dde14fd64d8e7d691f0993f00d790631648ed07e
[cascardo/linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35
36 #include <asm/reg.h>
37 #include <asm/cputable.h>
38 #include <asm/cache.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <linux/gfp.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56 #include <linux/hugetlb.h>
57 #include <linux/module.h>
58
59 #include "book3s.h"
60
61 #define CREATE_TRACE_POINTS
62 #include "trace_hv.h"
63
64 /* #define EXIT_DEBUG */
65 /* #define EXIT_DEBUG_SIMPLE */
66 /* #define EXIT_DEBUG_INT */
67
68 /* Used to indicate that a guest page fault needs to be handled */
69 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
70
71 /* Used as a "null" value for timebase values */
72 #define TB_NIL  (~(u64)0)
73
74 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
75
76 #if defined(CONFIG_PPC_64K_PAGES)
77 #define MPP_BUFFER_ORDER        0
78 #elif defined(CONFIG_PPC_4K_PAGES)
79 #define MPP_BUFFER_ORDER        3
80 #endif
81
82
83 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
84 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
85
86 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
87 {
88         int me;
89         int cpu = vcpu->cpu;
90         wait_queue_head_t *wqp;
91
92         wqp = kvm_arch_vcpu_wq(vcpu);
93         if (waitqueue_active(wqp)) {
94                 wake_up_interruptible(wqp);
95                 ++vcpu->stat.halt_wakeup;
96         }
97
98         me = get_cpu();
99
100         /* CPU points to the first thread of the core */
101         if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
102 #ifdef CONFIG_PPC_ICP_NATIVE
103                 int real_cpu = cpu + vcpu->arch.ptid;
104                 if (paca[real_cpu].kvm_hstate.xics_phys)
105                         xics_wake_cpu(real_cpu);
106                 else
107 #endif
108                 if (cpu_online(cpu))
109                         smp_send_reschedule(cpu);
110         }
111         put_cpu();
112 }
113
114 /*
115  * We use the vcpu_load/put functions to measure stolen time.
116  * Stolen time is counted as time when either the vcpu is able to
117  * run as part of a virtual core, but the task running the vcore
118  * is preempted or sleeping, or when the vcpu needs something done
119  * in the kernel by the task running the vcpu, but that task is
120  * preempted or sleeping.  Those two things have to be counted
121  * separately, since one of the vcpu tasks will take on the job
122  * of running the core, and the other vcpu tasks in the vcore will
123  * sleep waiting for it to do that, but that sleep shouldn't count
124  * as stolen time.
125  *
126  * Hence we accumulate stolen time when the vcpu can run as part of
127  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
128  * needs its task to do other things in the kernel (for example,
129  * service a page fault) in busy_stolen.  We don't accumulate
130  * stolen time for a vcore when it is inactive, or for a vcpu
131  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
132  * a misnomer; it means that the vcpu task is not executing in
133  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
134  * the kernel.  We don't have any way of dividing up that time
135  * between time that the vcpu is genuinely stopped, time that
136  * the task is actively working on behalf of the vcpu, and time
137  * that the task is preempted, so we don't count any of it as
138  * stolen.
139  *
140  * Updates to busy_stolen are protected by arch.tbacct_lock;
141  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
142  * lock.  The stolen times are measured in units of timebase ticks.
143  * (Note that the != TB_NIL checks below are purely defensive;
144  * they should never fail.)
145  */
146
147 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
148 {
149         struct kvmppc_vcore *vc = vcpu->arch.vcore;
150         unsigned long flags;
151
152         /*
153          * We can test vc->runner without taking the vcore lock,
154          * because only this task ever sets vc->runner to this
155          * vcpu, and once it is set to this vcpu, only this task
156          * ever sets it to NULL.
157          */
158         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
159                 spin_lock_irqsave(&vc->stoltb_lock, flags);
160                 if (vc->preempt_tb != TB_NIL) {
161                         vc->stolen_tb += mftb() - vc->preempt_tb;
162                         vc->preempt_tb = TB_NIL;
163                 }
164                 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
165         }
166         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
167         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
168             vcpu->arch.busy_preempt != TB_NIL) {
169                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
170                 vcpu->arch.busy_preempt = TB_NIL;
171         }
172         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
173 }
174
175 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
176 {
177         struct kvmppc_vcore *vc = vcpu->arch.vcore;
178         unsigned long flags;
179
180         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
181                 spin_lock_irqsave(&vc->stoltb_lock, flags);
182                 vc->preempt_tb = mftb();
183                 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
184         }
185         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
186         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
187                 vcpu->arch.busy_preempt = mftb();
188         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
189 }
190
191 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
192 {
193         vcpu->arch.shregs.msr = msr;
194         kvmppc_end_cede(vcpu);
195 }
196
197 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
198 {
199         vcpu->arch.pvr = pvr;
200 }
201
202 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
203 {
204         unsigned long pcr = 0;
205         struct kvmppc_vcore *vc = vcpu->arch.vcore;
206
207         if (arch_compat) {
208                 switch (arch_compat) {
209                 case PVR_ARCH_205:
210                         /*
211                          * If an arch bit is set in PCR, all the defined
212                          * higher-order arch bits also have to be set.
213                          */
214                         pcr = PCR_ARCH_206 | PCR_ARCH_205;
215                         break;
216                 case PVR_ARCH_206:
217                 case PVR_ARCH_206p:
218                         pcr = PCR_ARCH_206;
219                         break;
220                 case PVR_ARCH_207:
221                         break;
222                 default:
223                         return -EINVAL;
224                 }
225
226                 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
227                         /* POWER7 can't emulate POWER8 */
228                         if (!(pcr & PCR_ARCH_206))
229                                 return -EINVAL;
230                         pcr &= ~PCR_ARCH_206;
231                 }
232         }
233
234         spin_lock(&vc->lock);
235         vc->arch_compat = arch_compat;
236         vc->pcr = pcr;
237         spin_unlock(&vc->lock);
238
239         return 0;
240 }
241
242 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
243 {
244         int r;
245
246         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
247         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
248                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
249         for (r = 0; r < 16; ++r)
250                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
251                        r, kvmppc_get_gpr(vcpu, r),
252                        r+16, kvmppc_get_gpr(vcpu, r+16));
253         pr_err("ctr = %.16lx  lr  = %.16lx\n",
254                vcpu->arch.ctr, vcpu->arch.lr);
255         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
256                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
257         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
258                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
259         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
260                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
261         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
262                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
263         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
264         pr_err("fault dar = %.16lx dsisr = %.8x\n",
265                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
266         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
267         for (r = 0; r < vcpu->arch.slb_max; ++r)
268                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
269                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
270         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
271                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
272                vcpu->arch.last_inst);
273 }
274
275 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
276 {
277         int r;
278         struct kvm_vcpu *v, *ret = NULL;
279
280         mutex_lock(&kvm->lock);
281         kvm_for_each_vcpu(r, v, kvm) {
282                 if (v->vcpu_id == id) {
283                         ret = v;
284                         break;
285                 }
286         }
287         mutex_unlock(&kvm->lock);
288         return ret;
289 }
290
291 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
292 {
293         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
294         vpa->yield_count = cpu_to_be32(1);
295 }
296
297 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
298                    unsigned long addr, unsigned long len)
299 {
300         /* check address is cacheline aligned */
301         if (addr & (L1_CACHE_BYTES - 1))
302                 return -EINVAL;
303         spin_lock(&vcpu->arch.vpa_update_lock);
304         if (v->next_gpa != addr || v->len != len) {
305                 v->next_gpa = addr;
306                 v->len = addr ? len : 0;
307                 v->update_pending = 1;
308         }
309         spin_unlock(&vcpu->arch.vpa_update_lock);
310         return 0;
311 }
312
313 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
314 struct reg_vpa {
315         u32 dummy;
316         union {
317                 __be16 hword;
318                 __be32 word;
319         } length;
320 };
321
322 static int vpa_is_registered(struct kvmppc_vpa *vpap)
323 {
324         if (vpap->update_pending)
325                 return vpap->next_gpa != 0;
326         return vpap->pinned_addr != NULL;
327 }
328
329 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
330                                        unsigned long flags,
331                                        unsigned long vcpuid, unsigned long vpa)
332 {
333         struct kvm *kvm = vcpu->kvm;
334         unsigned long len, nb;
335         void *va;
336         struct kvm_vcpu *tvcpu;
337         int err;
338         int subfunc;
339         struct kvmppc_vpa *vpap;
340
341         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
342         if (!tvcpu)
343                 return H_PARAMETER;
344
345         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
346         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
347             subfunc == H_VPA_REG_SLB) {
348                 /* Registering new area - address must be cache-line aligned */
349                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
350                         return H_PARAMETER;
351
352                 /* convert logical addr to kernel addr and read length */
353                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
354                 if (va == NULL)
355                         return H_PARAMETER;
356                 if (subfunc == H_VPA_REG_VPA)
357                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
358                 else
359                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
360                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
361
362                 /* Check length */
363                 if (len > nb || len < sizeof(struct reg_vpa))
364                         return H_PARAMETER;
365         } else {
366                 vpa = 0;
367                 len = 0;
368         }
369
370         err = H_PARAMETER;
371         vpap = NULL;
372         spin_lock(&tvcpu->arch.vpa_update_lock);
373
374         switch (subfunc) {
375         case H_VPA_REG_VPA:             /* register VPA */
376                 if (len < sizeof(struct lppaca))
377                         break;
378                 vpap = &tvcpu->arch.vpa;
379                 err = 0;
380                 break;
381
382         case H_VPA_REG_DTL:             /* register DTL */
383                 if (len < sizeof(struct dtl_entry))
384                         break;
385                 len -= len % sizeof(struct dtl_entry);
386
387                 /* Check that they have previously registered a VPA */
388                 err = H_RESOURCE;
389                 if (!vpa_is_registered(&tvcpu->arch.vpa))
390                         break;
391
392                 vpap = &tvcpu->arch.dtl;
393                 err = 0;
394                 break;
395
396         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
397                 /* Check that they have previously registered a VPA */
398                 err = H_RESOURCE;
399                 if (!vpa_is_registered(&tvcpu->arch.vpa))
400                         break;
401
402                 vpap = &tvcpu->arch.slb_shadow;
403                 err = 0;
404                 break;
405
406         case H_VPA_DEREG_VPA:           /* deregister VPA */
407                 /* Check they don't still have a DTL or SLB buf registered */
408                 err = H_RESOURCE;
409                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
410                     vpa_is_registered(&tvcpu->arch.slb_shadow))
411                         break;
412
413                 vpap = &tvcpu->arch.vpa;
414                 err = 0;
415                 break;
416
417         case H_VPA_DEREG_DTL:           /* deregister DTL */
418                 vpap = &tvcpu->arch.dtl;
419                 err = 0;
420                 break;
421
422         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
423                 vpap = &tvcpu->arch.slb_shadow;
424                 err = 0;
425                 break;
426         }
427
428         if (vpap) {
429                 vpap->next_gpa = vpa;
430                 vpap->len = len;
431                 vpap->update_pending = 1;
432         }
433
434         spin_unlock(&tvcpu->arch.vpa_update_lock);
435
436         return err;
437 }
438
439 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
440 {
441         struct kvm *kvm = vcpu->kvm;
442         void *va;
443         unsigned long nb;
444         unsigned long gpa;
445
446         /*
447          * We need to pin the page pointed to by vpap->next_gpa,
448          * but we can't call kvmppc_pin_guest_page under the lock
449          * as it does get_user_pages() and down_read().  So we
450          * have to drop the lock, pin the page, then get the lock
451          * again and check that a new area didn't get registered
452          * in the meantime.
