Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / powerpc / kvm / book3s_32_mmu.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright SUSE Linux Products GmbH 2009
16  *
17  * Authors: Alexander Graf <agraf@suse.de>
18  */
19
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/highmem.h>
25
26 #include <asm/tlbflush.h>
27 #include <asm/kvm_ppc.h>
28 #include <asm/kvm_book3s.h>
29
30 /* #define DEBUG_MMU */
31 /* #define DEBUG_MMU_PTE */
32 /* #define DEBUG_MMU_PTE_IP 0xfff14c40 */
33
34 #ifdef DEBUG_MMU
35 #define dprintk(X...) printk(KERN_INFO X)
36 #else
37 #define dprintk(X...) do { } while(0)
38 #endif
39
40 #ifdef DEBUG_MMU_PTE
41 #define dprintk_pte(X...) printk(KERN_INFO X)
42 #else
43 #define dprintk_pte(X...) do { } while(0)
44 #endif
45
46 #define PTEG_FLAG_ACCESSED      0x00000100
47 #define PTEG_FLAG_DIRTY         0x00000080
48 #ifndef SID_SHIFT
49 #define SID_SHIFT               28
50 #endif
51
52 static inline bool check_debug_ip(struct kvm_vcpu *vcpu)
53 {
54 #ifdef DEBUG_MMU_PTE_IP
55         return vcpu->arch.pc == DEBUG_MMU_PTE_IP;
56 #else
57         return true;
58 #endif
59 }
60
61 static inline u32 sr_vsid(u32 sr_raw)
62 {
63         return sr_raw & 0x0fffffff;
64 }
65
66 static inline bool sr_valid(u32 sr_raw)
67 {
68         return (sr_raw & 0x80000000) ? false : true;
69 }
70
71 static inline bool sr_ks(u32 sr_raw)
72 {
73         return (sr_raw & 0x40000000) ? true: false;
74 }
75
76 static inline bool sr_kp(u32 sr_raw)
77 {
78         return (sr_raw & 0x20000000) ? true: false;
79 }
80
81 static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
82                                           struct kvmppc_pte *pte, bool data,
83                                           bool iswrite);
84 static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
85                                              u64 *vsid);
86
87 static u32 find_sr(struct kvm_vcpu *vcpu, gva_t eaddr)
88 {
89         return kvmppc_get_sr(vcpu, (eaddr >> 28) & 0xf);
90 }
91
92 static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
93                                          bool data)
94 {
95         u64 vsid;
96         struct kvmppc_pte pte;
97
98         if (!kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, &pte, data, false))
99                 return pte.vpage;
100
101         kvmppc_mmu_book3s_32_esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
102         return (((u64)eaddr >> 12) & 0xffff) | (vsid << 16);
103 }
104
105 static void kvmppc_mmu_book3s_32_reset_msr(struct kvm_vcpu *vcpu)
106 {
107         kvmppc_set_msr(vcpu, 0);
108 }
109
110 static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvm_vcpu *vcpu,
111                                       u32 sre, gva_t eaddr,
112                                       bool primary)
113 {
114         struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
115         u32 page, hash, pteg, htabmask;
116         hva_t r;
117
118         page = (eaddr & 0x0FFFFFFF) >> 12;
119         htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0;
120
121         hash = ((sr_vsid(sre) ^ page) << 6);
122         if (!primary)
123                 hash = ~hash;
124         hash &= htabmask;
125
126         pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash;
127
128         dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n",
129                 kvmppc_get_pc(vcpu), eaddr, vcpu_book3s->sdr1, pteg,
130                 sr_vsid(sre));
131
132         r = gfn_to_hva(vcpu->kvm, pteg >> PAGE_SHIFT);
133         if (kvm_is_error_hva(r))
134                 return r;
135         return r | (pteg & ~PAGE_MASK);
136 }
137
138 static u32 kvmppc_mmu_book3s_32_get_ptem(u32 sre, gva_t eaddr, bool primary)
139 {
140         return ((eaddr & 0x0fffffff) >> 22) | (sr_vsid(sre) << 7) |
141                (primary ? 0 : 0x40) | 0x80000000;
142 }
143
144 static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
145                                           struct kvmppc_pte *pte, bool data,
146                                           bool iswrite)
147 {
148         struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
149         struct kvmppc_bat *bat;
150         int i;
151
152         for (i = 0; i < 8; i++) {
153                 if (data)
154                         bat = &vcpu_book3s->dbat[i];
155                 else
156                         bat = &vcpu_book3s->ibat[i];
157
158                 if (kvmppc_get_msr(vcpu) & MSR_PR) {
159                         if (!bat->vp)
160                                 continue;
161                 } else {
162                         if (!bat->vs)
