KVM: PPC: Book3S HV: Add missing HPTE unlock
[cascardo/linux.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39
40 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
41 #define MAX_LPID_970    63
42
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER       18
45
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47                                 long pte_index, unsigned long pteh,
48                                 unsigned long ptel, unsigned long *pte_idx_ret);
49 static void kvmppc_rmap_reset(struct kvm *kvm);
50
51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52 {
53         unsigned long hpt = 0;
54         struct revmap_entry *rev;
55         struct page *page = NULL;
56         long order = KVM_DEFAULT_HPT_ORDER;
57
58         if (htab_orderp) {
59                 order = *htab_orderp;
60                 if (order < PPC_MIN_HPT_ORDER)
61                         order = PPC_MIN_HPT_ORDER;
62         }
63
64         kvm->arch.hpt_cma_alloc = 0;
65         page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66         if (page) {
67                 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68                 memset((void *)hpt, 0, (1ul << order));
69                 kvm->arch.hpt_cma_alloc = 1;
70         }
71
72         /* Lastly try successively smaller sizes from the page allocator */
73         while (!hpt && order > PPC_MIN_HPT_ORDER) {
74                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
75                                        __GFP_NOWARN, order - PAGE_SHIFT);
76                 if (!hpt)
77                         --order;
78         }
79
80         if (!hpt)
81                 return -ENOMEM;
82
83         kvm->arch.hpt_virt = hpt;
84         kvm->arch.hpt_order = order;
85         /* HPTEs are 2**4 bytes long */
86         kvm->arch.hpt_npte = 1ul << (order - 4);
87         /* 128 (2**7) bytes in each HPTEG */
88         kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
89
90         /* Allocate reverse map array */
91         rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
92         if (!rev) {
93                 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
94                 goto out_freehpt;
95         }
96         kvm->arch.revmap = rev;
97         kvm->arch.sdr1 = __pa(hpt) | (order - 18);
98
99         pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
100                 hpt, order, kvm->arch.lpid);
101
102         if (htab_orderp)
103                 *htab_orderp = order;
104         return 0;
105
106  out_freehpt:
107         if (kvm->arch.hpt_cma_alloc)
108                 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
109         else
110                 free_pages(hpt, order - PAGE_SHIFT);
111         return -ENOMEM;
112 }
113
114 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
115 {
116         long err = -EBUSY;
117         long order;
118
119         mutex_lock(&kvm->lock);
120         if (kvm->arch.rma_setup_done) {
121                 kvm->arch.rma_setup_done = 0;
122                 /* order rma_setup_done vs. vcpus_running */
123                 smp_mb();
124                 if (atomic_read(&kvm->arch.vcpus_running)) {
125                         kvm->arch.rma_setup_done = 1;
126                         goto out;
127                 }
128         }
129         if (kvm->arch.hpt_virt) {
130                 order = kvm->arch.hpt_order;
131                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
132                 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
133                 /*
134                  * Reset all the reverse-mapping chains for all memslots
135                  */
136                 kvmppc_rmap_reset(kvm);
137                 /* Ensure that each vcpu will flush its TLB on next entry. */
138                 cpumask_setall(&kvm->arch.need_tlb_flush);
139                 *htab_orderp = order;
140                 err = 0;
141         } else {
142                 err = kvmppc_alloc_hpt(kvm, htab_orderp);
143                 order = *htab_orderp;
144         }
145  out:
146         mutex_unlock(&kvm->lock);
147         return err;
148 }
149
150 void kvmppc_free_hpt(struct kvm *kvm)
151 {
152         kvmppc_free_lpid(kvm->arch.lpid);
153         vfree(kvm->arch.revmap);
154         if (kvm->arch.hpt_cma_alloc)
155                 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
156                                 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
157         else
158                 free_pages(kvm->arch.hpt_virt,
159                            kvm->arch.hpt_order - PAGE_SHIFT);
160 }
161
162 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
163 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
164 {
165         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
166 }
167
168 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
169 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
170 {
171         return (pgsize == 0x10000) ? 0x1000 : 0;
172 }
173
174 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
175                      unsigned long porder)
176 {
177         unsigned long i;
178         unsigned long npages;
179         unsigned long hp_v, hp_r;
180         unsigned long addr, hash;
181         unsigned long psize;
182         unsigned long hp0, hp1;
183         unsigned long idx_ret;
184         long ret;
185         struct kvm *kvm = vcpu->kvm;
186
187         psize = 1ul << porder;
188         npages = memslot->npages >> (porder - PAGE_SHIFT);
189
190         /* VRMA can't be > 1TB */
191         if (npages > 1ul << (40 - porder))
192                 npages = 1ul << (40 - porder);
193         /* Can't use more than 1 HPTE per HPTEG */
194         if (npages > kvm->arch.hpt_mask + 1)
195                 npages = kvm->arch.hpt_mask + 1;
196
197         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
198                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
199         hp1 = hpte1_pgsize_encoding(psize) |
200                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
201
202         for (i = 0; i < npages; ++i) {
203                 addr = i << porder;
204                 /* can't use hpt_hash since va > 64 bits */
205                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
206                 /*
207                  * We assume that the hash table is empty and no
208                  * vcpus are using it at this stage.  Since we create
209                  * at most one HPTE per HPTEG, we just assume entry 7
210                  * is available and use it.
211                  */
212                 hash = (hash << 3) + 7;
213                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
214                 hp_r = hp1 | addr;
215                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
216                                                  &idx_ret);
217                 if (ret != H_SUCCESS) {
218                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
219                                addr, ret);
220                         break;
221                 }
222         }
223 }
224
225 int kvmppc_mmu_hv_init(void)
226 {
227         unsigned long host_lpid, rsvd_lpid;
228
229         if (!cpu_has_feature(CPU_FTR_HVMODE))
230                 return -EINVAL;
231
232         /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
233         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
234                 host_lpid = mfspr(SPRN_LPID);   /* POWER7 */
235                 rsvd_lpid = LPID_RSVD;
236         } else {
237                 host_lpid = 0;                  /* PPC970 */
238                 rsvd_lpid = MAX_LPID_970;
239         }
240
241         kvmppc_init_lpid(rsvd_lpid + 1);
242
243         kvmppc_claim_lpid(host_lpid);
244         /* rsvd_lpid is reserved for use in partition switching */
245         kvmppc_claim_lpid(rsvd_lpid);
246
247         return 0;
248 }
249
250 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
251 {
252         unsigned long msr = vcpu->arch.intr_msr;
253
254         /* If transactional, change to suspend mode on IRQ delivery */
255         if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
256                 msr |= MSR_TS_S;
257         else
258                 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
259         kvmppc_set_msr(vcpu, msr);
260 }
261
262 /*
263  * This is called to get a reference to a guest page if there isn't
264  * one already in the memslot->arch.slot_phys[] array.
