */
478         mtmsr(mfmsr() & ~MSR_DE);
479
480         mtspr(SPRN_IAC1, debug->iac1);
481         mtspr(SPRN_IAC2, debug->iac2);
482 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
483         mtspr(SPRN_IAC3, debug->iac3);
484         mtspr(SPRN_IAC4, debug->iac4);
485 #endif
486         mtspr(SPRN_DAC1, debug->dac1);
487         mtspr(SPRN_DAC2, debug->dac2);
488 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
489         mtspr(SPRN_DVC1, debug->dvc1);
490         mtspr(SPRN_DVC2, debug->dvc2);
491 #endif
492         mtspr(SPRN_DBCR0, debug->dbcr0);
493         mtspr(SPRN_DBCR1, debug->dbcr1);
494 #ifdef CONFIG_BOOKE
495         mtspr(SPRN_DBCR2, debug->dbcr2);
496 #endif
497 }
498 /*
499  * Unless neither the old or new thread are making use of the
500  * debug registers, set the debug registers from the values
501  * stored in the new thread.
502  */
503 void switch_booke_debug_regs(struct debug_reg *new_debug)
504 {
505         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
506                 || (new_debug->dbcr0 & DBCR0_IDM))
507                         prime_debug_regs(new_debug);
508 }
509 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
510 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
511 #ifndef CONFIG_HAVE_HW_BREAKPOINT
512 static void set_debug_reg_defaults(struct thread_struct *thread)
513 {
514         thread->hw_brk.address = 0;
515         thread->hw_brk.type = 0;
516         set_breakpoint(&thread->hw_brk);
517 }
518 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
519 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
520
521 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
522 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
523 {
524         mtspr(SPRN_DAC1, dabr);
525 #ifdef CONFIG_PPC_47x
526         isync();
527 #endif
528         return 0;
529 }
530 #elif defined(CONFIG_PPC_BOOK3S)
531 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
532 {
533         mtspr(SPRN_DABR, dabr);
534         if (cpu_has_feature(CPU_FTR_DABRX))
535                 mtspr(SPRN_DABRX, dabrx);
536         return 0;
537 }
538 #else
539 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
540 {
541         return -EINVAL;
542 }
543 #endif
544
545 static inline int set_dabr(struct arch_hw_breakpoint *brk)
546 {
547         unsigned long dabr, dabrx;
548
549         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
550         dabrx = ((brk->type >> 3) & 0x7);
551
552         if (ppc_md.set_dabr)
553                 return ppc_md.set_dabr(dabr, dabrx);
554
555         return __set_dabr(dabr, dabrx);
556 }
557
558 static inline int set_dawr(struct arch_hw_breakpoint *brk)
559 {
560         unsigned long dawr, dawrx, mrd;
561
562         dawr = brk->address;
563
564         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
565                                    << (63 - 58); //* read/write bits */
566         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
567                                    << (63 - 59); //* translate */
568         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
569                                    >> 3; //* PRIM bits */
570         /* dawr length is stored in field MDR bits 48:53.  Matches range in
571            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
572            0b111111=64DW.
573            brk->len is in bytes.
574            This aligns up to double word size, shifts and does the bias.
575         */
576         mrd = ((brk->len + 7) >> 3) - 1;
577         dawrx |= (mrd & 0x3f) << (63 - 53);
578
579         if (ppc_md.set_dawr)
580                 return ppc_md.set_dawr(dawr, dawrx);
581         mtspr(SPRN_DAWR, dawr);
582         mtspr(SPRN_DAWRX, dawrx);
583         return 0;
584 }
585
586 void __set_breakpoint(struct arch_hw_breakpoint *brk)
587 {
588         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
589
590         if (cpu_has_feature(CPU_FTR_DAWR))
591                 set_dawr(brk);
592         else
593                 set_dabr(brk);
594 }
595
596 void set_breakpoint(struct arch_hw_breakpoint *brk)
597 {
598         preempt_disable();
599         __set_breakpoint(brk);
600         preempt_enable();
601 }
602
603 #ifdef CONFIG_PPC64
604 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
605 #endif
606
607 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
608                               struct arch_hw_breakpoint *b)
609 {
610         if (a->address != b->address)
611                 return false;
612         if (a->type != b->type)
613                 return false;
614         if (a->len != b->len)
615                 return false;
616         return true;
617 }
618
619 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
620 static void tm_reclaim_thread(struct thread_struct *thr,
621                               struct thread_info *ti, uint8_t cause)
622 {
623         unsigned long msr_diff = 0;
624
625         /*
626          * If FP/VSX registers have been already saved to the
627          * thread_struct, move them to the transact_fp array.
628          * We clear the TIF_RESTORE_TM bit since after the reclaim
629          * the thread will no longer be transactional.
630          */
631         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
632                 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
633                 if (msr_diff & MSR_FP)
634                         memcpy(&thr->transact_fp, &thr->fp_state,
635                                sizeof(struct thread_fp_state));
636                 if (msr_diff & MSR_VEC)
637                         memcpy(&thr->transact_vr, &thr->vr_state,
638                                sizeof(struct thread_vr_state));
639                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
640                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
641         }
642
643         /*
644          * Use the current MSR TM suspended bit to track if we have
645          * checkpointed state outstanding.