163                                 continue;
164                 }
165
166                 if (check_debug_ip(vcpu))
167                 {
168                         dprintk_pte("%cBAT %02d: 0x%lx - 0x%x (0x%x)\n",
169                                     data ? 'd' : 'i', i, eaddr, bat->bepi,
170                                     bat->bepi_mask);
171                 }
172                 if ((eaddr & bat->bepi_mask) == bat->bepi) {
173                         u64 vsid;
174                         kvmppc_mmu_book3s_32_esid_to_vsid(vcpu,
175                                 eaddr >> SID_SHIFT, &vsid);
176                         vsid <<= 16;
177                         pte->vpage = (((u64)eaddr >> 12) & 0xffff) | vsid;
178
179                         pte->raddr = bat->brpn | (eaddr & ~bat->bepi_mask);
180                         pte->may_read = bat->pp;
181                         pte->may_write = bat->pp > 1;
182                         pte->may_execute = true;
183                         if (!pte->may_read) {
184                                 printk(KERN_INFO "BAT is not readable!\n");
185                                 continue;
186                         }
187                         if (iswrite && !pte->may_write) {
188                                 dprintk_pte("BAT is read-only!\n");
189                                 continue;
190                         }
191
192                         return 0;
193                 }
194         }
195
196         return -ENOENT;
197 }
198
199 static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr,
200                                      struct kvmppc_pte *pte, bool data,
201                                      bool iswrite, bool primary)
202 {
203         u32 sre;
204         hva_t ptegp;
205         u32 pteg[16];
206         u32 pte0, pte1;
207         u32 ptem = 0;
208         int i;
209         int found = 0;
210
211         sre = find_sr(vcpu, eaddr);
212
213         dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28,
214                     sr_vsid(sre), sre);
215
216         pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
217
218         ptegp = kvmppc_mmu_book3s_32_get_pteg(vcpu, sre, eaddr, primary);
219         if (kvm_is_error_hva(ptegp)) {
220                 printk(KERN_INFO "KVM: Invalid PTEG!\n");
221                 goto no_page_found;
222         }
223
224         ptem = kvmppc_mmu_book3s_32_get_ptem(sre, eaddr, primary);
225
226         if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) {
227                 printk(KERN_ERR "KVM: Can't copy data from 0x%lx!\n", ptegp);
228                 goto no_page_found;
229         }
230
231         for (i=0; i<16; i+=2) {
232                 pte0 = be32_to_cpu(pteg[i]);
233                 pte1 = be32_to_cpu(pteg[i + 1]);
234                 if (ptem == pte0) {
235                         u8 pp;
236
237                         pte->raddr = (pte1 & ~(0xFFFULL)) | (eaddr & 0xFFF);
238                         pp = pte1 & 3;
239
240                         if ((sr_kp(sre) &&  (kvmppc_get_msr(vcpu) & MSR_PR)) ||
241                             (sr_ks(sre) && !(kvmppc_get_msr(vcpu) & MSR_PR)))
242                                 pp |= 4;
243
244                         pte->may_write = false;
245                         pte->may_read = false;
246                         pte->may_execute = true;
247                         switch (pp) {
248                                 case 0:
249                                 case 1:
250                                 case 2:
251                                 case 6:
252                                         pte->may_write = true;
253                                 case 3:
254                                 case 5:
255                                 case 7:
256                                         pte->may_read = true;
257                                         break;
258                         }
259
260                         dprintk_pte("MMU: Found PTE -> %x %x - %x\n",
261                                     pte0, pte1, pp);
262                         found = 1;
263                         break;
264                 }
265         }
266
267         /* Update PTE C and A bits, so the guest's swapper knows we used the
268            page */
269         if (found) {
270                 u32 pte_r = pte1;
271                 char __user *addr = (char __user *) (ptegp + (i+1) * sizeof(u32));
272
273                 /*
274                  * Use single-byte writes to update the HPTE, to
275                  * conform to what real hardware does.
