Merge tag 'samsung-pm-1' of http://git.kernel.org/pub/scm/linux/kernel/git/kgene...
[cascardo/linux.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  * 
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/page.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 #include <asm/tm.h>
60
61 #ifdef DEBUG
62 #define DBG(fmt...) udbg_printf(fmt)
63 #else
64 #define DBG(fmt...)
65 #endif
66
67 #ifdef DEBUG_LOW
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG_LOW(fmt...)
71 #endif
72
73 #define KB (1024)
74 #define MB (1024*KB)
75 #define GB (1024L*MB)
76
77 /*
78  * Note:  pte   --> Linux PTE
79  *        HPTE  --> PowerPC Hashed Page Table Entry
80  *
81  * Execution context:
82  *   htab_initialize is called with the MMU off (of course), but
83  *   the kernel has been copied down to zero so it can directly
84  *   reference global data.  At this point it is very difficult
85  *   to print debug info.
86  *
87  */
88
89 #ifdef CONFIG_U3_DART
90 extern unsigned long dart_tablebase;
91 #endif /* CONFIG_U3_DART */
92
93 static unsigned long _SDR1;
94 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
95
96 struct hash_pte *htab_address;
97 unsigned long htab_size_bytes;
98 unsigned long htab_hash_mask;
99 EXPORT_SYMBOL_GPL(htab_hash_mask);
100 int mmu_linear_psize = MMU_PAGE_4K;
101 int mmu_virtual_psize = MMU_PAGE_4K;
102 int mmu_vmalloc_psize = MMU_PAGE_4K;
103 #ifdef CONFIG_SPARSEMEM_VMEMMAP
104 int mmu_vmemmap_psize = MMU_PAGE_4K;
105 #endif
106 int mmu_io_psize = MMU_PAGE_4K;
107 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
108 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
109 u16 mmu_slb_size = 64;
110 EXPORT_SYMBOL_GPL(mmu_slb_size);
111 #ifdef CONFIG_PPC_64K_PAGES
112 int mmu_ci_restrictions;
113 #endif
114 #ifdef CONFIG_DEBUG_PAGEALLOC
115 static u8 *linear_map_hash_slots;
116 static unsigned long linear_map_hash_count;
117 static DEFINE_SPINLOCK(linear_map_hash_lock);
118 #endif /* CONFIG_DEBUG_PAGEALLOC */
119
120 /* There are definitions of page sizes arrays to be used when none
121  * is provided by the firmware.
122  */
123
124 /* Pre-POWER4 CPUs (4k pages only)
125  */
126 static struct mmu_psize_def mmu_psize_defaults_old[] = {
127         [MMU_PAGE_4K] = {
128                 .shift  = 12,
129                 .sllp   = 0,
130                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
131                 .avpnm  = 0,
132                 .tlbiel = 0,
133         },
134 };
135
136 /* POWER4, GPUL, POWER5
137  *
138  * Support for 16Mb large pages
139  */
140 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
141         [MMU_PAGE_4K] = {
142                 .shift  = 12,
143                 .sllp   = 0,
144                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
145                 .avpnm  = 0,
146                 .tlbiel = 1,
147         },
148         [MMU_PAGE_16M] = {
149                 .shift  = 24,
150                 .sllp   = SLB_VSID_L,
151                 .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
152                             [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
153                 .avpnm  = 0x1UL,
154                 .tlbiel = 0,
155         },
156 };
157
158 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
159 {
160         unsigned long rflags = pteflags & 0x1fa;
161
162         /* _PAGE_EXEC -> NOEXEC */
163         if ((pteflags & _PAGE_EXEC) == 0)
164                 rflags |= HPTE_R_N;
165
166         /* PP bits. PAGE_USER is already PP bit 0x2, so we only
167          * need to add in 0x1 if it's a read-only user page
168          */
169         if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
170                                          (pteflags & _PAGE_DIRTY)))
171                 rflags |= 1;
172         /*
173          * Always add "C" bit for perf. Memory coherence is always enabled
174          */
175         return rflags | HPTE_R_C | HPTE_R_M;
176 }
177
178 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
179                       unsigned long pstart, unsigned long prot,
180                       int psize, int ssize)
181 {
182         unsigned long vaddr, paddr;
183         unsigned int step, shift;
184         int ret = 0;
185
186         shift = mmu_psize_defs[psize].shift;
187         step = 1 << shift;
188
189         prot = htab_convert_pte_flags(prot);
190
191         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
192             vstart, vend, pstart, prot, psize, ssize);
193
194         for (vaddr = vstart, paddr = pstart; vaddr < vend;
195              vaddr += step, paddr += step) {
196                 unsigned long hash, hpteg;
197                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
198                 unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
199                 unsigned long tprot = prot;
200
201                 /*
202                  * If we hit a bad address return error.
203                  */
204                 if (!vsid)
205                         return -1;
206                 /* Make kernel text executable */
207                 if (overlaps_kernel_text(vaddr, vaddr + step))
208                         tprot &= ~HPTE_R_N;
209
210                 /*
211                  * If relocatable, check if it overlaps interrupt vectors that
212                  * are copied down to real 0. For relocatable kernel
213                  * (e.g. kdump case) we copy interrupt vectors down to real
214                  * address 0. Mark that region as executable. This is
215                  * because on p8 system with relocation on exception feature
216                  * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
217                  * in order to execute the interrupt handlers in virtual
218                  * mode the vector region need to be marked as executable.