265  */
266 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
267                                   struct kvm_memory_slot *memslot,
268                                   unsigned long psize)
269 {
270         unsigned long start;
271         long np, err;
272         struct page *page, *hpage, *pages[1];
273         unsigned long s, pgsize;
274         unsigned long *physp;
275         unsigned int is_io, got, pgorder;
276         struct vm_area_struct *vma;
277         unsigned long pfn, i, npages;
278
279         physp = memslot->arch.slot_phys;
280         if (!physp)
281                 return -EINVAL;
282         if (physp[gfn - memslot->base_gfn])
283                 return 0;
284
285         is_io = 0;
286         got = 0;
287         page = NULL;
288         pgsize = psize;
289         err = -EINVAL;
290         start = gfn_to_hva_memslot(memslot, gfn);
291
292         /* Instantiate and get the page we want access to */
293         np = get_user_pages_fast(start, 1, 1, pages);
294         if (np != 1) {
295                 /* Look up the vma for the page */
296                 down_read(&current->mm->mmap_sem);
297                 vma = find_vma(current->mm, start);
298                 if (!vma || vma->vm_start > start ||
299                     start + psize > vma->vm_end ||
300                     !(vma->vm_flags & VM_PFNMAP))
301                         goto up_err;
302                 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
303                 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
304                 /* check alignment of pfn vs. requested page size */
305                 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
306                         goto up_err;
307                 up_read(&current->mm->mmap_sem);
308
309         } else {
310                 page = pages[0];
311                 got = KVMPPC_GOT_PAGE;
312
313                 /* See if this is a large page */
314                 s = PAGE_SIZE;
315                 if (PageHuge(page)) {
316                         hpage = compound_head(page);
317                         s <<= compound_order(hpage);
318                         /* Get the whole large page if slot alignment is ok */
319                         if (s > psize && slot_is_aligned(memslot, s) &&
320                             !(memslot->userspace_addr & (s - 1))) {
321                                 start &= ~(s - 1);
322                                 pgsize = s;
323                                 get_page(hpage);
324                                 put_page(page);
325                                 page = hpage;
326                         }
327                 }
328                 if (s < psize)
329                         goto out;
330                 pfn = page_to_pfn(page);
331         }
332
333         npages = pgsize >> PAGE_SHIFT;
334         pgorder = __ilog2(npages);
335         physp += (gfn - memslot->base_gfn) & ~(npages - 1);
336         spin_lock(&kvm->arch.slot_phys_lock);
337         for (i = 0; i < npages; ++i) {
338                 if (!physp[i]) {
339                         physp[i] = ((pfn + i) << PAGE_SHIFT) +
340                                 got + is_io + pgorder;
341                         got = 0;
342                 }
343         }
344         spin_unlock(&kvm->arch.slot_phys_lock);
345         err = 0;
346
347  out:
348         if (got)
349                 put_page(page);
350         return err;
351
352  up_err:
353         up_read(&current->mm->mmap_sem);
354         return err;
355 }
356
357 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
358                                 long pte_index, unsigned long pteh,
359                                 unsigned long ptel, unsigned long *pte_idx_ret)
360 {
361         unsigned long psize, gpa, gfn;
362         struct kvm_memory_slot *memslot;
363         long ret;
364
365         if (kvm->arch.using_mmu_notifiers)
366                 goto do_insert;
367
368         psize = hpte_page_size(pteh, ptel);
369         if (!psize)
370                 return H_PARAMETER;
371
372         pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
373
374         /* Find the memslot (if any) for this address */
375         gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
376         gfn = gpa >> PAGE_SHIFT;
377         memslot = gfn_to_memslot(kvm, gfn);
378         if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
379                 if (!slot_is_aligned(memslot, psize))
380                         return H_PARAMETER;
381                 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
382                         return H_PARAMETER;
383         }
384
385  do_insert:
386         /* Protect linux PTE lookup from page table destruction */
387         rcu_read_lock_sched();  /* this disables preemption too */
388         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
389                                 current->mm->pgd, false, pte_idx_ret);
390         rcu_read_unlock_sched();
391         if (ret == H_TOO_HARD) {
392                 /* this can't happen */
393                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
394                 ret = H_RESOURCE;       /* or something */
395         }
396         return ret;
397
398 }
399
400 /*
401  * We come here on a H_ENTER call from the guest when we are not
402  * using mmu notifiers and we don't have the requested page pinned
403  * already.