453          */
454         for (;;) {
455                 gpa = vpap->next_gpa;
456                 spin_unlock(&vcpu->arch.vpa_update_lock);
457                 va = NULL;
458                 nb = 0;
459                 if (gpa)
460                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
461                 spin_lock(&vcpu->arch.vpa_update_lock);
462                 if (gpa == vpap->next_gpa)
463                         break;
464                 /* sigh... unpin that one and try again */
465                 if (va)
466                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
467         }
468
469         vpap->update_pending = 0;
470         if (va && nb < vpap->len) {
471                 /*
472                  * If it's now too short, it must be that userspace
473                  * has changed the mappings underlying guest memory,
474                  * so unregister the region.
475                  */
476                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
477                 va = NULL;
478         }
479         if (vpap->pinned_addr)
480                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
481                                         vpap->dirty);
482         vpap->gpa = gpa;
483         vpap->pinned_addr = va;
484         vpap->dirty = false;
485         if (va)
486                 vpap->pinned_end = va + vpap->len;
487 }
488
489 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
490 {
491         if (!(vcpu->arch.vpa.update_pending ||
492               vcpu->arch.slb_shadow.update_pending ||
493               vcpu->arch.dtl.update_pending))
494                 return;
495
496         spin_lock(&vcpu->arch.vpa_update_lock);
497         if (vcpu->arch.vpa.update_pending) {
498                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
499                 if (vcpu->arch.vpa.pinned_addr)
500                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
501         }
502         if (vcpu->arch.dtl.update_pending) {
503                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
504                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
505                 vcpu->arch.dtl_index = 0;
506         }
507         if (vcpu->arch.slb_shadow.update_pending)
508                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
509         spin_unlock(&vcpu->arch.vpa_update_lock);
510 }
511
512 /*
513  * Return the accumulated stolen time for the vcore up until `now'.
514  * The caller should hold the vcore lock.
515  */
516 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
517 {
518         u64 p;
519         unsigned long flags;
520
521         spin_lock_irqsave(&vc->stoltb_lock, flags);
522         p = vc->stolen_tb;
523         if (vc->vcore_state != VCORE_INACTIVE &&
524             vc->preempt_tb != TB_NIL)
525                 p += now - vc->preempt_tb;
526         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
527         return p;
528 }
529
530 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
531                                     struct kvmppc_vcore *vc)
532 {
533         struct dtl_entry *dt;
534         struct lppaca *vpa;
535         unsigned long stolen;
536         unsigned long core_stolen;
537         u64 now;
538
539         dt = vcpu->arch.dtl_ptr;
540         vpa = vcpu->arch.vpa.pinned_addr;
541         now = mftb();
542         core_stolen = vcore_stolen_time(vc, now);
543         stolen = core_stolen - vcpu->arch.stolen_logged;
544         vcpu->arch.stolen_logged = core_stolen;
545         spin_lock_irq(&vcpu->arch.tbacct_lock);
546         stolen += vcpu->arch.busy_stolen;
547         vcpu->arch.busy_stolen = 0;
548         spin_unlock_irq(&vcpu->arch.tbacct_lock);
549         if (!dt || !vpa)
550                 return;
551         memset(dt, 0, sizeof(struct dtl_entry));
552         dt->dispatch_reason = 7;
553         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
554         dt->timebase = cpu_to_be64(now + vc->tb_offset);
555         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
556         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
557         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
558         ++dt;
559         if (dt == vcpu->arch.dtl.pinned_end)
560                 dt = vcpu->arch.dtl.pinned_addr;
561         vcpu->arch.dtl_ptr = dt;
562         /* order writing *dt vs. writing vpa->dtl_idx */
563         smp_wmb();
564         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
565         vcpu->arch.dtl.dirty = true;
566 }
567
568 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
569 {
570         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
571                 return true;
572         if ((!vcpu->arch.vcore->arch_compat) &&
573             cpu_has_feature(CPU_FTR_ARCH_207S))
574                 return true;
575         return false;
576 }
577
578 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
579                              unsigned long resource, unsigned long value1,
580                              unsigned long value2)
581 {
582         switch (resource) {
583         case H_SET_MODE_RESOURCE_SET_CIABR:
584                 if (!kvmppc_power8_compatible(vcpu))
585                         return H_P2;
586                 if (value2)
587                         return H_P4;
588                 if (mflags)
589                         return H_UNSUPPORTED_FLAG_START;
590                 /* Guests can't breakpoint the hypervisor */
591                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
592                         return H_P3;
593                 vcpu->arch.ciabr  = value1;
594                 return H_SUCCESS;
595         case H_SET_MODE_RESOURCE_SET_DAWR:
596                 if (!kvmppc_power8_compatible(vcpu))
597                         return H_P2;
598                 if (mflags)
599                         return H_UNSUPPORTED_FLAG_START;
600                 if (value2 & DABRX_HYP)
601                         return H_P4;
602                 vcpu->arch.dawr  = value1;
603                 vcpu->arch.dawrx = value2;
604                 return H_SUCCESS;
605         default:
606                 return H_TOO_HARD;
607         }
608 }
609
610 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
611 {
612         struct kvmppc_vcore *vcore = target->arch.vcore;
613
614         /*
615          * We expect to have been called by the real mode handler
616          * (kvmppc_rm_h_confer()) which would have directly returned
617          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
618          * have useful work to do and should not confer) so we don't
619          * recheck that here.
620          */
621
622         spin_lock(&vcore->lock);
623         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
624             vcore->vcore_state != VCORE_INACTIVE)
625                 target = vcore->runner;
626         spin_unlock(&vcore->lock);
627
628         return kvm_vcpu_yield_to(target);
629 }
630
631 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
632 {
633         int yield_count = 0;
634         struct lppaca *lppaca;
635
636         spin_lock(&vcpu->arch.vpa_update_lock);
637         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
638         if (lppaca)
639                 yield_count = be32_to_cpu(lppaca->yield_count);
640         spin_unlock(&vcpu->arch.vpa_update_lock);
641         return yield_count;
642 }
643
644 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
645 {
646         unsigned long req = kvmppc_get_gpr(vcpu, 3);
647         unsigned long target, ret = H_SUCCESS;
648         int yield_count;
649         struct kvm_vcpu *tvcpu;
650         int idx, rc;
651
652         if (req <= MAX_HCALL_OPCODE &&
653             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
654                 return RESUME_HOST;
655
656         switch (req) {
657         case H_CEDE:
658                 break;
659         case H_PROD:
660                 target = kvmppc_get_gpr(vcpu, 4);
661                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
662                 if (!tvcpu) {
663                         ret = H_PARAMETER;
664                         break;
665                 }
666                 tvcpu->arch.prodded = 1;
667                 smp_mb();
668                 if (vcpu->arch.ceded) {
669                         if (waitqueue_active(&vcpu->wq)) {
670                                 wake_up_interruptible(&vcpu->wq);
671                                 vcpu->stat.halt_wakeup++;
672                         }
673                 }
674                 break;
675         case H_CONFER:
676                 target = kvmppc_get_gpr(vcpu, 4);
677                 if (target == -1)
678                         break;
679                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
680                 if (!tvcpu) {
681                         ret = H_PARAMETER;
682                         break;
683                 }
684                 yield_count = kvmppc_get_gpr(vcpu, 5);
685                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
686                         break;
687                 kvm_arch_vcpu_yield_to(tvcpu);
688                 break;
689         case H_REGISTER_VPA:
690                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
691                                         kvmppc_get_gpr(vcpu, 5),
692                                         kvmppc_get_gpr(vcpu, 6));
693                 break;
694         case H_RTAS:
695                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
696                         return RESUME_HOST;
697
698                 idx = srcu_read_lock(&vcpu->kvm->srcu);
699                 rc = kvmppc_rtas_hcall(vcpu);
700                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
701
702                 if (rc == -ENOENT)
703                         return RESUME_HOST;
704                 else if (rc == 0)
705                         break;
706
707                 /* Send the error out to userspace via KVM_RUN */
708                 return rc;
709         case H_LOGICAL_CI_LOAD:
710                 ret = kvmppc_h_logical_ci_load(vcpu);
711                 if (ret == H_TOO_HARD)
712                         return RESUME_HOST;
713                 break;
714         case H_LOGICAL_CI_STORE:
715                 ret = kvmppc_h_logical_ci_store(vcpu);
716                 if (ret == H_TOO_HARD)
717                         return RESUME_HOST;
718                 break;
719         case H_SET_MODE:
720                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
721                                         kvmppc_get_gpr(vcpu, 5),
722                                         kvmppc_get_gpr(vcpu, 6),
723                                         kvmppc_get_gpr(vcpu, 7));
724                 if (ret == H_TOO_HARD)
725                         return RESUME_HOST;
726                 break;
727         case H_XIRR:
728         case H_CPPR:
729         case H_EOI:
730         case H_IPI:
731         case H_IPOLL:
732         case H_XIRR_X:
733                 if (kvmppc_xics_enabled(vcpu)) {
734                         ret = kvmppc_xics_hcall(vcpu, req);
735                         break;
736                 } /* fallthrough */
737         default:
738                 return RESUME_HOST;
739         }
740         kvmppc_set_gpr(vcpu, 3, ret);
741         vcpu->arch.hcall_needed = 0;
742         return RESUME_GUEST;
743 }
744
745 static int kvmppc_hcall_impl_hv(unsigned long cmd)
746 {
747         switch (cmd) {
748         case H_CEDE:
749         case H_PROD:
750         case H_CONFER:
751         case H_REGISTER_VPA:
752         case H_SET_MODE:
753         case H_LOGICAL_CI_LOAD:
754         case H_LOGICAL_CI_STORE:
755 #ifdef CONFIG_KVM_XICS
756         case H_XIRR:
757         case H_CPPR:
758         case H_EOI:
759         case H_IPI:
760         case H_IPOLL:
761         case H_XIRR_X:
762 #endif
763                 return 1;
764         }
765
766         /* See if it's in the real-mode table */
767         return kvmppc_hcall_impl_hv_realmode(cmd);
768 }
769
770 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
771                                         struct kvm_vcpu *vcpu)
772 {
773         u32 last_inst;
774
775         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
776                                         EMULATE_DONE) {
777                 /*
778                  * Fetch failed, so return to guest and
779                  * try executing it again.