646          * On signal delivery, we'd normally reclaim the checkpointed
647          * state to obtain stack pointer (see:get_tm_stackpointer()).
648          * This will then directly return to userspace without going
649          * through __switch_to(). However, if the stack frame is bad,
650          * we need to exit this thread which calls __switch_to() which
651          * will again attempt to reclaim the already saved tm state.
652          * Hence we need to check that we've not already reclaimed
653          * this state.
654          * We do this using the current MSR, rather tracking it in
655          * some specific thread_struct bit, as it has the additional
656          * benifit of checking for a potential TM bad thing exception.
657          */
658         if (!MSR_TM_SUSPENDED(mfmsr()))
659                 return;
660
661         tm_reclaim(thr, thr->regs->msr, cause);
662
663         /* Having done the reclaim, we now have the checkpointed
664          * FP/VSX values in the registers.  These might be valid
665          * even if we have previously called enable_kernel_fp() or
666          * flush_fp_to_thread(), so update thr->regs->msr to
667          * indicate their current validity.
668          */
669         thr->regs->msr |= msr_diff;
670 }
671
672 void tm_reclaim_current(uint8_t cause)
673 {
674         tm_enable();
675         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
676 }
677
678 static inline void tm_reclaim_task(struct task_struct *tsk)
679 {
680         /* We have to work out if we're switching from/to a task that's in the
681          * middle of a transaction.
682          *
683          * In switching we need to maintain a 2nd register state as
684          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
685          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
686          * (current) FPRs into oldtask->thread.transact_fpr[].
687          *
688          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
689          */
690         struct thread_struct *thr = &tsk->thread;
691
692         if (!thr->regs)
693                 return;
694
695         if (!MSR_TM_ACTIVE(thr->regs->msr))
696                 goto out_and_saveregs;
697
698         /* Stash the original thread MSR, as giveup_fpu et al will
699          * modify it.  We hold onto it to see whether the task used
700          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
701          * ckpt_regs.msr is already set.
702          */
703         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
704                 thr->ckpt_regs.msr = thr->regs->msr;
705
706         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
707                  "ccr=%lx, msr=%lx, trap=%lx)\n",
708                  tsk->pid, thr->regs->nip,
709                  thr->regs->ccr, thr->regs->msr,
710                  thr->regs->trap);
711
712         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
713
714         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
715                  tsk->pid);
716
717 out_and_saveregs:
718         /* Always save the regs here, even if a transaction's not active.
719          * This context-switches a thread's TM info SPRs.  We do it here to
720          * be consistent with the restore path (in recheckpoint) which
721          * cannot happen later in _switch().
722          */
723         tm_save_sprs(thr);
724 }
725
726 extern void __tm_recheckpoint(struct thread_struct *thread,
727                               unsigned long orig_msr);
728
729 void tm_recheckpoint(struct thread_struct *thread,
730                      unsigned long orig_msr)
731 {
732         unsigned long flags;
733
734         /* We really can't be interrupted here as the TEXASR registers can't
735          * change and later in the trecheckpoint code, we have a userspace R1.
736          * So let's hard disable over this region.
737          */
738         local_irq_save(flags);
739         hard_irq_disable();
740
741         /* The TM SPRs are restored here, so that TEXASR.FS can be set
742          * before the trecheckpoint and no explosion occurs.
743          */
744         tm_restore_sprs(thread);
745
746         __tm_recheckpoint(thread, orig_msr);
747
748         local_irq_restore(flags);
749 }
750
751 static inline void tm_recheckpoint_new_task(struct task_struct *new)
752 {
753         unsigned long msr;
754
755         if (!cpu_has_feature(CPU_FTR_TM))
756                 return;
757
758         /* Recheckpoint the registers of the thread we're about to switch to.
759          *
760          * If the task was using FP, we non-lazily reload both the original and
761          * the speculative FP register states.  This is because the kernel
762          * doesn't see if/when a TM rollback occurs, so if we take an FP
763          * unavoidable later, we are unable to determine which set of FP regs
764          * need to be restored.
765          */
766         if (!new->thread.regs)
767                 return;
768
769         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
770                 tm_restore_sprs(&new->thread);
771                 return;
772         }
773         msr = new->thread.ckpt_regs.msr;
774         /* Recheckpoint to restore original checkpointed register state. */
775         TM_DEBUG("*** tm_recheckpoint of pid %d "
776                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
777                  new->pid, new->thread.regs->msr, msr);
778
779         /* This loads the checkpointed FP/VEC state, if used */
780         tm_recheckpoint(&new->thread, msr);
781
782         /* This loads the speculative FP/VEC state, if used */
783         if (msr & MSR_FP) {
784                 do_load_up_transact_fpu(&new->thread);
785                 new->thread.regs->msr |=
786                         (MSR_FP | new->thread.fpexc_mode);
787         }
788 #ifdef CONFIG_ALTIVEC
789         if (msr & MSR_VEC) {
790                 do_load_up_transact_altivec(&new->thread);
791                 new->thread.regs->msr |= MSR_VEC;
792         }
793 #endif
794         /* We may as well turn on VSX too since all the state is restored now */
795         if (msr & MSR_VSX)
796                 new->thread.regs->msr |= MSR_VSX;
797
798         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
799                  "(kernel msr 0x%lx)\n",
800                  new->pid, mfmsr());
801 }
802
803 static inline void __switch_to_tm(struct task_struct *prev)
804 {
805         if (cpu_has_feature(CPU_FTR_TM)) {
806                 tm_enable();
807                 tm_reclaim_task(prev);
808         }
809 }
810
811 /*
812  * This is called if we are on the way out to userspace and the
813  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
814  * FP and/or vector state and does so if necessary.