404  */
405 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
406                              long pte_index, unsigned long pteh,
407                              unsigned long ptel)
408 {
409         return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
410                                           pteh, ptel, &vcpu->arch.gpr[4]);
411 }
412
413 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
414                                                          gva_t eaddr)
415 {
416         u64 mask;
417         int i;
418
419         for (i = 0; i < vcpu->arch.slb_nr; i++) {
420                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
421                         continue;
422
423                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
424                         mask = ESID_MASK_1T;
425                 else
426                         mask = ESID_MASK;
427
428                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
429                         return &vcpu->arch.slb[i];
430         }
431         return NULL;
432 }
433
434 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
435                         unsigned long ea)
436 {
437         unsigned long ra_mask;
438
439         ra_mask = hpte_page_size(v, r) - 1;
440         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
441 }
442
443 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
444                         struct kvmppc_pte *gpte, bool data, bool iswrite)
445 {
446         struct kvm *kvm = vcpu->kvm;
447         struct kvmppc_slb *slbe;
448         unsigned long slb_v;
449         unsigned long pp, key;
450         unsigned long v, gr;
451         __be64 *hptep;
452         int index;
453         int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
454
455         /* Get SLB entry */
456         if (virtmode) {
457                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
458                 if (!slbe)
459                         return -EINVAL;
460                 slb_v = slbe->origv;
461         } else {
462                 /* real mode access */
463                 slb_v = vcpu->kvm->arch.vrma_slb_v;
464         }
465
466         preempt_disable();
467         /* Find the HPTE in the hash table */
468         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
469                                          HPTE_V_VALID | HPTE_V_ABSENT);
470         if (index < 0) {
471                 preempt_enable();
472                 return -ENOENT;
473         }
474         hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
475         v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
476         gr = kvm->arch.revmap[index].guest_rpte;
477
478         /* Unlock the HPTE */
479         asm volatile("lwsync" : : : "memory");
480         hptep[0] = cpu_to_be64(v);
481         preempt_enable();
482
483         gpte->eaddr = eaddr;
484         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
485
486         /* Get PP bits and key for permission check */
487         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
488         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
489         key &= slb_v;
490
491         /* Calculate permissions */
492         gpte->may_read = hpte_read_permission(pp, key);
493         gpte->may_write = hpte_write_permission(pp, key);
494         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
495
496         /* Storage key permission check for POWER7 */
497         if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
498                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
499                 if (amrfield & 1)
500                         gpte->may_read = 0;
501                 if (amrfield & 2)
502                         gpte->may_write = 0;
503         }
504
505         /* Get the guest physical address */
506         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
507         return 0;
508 }
509
510 /*
511  * Quick test for whether an instruction is a load or a store.
512  * If the instruction is a load or a store, then this will indicate
513  * which it is, at least on server processors.  (Embedded processors
514  * have some external PID instructions that don't follow the rule
515  * embodied here.)  If the instruction isn't a load or store, then
516  * this doesn't return anything useful.
517  */
518 static int instruction_is_store(unsigned int instr)
519 {
520         unsigned int mask;
521
522         mask = 0x10000000;
523         if ((instr & 0xfc000000) == 0x7c000000)
524                 mask = 0x100;           /* major opcode 31 */
525         return (instr & mask) != 0;
526 }
527
528 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
529                                   unsigned long gpa, gva_t ea, int is_store)
530 {
531         u32 last_inst;
532
533         /*
534          * If we fail, we just return to the guest and try executing it again.
535          */
536         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
537                 EMULATE_DONE)
538                 return RESUME_GUEST;
539
540         /*
541          * WARNING: We do not know for sure whether the instruction we just
542          * read from memory is the same that caused the fault in the first
543          * place.  If the instruction we read is neither an load or a store,
544          * then it can't access memory, so we don't need to worry about
545          * enforcing access permissions.  So, assuming it is a load or
546          * store, we just check that its direction (load or store) is
547          * consistent with the original fault, since that's what we
548          * checked the access permissions against.  If there is a mismatch
549          * we just return and retry the instruction.
550          */
551
552         if (instruction_is_store(last_inst) != !!is_store)
553                 return RESUME_GUEST;
554
555         /*
556          * Emulated accesses are emulated by looking at the hash for
557          * translation once, then performing the access later. The
558          * translation could be invalidated in the meantime in which
559          * point performing the subsequent memory access on the old
560          * physical address could possibly be a security hole for the
561          * guest (but not the host).
562          *
563          * This is less of an issue for MMIO stores since they aren't
564          * globally visible. It could be an issue for MMIO loads to
565          * a certain extent but we'll ignore it for now.
566          */
567
568         vcpu->arch.paddr_accessed = gpa;
569         vcpu->arch.vaddr_accessed = ea;
570         return kvmppc_emulate_mmio(run, vcpu);
571 }
572
573 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
574                                 unsigned long ea, unsigned long dsisr)
575 {
576         struct kvm *kvm = vcpu->kvm;
577         unsigned long hpte[3], r;
578         __be64 *hptep;
579         unsigned long mmu_seq, psize, pte_size;
580         unsigned long gpa_base, gfn_base;
581         unsigned long gpa, gfn, hva, pfn;
582         struct kvm_memory_slot *memslot;
583         unsigned long *rmap;
584         struct revmap_entry *rev;
585         struct page *page, *pages[1];
586         long index, ret, npages;
587         unsigned long is_io;
588         unsigned int writing, write_ok;
589         struct vm_area_struct *vma;
590         unsigned long rcbits;
591
592         /*
593          * Real-mode code has already searched the HPT and found the
594          * entry we're interested in.  Lock the entry and check that
595          * it hasn't changed.  If it has, just return and re-execute the
596          * instruction.
597          */
598         if (ea != vcpu->arch.pgfault_addr)
599                 return RESUME_GUEST;
600         index = vcpu->arch.pgfault_index;
601         hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
602         rev = &kvm->arch.revmap[index];
603         preempt_disable();
604         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
605                 cpu_relax();
606         hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
607         hpte[1] = be64_to_cpu(hptep[1]);
608         hpte[2] = r = rev->guest_rpte;
609         asm volatile("lwsync" : : : "memory");
610         hptep[0] = cpu_to_be64(hpte[0]);
611         preempt_enable();
612
613         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
614             hpte[1] != vcpu->arch.pgfault_hpte[1])
615                 return RESUME_GUEST;
616
617         /* Translate the logical address and get the page */
618         psize = hpte_page_size(hpte[0], r);
619         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
620         gfn_base = gpa_base >> PAGE_SHIFT;
621         gpa = gpa_base | (ea & (psize - 1));
622         gfn = gpa >> PAGE_SHIFT;
623         memslot = gfn_to_memslot(kvm, gfn);
624
625         /* No memslot means it's an emulated MMIO region */
626         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
627                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
628                                               dsisr & DSISR_ISSTORE);
629
630         if (!kvm->arch.using_mmu_notifiers)
631                 return -EFAULT;         /* should never get here */
632
633         /*
634          * This should never happen, because of the slot_is_aligned()
635          * check in kvmppc_do_h_enter().