780                  */
781                 return RESUME_GUEST;
782         }
783
784         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
785                 run->exit_reason = KVM_EXIT_DEBUG;
786                 run->debug.arch.address = kvmppc_get_pc(vcpu);
787                 return RESUME_HOST;
788         } else {
789                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
790                 return RESUME_GUEST;
791         }
792 }
793
794 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
795                                  struct task_struct *tsk)
796 {
797         int r = RESUME_HOST;
798
799         vcpu->stat.sum_exits++;
800
801         run->exit_reason = KVM_EXIT_UNKNOWN;
802         run->ready_for_interrupt_injection = 1;
803         switch (vcpu->arch.trap) {
804         /* We're good on these - the host merely wanted to get our attention */
805         case BOOK3S_INTERRUPT_HV_DECREMENTER:
806                 vcpu->stat.dec_exits++;
807                 r = RESUME_GUEST;
808                 break;
809         case BOOK3S_INTERRUPT_EXTERNAL:
810         case BOOK3S_INTERRUPT_H_DOORBELL:
811                 vcpu->stat.ext_intr_exits++;
812                 r = RESUME_GUEST;
813                 break;
814         /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
815         case BOOK3S_INTERRUPT_HMI:
816         case BOOK3S_INTERRUPT_PERFMON:
817                 r = RESUME_GUEST;
818                 break;
819         case BOOK3S_INTERRUPT_MACHINE_CHECK:
820                 /*
821                  * Deliver a machine check interrupt to the guest.
822                  * We have to do this, even if the host has handled the
823                  * machine check, because machine checks use SRR0/1 and
824                  * the interrupt might have trashed guest state in them.
825                  */
826                 kvmppc_book3s_queue_irqprio(vcpu,
827                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
828                 r = RESUME_GUEST;
829                 break;
830         case BOOK3S_INTERRUPT_PROGRAM:
831         {
832                 ulong flags;
833                 /*
834                  * Normally program interrupts are delivered directly
835                  * to the guest by the hardware, but we can get here
836                  * as a result of a hypervisor emulation interrupt
837                  * (e40) getting turned into a 700 by BML RTAS.
838                  */
839                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
840                 kvmppc_core_queue_program(vcpu, flags);
841                 r = RESUME_GUEST;
842                 break;
843         }
844         case BOOK3S_INTERRUPT_SYSCALL:
845         {
846                 /* hcall - punt to userspace */
847                 int i;
848
849                 /* hypercall with MSR_PR has already been handled in rmode,
850                  * and never reaches here.
851                  */
852
853                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
854                 for (i = 0; i < 9; ++i)
855                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
856                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
857                 vcpu->arch.hcall_needed = 1;
858                 r = RESUME_HOST;
859                 break;
860         }
861         /*
862          * We get these next two if the guest accesses a page which it thinks
863          * it has mapped but which is not actually present, either because
864          * it is for an emulated I/O device or because the corresonding
865          * host page has been paged out.  Any other HDSI/HISI interrupts
866          * have been handled already.
867          */
868         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
869                 r = RESUME_PAGE_FAULT;
870                 break;
871         case BOOK3S_INTERRUPT_H_INST_STORAGE:
872                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
873                 vcpu->arch.fault_dsisr = 0;
874                 r = RESUME_PAGE_FAULT;
875                 break;
876         /*
877          * This occurs if the guest executes an illegal instruction.
878          * If the guest debug is disabled, generate a program interrupt
879          * to the guest. If guest debug is enabled, we need to check
880          * whether the instruction is a software breakpoint instruction.
881          * Accordingly return to Guest or Host.
882          */
883         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
884                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
885                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
886                                 swab32(vcpu->arch.emul_inst) :
887                                 vcpu->arch.emul_inst;
888                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
889                         r = kvmppc_emulate_debug_inst(run, vcpu);
890                 } else {
891                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
892                         r = RESUME_GUEST;
893                 }
894                 break;
895         /*
896          * This occurs if the guest (kernel or userspace), does something that
897          * is prohibited by HFSCR.  We just generate a program interrupt to
898          * the guest.
899          */
900         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
901                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
902                 r = RESUME_GUEST;
903                 break;
904         default:
905                 kvmppc_dump_regs(vcpu);
906                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
907                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
908                         vcpu->arch.shregs.msr);
909                 run->hw.hardware_exit_reason = vcpu->arch.trap;
910                 r = RESUME_HOST;
911                 break;
912         }
913
914         return r;
915 }
916
917 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
918                                             struct kvm_sregs *sregs)
919 {
920         int i;
921
922         memset(sregs, 0, sizeof(struct kvm_sregs));
923         sregs->pvr = vcpu->arch.pvr;
924         for (i = 0; i < vcpu->arch.slb_max; i++) {
925                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
926                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
927         }
928
929         return 0;
930 }
931
932 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
933                                             struct kvm_sregs *sregs)
934 {
935         int i, j;
936
937         /* Only accept the same PVR as the host's, since we can't spoof it */
938         if (sregs->pvr != vcpu->arch.pvr)
939                 return -EINVAL;
940
941         j = 0;
942         for (i = 0; i < vcpu->arch.slb_nr; i++) {
943                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
944                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
945                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
946                         ++j;
947                 }
948         }
949         vcpu->arch.slb_max = j;
950
951         return 0;
952 }
953
954 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
955                 bool preserve_top32)
956 {
957         struct kvm *kvm = vcpu->kvm;
958         struct kvmppc_vcore *vc = vcpu->arch.vcore;
959         u64 mask;
960
961         mutex_lock(&kvm->lock);
962         spin_lock(&vc->lock);
963         /*
964          * If ILE (interrupt little-endian) has changed, update the
965          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
966          */
967         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
968                 struct kvm_vcpu *vcpu;
969                 int i;
970
971                 kvm_for_each_vcpu(i, vcpu, kvm) {
972                         if (vcpu->arch.vcore != vc)
973                                 continue;
974                         if (new_lpcr & LPCR_ILE)
975                                 vcpu->arch.intr_msr |= MSR_LE;
976                         else
977                                 vcpu->arch.intr_msr &= ~MSR_LE;
978                 }
979         }
980
981         /*
982          * Userspace can only modify DPFD (default prefetch depth),
983          * ILE (interrupt little-endian) and TC (translation control).