815  * If userspace is inside a transaction (whether active or
816  * suspended) and FP/VMX/VSX instructions have ever been enabled
817  * inside that transaction, then we have to keep them enabled
818  * and keep the FP/VMX/VSX state loaded while ever the transaction
819  * continues.  The reason is that if we didn't, and subsequently
820  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
821  * we don't know whether it's the same transaction, and thus we
822  * don't know which of the checkpointed state and the transactional
823  * state to use.
824  */
825 void restore_tm_state(struct pt_regs *regs)
826 {
827         unsigned long msr_diff;
828
829         clear_thread_flag(TIF_RESTORE_TM);
830         if (!MSR_TM_ACTIVE(regs->msr))
831                 return;
832
833         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
834         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
835         if (msr_diff & MSR_FP) {
836                 msr_check_and_set(MSR_FP);
837                 load_fp_state(&current->thread.fp_state);
838                 msr_check_and_clear(MSR_FP);
839                 regs->msr |= current->thread.fpexc_mode;
840         }
841         if (msr_diff & MSR_VEC) {
842                 msr_check_and_set(MSR_VEC);
843                 load_vr_state(&current->thread.vr_state);
844                 msr_check_and_clear(MSR_VEC);
845         }
846         regs->msr |= msr_diff;
847 }
848
849 #else
850 #define tm_recheckpoint_new_task(new)
851 #define __switch_to_tm(prev)
852 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
853
854 static inline void save_sprs(struct thread_struct *t)
855 {
856 #ifdef CONFIG_ALTIVEC
857         if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
858                 t->vrsave = mfspr(SPRN_VRSAVE);
859 #endif
860 #ifdef CONFIG_PPC_BOOK3S_64
861         if (cpu_has_feature(CPU_FTR_DSCR))
862                 t->dscr = mfspr(SPRN_DSCR);
863
864         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
865                 t->bescr = mfspr(SPRN_BESCR);
866                 t->ebbhr = mfspr(SPRN_EBBHR);
867                 t->ebbrr = mfspr(SPRN_EBBRR);
868
869                 t->fscr = mfspr(SPRN_FSCR);
870
871                 /*
872                  * Note that the TAR is not available for use in the kernel.
873                  * (To provide this, the TAR should be backed up/restored on
874                  * exception entry/exit instead, and be in pt_regs.  FIXME,
875                  * this should be in pt_regs anyway (for debug).)
876                  */
877                 t->tar = mfspr(SPRN_TAR);
878         }
879 #endif
880 }
881
882 static inline void restore_sprs(struct thread_struct *old_thread,
883                                 struct thread_struct *new_thread)
884 {
885 #ifdef CONFIG_ALTIVEC
886         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
887             old_thread->vrsave != new_thread->vrsave)
888                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
889 #endif
890 #ifdef CONFIG_PPC_BOOK3S_64
891         if (cpu_has_feature(CPU_FTR_DSCR)) {
892                 u64 dscr = get_paca()->dscr_default;
893                 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
894
895                 if (new_thread->dscr_inherit) {
896                         dscr = new_thread->dscr;
897                         fscr |= FSCR_DSCR;
898                 }
899
900                 if (old_thread->dscr != dscr)
901                         mtspr(SPRN_DSCR, dscr);
902
903                 if (old_thread->fscr != fscr)
904                         mtspr(SPRN_FSCR, fscr);
905         }
906
907         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
908                 if (old_thread->bescr != new_thread->bescr)
909                         mtspr(SPRN_BESCR, new_thread->bescr);
910                 if (old_thread->ebbhr != new_thread->ebbhr)
911                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
912                 if (old_thread->ebbrr != new_thread->ebbrr)
913                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
914
915                 if (old_thread->tar != new_thread->tar)
916                         mtspr(SPRN_TAR, new_thread->tar);
917         }
918 #endif
919 }
920
921 struct task_struct *__switch_to(struct task_struct *prev,
922         struct task_struct *new)
923 {
924         struct thread_struct *new_thread, *old_thread;
925         struct task_struct *last;
926 #ifdef CONFIG_PPC_BOOK3S_64
927         struct ppc64_tlb_batch *batch;
928 #endif
929
930         new_thread = &new->thread;
931         old_thread = &current->thread;
932
933         WARN_ON(!irqs_disabled());
934
935 #ifdef CONFIG_PPC64
936         /*
937          * Collect processor utilization data per process
938          */
939         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
940                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
941                 long unsigned start_tb, current_tb;
942                 start_tb = old_thread->start_tb;
943                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
944                 old_thread->accum_tb += (current_tb - start_tb);
945                 new_thread->start_tb = current_tb;
946         }
947 #endif /* CONFIG_PPC64 */
948
949 #ifdef CONFIG_PPC_BOOK3S_64
950         batch = this_cpu_ptr(&ppc64_tlb_batch);
951         if (batch->active) {
952                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
953                 if (batch->index)
954                         __flush_tlb_pending(batch);
955                 batch->active = 0;
956         }
957 #endif /* CONFIG_PPC_BOOK3S_64 */
958
959 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
960         switch_booke_debug_regs(&new->thread.debug);
961 #else
962 /*
963  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
964  * schedule DABR
965  */
966 #ifndef CONFIG_HAVE_HW_BREAKPOINT
967         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
968                 __set_breakpoint(&new->thread.hw_brk);
969 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
970 #endif
971
972         /*
973          * We need to save SPRs before treclaim/trecheckpoint as these will
974          * change a number of them.