276                  */
277                 if (pte->may_read && !(pte_r & PTEG_FLAG_ACCESSED)) {
278                         pte_r |= PTEG_FLAG_ACCESSED;
279                         put_user(pte_r >> 8, addr + 2);
280                 }
281                 if (iswrite && pte->may_write && !(pte_r & PTEG_FLAG_DIRTY)) {
282                         pte_r |= PTEG_FLAG_DIRTY;
283                         put_user(pte_r, addr + 3);
284                 }
285                 if (!pte->may_read || (iswrite && !pte->may_write))
286                         return -EPERM;
287                 return 0;
288         }
289
290 no_page_found:
291
292         if (check_debug_ip(vcpu)) {
293                 dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n",
294                             to_book3s(vcpu)->sdr1, ptegp);
295                 for (i=0; i<16; i+=2) {
296                         dprintk_pte("   %02d: 0x%x - 0x%x (0x%x)\n",
297                                     i, be32_to_cpu(pteg[i]),
298                                     be32_to_cpu(pteg[i+1]), ptem);
299                 }
300         }
301
302         return -ENOENT;
303 }
304
305 static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
306                                       struct kvmppc_pte *pte, bool data,
307                                       bool iswrite)
308 {
309         int r;
310         ulong mp_ea = vcpu->arch.magic_page_ea;
311
312         pte->eaddr = eaddr;
313         pte->page_size = MMU_PAGE_4K;
314
315         /* Magic page override */
316         if (unlikely(mp_ea) &&
317             unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) &&
318             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
319                 pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
320                 pte->raddr = vcpu->arch.magic_page_pa | (pte->raddr & 0xfff);
321                 pte->raddr &= KVM_PAM;
322                 pte->may_execute = true;
323                 pte->may_read = true;
324                 pte->may_write = true;
325
326                 return 0;
327         }
328
329         r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data, iswrite);
330         if (r < 0)
331                 r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte,
332                                                    data, iswrite, true);
333         if (r == -ENOENT)
334                 r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte,
335                                                    data, iswrite, false);
336
337         return r;
338 }
339
340
341 static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum)
342 {
343         return kvmppc_get_sr(vcpu, srnum);
344 }
345
346 static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
347                                         ulong value)
348 {
349         kvmppc_set_sr(vcpu, srnum, value);
350         kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT);
351 }
352
353 static void kvmppc_mmu_book3s_32_tlbie(struct kvm_vcpu *vcpu, ulong ea, bool large)
354 {
355         int i;
356         struct kvm_vcpu *v;
357
358         /* flush this VA on all cpus */
359         kvm_for_each_vcpu(i, v, vcpu->kvm)
360                 kvmppc_mmu_pte_flush(v, ea, 0x0FFFF000);
361 }
362
363 static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
364                                              u64 *vsid)
365 {
366         ulong ea = esid << SID_SHIFT;
367         u32 sr;
368         u64 gvsid = esid;
369         u64 msr = kvmppc_get_msr(vcpu);
370
371         if (msr & (MSR_DR|MSR_IR)) {
372                 sr = find_sr(vcpu, ea);
373                 if (sr_valid(sr))
374                         gvsid = sr_vsid(sr);
375         }
376
377         /* In case we only have one of MSR_IR or MSR_DR set, let's put
378            that in the real-mode context (and hope RM doesn't access
379            high memory) */
380         switch (msr & (MSR_DR|MSR_IR)) {
381         case 0:
382                 *vsid = VSID_REAL | esid;
383                 break;
384         case MSR_IR:
385                 *vsid = VSID_REAL_IR | gvsid;
386                 break;
387         case MSR_DR:
388                 *vsid = VSID_REAL_DR | gvsid;
389                 break;
390         case MSR_DR|MSR_IR:
391                 if (sr_valid(sr))
392                         *vsid = sr_vsid(sr);
393                 else
394                         *vsid = VSID_BAT | gvsid;
395                 break;
396         default:
397                 BUG();
398         }
399
400         if (msr & MSR_PR)
401                 *vsid |= VSID_PR;
402
403         return 0;
404 }
405
406 static bool kvmppc_mmu_book3s_32_is_dcbz32(struct kvm_vcpu *vcpu)
407 {
408         return true;
409 }
410
411
412 void kvmppc_mmu_book3s_32_init(struct kvm_vcpu *vcpu)
413 {
414         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
415
416         mmu->mtsrin = kvmppc_mmu_book3s_32_mtsrin;
417         mmu->mfsrin = kvmppc_mmu_book3s_32_mfsrin;
418         mmu->xlate = kvmppc_mmu_book3s_32_xlate;
419         mmu->reset_msr = kvmppc_mmu_book3s_32_reset_msr;
420         mmu->tlbie = kvmppc_mmu_book3s_32_tlbie;
421         mmu->esid_to_vsid = kvmppc_mmu_book3s_32_esid_to_vsid;
422         mmu->ea_to_vp = kvmppc_mmu_book3s_32_ea_to_vp;
423         mmu->is_dcbz32 = kvmppc_mmu_book3s_32_is_dcbz32;
424
425         mmu->slbmte = NULL;
426         mmu->slbmfee = NULL;
427         mmu->slbmfev = NULL;
428         mmu->slbie = NULL;
429         mmu->slbia = NULL;
430 }