984          * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
985          */
986         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
987         if (cpu_has_feature(CPU_FTR_ARCH_207S))
988                 mask |= LPCR_AIL;
989
990         /* Broken 32-bit version of LPCR must not clear top bits */
991         if (preserve_top32)
992                 mask &= 0xFFFFFFFF;
993         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
994         spin_unlock(&vc->lock);
995         mutex_unlock(&kvm->lock);
996 }
997
998 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
999                                  union kvmppc_one_reg *val)
1000 {
1001         int r = 0;
1002         long int i;
1003
1004         switch (id) {
1005         case KVM_REG_PPC_DEBUG_INST:
1006                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1007                 break;
1008         case KVM_REG_PPC_HIOR:
1009                 *val = get_reg_val(id, 0);
1010                 break;
1011         case KVM_REG_PPC_DABR:
1012                 *val = get_reg_val(id, vcpu->arch.dabr);
1013                 break;
1014         case KVM_REG_PPC_DABRX:
1015                 *val = get_reg_val(id, vcpu->arch.dabrx);
1016                 break;
1017         case KVM_REG_PPC_DSCR:
1018                 *val = get_reg_val(id, vcpu->arch.dscr);
1019                 break;
1020         case KVM_REG_PPC_PURR:
1021                 *val = get_reg_val(id, vcpu->arch.purr);
1022                 break;
1023         case KVM_REG_PPC_SPURR:
1024                 *val = get_reg_val(id, vcpu->arch.spurr);
1025                 break;
1026         case KVM_REG_PPC_AMR:
1027                 *val = get_reg_val(id, vcpu->arch.amr);
1028                 break;
1029         case KVM_REG_PPC_UAMOR:
1030                 *val = get_reg_val(id, vcpu->arch.uamor);
1031                 break;
1032         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1033                 i = id - KVM_REG_PPC_MMCR0;
1034                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1035                 break;
1036         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1037                 i = id - KVM_REG_PPC_PMC1;
1038                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1039                 break;
1040         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1041                 i = id - KVM_REG_PPC_SPMC1;
1042                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1043                 break;
1044         case KVM_REG_PPC_SIAR:
1045                 *val = get_reg_val(id, vcpu->arch.siar);
1046                 break;
1047         case KVM_REG_PPC_SDAR:
1048                 *val = get_reg_val(id, vcpu->arch.sdar);
1049                 break;
1050         case KVM_REG_PPC_SIER:
1051                 *val = get_reg_val(id, vcpu->arch.sier);
1052                 break;
1053         case KVM_REG_PPC_IAMR:
1054                 *val = get_reg_val(id, vcpu->arch.iamr);
1055                 break;
1056         case KVM_REG_PPC_PSPB:
1057                 *val = get_reg_val(id, vcpu->arch.pspb);
1058                 break;
1059         case KVM_REG_PPC_DPDES:
1060                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1061                 break;
1062         case KVM_REG_PPC_DAWR:
1063                 *val = get_reg_val(id, vcpu->arch.dawr);
1064                 break;
1065         case KVM_REG_PPC_DAWRX:
1066                 *val = get_reg_val(id, vcpu->arch.dawrx);
1067                 break;
1068         case KVM_REG_PPC_CIABR:
1069                 *val = get_reg_val(id, vcpu->arch.ciabr);
1070                 break;
1071         case KVM_REG_PPC_CSIGR:
1072                 *val = get_reg_val(id, vcpu->arch.csigr);
1073                 break;
1074         case KVM_REG_PPC_TACR:
1075                 *val = get_reg_val(id, vcpu->arch.tacr);
1076                 break;
1077         case KVM_REG_PPC_TCSCR:
1078                 *val = get_reg_val(id, vcpu->arch.tcscr);
1079                 break;
1080         case KVM_REG_PPC_PID:
1081                 *val = get_reg_val(id, vcpu->arch.pid);
1082                 break;
1083         case KVM_REG_PPC_ACOP:
1084                 *val = get_reg_val(id, vcpu->arch.acop);
1085                 break;
1086         case KVM_REG_PPC_WORT:
1087                 *val = get_reg_val(id, vcpu->arch.wort);
1088                 break;
1089         case KVM_REG_PPC_VPA_ADDR:
1090                 spin_lock(&vcpu->arch.vpa_update_lock);
1091                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1092                 spin_unlock(&vcpu->arch.vpa_update_lock);
1093                 break;
1094         case KVM_REG_PPC_VPA_SLB:
1095                 spin_lock(&vcpu->arch.vpa_update_lock);
1096                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1097                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1098                 spin_unlock(&vcpu->arch.vpa_update_lock);
1099                 break;
1100         case KVM_REG_PPC_VPA_DTL:
1101                 spin_lock(&vcpu->arch.vpa_update_lock);
1102                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1103                 val->vpaval.length = vcpu->arch.dtl.len;
1104                 spin_unlock(&vcpu->arch.vpa_update_lock);
1105                 break;
1106         case KVM_REG_PPC_TB_OFFSET:
1107                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1108                 break;
1109         case KVM_REG_PPC_LPCR:
1110         case KVM_REG_PPC_LPCR_64:
1111                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1112                 break;
1113         case KVM_REG_PPC_PPR:
1114                 *val = get_reg_val(id, vcpu->arch.ppr);
1115                 break;
1116 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1117         case KVM_REG_PPC_TFHAR:
1118                 *val = get_reg_val(id, vcpu->arch.tfhar);
1119                 break;
1120         case KVM_REG_PPC_TFIAR:
1121                 *val = get_reg_val(id, vcpu->arch.tfiar);
1122                 break;
1123         case KVM_REG_PPC_TEXASR:
1124                 *val = get_reg_val(id, vcpu->arch.texasr);
1125                 break;
1126         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1127                 i = id - KVM_REG_PPC_TM_GPR0;
1128                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1129                 break;
1130         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1131         {
1132                 int j;
1133                 i = id - KVM_REG_PPC_TM_VSR0;
1134                 if (i < 32)
1135                         for (j = 0; j < TS_FPRWIDTH; j++)
1136                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1137                 else {
1138                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1139                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1140                         else
1141                                 r = -ENXIO;
1142                 }
1143                 break;
1144         }
1145         case KVM_REG_PPC_TM_CR:
1146                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1147                 break;
1148         case KVM_REG_PPC_TM_LR:
1149                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1150                 break;
1151         case KVM_REG_PPC_TM_CTR:
1152                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1153                 break;
1154         case KVM_REG_PPC_TM_FPSCR:
1155                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1156                 break;
1157         case KVM_REG_PPC_TM_AMR:
1158                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1159                 break;
1160         case KVM_REG_PPC_TM_PPR:
1161                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1162                 break;
1163         case KVM_REG_PPC_TM_VRSAVE:
1164                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1165                 break;
1166         case KVM_REG_PPC_TM_VSCR:
1167                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1168                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1169                 else
1170                         r = -ENXIO;
1171                 break;
1172         case KVM_REG_PPC_TM_DSCR:
1173                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1174                 break;
1175         case KVM_REG_PPC_TM_TAR:
1176                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1177                 break;
1178 #endif
1179         case KVM_REG_PPC_ARCH_COMPAT:
1180                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1181                 break;
1182         default:
1183                 r = -EINVAL;
1184                 break;
1185         }
1186
1187         return r;
1188 }
1189
1190 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1191                                  union kvmppc_one_reg *val)
1192 {
1193         int r = 0;
1194         long int i;
1195         unsigned long addr, len;
1196
1197         switch (id) {
1198         case KVM_REG_PPC_HIOR:
1199                 /* Only allow this to be set to zero */
1200                 if (set_reg_val(id, *val))
1201                         r = -EINVAL;
1202                 break;
1203         case KVM_REG_PPC_DABR:
1204                 vcpu->arch.dabr = set_reg_val(id, *val);
1205                 break;
1206         case KVM_REG_PPC_DABRX:
1207                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1208                 break;
1209         case KVM_REG_PPC_DSCR:
1210                 vcpu->arch.dscr = set_reg_val(id, *val);
1211                 break;
1212         case KVM_REG_PPC_PURR:
1213                 vcpu->arch.purr = set_reg_val(id, *val);
1214                 break;
1215         case KVM_REG_PPC_SPURR:
1216                 vcpu->arch.spurr = set_reg_val(id, *val);
1217                 break;
1218         case KVM_REG_PPC_AMR:
1219                 vcpu->arch.amr = set_reg_val(id, *val);
1220                 break;
1221         case KVM_REG_PPC_UAMOR:
1222                 vcpu->arch.uamor = set_reg_val(id, *val);
1223                 break;
1224         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1225                 i = id - KVM_REG_PPC_MMCR0;
1226                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1227                 break;
1228         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1229                 i = id - KVM_REG_PPC_PMC1;
1230                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1231                 break;
1232         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1233                 i = id - KVM_REG_PPC_SPMC1;
1234                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1235                 break;
1236         case KVM_REG_PPC_SIAR:
1237                 vcpu->arch.siar = set_reg_val(id, *val);
1238                 break;
1239         case KVM_REG_PPC_SDAR:
1240                 vcpu->arch.sdar = set_reg_val(id, *val);
1241                 break;
1242         case KVM_REG_PPC_SIER:
1243                 vcpu->arch.sier = set_reg_val(id, *val);
1244                 break;
1245         case KVM_REG_PPC_IAMR:
1246                 vcpu->arch.iamr = set_reg_val(id, *val);
1247                 break;
1248         case KVM_REG_PPC_PSPB:
1249                 vcpu->arch.pspb = set_reg_val(id, *val);
1250                 break;
1251         case KVM_REG_PPC_DPDES:
1252                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1253                 break;
1254         case KVM_REG_PPC_DAWR:
1255                 vcpu->arch.dawr = set_reg_val(id, *val);
1256                 break;
1257         case KVM_REG_PPC_DAWRX:
1258                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1259                 break;
1260         case KVM_REG_PPC_CIABR:
1261                 vcpu->arch.ciabr = set_reg_val(id, *val);
1262                 /* Don't allow setting breakpoints in hypervisor code */
1263                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1264                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1265                 break;
1266         case KVM_REG_PPC_CSIGR:
1267                 vcpu->arch.csigr = set_reg_val(id, *val);
1268                 break;
1269         case KVM_REG_PPC_TACR:
1270                 vcpu->arch.tacr = set_reg_val(id, *val);