975          */
976         save_sprs(&prev->thread);
977
978         __switch_to_tm(prev);
979
980         /* Save FPU, Altivec, VSX and SPE state */
981         giveup_all(prev);
982
983         /*
984          * We can't take a PMU exception inside _switch() since there is a
985          * window where the kernel stack SLB and the kernel stack are out
986          * of sync. Hard disable here.
987          */
988         hard_irq_disable();
989
990         tm_recheckpoint_new_task(new);
991
992         /*
993          * Call restore_sprs() before calling _switch(). If we move it after
994          * _switch() then we miss out on calling it for new tasks. The reason
995          * for this is we manually create a stack frame for new tasks that
996          * directly returns through ret_from_fork() or
997          * ret_from_kernel_thread(). See copy_thread() for details.
998          */
999         restore_sprs(old_thread, new_thread);
1000
1001         last = _switch(old_thread, new_thread);
1002
1003 #ifdef CONFIG_PPC_BOOK3S_64
1004         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1005                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1006                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1007                 batch->active = 1;
1008         }
1009 #endif /* CONFIG_PPC_BOOK3S_64 */
1010
1011         return last;
1012 }
1013
1014 static int instructions_to_print = 16;
1015
1016 static void show_instructions(struct pt_regs *regs)
1017 {
1018         int i;
1019         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1020                         sizeof(int));
1021
1022         printk("Instruction dump:");
1023
1024         for (i = 0; i < instructions_to_print; i++) {
1025                 int instr;
1026
1027                 if (!(i % 8))
1028                         printk("\n");
1029
1030 #if !defined(CONFIG_BOOKE)
1031                 /* If executing with the IMMU off, adjust pc rather
1032                  * than print XXXXXXXX.
1033                  */
1034                 if (!(regs->msr & MSR_IR))
1035                         pc = (unsigned long)phys_to_virt(pc);
1036 #endif
1037
1038                 if (!__kernel_text_address(pc) ||
1039                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1040                         printk(KERN_CONT "XXXXXXXX ");
1041                 } else {
1042                         if (regs->nip == pc)
1043                                 printk(KERN_CONT "<%08x> ", instr);
1044                         else
1045                                 printk(KERN_CONT "%08x ", instr);
1046                 }
1047
1048                 pc += sizeof(int);
1049         }
1050
1051         printk("\n");
1052 }
1053
1054 struct regbit {
1055         unsigned long bit;
1056         const char *name;
1057 };
1058
1059 static struct regbit msr_bits[] = {
1060 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1061         {MSR_SF,        "SF"},
1062         {MSR_HV,        "HV"},
1063 #endif
1064         {MSR_VEC,       "VEC"},
1065         {MSR_VSX,       "VSX"},
1066 #ifdef CONFIG_BOOKE
1067         {MSR_CE,        "CE"},
1068 #endif
1069         {MSR_EE,        "EE"},
1070         {MSR_PR,        "PR"},
1071         {MSR_FP,        "FP"},
1072         {MSR_ME,        "ME"},
1073 #ifdef CONFIG_BOOKE
1074         {MSR_DE,        "DE"},
1075 #else
1076         {MSR_SE,        "SE"},
1077         {MSR_BE,        "BE"},
1078 #endif
1079         {MSR_IR,        "IR"},
1080         {MSR_DR,        "DR"},
1081         {MSR_PMM,       "PMM"},
1082 #ifndef CONFIG_BOOKE
1083         {MSR_RI,        "RI"},
1084         {MSR_LE,        "LE"},
1085 #endif
1086         {0,             NULL}
1087 };
1088
1089 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1090 {
1091         const char *s = "";
1092
1093         for (; bits->bit; ++bits)
1094                 if (val & bits->bit) {
1095                         printk("%s%s", s, bits->name);
1096                         s = sep;
1097                 }
1098 }
1099
1100 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1101 static struct regbit msr_tm_bits[] = {
1102         {MSR_TS_T,      "T"},
1103         {MSR_TS_S,      "S"},
1104         {MSR_TM,        "E"},
1105         {0,             NULL}
1106 };
1107
1108 static void print_tm_bits(unsigned long val)
1109 {
1110 /*
1111  * This only prints something if at least one of the TM bit is set.