636          */
637         if (gfn_base < memslot->base_gfn)
638                 return -EFAULT;
639
640         /* used to check for invalidations in progress */
641         mmu_seq = kvm->mmu_notifier_seq;
642         smp_rmb();
643
644         is_io = 0;
645         pfn = 0;
646         page = NULL;
647         pte_size = PAGE_SIZE;
648         writing = (dsisr & DSISR_ISSTORE) != 0;
649         /* If writing != 0, then the HPTE must allow writing, if we get here */
650         write_ok = writing;
651         hva = gfn_to_hva_memslot(memslot, gfn);
652         npages = get_user_pages_fast(hva, 1, writing, pages);
653         if (npages < 1) {
654                 /* Check if it's an I/O mapping */
655                 down_read(&current->mm->mmap_sem);
656                 vma = find_vma(current->mm, hva);
657                 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
658                     (vma->vm_flags & VM_PFNMAP)) {
659                         pfn = vma->vm_pgoff +
660                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
661                         pte_size = psize;
662                         is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
663                         write_ok = vma->vm_flags & VM_WRITE;
664                 }
665                 up_read(&current->mm->mmap_sem);
666                 if (!pfn)
667                         return -EFAULT;
668         } else {
669                 page = pages[0];
670                 pfn = page_to_pfn(page);
671                 if (PageHuge(page)) {
672                         page = compound_head(page);
673                         pte_size <<= compound_order(page);
674                 }
675                 /* if the guest wants write access, see if that is OK */
676                 if (!writing && hpte_is_writable(r)) {
677                         unsigned int hugepage_shift;
678                         pte_t *ptep, pte;
679
680                         /*
681                          * We need to protect against page table destruction
682                          * while looking up and updating the pte.
683                          */
684                         rcu_read_lock_sched();
685                         ptep = find_linux_pte_or_hugepte(current->mm->pgd,
686                                                          hva, &hugepage_shift);
687                         if (ptep) {
688                                 pte = kvmppc_read_update_linux_pte(ptep, 1,
689                                                            hugepage_shift);
690                                 if (pte_write(pte))
691                                         write_ok = 1;
692                         }
693                         rcu_read_unlock_sched();
694                 }
695         }
696
697         ret = -EFAULT;
698         if (psize > pte_size)
699                 goto out_put;
700
701         /* Check WIMG vs. the actual page we're accessing */
702         if (!hpte_cache_flags_ok(r, is_io)) {
703                 if (is_io)
704                         return -EFAULT;
705                 /*
706                  * Allow guest to map emulated device memory as
707                  * uncacheable, but actually make it cacheable.
708                  */
709                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
710         }
711
712         /*
713          * Set the HPTE to point to pfn.
714          * Since the pfn is at PAGE_SIZE granularity, make sure we
715          * don't mask out lower-order bits if psize < PAGE_SIZE.
716          */
717         if (psize < PAGE_SIZE)
718                 psize = PAGE_SIZE;
719         r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
720         if (hpte_is_writable(r) && !write_ok)
721                 r = hpte_make_readonly(r);
722         ret = RESUME_GUEST;
723         preempt_disable();
724         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
725                 cpu_relax();
726         if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
727                 be64_to_cpu(hptep[1]) != hpte[1] ||
728                 rev->guest_rpte != hpte[2])
729                 /* HPTE has been changed under us; let the guest retry */
730                 goto out_unlock;
731         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
732
733         /* Always put the HPTE in the rmap chain for the page base address */
734         rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
735         lock_rmap(rmap);
736
737         /* Check if we might have been invalidated; let the guest retry if so */
738         ret = RESUME_GUEST;
739         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
740                 unlock_rmap(rmap);
741                 goto out_unlock;
742         }
743
744         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
745         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
746         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
747
748         if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
749                 /* HPTE was previously valid, so we need to invalidate it */
750                 unlock_rmap(rmap);
751                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
752                 kvmppc_invalidate_hpte(kvm, hptep, index);
753                 /* don't lose previous R and C bits */
754                 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
755         } else {
756                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
757         }
758
759         hptep[1] = cpu_to_be64(r);
760         eieio();
761         hptep[0] = cpu_to_be64(hpte[0]);
762         asm volatile("ptesync" : : : "memory");
763         preempt_enable();
764         if (page && hpte_is_writable(r))
765                 SetPageDirty(page);
766
767  out_put:
768         if (page) {
769                 /*
770                  * We drop pages[0] here, not page because page might
771                  * have been set to the head page of a compound, but
772                  * we have to drop the reference on the correct tail
773                  * page to match the get inside gup()
774                  */
775                 put_page(pages[0]);
776         }
777         return ret;
778
779  out_unlock:
780         hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
781         preempt_enable();
782         goto out_put;
783 }
784
785 static void kvmppc_rmap_reset(struct kvm *kvm)
786 {
787         struct kvm_memslots *slots;
788         struct kvm_memory_slot *memslot;
789         int srcu_idx;
790
791         srcu_idx = srcu_read_lock(&kvm->srcu);
792         slots = kvm->memslots;
793         kvm_for_each_memslot(memslot, slots) {
794                 /*
795                  * This assumes it is acceptable to lose reference and
796                  * change bits across a reset.
797                  */
798                 memset(memslot->arch.rmap, 0,
799                        memslot->npages * sizeof(*memslot->arch.rmap));
800         }
801         srcu_read_unlock(&kvm->srcu, srcu_idx);
802 }
803
804 static int kvm_handle_hva_range(struct kvm *kvm,
805                                 unsigned long start,
806                                 unsigned long end,
807                                 int (*handler)(struct kvm *kvm,
808                                                unsigned long *rmapp,
809                                                unsigned long gfn))
810 {
811         int ret;
812         int retval = 0;
813         struct kvm_memslots *slots;
814         struct kvm_memory_slot *memslot;
815
816         slots = kvm_memslots(kvm);
817         kvm_for_each_memslot(memslot, slots) {
818                 unsigned long hva_start, hva_end;
819                 gfn_t gfn, gfn_end;
820
821                 hva_start = max(start, memslot->userspace_addr);
822                 hva_end = min(end, memslot->userspace_addr +
823                                         (memslot->npages << PAGE_SHIFT));
824                 if (hva_start >= hva_end)
825                         continue;
826                 /*
827                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
828                  * {gfn, gfn+1, ..., gfn_end-1}.