1271                 break;
1272         case KVM_REG_PPC_TCSCR:
1273                 vcpu->arch.tcscr = set_reg_val(id, *val);
1274                 break;
1275         case KVM_REG_PPC_PID:
1276                 vcpu->arch.pid = set_reg_val(id, *val);
1277                 break;
1278         case KVM_REG_PPC_ACOP:
1279                 vcpu->arch.acop = set_reg_val(id, *val);
1280                 break;
1281         case KVM_REG_PPC_WORT:
1282                 vcpu->arch.wort = set_reg_val(id, *val);
1283                 break;
1284         case KVM_REG_PPC_VPA_ADDR:
1285                 addr = set_reg_val(id, *val);
1286                 r = -EINVAL;
1287                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1288                               vcpu->arch.dtl.next_gpa))
1289                         break;
1290                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1291                 break;
1292         case KVM_REG_PPC_VPA_SLB:
1293                 addr = val->vpaval.addr;
1294                 len = val->vpaval.length;
1295                 r = -EINVAL;
1296                 if (addr && !vcpu->arch.vpa.next_gpa)
1297                         break;
1298                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1299                 break;
1300         case KVM_REG_PPC_VPA_DTL:
1301                 addr = val->vpaval.addr;
1302                 len = val->vpaval.length;
1303                 r = -EINVAL;
1304                 if (addr && (len < sizeof(struct dtl_entry) ||
1305                              !vcpu->arch.vpa.next_gpa))
1306                         break;
1307                 len -= len % sizeof(struct dtl_entry);
1308                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1309                 break;
1310         case KVM_REG_PPC_TB_OFFSET:
1311                 /* round up to multiple of 2^24 */
1312                 vcpu->arch.vcore->tb_offset =
1313                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1314                 break;
1315         case KVM_REG_PPC_LPCR:
1316                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1317                 break;
1318         case KVM_REG_PPC_LPCR_64:
1319                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1320                 break;
1321         case KVM_REG_PPC_PPR:
1322                 vcpu->arch.ppr = set_reg_val(id, *val);
1323                 break;
1324 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1325         case KVM_REG_PPC_TFHAR:
1326                 vcpu->arch.tfhar = set_reg_val(id, *val);
1327                 break;
1328         case KVM_REG_PPC_TFIAR:
1329                 vcpu->arch.tfiar = set_reg_val(id, *val);
1330                 break;
1331         case KVM_REG_PPC_TEXASR:
1332                 vcpu->arch.texasr = set_reg_val(id, *val);
1333                 break;
1334         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1335                 i = id - KVM_REG_PPC_TM_GPR0;
1336                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1337                 break;
1338         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1339         {
1340                 int j;
1341                 i = id - KVM_REG_PPC_TM_VSR0;
1342                 if (i < 32)
1343                         for (j = 0; j < TS_FPRWIDTH; j++)
1344                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1345                 else
1346                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1347                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1348                         else
1349                                 r = -ENXIO;
1350                 break;
1351         }
1352         case KVM_REG_PPC_TM_CR:
1353                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1354                 break;
1355         case KVM_REG_PPC_TM_LR:
1356                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1357                 break;
1358         case KVM_REG_PPC_TM_CTR:
1359                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1360                 break;
1361         case KVM_REG_PPC_TM_FPSCR:
1362                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1363                 break;
1364         case KVM_REG_PPC_TM_AMR:
1365                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1366                 break;
1367         case KVM_REG_PPC_TM_PPR:
1368                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1369                 break;
1370         case KVM_REG_PPC_TM_VRSAVE:
1371                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1372                 break;
1373         case KVM_REG_PPC_TM_VSCR:
1374                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1375                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1376                 else
1377                         r = - ENXIO;
1378                 break;
1379         case KVM_REG_PPC_TM_DSCR:
1380                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1381                 break;
1382         case KVM_REG_PPC_TM_TAR:
1383                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1384                 break;
1385 #endif
1386         case KVM_REG_PPC_ARCH_COMPAT:
1387                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1388                 break;
1389         default:
1390                 r = -EINVAL;
1391                 break;
1392         }
1393
1394         return r;
1395 }
1396
1397 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1398 {
1399         struct kvmppc_vcore *vcore;
1400
1401         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1402
1403         if (vcore == NULL)
1404                 return NULL;
1405
1406         INIT_LIST_HEAD(&vcore->runnable_threads);
1407         spin_lock_init(&vcore->lock);
1408         spin_lock_init(&vcore->stoltb_lock);
1409         init_waitqueue_head(&vcore->wq);
1410         vcore->preempt_tb = TB_NIL;
1411         vcore->lpcr = kvm->arch.lpcr;
1412         vcore->first_vcpuid = core * threads_per_subcore;
1413         vcore->kvm = kvm;
1414
1415         vcore->mpp_buffer_is_valid = false;
1416
1417         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1418                 vcore->mpp_buffer = (void *)__get_free_pages(
1419                         GFP_KERNEL|__GFP_ZERO,
1420                         MPP_BUFFER_ORDER);
1421
1422         return vcore;
1423 }
1424
1425 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1426                                                    unsigned int id)
1427 {
1428         struct kvm_vcpu *vcpu;
1429         int err = -EINVAL;
1430         int core;
1431         struct kvmppc_vcore *vcore;
1432
1433         core = id / threads_per_subcore;
1434         if (core >= KVM_MAX_VCORES)
1435                 goto out;
1436
1437         err = -ENOMEM;
1438         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1439         if (!vcpu)
1440                 goto out;
1441
1442         err = kvm_vcpu_init(vcpu, kvm, id);
1443         if (err)
1444                 goto free_vcpu;
1445
1446         vcpu->arch.shared = &vcpu->arch.shregs;
1447 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1448         /*
1449          * The shared struct is never shared on HV,
1450          * so we can always use host endianness
1451          */
1452 #ifdef __BIG_ENDIAN__
1453         vcpu->arch.shared_big_endian = true;
1454 #else
1455         vcpu->arch.shared_big_endian = false;
1456 #endif
1457 #endif
1458         vcpu->arch.mmcr[0] = MMCR0_FC;
1459         vcpu->arch.ctrl = CTRL_RUNLATCH;
1460         /* default to host PVR, since we can't spoof it */
1461         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1462         spin_lock_init(&vcpu->arch.vpa_update_lock);
1463         spin_lock_init(&vcpu->arch.tbacct_lock);
1464         vcpu->arch.busy_preempt = TB_NIL;
1465         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1466
1467         kvmppc_mmu_book3s_hv_init(vcpu);
1468
1469         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1470
1471         init_waitqueue_head(&vcpu->arch.cpu_run);
1472
1473         mutex_lock(&kvm->lock);
1474         vcore = kvm->arch.vcores[core];
1475         if (!vcore) {
1476                 vcore = kvmppc_vcore_create(kvm, core);
1477                 kvm->arch.vcores[core] = vcore;
1478                 kvm->arch.online_vcores++;
1479         }
1480         mutex_unlock(&kvm->lock);
1481
1482         if (!vcore)
1483                 goto free_vcpu;
1484
1485         spin_lock(&vcore->lock);
1486         ++vcore->num_threads;
1487         spin_unlock(&vcore->lock);
1488         vcpu->arch.vcore = vcore;
1489         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1490
1491         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1492         kvmppc_sanity_check(vcpu);
1493
1494         return vcpu;
1495
1496 free_vcpu:
1497         kmem_cache_free(kvm_vcpu_cache, vcpu);
1498 out:
1499         return ERR_PTR(err);
1500 }
1501
1502 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1503 {
1504         if (vpa->pinned_addr)
1505                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1506                                         vpa->dirty);
1507 }
1508
1509 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1510 {
1511         spin_lock(&vcpu->arch.vpa_update_lock);
1512         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1513         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1514         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1515         spin_unlock(&vcpu->arch.vpa_update_lock);
1516         kvm_vcpu_uninit(vcpu);
1517         kmem_cache_free(kvm_vcpu_cache, vcpu);
1518 }
1519
1520 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1521 {
1522         /* Indicate we want to get back into the guest */
1523         return 1;
1524 }
1525
1526 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1527 {
1528         unsigned long dec_nsec, now;
1529
1530         now = get_tb();
1531         if (now > vcpu->arch.dec_expires) {
1532                 /* decrementer has already gone negative */
1533                 kvmppc_core_queue_dec(vcpu);
1534                 kvmppc_core_prepare_to_enter(vcpu);
1535                 return;
1536         }
1537         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1538                    / tb_ticks_per_sec;
1539         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1540                       HRTIMER_MODE_REL);
1541         vcpu->arch.timer_running = 1;
1542 }
1543
1544 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1545 {
1546         vcpu->arch.ceded = 0;
1547         if (vcpu->arch.timer_running) {
1548                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1549                 vcpu->arch.timer_running = 0;
1550         }
1551 }
1552
1553 extern void __kvmppc_vcore_entry(void);
1554
1555 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1556                                    struct kvm_vcpu *vcpu)
1557 {
1558         u64 now;
1559
1560         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1561                 return;
1562         spin_lock_irq(&vcpu->arch.tbacct_lock);
1563         now = mftb();
1564         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1565                 vcpu->arch.stolen_logged;
1566         vcpu->arch.busy_preempt = now;
1567         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1568         spin_unlock_irq(&vcpu->arch.tbacct_lock);
1569         --vc->n_runnable;
1570         list_del(&vcpu->arch.run_list);
1571 }
1572
1573 static int kvmppc_grab_hwthread(int cpu)
1574 {
1575         struct paca_struct *tpaca;
1576         long timeout = 10000;
1577
1578         tpaca = &paca[cpu];
1579
1580         /* Ensure the thread won't go into the kernel if it wakes */
1581         tpaca->kvm_hstate.hwthread_req = 1;
1582         tpaca->kvm_hstate.kvm_vcpu = NULL;
1583
1584         /*
1585          * If the thread is already executing in the kernel (e.g. handling
1586          * a stray interrupt), wait for it to get back to nap mode.
1587          * The smp_mb() is to ensure that our setting of hwthread_req
1588          * is visible before we look at hwthread_state, so if this
1589          * races with the code at system_reset_pSeries and the thread
1590          * misses our setting of hwthread_req, we are sure to see its
1591          * setting of hwthread_state, and vice versa.