1112  * Inside the TM[], the output means:
1113  *   E: Enabled         (bit 32)
1114  *   S: Suspended       (bit 33)
1115  *   T: Transactional   (bit 34)
1116  */
1117         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1118                 printk(",TM[");
1119                 print_bits(val, msr_tm_bits, "");
1120                 printk("]");
1121         }
1122 }
1123 #else
1124 static void print_tm_bits(unsigned long val) {}
1125 #endif
1126
1127 static void print_msr_bits(unsigned long val)
1128 {
1129         printk("<");
1130         print_bits(val, msr_bits, ",");
1131         print_tm_bits(val);
1132         printk(">");
1133 }
1134
1135 #ifdef CONFIG_PPC64
1136 #define REG             "%016lx"
1137 #define REGS_PER_LINE   4
1138 #define LAST_VOLATILE   13
1139 #else
1140 #define REG             "%08lx"
1141 #define REGS_PER_LINE   8
1142 #define LAST_VOLATILE   12
1143 #endif
1144
1145 void show_regs(struct pt_regs * regs)
1146 {
1147         int i, trap;
1148
1149         show_regs_print_info(KERN_DEFAULT);
1150
1151         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1152                regs->nip, regs->link, regs->ctr);
1153         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1154                regs, regs->trap, print_tainted(), init_utsname()->release);
1155         printk("MSR: "REG" ", regs->msr);
1156         print_msr_bits(regs->msr);
1157         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1158         trap = TRAP(regs);
1159         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1160                 printk("CFAR: "REG" ", regs->orig_gpr3);
1161         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1162 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1163                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1164 #else
1165                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1166 #endif
1167 #ifdef CONFIG_PPC64
1168         printk("SOFTE: %ld ", regs->softe);
1169 #endif
1170 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1171         if (MSR_TM_ACTIVE(regs->msr))
1172                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1173 #endif
1174
1175         for (i = 0;  i < 32;  i++) {
1176                 if ((i % REGS_PER_LINE) == 0)
1177                         printk("\nGPR%02d: ", i);
1178                 printk(REG " ", regs->gpr[i]);
1179                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1180                         break;
1181         }
1182         printk("\n");
1183 #ifdef CONFIG_KALLSYMS
1184         /*
1185          * Lookup NIP late so we have the best change of getting the
1186          * above info out without failing
1187          */
1188         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1189         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1190 #endif
1191         show_stack(current, (unsigned long *) regs->gpr[1]);
1192         if (!user_mode(regs))
1193                 show_instructions(regs);
1194 }
1195
1196 void exit_thread(void)
1197 {
1198 }
1199
1200 void flush_thread(void)
1201 {
1202 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1203         flush_ptrace_hw_breakpoint(current);
1204 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1205         set_debug_reg_defaults(&current->thread);
1206 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1207 }
1208
1209 void
1210 release_thread(struct task_struct *t)
1211 {
1212 }
1213
1214 /*
1215  * this gets called so that we can store coprocessor state into memory and
1216  * copy the current task into the new thread.
1217  */
1218 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1219 {
1220         flush_all_to_thread(src);
1221         /*
1222          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1223          * flush but it removes the checkpointed state from the current CPU and
1224          * transitions the CPU out of TM mode.  Hence we need to call
1225          * tm_recheckpoint_new_task() (on the same task) to restore the
1226          * checkpointed state back and the TM mode.
1227          */
1228         __switch_to_tm(src);
1229         tm_recheckpoint_new_task(src);
1230
1231         *dst = *src;
1232
1233         clear_task_ebb(dst);
1234
1235         return 0;
1236 }
1237
1238 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1239 {
1240 #ifdef CONFIG_PPC_STD_MMU_64
1241         unsigned long sp_vsid;
1242         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1243
1244         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1245                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1246                         << SLB_VSID_SHIFT_1T;
1247         else
1248                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1249                         << SLB_VSID_SHIFT;
1250         sp_vsid |= SLB_VSID_KERNEL | llp;
1251         p->thread.ksp_vsid = sp_vsid;
1252 #endif
1253 }
1254
1255 /*
1256  * Copy a thread..
1257  */
1258
1259 /*
1260  * Copy architecture-specific thread state
1261  */
1262 int copy_thread(unsigned long clone_flags, unsigned long usp,
1263                 unsigned long kthread_arg, struct task_struct *p)
1264 {
1265         struct pt_regs *childregs, *kregs;
1266         extern void ret_from_fork(void);
1267         extern void ret_from_kernel_thread(void);
1268         void (*f)(void);
1269         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1270
1271         /* Copy registers */
1272         sp -= sizeof(struct pt_regs);
1273         childregs = (struct pt_regs *) sp;
1274         if (unlikely(p->flags & PF_KTHREAD)) {
1275                 /* kernel thread */
1276                 struct thread_info *ti = (void *)task_stack_page(p);
1277                 memset(childregs, 0, sizeof(struct pt_regs));
1278                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1279                 /* function */
1280                 if (usp)
1281                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1282 #ifdef CONFIG_PPC64
1283                 clear_tsk_thread_flag(p, TIF_32BIT);
1284                 childregs->softe = 1;
1285 #endif
1286                 childregs->gpr[15] = kthread_arg;
1287                 p->thread.regs = NULL;  /* no user register state */
1288                 ti->flags |= _TIF_RESTOREALL;
1289                 f = ret_from_kernel_thread;
1290         } else {
1291                 /* user thread */
1292                 struct pt_regs *regs = current_pt_regs();
1293                 CHECK_FULL_REGS(regs);
1294                 *childregs = *regs;
1295                 if (usp)
1296                         childregs->gpr[1] = usp;
1297                 p->thread.regs = childregs;
1298                 childregs->gpr[3] = 0;  /* Result from fork() */
1299                 if (clone_flags & CLONE_SETTLS) {
1300 #ifdef CONFIG_PPC64
1301                         if (!is_32bit_task())
1302                                 childregs->gpr[13] = childregs->gpr[6];
1303                         else
1304 #endif
1305                                 childregs->gpr[2] = childregs->gpr[6];
1306                 }
1307
1308                 f = ret_from_fork;
1309         }
1310         sp -= STACK_FRAME_OVERHEAD;
1311
1312         /*
1313          * The way this works is that at some point in the future
1314          * some task will call _switch to switch to the new task.