829                  */
830                 gfn = hva_to_gfn_memslot(hva_start, memslot);
831                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
832
833                 for (; gfn < gfn_end; ++gfn) {
834                         gfn_t gfn_offset = gfn - memslot->base_gfn;
835
836                         ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
837                         retval |= ret;
838                 }
839         }
840
841         return retval;
842 }
843
844 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
845                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
846                                          unsigned long gfn))
847 {
848         return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
849 }
850
851 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
852                            unsigned long gfn)
853 {
854         struct revmap_entry *rev = kvm->arch.revmap;
855         unsigned long h, i, j;
856         __be64 *hptep;
857         unsigned long ptel, psize, rcbits;
858
859         for (;;) {
860                 lock_rmap(rmapp);
861                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
862                         unlock_rmap(rmapp);
863                         break;
864                 }
865
866                 /*
867                  * To avoid an ABBA deadlock with the HPTE lock bit,
868                  * we can't spin on the HPTE lock while holding the
869                  * rmap chain lock.
870                  */
871                 i = *rmapp & KVMPPC_RMAP_INDEX;
872                 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
873                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
874                         /* unlock rmap before spinning on the HPTE lock */
875                         unlock_rmap(rmapp);
876                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
877                                 cpu_relax();
878                         continue;
879                 }
880                 j = rev[i].forw;
881                 if (j == i) {
882                         /* chain is now empty */
883                         *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
884                 } else {
885                         /* remove i from chain */
886                         h = rev[i].back;
887                         rev[h].forw = j;
888                         rev[j].back = h;
889                         rev[i].forw = rev[i].back = i;
890                         *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
891                 }
892
893                 /* Now check and modify the HPTE */
894                 ptel = rev[i].guest_rpte;
895                 psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
896                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
897                     hpte_rpn(ptel, psize) == gfn) {
898                         if (kvm->arch.using_mmu_notifiers)
899                                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
900                         kvmppc_invalidate_hpte(kvm, hptep, i);
901                         /* Harvest R and C */
902                         rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
903                         *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
904                         if (rcbits & ~rev[i].guest_rpte) {
905                                 rev[i].guest_rpte = ptel | rcbits;
906                                 note_hpte_modification(kvm, &rev[i]);
907                         }
908                 }
909                 unlock_rmap(rmapp);
910                 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
911         }
912         return 0;
913 }
914
915 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
916 {
917         if (kvm->arch.using_mmu_notifiers)
918                 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
919         return 0;
920 }
921
922 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
923 {
924         if (kvm->arch.using_mmu_notifiers)
925                 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
926         return 0;
927 }
928
929 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
930                                   struct kvm_memory_slot *memslot)
931 {
932         unsigned long *rmapp;
933         unsigned long gfn;
934         unsigned long n;
935
936         rmapp = memslot->arch.rmap;
937         gfn = memslot->base_gfn;
938         for (n = memslot->npages; n; --n) {
939                 /*
940                  * Testing the present bit without locking is OK because
941                  * the memslot has been marked invalid already, and hence
942                  * no new HPTEs referencing this page can be created,
943                  * thus the present bit can't go from 0 to 1.
944                  */
945                 if (*rmapp & KVMPPC_RMAP_PRESENT)
946                         kvm_unmap_rmapp(kvm, rmapp, gfn);
947                 ++rmapp;
948                 ++gfn;
949         }
950 }
951
952 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
953                          unsigned long gfn)
954 {
955         struct revmap_entry *rev = kvm->arch.revmap;
956         unsigned long head, i, j;
957         __be64 *hptep;
958         int ret = 0;
959
960  retry:
961         lock_rmap(rmapp);
962         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
963                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
964                 ret = 1;
965         }
966         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
967                 unlock_rmap(rmapp);
968                 return ret;
969         }
970
971         i = head = *rmapp & KVMPPC_RMAP_INDEX;
972         do {
973                 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
974                 j = rev[i].forw;
975
976                 /* If this HPTE isn't referenced, ignore it */
977                 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
978                         continue;
979
980                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
981                         /* unlock rmap before spinning on the HPTE lock */
982                         unlock_rmap(rmapp);
983                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
984                                 cpu_relax();
985                         goto retry;
986                 }
987
988                 /* Now check and modify the HPTE */
989                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
990                     (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
991                         kvmppc_clear_ref_hpte(kvm, hptep, i);
992                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
993                                 rev[i].guest_rpte |= HPTE_R_R;
994                                 note_hpte_modification(kvm, &rev[i]);
995                         }
996                         ret = 1;
997                 }
998                 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
999         } while ((i = j) != head);
1000
1001         unlock_rmap(rmapp);
1002         return ret;
1003 }
1004
1005 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
1006 {
1007         if (!kvm->arch.using_mmu_notifiers)
1008                 return 0;
1009         return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
1010 }
1011
1012 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1013                               unsigned long gfn)
1014 {
1015         struct revmap_entry *rev = kvm->arch.revmap;
1016         unsigned long head, i, j;
1017         unsigned long *hp;
1018         int ret = 1;
1019
1020         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1021                 return 1;
1022
1023         lock_rmap(rmapp);
1024         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1025                 goto out;
1026
1027         if (*rmapp & KVMPPC_RMAP_PRESENT) {
1028                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1029                 do {
1030                         hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1031                         j = rev[i].forw;
1032                         if (be64_to_cpu(hp[1]) & HPTE_R_R)
1033                                 goto out;
1034                 } while ((i = j) != head);
1035         }
1036         ret = 0;
1037
1038  out:
1039         unlock_rmap(rmapp);
1040         return ret;
1041 }
1042
1043 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1044 {
1045         if (!kvm->arch.using_mmu_notifiers)
1046                 return 0;
1047         return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1048 }
1049
1050 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1051 {
1052         if (!kvm->arch.using_mmu_notifiers)
1053                 return;
1054         kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1055 }
1056
1057 static int vcpus_running(struct kvm *kvm)
1058 {
1059         return atomic_read(&kvm->arch.vcpus_running) != 0;
1060 }
1061
1062 /*
1063  * Returns the number of system pages that are dirty.
1064  * This can be more than 1 if we find a huge-page HPTE.
1065  */
1066 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1067 {
1068         struct revmap_entry *rev = kvm->arch.revmap;
1069         unsigned long head, i, j;
1070         unsigned long n;
1071         unsigned long v, r;
1072         __be64 *hptep;
1073         int npages_dirty = 0;
1074
1075  retry:
1076         lock_rmap(rmapp);
1077         if (*rmapp & KVMPPC_RMAP_CHANGED) {
1078                 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1079                 npages_dirty = 1;
1080         }
1081         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1082                 unlock_rmap(rmapp);
1083                 return npages_dirty;
1084         }
1085
1086         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1087         do {
1088                 unsigned long hptep1;
1089                 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
1090                 j = rev[i].forw;
1091
1092                 /*
1093                  * Checking the C (changed) bit here is racy since there
1094                  * is no guarantee about when the hardware writes it back.