1592          */
1593         smp_mb();
1594         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1595                 if (--timeout <= 0) {
1596                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1597                         return -EBUSY;
1598                 }
1599                 udelay(1);
1600         }
1601         return 0;
1602 }
1603
1604 static void kvmppc_release_hwthread(int cpu)
1605 {
1606         struct paca_struct *tpaca;
1607
1608         tpaca = &paca[cpu];
1609         tpaca->kvm_hstate.hwthread_req = 0;
1610         tpaca->kvm_hstate.kvm_vcpu = NULL;
1611 }
1612
1613 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1614 {
1615         int cpu;
1616         struct paca_struct *tpaca;
1617         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1618
1619         if (vcpu->arch.timer_running) {
1620                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1621                 vcpu->arch.timer_running = 0;
1622         }
1623         cpu = vc->pcpu + vcpu->arch.ptid;
1624         tpaca = &paca[cpu];
1625         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1626         tpaca->kvm_hstate.kvm_vcore = vc;
1627         tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1628         vcpu->cpu = vc->pcpu;
1629         smp_wmb();
1630 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1631         if (cpu != smp_processor_id()) {
1632                 xics_wake_cpu(cpu);
1633                 if (vcpu->arch.ptid)
1634                         ++vc->n_woken;
1635         }
1636 #endif
1637 }
1638
1639 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1640 {
1641         int i;
1642
1643         HMT_low();
1644         i = 0;
1645         while (vc->nap_count < vc->n_woken) {
1646                 if (++i >= 1000000) {
1647                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1648                                vc->nap_count, vc->n_woken);
1649                         break;
1650                 }
1651                 cpu_relax();
1652         }
1653         HMT_medium();
1654 }
1655
1656 /*
1657  * Check that we are on thread 0 and that any other threads in
1658  * this core are off-line.  Then grab the threads so they can't
1659  * enter the kernel.
1660  */
1661 static int on_primary_thread(void)
1662 {
1663         int cpu = smp_processor_id();
1664         int thr;
1665
1666         /* Are we on a primary subcore? */
1667         if (cpu_thread_in_subcore(cpu))
1668                 return 0;
1669
1670         thr = 0;
1671         while (++thr < threads_per_subcore)
1672                 if (cpu_online(cpu + thr))
1673                         return 0;
1674
1675         /* Grab all hw threads so they can't go into the kernel */
1676         for (thr = 1; thr < threads_per_subcore; ++thr) {
1677                 if (kvmppc_grab_hwthread(cpu + thr)) {
1678                         /* Couldn't grab one; let the others go */
1679                         do {
1680                                 kvmppc_release_hwthread(cpu + thr);
1681                         } while (--thr > 0);
1682                         return 0;
1683                 }
1684         }
1685         return 1;
1686 }
1687
1688 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
1689 {
1690         phys_addr_t phy_addr, mpp_addr;
1691
1692         phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
1693         mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1694
1695         mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
1696         logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
1697
1698         vc->mpp_buffer_is_valid = true;
1699 }
1700
1701 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
1702 {
1703         phys_addr_t phy_addr, mpp_addr;
1704
1705         phy_addr = virt_to_phys(vc->mpp_buffer);
1706         mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1707
1708         /* We must abort any in-progress save operations to ensure
1709          * the table is valid so that prefetch engine knows when to
1710          * stop prefetching. */
1711         logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
1712         mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
1713 }
1714
1715 /*
1716  * Run a set of guest threads on a physical core.
1717  * Called with vc->lock held.
1718  */
1719 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1720 {
1721         struct kvm_vcpu *vcpu, *vnext;
1722         long ret;
1723         u64 now;
1724         int i, need_vpa_update;
1725         int srcu_idx;
1726         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1727
1728         /* don't start if any threads have a signal pending */
1729         need_vpa_update = 0;
1730         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1731                 if (signal_pending(vcpu->arch.run_task))
1732                         return;
1733                 if (vcpu->arch.vpa.update_pending ||
1734                     vcpu->arch.slb_shadow.update_pending ||
1735                     vcpu->arch.dtl.update_pending)
1736                         vcpus_to_update[need_vpa_update++] = vcpu;
1737         }
1738
1739         /*
1740          * Initialize *vc, in particular vc->vcore_state, so we can
1741          * drop the vcore lock if necessary.
1742          */
1743         vc->n_woken = 0;
1744         vc->nap_count = 0;
1745         vc->entry_exit_count = 0;
1746         vc->preempt_tb = TB_NIL;
1747         vc->vcore_state = VCORE_STARTING;
1748         vc->in_guest = 0;
1749         vc->napping_threads = 0;
1750         vc->conferring_threads = 0;
1751
1752         /*
1753          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1754          * which can't be called with any spinlocks held.
1755          */
1756         if (need_vpa_update) {
1757                 spin_unlock(&vc->lock);
1758                 for (i = 0; i < need_vpa_update; ++i)
1759                         kvmppc_update_vpas(vcpus_to_update[i]);
1760                 spin_lock(&vc->lock);
1761         }
1762
1763         /*
1764          * Make sure we are running on primary threads, and that secondary
1765          * threads are offline.  Also check if the number of threads in this
1766          * guest are greater than the current system threads per guest.
1767          */
1768         if ((threads_per_core > 1) &&
1769             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1770                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1771                         vcpu->arch.ret = -EBUSY;
1772                 goto out;
1773         }
1774
1775
1776         vc->pcpu = smp_processor_id();
1777         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1778                 kvmppc_start_thread(vcpu);
1779                 kvmppc_create_dtl_entry(vcpu, vc);
1780                 trace_kvm_guest_enter(vcpu);
1781         }
1782
1783         /* Set this explicitly in case thread 0 doesn't have a vcpu */
1784         get_paca()->kvm_hstate.kvm_vcore = vc;
1785         get_paca()->kvm_hstate.ptid = 0;
1786
1787         vc->vcore_state = VCORE_RUNNING;
1788         preempt_disable();
1789
1790         trace_kvmppc_run_core(vc, 0);
1791
1792         spin_unlock(&vc->lock);
1793
1794         kvm_guest_enter();
1795
1796         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1797
1798         if (vc->mpp_buffer_is_valid)
1799                 kvmppc_start_restoring_l2_cache(vc);
1800
1801         __kvmppc_vcore_entry();
1802
1803         spin_lock(&vc->lock);
1804
1805         if (vc->mpp_buffer)
1806                 kvmppc_start_saving_l2_cache(vc);
1807
1808         /* disable sending of IPIs on virtual external irqs */
1809         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1810                 vcpu->cpu = -1;
1811         /* wait for secondary threads to finish writing their state to memory */
1812         if (vc->nap_count < vc->n_woken)
1813                 kvmppc_wait_for_nap(vc);
1814         for (i = 0; i < threads_per_subcore; ++i)
1815                 kvmppc_release_hwthread(vc->pcpu + i);
1816         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1817         vc->vcore_state = VCORE_EXITING;
1818         spin_unlock(&vc->lock);
1819
1820         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1821
1822         /* make sure updates to secondary vcpu structs are visible now */
1823         smp_mb();
1824         kvm_guest_exit();
1825
1826         preempt_enable();
1827         cond_resched();
1828
1829         spin_lock(&vc->lock);
1830         now = get_tb();
1831         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1832                 /* cancel pending dec exception if dec is positive */
1833                 if (now < vcpu->arch.dec_expires &&
1834                     kvmppc_core_pending_dec(vcpu))
1835                         kvmppc_core_dequeue_dec(vcpu);
1836
1837                 trace_kvm_guest_exit(vcpu);
1838
1839                 ret = RESUME_GUEST;
1840                 if (vcpu->arch.trap)
1841                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1842                                                     vcpu->arch.run_task);
1843
1844                 vcpu->arch.ret = ret;
1845                 vcpu->arch.trap = 0;
1846
1847                 if (vcpu->arch.ceded) {
1848                         if (!is_kvmppc_resume_guest(ret))
1849                                 kvmppc_end_cede(vcpu);
1850                         else
1851                                 kvmppc_set_timer(vcpu);
1852                 }
1853         }
1854
1855  out:
1856         vc->vcore_state = VCORE_INACTIVE;
1857         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1858                                  arch.run_list) {
1859                 if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1860                         kvmppc_remove_runnable(vc, vcpu);
1861                         wake_up(&vcpu->arch.cpu_run);
1862                 }
1863         }
1864
1865         trace_kvmppc_run_core(vc, 1);
1866 }
1867
1868 /*
1869  * Wait for some other vcpu thread to execute us, and
1870  * wake us up when we need to handle something in the host.
1871  */
1872 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1873 {
1874         DEFINE_WAIT(wait);
1875
1876         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1877         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1878                 schedule();
1879         finish_wait(&vcpu->arch.cpu_run, &wait);
1880 }
1881
1882 /*
1883  * All the vcpus in this vcore are idle, so wait for a decrementer
1884  * or external interrupt to one of the vcpus.  vc->lock is held.
1885  */
1886 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1887 {
1888         struct kvm_vcpu *vcpu;
1889         int do_sleep = 1;
1890
1891         DEFINE_WAIT(wait);
1892
1893         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1894
1895         /*
1896          * Check one last time for pending exceptions and ceded state after
1897          * we put ourselves on the wait queue
1898          */
1899         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1900                 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
1901                         do_sleep = 0;
1902                         break;
1903                 }
1904         }
1905
1906         if (!do_sleep) {
1907                 finish_wait(&vc->wq, &wait);
1908                 return;
1909         }
1910
1911         vc->vcore_state = VCORE_SLEEPING;
1912         trace_kvmppc_vcore_blocked(vc, 0);
1913         spin_unlock(&vc->lock);
1914         schedule();
1915         finish_wait(&vc->wq, &wait);
1916         spin_lock(&vc->lock);
1917         vc->vcore_state = VCORE_INACTIVE;
1918         trace_kvmppc_vcore_blocked(vc, 1);
1919 }
1920
1921 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1922 {
1923         int n_ceded;
1924         struct kvmppc_vcore *vc;
1925         struct kvm_vcpu *v, *vn;
1926
1927         trace_kvmppc_run_vcpu_enter(vcpu);
1928
1929         kvm_run->exit_reason = 0;
1930         vcpu->arch.ret = RESUME_GUEST;
1931         vcpu->arch.trap = 0;
1932         kvmppc_update_vpas(vcpu);
1933
1934         /*
1935          * Synchronize with other threads in this virtual core
1936          */
1937         vc = vcpu->arch.vcore;
1938         spin_lock(&vc->lock);
1939         vcpu->arch.ceded = 0;
1940         vcpu->arch.run_task = current;
1941         vcpu->arch.kvm_run = kvm_run;
1942         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1943         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1944         vcpu->arch.busy_preempt = TB_NIL;
1945         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1946         ++vc->n_runnable;
1947
1948         /*
1949          * This happens the first time this is called for a vcpu.