1315          * That will pop off the stack frame created below and start
1316          * the new task running at ret_from_fork.  The new task will
1317          * do some house keeping and then return from the fork or clone
1318          * system call, using the stack frame created above.
1319          */
1320         ((unsigned long *)sp)[0] = 0;
1321         sp -= sizeof(struct pt_regs);
1322         kregs = (struct pt_regs *) sp;
1323         sp -= STACK_FRAME_OVERHEAD;
1324         p->thread.ksp = sp;
1325 #ifdef CONFIG_PPC32
1326         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1327                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1328 #endif
1329 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1330         p->thread.ptrace_bps[0] = NULL;
1331 #endif
1332
1333         p->thread.fp_save_area = NULL;
1334 #ifdef CONFIG_ALTIVEC
1335         p->thread.vr_save_area = NULL;
1336 #endif
1337
1338         setup_ksp_vsid(p, sp);
1339
1340 #ifdef CONFIG_PPC64 
1341         if (cpu_has_feature(CPU_FTR_DSCR)) {
1342                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1343                 p->thread.dscr = mfspr(SPRN_DSCR);
1344         }
1345         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1346                 p->thread.ppr = INIT_PPR;
1347 #endif
1348         kregs->nip = ppc_function_entry(f);
1349         return 0;
1350 }
1351
1352 /*
1353  * Set up a thread for executing a new program
1354  */
1355 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1356 {
1357 #ifdef CONFIG_PPC64
1358         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1359 #endif
1360
1361         /*
1362          * If we exec out of a kernel thread then thread.regs will not be
1363          * set.  Do it now.
1364          */
1365         if (!current->thread.regs) {
1366                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1367                 current->thread.regs = regs - 1;
1368         }
1369
1370         memset(regs->gpr, 0, sizeof(regs->gpr));
1371         regs->ctr = 0;
1372         regs->link = 0;
1373         regs->xer = 0;
1374         regs->ccr = 0;
1375         regs->gpr[1] = sp;
1376
1377         /*
1378          * We have just cleared all the nonvolatile GPRs, so make
1379          * FULL_REGS(regs) return true.  This is necessary to allow
1380          * ptrace to examine the thread immediately after exec.
1381          */
1382         regs->trap &= ~1UL;
1383
1384 #ifdef CONFIG_PPC32
1385         regs->mq = 0;
1386         regs->nip = start;
1387         regs->msr = MSR_USER;
1388 #else
1389         if (!is_32bit_task()) {
1390                 unsigned long entry;
1391
1392                 if (is_elf2_task()) {
1393                         /* Look ma, no function descriptors! */
1394                         entry = start;
1395
1396                         /*
1397                          * Ulrich says:
1398                          *   The latest iteration of the ABI requires that when
1399                          *   calling a function (at its global entry point),
1400                          *   the caller must ensure r12 holds the entry point
1401                          *   address (so that the function can quickly
1402                          *   establish addressability).
1403                          */
1404                         regs->gpr[12] = start;
1405                         /* Make sure that's restored on entry to userspace. */
1406                         set_thread_flag(TIF_RESTOREALL);
1407                 } else {
1408                         unsigned long toc;
1409
1410                         /* start is a relocated pointer to the function
1411                          * descriptor for the elf _start routine.  The first
1412                          * entry in the function descriptor is the entry
1413                          * address of _start and the second entry is the TOC
1414                          * value we need to use.
1415                          */
1416                         __get_user(entry, (unsigned long __user *)start);
1417                         __get_user(toc, (unsigned long __user *)start+1);
1418
1419                         /* Check whether the e_entry function descriptor entries
1420                          * need to be relocated before we can use them.
1421                          */
1422                         if (load_addr != 0) {
1423                                 entry += load_addr;
1424                                 toc   += load_addr;
1425                         }
1426                         regs->gpr[2] = toc;
1427                 }
1428                 regs->nip = entry;
1429                 regs->msr = MSR_USER64;
1430         } else {
1431                 regs->nip = start;
1432                 regs->gpr[2] = 0;
1433                 regs->msr = MSR_USER32;
1434         }
1435 #endif
1436 #ifdef CONFIG_VSX
1437         current->thread.used_vsr = 0;
1438 #endif
1439         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1440         current->thread.fp_save_area = NULL;
1441 #ifdef CONFIG_ALTIVEC
1442         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1443         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1444         current->thread.vr_save_area = NULL;
1445         current->thread.vrsave = 0;
1446         current->thread.used_vr = 0;
1447 #endif /* CONFIG_ALTIVEC */
1448 #ifdef CONFIG_SPE
1449         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1450         current->thread.acc = 0;
1451         current->thread.spefscr = 0;
1452         current->thread.used_spe = 0;
1453 #endif /* CONFIG_SPE */
1454 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1455         if (cpu_has_feature(CPU_FTR_TM))
1456                 regs->msr |= MSR_TM;
1457         current->thread.tm_tfhar = 0;
1458         current->thread.tm_texasr = 0;
1459         current->thread.tm_tfiar = 0;
1460 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1461 }
1462 EXPORT_SYMBOL(start_thread);
1463
1464 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1465                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1466
1467 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1468 {
1469         struct pt_regs *regs = tsk->thread.regs;
1470
1471         /* This is a bit hairy.  If we are an SPE enabled  processor
1472          * (have embedded fp) we store the IEEE exception enable flags in
1473          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1474          * mode (asyn, precise, disabled) for 'Classic' FP. */
1475         if (val & PR_FP_EXC_SW_ENABLE) {
1476 #ifdef CONFIG_SPE
1477                 if (cpu_has_feature(CPU_FTR_SPE)) {
1478                         /*
1479                          * When the sticky exception bits are set
1480                          * directly by userspace, it must call prctl
1481                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1482                          * in the existing prctl settings) or
1483                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1484                          * the bits being set).  <fenv.h> functions
1485                          * saving and restoring the whole
1486                          * floating-point environment need to do so
1487                          * anyway to restore the prctl settings from
1488                          * the saved environment.