1095                  * If the HPTE is not writable then it is stable since the
1096                  * page can't be written to, and we would have done a tlbie
1097                  * (which forces the hardware to complete any writeback)
1098                  * when making the HPTE read-only.
1099                  * If vcpus are running then this call is racy anyway
1100                  * since the page could get dirtied subsequently, so we
1101                  * expect there to be a further call which would pick up
1102                  * any delayed C bit writeback.
1103                  * Otherwise we need to do the tlbie even if C==0 in
1104                  * order to pick up any delayed writeback of C.
1105                  */
1106                 hptep1 = be64_to_cpu(hptep[1]);
1107                 if (!(hptep1 & HPTE_R_C) &&
1108                     (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1109                         continue;
1110
1111                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1112                         /* unlock rmap before spinning on the HPTE lock */
1113                         unlock_rmap(rmapp);
1114                         while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1115                                 cpu_relax();
1116                         goto retry;
1117                 }
1118
1119                 /* Now check and modify the HPTE */
1120                 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1121                         /* unlock and continue */
1122                         hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
1123                         continue;
1124                 }
1125
1126                 /* need to make it temporarily absent so C is stable */
1127                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1128                 kvmppc_invalidate_hpte(kvm, hptep, i);
1129                 v = be64_to_cpu(hptep[0]);
1130                 r = be64_to_cpu(hptep[1]);
1131                 if (r & HPTE_R_C) {
1132                         hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1133                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
1134                                 rev[i].guest_rpte |= HPTE_R_C;
1135                                 note_hpte_modification(kvm, &rev[i]);
1136                         }
1137                         n = hpte_page_size(v, r);
1138                         n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1139                         if (n > npages_dirty)
1140                                 npages_dirty = n;
1141                         eieio();
1142                 }
1143                 v &= ~(HPTE_V_ABSENT | HPTE_V_HVLOCK);
1144                 v |= HPTE_V_VALID;
1145                 hptep[0] = cpu_to_be64(v);
1146         } while ((i = j) != head);
1147
1148         unlock_rmap(rmapp);
1149         return npages_dirty;
1150 }
1151
1152 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1153                               struct kvm_memory_slot *memslot,
1154                               unsigned long *map)
1155 {
1156         unsigned long gfn;
1157
1158         if (!vpa->dirty || !vpa->pinned_addr)
1159                 return;
1160         gfn = vpa->gpa >> PAGE_SHIFT;
1161         if (gfn < memslot->base_gfn ||
1162             gfn >= memslot->base_gfn + memslot->npages)
1163                 return;
1164
1165         vpa->dirty = false;
1166         if (map)
1167                 __set_bit_le(gfn - memslot->base_gfn, map);
1168 }
1169
1170 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1171                              unsigned long *map)
1172 {
1173         unsigned long i, j;
1174         unsigned long *rmapp;
1175         struct kvm_vcpu *vcpu;
1176
1177         preempt_disable();
1178         rmapp = memslot->arch.rmap;
1179         for (i = 0; i < memslot->npages; ++i) {
1180                 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1181                 /*
1182                  * Note that if npages > 0 then i must be a multiple of npages,
1183                  * since we always put huge-page HPTEs in the rmap chain
1184                  * corresponding to their page base address.
1185                  */
1186                 if (npages && map)
1187                         for (j = i; npages; ++j, --npages)
1188                                 __set_bit_le(j, map);
1189                 ++rmapp;
1190         }
1191
1192         /* Harvest dirty bits from VPA and DTL updates */
1193         /* Note: we never modify the SLB shadow buffer areas */
1194         kvm_for_each_vcpu(i, vcpu, kvm) {
1195                 spin_lock(&vcpu->arch.vpa_update_lock);
1196                 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1197                 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1198                 spin_unlock(&vcpu->arch.vpa_update_lock);
1199         }
1200         preempt_enable();
1201         return 0;
1202 }
1203
1204 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1205                             unsigned long *nb_ret)
1206 {
1207         struct kvm_memory_slot *memslot;
1208         unsigned long gfn = gpa >> PAGE_SHIFT;
1209         struct page *page, *pages[1];
1210         int npages;
1211         unsigned long hva, offset;
1212         unsigned long pa;
1213         unsigned long *physp;
1214         int srcu_idx;
1215
1216         srcu_idx = srcu_read_lock(&kvm->srcu);
1217         memslot = gfn_to_memslot(kvm, gfn);
1218         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1219                 goto err;
1220         if (!kvm->arch.using_mmu_notifiers) {
1221                 physp = memslot->arch.slot_phys;
1222                 if (!physp)
1223                         goto err;
1224                 physp += gfn - memslot->base_gfn;
1225                 pa = *physp;
1226                 if (!pa) {
1227                         if (kvmppc_get_guest_page(kvm, gfn, memslot,
1228                                                   PAGE_SIZE) < 0)
1229                                 goto err;
1230                         pa = *physp;
1231                 }
1232                 page = pfn_to_page(pa >> PAGE_SHIFT);
1233                 get_page(page);
1234         } else {
1235                 hva = gfn_to_hva_memslot(memslot, gfn);
1236                 npages = get_user_pages_fast(hva, 1, 1, pages);
1237                 if (npages < 1)
1238                         goto err;
1239                 page = pages[0];
1240         }
1241         srcu_read_unlock(&kvm->srcu, srcu_idx);
1242
1243         offset = gpa & (PAGE_SIZE - 1);
1244         if (nb_ret)
1245                 *nb_ret = PAGE_SIZE - offset;
1246         return page_address(page) + offset;
1247
1248  err:
1249         srcu_read_unlock(&kvm->srcu, srcu_idx);
1250         return NULL;
1251 }
1252
1253 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1254                              bool dirty)
1255 {
1256         struct page *page = virt_to_page(va);
1257         struct kvm_memory_slot *memslot;
1258         unsigned long gfn;
1259         unsigned long *rmap;
1260         int srcu_idx;
1261
1262         put_page(page);
1263
1264         if (!dirty || !kvm->arch.using_mmu_notifiers)
1265                 return;
1266
1267         /* We need to mark this page dirty in the rmap chain */
1268         gfn = gpa >> PAGE_SHIFT;
1269         srcu_idx = srcu_read_lock(&kvm->srcu);
1270         memslot = gfn_to_memslot(kvm, gfn);
1271         if (memslot) {
1272                 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1273                 lock_rmap(rmap);
1274                 *rmap |= KVMPPC_RMAP_CHANGED;
1275                 unlock_rmap(rmap);
1276         }
1277         srcu_read_unlock(&kvm->srcu, srcu_idx);
1278 }
1279
1280 /*
1281  * Functions for reading and writing the hash table via reads and
1282  * writes on a file descriptor.