1950          * If the vcore is already running, we may be able to start
1951          * this thread straight away and have it join in.
1952          */
1953         if (!signal_pending(current)) {
1954                 if (vc->vcore_state == VCORE_RUNNING &&
1955                     VCORE_EXIT_COUNT(vc) == 0) {
1956                         kvmppc_create_dtl_entry(vcpu, vc);
1957                         kvmppc_start_thread(vcpu);
1958                         trace_kvm_guest_enter(vcpu);
1959                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1960                         wake_up(&vc->wq);
1961                 }
1962
1963         }
1964
1965         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1966                !signal_pending(current)) {
1967                 if (vc->vcore_state != VCORE_INACTIVE) {
1968                         spin_unlock(&vc->lock);
1969                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1970                         spin_lock(&vc->lock);
1971                         continue;
1972                 }
1973                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1974                                          arch.run_list) {
1975                         kvmppc_core_prepare_to_enter(v);
1976                         if (signal_pending(v->arch.run_task)) {
1977                                 kvmppc_remove_runnable(vc, v);
1978                                 v->stat.signal_exits++;
1979                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1980                                 v->arch.ret = -EINTR;
1981                                 wake_up(&v->arch.cpu_run);
1982                         }
1983                 }
1984                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1985                         break;
1986                 vc->runner = vcpu;
1987                 n_ceded = 0;
1988                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1989                         if (!v->arch.pending_exceptions)
1990                                 n_ceded += v->arch.ceded;
1991                         else
1992                                 v->arch.ceded = 0;
1993                 }
1994                 if (n_ceded == vc->n_runnable)
1995                         kvmppc_vcore_blocked(vc);
1996                 else
1997                         kvmppc_run_core(vc);
1998                 vc->runner = NULL;
1999         }
2000
2001         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2002                (vc->vcore_state == VCORE_RUNNING ||
2003                 vc->vcore_state == VCORE_EXITING)) {
2004                 spin_unlock(&vc->lock);
2005                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
2006                 spin_lock(&vc->lock);
2007         }
2008
2009         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2010                 kvmppc_remove_runnable(vc, vcpu);
2011                 vcpu->stat.signal_exits++;
2012                 kvm_run->exit_reason = KVM_EXIT_INTR;
2013                 vcpu->arch.ret = -EINTR;
2014         }
2015
2016         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2017                 /* Wake up some vcpu to run the core */
2018                 v = list_first_entry(&vc->runnable_threads,
2019                                      struct kvm_vcpu, arch.run_list);
2020                 wake_up(&v->arch.cpu_run);
2021         }
2022
2023         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2024         spin_unlock(&vc->lock);
2025         return vcpu->arch.ret;
2026 }
2027
2028 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2029 {
2030         int r;
2031         int srcu_idx;
2032
2033         if (!vcpu->arch.sane) {
2034                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2035                 return -EINVAL;
2036         }
2037
2038         kvmppc_core_prepare_to_enter(vcpu);
2039
2040         /* No need to go into the guest when all we'll do is come back out */
2041         if (signal_pending(current)) {
2042                 run->exit_reason = KVM_EXIT_INTR;
2043                 return -EINTR;
2044         }
2045
2046         atomic_inc(&vcpu->kvm->arch.vcpus_running);
2047         /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2048         smp_mb();
2049
2050         /* On the first time here, set up HTAB and VRMA */
2051         if (!vcpu->kvm->arch.hpte_setup_done) {
2052                 r = kvmppc_hv_setup_htab_rma(vcpu);
2053                 if (r)
2054                         goto out;
2055         }
2056
2057         flush_fp_to_thread(current);
2058         flush_altivec_to_thread(current);
2059         flush_vsx_to_thread(current);
2060         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2061         vcpu->arch.pgdir = current->mm->pgd;
2062         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2063
2064         do {
2065                 r = kvmppc_run_vcpu(run, vcpu);
2066
2067                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2068                     !(vcpu->arch.shregs.msr & MSR_PR)) {
2069                         trace_kvm_hcall_enter(vcpu);
2070                         r = kvmppc_pseries_do_hcall(vcpu);
2071                         trace_kvm_hcall_exit(vcpu, r);
2072                         kvmppc_core_prepare_to_enter(vcpu);
2073                 } else if (r == RESUME_PAGE_FAULT) {
2074                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2075                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
2076                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2077                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2078                 }
2079         } while (is_kvmppc_resume_guest(r));
2080
2081  out:
2082         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2083         atomic_dec(&vcpu->kvm->arch.vcpus_running);
2084         return r;
2085 }
2086
2087 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2088                                      int linux_psize)
2089 {
2090         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2091
2092         if (!def->shift)
2093                 return;
2094         (*sps)->page_shift = def->shift;
2095         (*sps)->slb_enc = def->sllp;
2096         (*sps)->enc[0].page_shift = def->shift;
2097         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2098         /*
2099          * Add 16MB MPSS support if host supports it
2100          */
2101         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2102                 (*sps)->enc[1].page_shift = 24;
2103                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2104         }
2105         (*sps)++;
2106 }
2107
2108 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2109                                          struct kvm_ppc_smmu_info *info)
2110 {
2111         struct kvm_ppc_one_seg_page_size *sps;
2112
2113         info->flags = KVM_PPC_PAGE_SIZES_REAL;
2114         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2115                 info->flags |= KVM_PPC_1T_SEGMENTS;
2116         info->slb_size = mmu_slb_size;
2117
2118         /* We only support these sizes for now, and no muti-size segments */
2119         sps = &info->sps[0];
2120         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2121         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2122         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2123
2124         return 0;
2125 }
2126
2127 /*
2128  * Get (and clear) the dirty memory log for a memory slot.
2129  */
2130 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2131                                          struct kvm_dirty_log *log)
2132 {
2133         struct kvm_memory_slot *memslot;
2134         int r;
2135         unsigned long n;
2136
2137         mutex_lock(&kvm->slots_lock);
2138
2139         r = -EINVAL;
2140         if (log->slot >= KVM_USER_MEM_SLOTS)
2141                 goto out;
2142
2143         memslot = id_to_memslot(kvm->memslots, log->slot);
2144         r = -ENOENT;
2145         if (!memslot->dirty_bitmap)
2146                 goto out;
2147
2148         n = kvm_dirty_bitmap_bytes(memslot);
2149         memset(memslot->dirty_bitmap, 0, n);
2150
2151         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2152         if (r)
2153                 goto out;
2154
2155         r = -EFAULT;
2156         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2157                 goto out;
2158
2159         r = 0;
2160 out:
2161         mutex_unlock(&kvm->slots_lock);
2162         return r;
2163 }
2164
2165 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2166                                         struct kvm_memory_slot *dont)
2167 {
2168         if (!dont || free->arch.rmap != dont->arch.rmap) {
2169                 vfree(free->arch.rmap);
2170                 free->arch.rmap = NULL;
2171         }
2172 }
2173
2174 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2175                                          unsigned long npages)
2176 {
2177         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2178         if (!slot->arch.rmap)
2179                 return -ENOMEM;
2180
2181         return 0;
2182 }
2183
2184 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2185                                         struct kvm_memory_slot *memslot,
2186                                         struct kvm_userspace_memory_region *mem)
2187 {
2188         return 0;
2189 }
2190
2191 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2192                                 struct kvm_userspace_memory_region *mem,
2193                                 const struct kvm_memory_slot *old)
2194 {
2195         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2196         struct kvm_memory_slot *memslot;
2197
2198         if (npages && old->npages) {
2199                 /*
2200                  * If modifying a memslot, reset all the rmap dirty bits.
2201                  * If this is a new memslot, we don't need to do anything
2202                  * since the rmap array starts out as all zeroes,
2203                  * i.e. no pages are dirty.
2204                  */
2205                 memslot = id_to_memslot(kvm->memslots, mem->slot);
2206                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2207         }
2208 }
2209
2210 /*
2211  * Update LPCR values in kvm->arch and in vcores.
2212  * Caller must hold kvm->lock.