1489                          */
1490                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1491                         tsk->thread.fpexc_mode = val &
1492                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1493                         return 0;
1494                 } else {
1495                         return -EINVAL;
1496                 }
1497 #else
1498                 return -EINVAL;
1499 #endif
1500         }
1501
1502         /* on a CONFIG_SPE this does not hurt us.  The bits that
1503          * __pack_fe01 use do not overlap with bits used for
1504          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1505          * on CONFIG_SPE implementations are reserved so writing to
1506          * them does not change anything */
1507         if (val > PR_FP_EXC_PRECISE)
1508                 return -EINVAL;
1509         tsk->thread.fpexc_mode = __pack_fe01(val);
1510         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1511                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1512                         | tsk->thread.fpexc_mode;
1513         return 0;
1514 }
1515
1516 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1517 {
1518         unsigned int val;
1519
1520         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1521 #ifdef CONFIG_SPE
1522                 if (cpu_has_feature(CPU_FTR_SPE)) {
1523                         /*
1524                          * When the sticky exception bits are set
1525                          * directly by userspace, it must call prctl
1526                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1527                          * in the existing prctl settings) or
1528                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1529                          * the bits being set).  <fenv.h> functions
1530                          * saving and restoring the whole
1531                          * floating-point environment need to do so
1532                          * anyway to restore the prctl settings from
1533                          * the saved environment.
1534                          */
1535                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1536                         val = tsk->thread.fpexc_mode;
1537                 } else
1538                         return -EINVAL;
1539 #else
1540                 return -EINVAL;
1541 #endif
1542         else
1543                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1544         return put_user(val, (unsigned int __user *) adr);
1545 }
1546
1547 int set_endian(struct task_struct *tsk, unsigned int val)
1548 {
1549         struct pt_regs *regs = tsk->thread.regs;
1550
1551         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1552             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1553                 return -EINVAL;
1554
1555         if (regs == NULL)
1556                 return -EINVAL;
1557
1558         if (val == PR_ENDIAN_BIG)
1559                 regs->msr &= ~MSR_LE;
1560         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1561                 regs->msr |= MSR_LE;
1562         else
1563                 return -EINVAL;
1564
1565         return 0;
1566 }
1567
1568 int get_endian(struct task_struct *tsk, unsigned long adr)
1569 {
1570         struct pt_regs *regs = tsk->thread.regs;
1571         unsigned int val;
1572
1573         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1574             !cpu_has_feature(CPU_FTR_REAL_LE))
1575                 return -EINVAL;
1576
1577         if (regs == NULL)
1578                 return -EINVAL;
1579
1580         if (regs->msr & MSR_LE) {
1581                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1582                         val = PR_ENDIAN_LITTLE;
1583                 else
1584                         val = PR_ENDIAN_PPC_LITTLE;
1585         } else
1586                 val = PR_ENDIAN_BIG;
1587
1588         return put_user(val, (unsigned int __user *)adr);
1589 }
1590
1591 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1592 {
1593         tsk->thread.align_ctl = val;
1594         return 0;
1595 }
1596
1597 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1598 {
1599         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1600 }
1601
1602 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1603                                   unsigned long nbytes)
1604 {
1605         unsigned long stack_page;
1606         unsigned long cpu = task_cpu(p);
1607
1608         /*
1609          * Avoid crashing if the stack has overflowed and corrupted
1610          * task_cpu(p), which is in the thread_info struct.