1283  *
1284  * Reads return the guest view of the hash table, which has to be
1285  * pieced together from the real hash table and the guest_rpte
1286  * values in the revmap array.
1287  *
1288  * On writes, each HPTE written is considered in turn, and if it
1289  * is valid, it is written to the HPT as if an H_ENTER with the
1290  * exact flag set was done.  When the invalid count is non-zero
1291  * in the header written to the stream, the kernel will make
1292  * sure that that many HPTEs are invalid, and invalidate them
1293  * if not.
1294  */
1295
1296 struct kvm_htab_ctx {
1297         unsigned long   index;
1298         unsigned long   flags;
1299         struct kvm      *kvm;
1300         int             first_pass;
1301 };
1302
1303 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1304
1305 /*
1306  * Returns 1 if this HPT entry has been modified or has pending
1307  * R/C bit changes.
1308  */
1309 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1310 {
1311         unsigned long rcbits_unset;
1312
1313         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1314                 return 1;
1315
1316         /* Also need to consider changes in reference and changed bits */
1317         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1318         if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1319             (be64_to_cpu(hptp[1]) & rcbits_unset))
1320                 return 1;
1321
1322         return 0;
1323 }
1324
1325 static long record_hpte(unsigned long flags, __be64 *hptp,
1326                         unsigned long *hpte, struct revmap_entry *revp,
1327                         int want_valid, int first_pass)
1328 {
1329         unsigned long v, r;
1330         unsigned long rcbits_unset;
1331         int ok = 1;
1332         int valid, dirty;
1333
1334         /* Unmodified entries are uninteresting except on the first pass */
1335         dirty = hpte_dirty(revp, hptp);
1336         if (!first_pass && !dirty)
1337                 return 0;
1338
1339         valid = 0;
1340         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1341                 valid = 1;
1342                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1343                     !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1344                         valid = 0;
1345         }
1346         if (valid != want_valid)
1347                 return 0;
1348
1349         v = r = 0;
1350         if (valid || dirty) {
1351                 /* lock the HPTE so it's stable and read it */
1352                 preempt_disable();
1353                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1354                         cpu_relax();
1355                 v = be64_to_cpu(hptp[0]);
1356
1357                 /* re-evaluate valid and dirty from synchronized HPTE value */
1358                 valid = !!(v & HPTE_V_VALID);
1359                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1360
1361                 /* Harvest R and C into guest view if necessary */
1362                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1363                 if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1364                         revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1365                                 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1366                         dirty = 1;
1367                 }
1368
1369                 if (v & HPTE_V_ABSENT) {
1370                         v &= ~HPTE_V_ABSENT;
1371                         v |= HPTE_V_VALID;
1372                         valid = 1;
1373                 }
1374                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1375                         valid = 0;
1376
1377                 r = revp->guest_rpte;
1378                 /* only clear modified if this is the right sort of entry */
1379                 if (valid == want_valid && dirty) {
1380                         r &= ~HPTE_GR_MODIFIED;
1381                         revp->guest_rpte = r;
1382                 }
1383                 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1384                 hptp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
1385                 preempt_enable();
1386                 if (!(valid == want_valid && (first_pass || dirty)))
1387                         ok = 0;
1388         }
1389         hpte[0] = cpu_to_be64(v);
1390         hpte[1] = cpu_to_be64(r);
1391         return ok;
1392 }
1393
1394 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1395                              size_t count, loff_t *ppos)
1396 {
1397         struct kvm_htab_ctx *ctx = file->private_data;
1398         struct kvm *kvm = ctx->kvm;
1399         struct kvm_get_htab_header hdr;
1400         __be64 *hptp;
1401         struct revmap_entry *revp;
1402         unsigned long i, nb, nw;
1403         unsigned long __user *lbuf;
1404         struct kvm_get_htab_header __user *hptr;
1405         unsigned long flags;
1406         int first_pass;
1407         unsigned long hpte[2];
1408
1409         if (!access_ok(VERIFY_WRITE, buf, count))
1410                 return -EFAULT;
1411
1412         first_pass = ctx->first_pass;
1413         flags = ctx->flags;
1414
1415         i = ctx->index;
1416         hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1417         revp = kvm->arch.revmap + i;
1418         lbuf = (unsigned long __user *)buf;
1419
1420         nb = 0;
1421         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1422                 /* Initialize header */
1423                 hptr = (struct kvm_get_htab_header __user *)buf;
1424                 hdr.n_valid = 0;
1425                 hdr.n_invalid = 0;
1426                 nw = nb;
1427                 nb += sizeof(hdr);
1428                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1429
1430                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1431                 if (!first_pass) {
1432                         while (i < kvm->arch.hpt_npte &&
1433                                !hpte_dirty(revp, hptp)) {
1434                                 ++i;
1435                                 hptp += 2;
1436                                 ++revp;
1437                         }
1438                 }
1439                 hdr.index = i;
1440
1441                 /* Grab a series of valid entries */
1442                 while (i < kvm->arch.hpt_npte &&
1443                        hdr.n_valid < 0xffff &&
1444                        nb + HPTE_SIZE < count &&
1445                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1446                         /* valid entry, write it out */
1447                         ++hdr.n_valid;
1448                         if (__put_user(hpte[0], lbuf) ||
1449                             __put_user(hpte[1], lbuf + 1))
1450                                 return -EFAULT;
1451                         nb += HPTE_SIZE;
1452                         lbuf += 2;
1453                         ++i;
1454                         hptp += 2;
1455                         ++revp;
1456                 }
1457                 /* Now skip invalid entries while we can */
1458                 while (i < kvm->arch.hpt_npte &&
1459                        hdr.n_invalid < 0xffff &&
1460                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1461                         /* found an invalid entry */
1462                         ++hdr.n_invalid;
1463                         ++i;
1464                         hptp += 2;
1465                         ++revp;
1466                 }
1467
1468                 if (hdr.n_valid || hdr.n_invalid) {
1469                         /* write back the header */