2213  */
2214 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2215 {
2216         long int i;
2217         u32 cores_done = 0;
2218
2219         if ((kvm->arch.lpcr & mask) == lpcr)
2220                 return;
2221
2222         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2223
2224         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2225                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2226                 if (!vc)
2227                         continue;
2228                 spin_lock(&vc->lock);
2229                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2230                 spin_unlock(&vc->lock);
2231                 if (++cores_done >= kvm->arch.online_vcores)
2232                         break;
2233         }
2234 }
2235
2236 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2237 {
2238         return;
2239 }
2240
2241 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2242 {
2243         int err = 0;
2244         struct kvm *kvm = vcpu->kvm;
2245         unsigned long hva;
2246         struct kvm_memory_slot *memslot;
2247         struct vm_area_struct *vma;
2248         unsigned long lpcr = 0, senc;
2249         unsigned long psize, porder;
2250         int srcu_idx;
2251
2252         mutex_lock(&kvm->lock);
2253         if (kvm->arch.hpte_setup_done)
2254                 goto out;       /* another vcpu beat us to it */
2255
2256         /* Allocate hashed page table (if not done already) and reset it */
2257         if (!kvm->arch.hpt_virt) {
2258                 err = kvmppc_alloc_hpt(kvm, NULL);
2259                 if (err) {
2260                         pr_err("KVM: Couldn't alloc HPT\n");
2261                         goto out;
2262                 }
2263         }
2264
2265         /* Look up the memslot for guest physical address 0 */
2266         srcu_idx = srcu_read_lock(&kvm->srcu);
2267         memslot = gfn_to_memslot(kvm, 0);
2268
2269         /* We must have some memory at 0 by now */
2270         err = -EINVAL;
2271         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2272                 goto out_srcu;
2273
2274         /* Look up the VMA for the start of this memory slot */
2275         hva = memslot->userspace_addr;
2276         down_read(&current->mm->mmap_sem);
2277         vma = find_vma(current->mm, hva);
2278         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2279                 goto up_out;
2280
2281         psize = vma_kernel_pagesize(vma);
2282         porder = __ilog2(psize);
2283
2284         up_read(&current->mm->mmap_sem);
2285
2286         /* We can handle 4k, 64k or 16M pages in the VRMA */
2287         err = -EINVAL;
2288         if (!(psize == 0x1000 || psize == 0x10000 ||
2289               psize == 0x1000000))
2290                 goto out_srcu;
2291
2292         /* Update VRMASD field in the LPCR */
2293         senc = slb_pgsize_encoding(psize);
2294         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2295                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2296         /* the -4 is to account for senc values starting at 0x10 */
2297         lpcr = senc << (LPCR_VRMASD_SH - 4);
2298
2299         /* Create HPTEs in the hash page table for the VRMA */
2300         kvmppc_map_vrma(vcpu, memslot, porder);
2301
2302         kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2303
2304         /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2305         smp_wmb();
2306         kvm->arch.hpte_setup_done = 1;
2307         err = 0;
2308  out_srcu:
2309         srcu_read_unlock(&kvm->srcu, srcu_idx);
2310  out:
2311         mutex_unlock(&kvm->lock);
2312         return err;
2313
2314  up_out:
2315         up_read(&current->mm->mmap_sem);
2316         goto out_srcu;
2317 }
2318
2319 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2320 {
2321         unsigned long lpcr, lpid;
2322
2323         /* Allocate the guest's logical partition ID */
2324
2325         lpid = kvmppc_alloc_lpid();
2326         if ((long)lpid < 0)
2327                 return -ENOMEM;
2328         kvm->arch.lpid = lpid;
2329
2330         /*
2331          * Since we don't flush the TLB when tearing down a VM,
2332          * and this lpid might have previously been used,
2333          * make sure we flush on each core before running the new VM.
2334          */
2335         cpumask_setall(&kvm->arch.need_tlb_flush);
2336
2337         /* Start out with the default set of hcalls enabled */
2338         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2339                sizeof(kvm->arch.enabled_hcalls));
2340
2341         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2342
2343         /* Init LPCR for virtual RMA mode */
2344         kvm->arch.host_lpid = mfspr(SPRN_LPID);
2345         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2346         lpcr &= LPCR_PECE | LPCR_LPES;
2347         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2348                 LPCR_VPM0 | LPCR_VPM1;
2349         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2350                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2351         /* On POWER8 turn on online bit to enable PURR/SPURR */
2352         if (cpu_has_feature(CPU_FTR_ARCH_207S))
2353                 lpcr |= LPCR_ONL;
2354         kvm->arch.lpcr = lpcr;
2355
2356         /*
2357          * Track that we now have a HV mode VM active. This blocks secondary
2358          * CPU threads from coming online.
2359          */
2360         kvm_hv_vm_activated();
2361
2362         return 0;
2363 }
2364
2365 static void kvmppc_free_vcores(struct kvm *kvm)
2366 {
2367         long int i;
2368
2369         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2370                 if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
2371                         struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2372                         free_pages((unsigned long)vc->mpp_buffer,
2373                                    MPP_BUFFER_ORDER);
2374                 }
2375                 kfree(kvm->arch.vcores[i]);
2376         }
2377         kvm->arch.online_vcores = 0;
2378 }
2379
2380 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2381 {
2382         kvm_hv_vm_deactivated();
2383
2384         kvmppc_free_vcores(kvm);
2385
2386         kvmppc_free_hpt(kvm);
2387 }
2388
2389 /* We don't need to emulate any privileged instructions or dcbz */
2390 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2391                                      unsigned int inst, int *advance)
2392 {
2393         return EMULATE_FAIL;
2394 }
2395
2396 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2397                                         ulong spr_val)
2398 {
2399         return EMULATE_FAIL;
2400 }
2401
2402 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2403                                         ulong *spr_val)
2404 {
2405         return EMULATE_FAIL;
2406 }
2407
2408 static int kvmppc_core_check_processor_compat_hv(void)
2409 {
2410         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
2411             !cpu_has_feature(CPU_FTR_ARCH_206))
2412                 return -EIO;
2413         return 0;
2414 }
2415
2416 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2417                                  unsigned int ioctl, unsigned long arg)
2418 {
2419         struct kvm *kvm __maybe_unused = filp->private_data;
2420         void __user *argp = (void __user *)arg;
2421         long r;
2422
2423         switch (ioctl) {
2424
2425         case KVM_PPC_ALLOCATE_HTAB: {
2426                 u32 htab_order;
2427
2428                 r = -EFAULT;
2429                 if (get_user(htab_order, (u32 __user *)argp))
2430                         break;
2431                 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2432                 if (r)
2433                         break;
2434                 r = -EFAULT;
2435                 if (put_user(htab_order, (u32 __user *)argp))
2436                         break;
2437                 r = 0;
2438                 break;
2439         }
2440
2441         case KVM_PPC_GET_HTAB_FD: {
2442                 struct kvm_get_htab_fd ghf;
2443
2444                 r = -EFAULT;
2445                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
2446                         break;
2447                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2448                 break;
2449         }
2450
2451         default:
2452                 r = -ENOTTY;
2453         }
2454
2455         return r;
2456 }
2457
2458 /*
2459  * List of hcall numbers to enable by default.
2460  * For compatibility with old userspace, we enable by default
2461  * all hcalls that were implemented before the hcall-enabling
2462  * facility was added.  Note this list should not include H_RTAS.
2463  */
2464 static unsigned int default_hcall_list[] = {
2465         H_REMOVE,
2466         H_ENTER,
2467         H_READ,
2468         H_PROTECT,
2469         H_BULK_REMOVE,
2470         H_GET_TCE,
2471         H_PUT_TCE,
2472         H_SET_DABR,
2473         H_SET_XDABR,
2474         H_CEDE,
2475         H_PROD,
2476         H_CONFER,
2477         H_REGISTER_VPA,
2478 #ifdef CONFIG_KVM_XICS
2479         H_EOI,
2480         H_CPPR,
2481         H_IPI,
2482         H_IPOLL,
2483         H_XIRR,
2484         H_XIRR_X,
2485 #endif
2486         0
2487 };
2488
2489 static void init_default_hcalls(void)
2490 {
2491         int i;
2492         unsigned int hcall;
2493
2494         for (i = 0; default_hcall_list[i]; ++i) {
2495                 hcall = default_hcall_list[i];
2496                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
2497                 __set_bit(hcall / 4, default_enabled_hcalls);
2498         }
2499 }
2500
2501 static struct kvmppc_ops kvm_ops_hv = {
2502         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2503         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2504         .get_one_reg = kvmppc_get_one_reg_hv,
2505         .set_one_reg = kvmppc_set_one_reg_hv,
2506         .vcpu_load   = kvmppc_core_vcpu_load_hv,
2507         .vcpu_put    = kvmppc_core_vcpu_put_hv,
2508         .set_msr     = kvmppc_set_msr_hv,
2509         .vcpu_run    = kvmppc_vcpu_run_hv,
2510         .vcpu_create = kvmppc_core_vcpu_create_hv,
2511         .vcpu_free   = kvmppc_core_vcpu_free_hv,
2512         .check_requests = kvmppc_core_check_requests_hv,
2513         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2514         .flush_memslot  = kvmppc_core_flush_memslot_hv,
2515         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2516         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2517         .unmap_hva = kvm_unmap_hva_hv,
2518         .unmap_hva_range = kvm_unmap_hva_range_hv,
2519         .age_hva  = kvm_age_hva_hv,
2520         .test_age_hva = kvm_test_age_hva_hv,
2521         .set_spte_hva = kvm_set_spte_hva_hv,
2522         .mmu_destroy  = kvmppc_mmu_destroy_hv,
2523         .free_memslot = kvmppc_core_free_memslot_hv,
2524         .create_memslot = kvmppc_core_create_memslot_hv,
2525         .init_vm =  kvmppc_core_init_vm_hv,
2526         .destroy_vm = kvmppc_core_destroy_vm_hv,
2527         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2528         .emulate_op = kvmppc_core_emulate_op_hv,
2529         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2530         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2531         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2532         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2533         .hcall_implemented = kvmppc_hcall_impl_hv,
2534 };
2535
2536 static int kvmppc_book3s_init_hv(void)
2537 {
2538         int r;
2539         /*
2540          * FIXME!! Do we need to check on all cpus ?
2541          */
2542         r = kvmppc_core_check_processor_compat_hv();
2543         if (r < 0)
2544                 return -ENODEV;
2545
2546         kvm_ops_hv.owner = THIS_MODULE;
2547         kvmppc_hv_ops = &kvm_ops_hv;
2548
2549         init_default_hcalls();
2550
2551         r = kvmppc_mmu_hv_init();
2552         return r;
2553 }
2554
2555 static void kvmppc_book3s_exit_hv(void)
2556 {
2557         kvmppc_hv_ops = NULL;
2558 }
2559
2560 module_init(kvmppc_book3s_init_hv);
2561 module_exit(kvmppc_book3s_exit_hv);
2562 MODULE_LICENSE("GPL");
2563 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2564 MODULE_ALIAS("devname:kvm");