1611          */
1612         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1613                 stack_page = (unsigned long) hardirq_ctx[cpu];
1614                 if (sp >= stack_page + sizeof(struct thread_struct)
1615                     && sp <= stack_page + THREAD_SIZE - nbytes)
1616                         return 1;
1617
1618                 stack_page = (unsigned long) softirq_ctx[cpu];
1619                 if (sp >= stack_page + sizeof(struct thread_struct)
1620                     && sp <= stack_page + THREAD_SIZE - nbytes)
1621                         return 1;
1622         }
1623         return 0;
1624 }
1625
1626 int validate_sp(unsigned long sp, struct task_struct *p,
1627                        unsigned long nbytes)
1628 {
1629         unsigned long stack_page = (unsigned long)task_stack_page(p);
1630
1631         if (sp >= stack_page + sizeof(struct thread_struct)
1632             && sp <= stack_page + THREAD_SIZE - nbytes)
1633                 return 1;
1634
1635         return valid_irq_stack(sp, p, nbytes);
1636 }
1637
1638 EXPORT_SYMBOL(validate_sp);
1639
1640 unsigned long get_wchan(struct task_struct *p)
1641 {
1642         unsigned long ip, sp;
1643         int count = 0;
1644
1645         if (!p || p == current || p->state == TASK_RUNNING)
1646                 return 0;
1647
1648         sp = p->thread.ksp;
1649         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1650                 return 0;
1651
1652         do {
1653                 sp = *(unsigned long *)sp;
1654                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1655                         return 0;
1656                 if (count > 0) {
1657                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1658                         if (!in_sched_functions(ip))
1659                                 return ip;
1660                 }
1661         } while (count++ < 16);
1662         return 0;
1663 }
1664
1665 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1666
1667 void show_stack(struct task_struct *tsk, unsigned long *stack)
1668 {
1669         unsigned long sp, ip, lr, newsp;
1670         int count = 0;
1671         int firstframe = 1;
1672 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1673         int curr_frame = current->curr_ret_stack;
1674         extern void return_to_handler(void);
1675         unsigned long rth = (unsigned long)return_to_handler;
1676 #endif
1677
1678         sp = (unsigned long) stack;
1679         if (tsk == NULL)
1680                 tsk = current;
1681         if (sp == 0) {
1682                 if (tsk == current)
1683                         sp = current_stack_pointer();
1684                 else
1685                         sp = tsk->thread.ksp;
1686         }
1687
1688         lr = 0;
1689         printk("Call Trace:\n");
1690         do {
1691                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1692                         return;
1693
1694                 stack = (unsigned long *) sp;
1695                 newsp = stack[0];
1696                 ip = stack[STACK_FRAME_LR_SAVE];
1697                 if (!firstframe || ip != lr) {
1698                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1699 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1700                         if ((ip == rth) && curr_frame >= 0) {
1701                                 printk(" (%pS)",
1702                                        (void *)current->ret_stack[curr_frame].ret);
1703                                 curr_frame--;
1704                         }
1705 #endif
1706                         if (firstframe)
1707                                 printk(" (unreliable)");
1708                         printk("\n");
1709                 }
1710                 firstframe = 0;
1711
1712                 /*
1713                  * See if this is an exception frame.
1714                  * We look for the "regshere" marker in the current frame.
1715                  */
1716                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1717                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1718                         struct pt_regs *regs = (struct pt_regs *)
1719                                 (sp + STACK_FRAME_OVERHEAD);
1720                         lr = regs->link;
1721                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1722                                regs->trap, (void *)regs->nip, (void *)lr);
1723                         firstframe = 1;
1724                 }
1725
1726                 sp = newsp;
1727         } while (count++ < kstack_depth_to_print);
1728 }
1729
1730 #ifdef CONFIG_PPC64
1731 /* Called with hard IRQs off */
1732 void notrace __ppc64_runlatch_on(void)
1733 {
1734         struct thread_info *ti = current_thread_info();
1735         unsigned long ctrl;
1736
1737         ctrl = mfspr(SPRN_CTRLF);
1738         ctrl |= CTRL_RUNLATCH;
1739         mtspr(SPRN_CTRLT, ctrl);
1740
1741         ti->local_flags |= _TLF_RUNLATCH;
1742 }
1743
1744 /* Called with hard IRQs off */
1745 void notrace __ppc64_runlatch_off(void)
1746 {
1747         struct thread_info *ti = current_thread_info();
1748         unsigned long ctrl;
1749
1750         ti->local_flags &= ~_TLF_RUNLATCH;
1751
1752         ctrl = mfspr(SPRN_CTRLF);
1753         ctrl &= ~CTRL_RUNLATCH;
1754         mtspr(SPRN_CTRLT, ctrl);
1755 }
1756 #endif /* CONFIG_PPC64 */
1757
1758 unsigned long arch_align_stack(unsigned long sp)
1759 {
1760         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1761                 sp -= get_random_int() & ~PAGE_MASK;
1762         return sp & ~0xf;
1763 }
1764
1765 static inline unsigned long brk_rnd(void)
1766 {
1767         unsigned long rnd = 0;
1768
1769         /* 8MB for 32bit, 1GB for 64bit */
1770         if (is_32bit_task())
1771                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1772         else
1773                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1774
1775         return rnd << PAGE_SHIFT;
1776 }
1777
1778 unsigned long arch_randomize_brk(struct mm_struct *mm)
1779 {
1780         unsigned long base = mm->brk;
1781         unsigned long ret;
1782
1783 #ifdef CONFIG_PPC_STD_MMU_64
1784         /*
1785          * If we are using 1TB segments and we are allowed to randomise
1786          * the heap, we can put it above 1TB so it is backed by a 1TB
1787          * segment. Otherwise the heap will be in the bottom 1TB
1788          * which always uses 256MB segments and this may result in a
1789          * performance penalty.
1790          */
1791         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1792                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1793 #endif
1794
1795         ret = PAGE_ALIGN(base + brk_rnd());
1796
1797         if (ret < mm->brk)
1798                 return mm->brk;
1799
1800         return ret;
1801 }
1802