1470                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1471                                 return -EFAULT;
1472                         nw = nb;
1473                         buf = (char __user *)lbuf;
1474                 } else {
1475                         nb = nw;
1476                 }
1477
1478                 /* Check if we've wrapped around the hash table */
1479                 if (i >= kvm->arch.hpt_npte) {
1480                         i = 0;
1481                         ctx->first_pass = 0;
1482                         break;
1483                 }
1484         }
1485
1486         ctx->index = i;
1487
1488         return nb;
1489 }
1490
1491 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1492                               size_t count, loff_t *ppos)
1493 {
1494         struct kvm_htab_ctx *ctx = file->private_data;
1495         struct kvm *kvm = ctx->kvm;
1496         struct kvm_get_htab_header hdr;
1497         unsigned long i, j;
1498         unsigned long v, r;
1499         unsigned long __user *lbuf;
1500         __be64 *hptp;
1501         unsigned long tmp[2];
1502         ssize_t nb;
1503         long int err, ret;
1504         int rma_setup;
1505
1506         if (!access_ok(VERIFY_READ, buf, count))
1507                 return -EFAULT;
1508
1509         /* lock out vcpus from running while we're doing this */
1510         mutex_lock(&kvm->lock);
1511         rma_setup = kvm->arch.rma_setup_done;
1512         if (rma_setup) {
1513                 kvm->arch.rma_setup_done = 0;   /* temporarily */
1514                 /* order rma_setup_done vs. vcpus_running */
1515                 smp_mb();
1516                 if (atomic_read(&kvm->arch.vcpus_running)) {
1517                         kvm->arch.rma_setup_done = 1;
1518                         mutex_unlock(&kvm->lock);
1519                         return -EBUSY;
1520                 }
1521         }
1522
1523         err = 0;
1524         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1525                 err = -EFAULT;
1526                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1527                         break;
1528
1529                 err = 0;
1530                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1531                         break;
1532
1533                 nb += sizeof(hdr);
1534                 buf += sizeof(hdr);
1535
1536                 err = -EINVAL;
1537                 i = hdr.index;
1538                 if (i >= kvm->arch.hpt_npte ||
1539                     i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1540                         break;
1541
1542                 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1543                 lbuf = (unsigned long __user *)buf;
1544                 for (j = 0; j < hdr.n_valid; ++j) {
1545                         err = -EFAULT;
1546                         if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1547                                 goto out;
1548                         err = -EINVAL;
1549                         if (!(v & HPTE_V_VALID))
1550                                 goto out;
1551                         lbuf += 2;
1552                         nb += HPTE_SIZE;
1553
1554                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1555                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1556                         err = -EIO;
1557                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1558                                                          tmp);
1559                         if (ret != H_SUCCESS) {
1560                                 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1561                                        "r=%lx\n", ret, i, v, r);
1562                                 goto out;
1563                         }
1564                         if (!rma_setup && is_vrma_hpte(v)) {
1565                                 unsigned long psize = hpte_base_page_size(v, r);
1566                                 unsigned long senc = slb_pgsize_encoding(psize);
1567                                 unsigned long lpcr;
1568
1569                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1570                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1571                                 lpcr = senc << (LPCR_VRMASD_SH - 4);
1572                                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1573                                 rma_setup = 1;
1574                         }
1575                         ++i;
1576                         hptp += 2;
1577                 }
1578
1579                 for (j = 0; j < hdr.n_invalid; ++j) {
1580                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1581                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1582                         ++i;
1583                         hptp += 2;
1584                 }
1585                 err = 0;
1586         }
1587
1588  out:
1589         /* Order HPTE updates vs. rma_setup_done */
1590         smp_wmb();
1591         kvm->arch.rma_setup_done = rma_setup;
1592         mutex_unlock(&kvm->lock);
1593
1594         if (err)
1595                 return err;
1596         return nb;
1597 }
1598
1599 static int kvm_htab_release(struct inode *inode, struct file *filp)
1600 {
1601         struct kvm_htab_ctx *ctx = filp->private_data;
1602
1603         filp->private_data = NULL;
1604         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1605                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1606         kvm_put_kvm(ctx->kvm);
1607         kfree(ctx);
1608         return 0;
1609 }
1610
1611 static const struct file_operations kvm_htab_fops = {
1612         .read           = kvm_htab_read,
1613         .write          = kvm_htab_write,
1614         .llseek         = default_llseek,
1615         .release        = kvm_htab_release,
1616 };
1617
1618 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1619 {
1620         int ret;
1621         struct kvm_htab_ctx *ctx;
1622         int rwflag;
1623
1624         /* reject flags we don't recognize */
1625         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1626                 return -EINVAL;
1627         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1628         if (!ctx)
1629                 return -ENOMEM;
1630         kvm_get_kvm(kvm);
1631         ctx->kvm = kvm;
1632         ctx->index = ghf->start_index;
1633         ctx->flags = ghf->flags;
1634         ctx->first_pass = 1;
1635
1636         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1637         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1638         if (ret < 0) {
1639                 kvm_put_kvm(kvm);
1640                 return ret;
1641         }
1642
1643         if (rwflag == O_RDONLY) {
1644                 mutex_lock(&kvm->slots_lock);
1645                 atomic_inc(&kvm->arch.hpte_mod_interest);
1646                 /* make sure kvmppc_do_h_enter etc. see the increment */
1647                 synchronize_srcu_expedited(&kvm->srcu);
1648                 mutex_unlock(&kvm->slots_lock);
1649         }
1650
1651         return ret;
1652 }
1653
1654 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1655 {
1656         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1657
1658         if (cpu_has_feature(CPU_FTR_ARCH_206))
1659                 vcpu->arch.slb_nr = 32;         /* POWER7 */
1660         else
1661                 vcpu->arch.slb_nr = 64;
1662
1663         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1664         mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1665
1666         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1667 }