219                  */
220                 if ((PHYSICAL_START > MEMORY_START) &&
221                         overlaps_interrupt_vector_text(vaddr, vaddr + step))
222                                 tprot &= ~HPTE_R_N;
223
224                 hash = hpt_hash(vpn, shift, ssize);
225                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
226
227                 BUG_ON(!ppc_md.hpte_insert);
228                 ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
229                                          HPTE_V_BOLTED, psize, psize, ssize);
230
231                 if (ret < 0)
232                         break;
233 #ifdef CONFIG_DEBUG_PAGEALLOC
234                 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
235                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
236 #endif /* CONFIG_DEBUG_PAGEALLOC */
237         }
238         return ret < 0 ? ret : 0;
239 }
240
241 #ifdef CONFIG_MEMORY_HOTPLUG
242 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
243                       int psize, int ssize)
244 {
245         unsigned long vaddr;
246         unsigned int step, shift;
247
248         shift = mmu_psize_defs[psize].shift;
249         step = 1 << shift;
250
251         if (!ppc_md.hpte_removebolted) {
252                 printk(KERN_WARNING "Platform doesn't implement "
253                                 "hpte_removebolted\n");
254                 return -EINVAL;
255         }
256
257         for (vaddr = vstart; vaddr < vend; vaddr += step)
258                 ppc_md.hpte_removebolted(vaddr, psize, ssize);
259
260         return 0;
261 }
262 #endif /* CONFIG_MEMORY_HOTPLUG */
263
264 static int __init htab_dt_scan_seg_sizes(unsigned long node,
265                                          const char *uname, int depth,
266                                          void *data)
267 {
268         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
269         __be32 *prop;
270         unsigned long size = 0;
271
272         /* We are scanning "cpu" nodes only */
273         if (type == NULL || strcmp(type, "cpu") != 0)
274                 return 0;
275
276         prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
277         if (prop == NULL)
278                 return 0;
279         for (; size >= 4; size -= 4, ++prop) {
280                 if (be32_to_cpu(prop[0]) == 40) {
281                         DBG("1T segment support detected\n");
282                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
283                         return 1;
284                 }
285         }
286         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
287         return 0;
288 }
289
290 static void __init htab_init_seg_sizes(void)
291 {
292         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
293 }
294
295 static int __init get_idx_from_shift(unsigned int shift)
296 {
297         int idx = -1;
298
299         switch (shift) {
300         case 0xc:
301                 idx = MMU_PAGE_4K;
302                 break;
303         case 0x10:
304                 idx = MMU_PAGE_64K;
305                 break;
306         case 0x14:
307                 idx = MMU_PAGE_1M;
308                 break;
309         case 0x18:
310                 idx = MMU_PAGE_16M;
311                 break;
312         case 0x22:
313                 idx = MMU_PAGE_16G;
314                 break;
315         }
316         return idx;
317 }
318
319 static int __init htab_dt_scan_page_sizes(unsigned long node,
320                                           const char *uname, int depth,
321                                           void *data)
322 {
323         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
324         __be32 *prop;
325         unsigned long size = 0;
326
327         /* We are scanning "cpu" nodes only */
328         if (type == NULL || strcmp(type, "cpu") != 0)
329                 return 0;
330
331         prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
332         if (prop != NULL) {
333                 pr_info("Page sizes from device-tree:\n");
334                 size /= 4;
335                 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
336                 while(size > 0) {
337                         unsigned int base_shift = be32_to_cpu(prop[0]);
338                         unsigned int slbenc = be32_to_cpu(prop[1]);
339                         unsigned int lpnum = be32_to_cpu(prop[2]);
340                         struct mmu_psize_def *def;
341                         int idx, base_idx;
342
343                         size -= 3; prop += 3;
344                         base_idx = get_idx_from_shift(base_shift);
345                         if (base_idx < 0) {
346                                 /*
347                                  * skip the pte encoding also
348                                  */
349                                 prop += lpnum * 2; size -= lpnum * 2;
350                                 continue;
351                         }
352                         def = &mmu_psize_defs[base_idx];
353                         if (base_idx == MMU_PAGE_16M)
354                                 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
355
356                         def->shift = base_shift;
357                         if (base_shift <= 23)
358                                 def->avpnm = 0;
359                         else
360                                 def->avpnm = (1 << (base_shift - 23)) - 1;
361                         def->sllp = slbenc;
362                         /*
363                          * We don't know for sure what's up with tlbiel, so
364                          * for now we only set it for 4K and 64K pages
365                          */
366                         if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
367                                 def->tlbiel = 1;
368                         else
369                                 def->tlbiel = 0;
370
371                         while (size > 0 && lpnum) {
372                                 unsigned int shift = be32_to_cpu(prop[0]);
373                                 int penc  = be32_to_cpu(prop[1]);
374
375                                 prop += 2; size -= 2;
376                                 lpnum--;
377
378                                 idx = get_idx_from_shift(shift);
379                                 if (idx < 0)
380                                         continue;
381
382                                 if (penc == -1)
383                                         pr_err("Invalid penc for base_shift=%d "
384                                                "shift=%d\n", base_shift, shift);
385
386                                 def->penc[idx] = penc;
387                                 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
388                                         " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
389                                         base_shift, shift, def->sllp,
390                                         def->avpnm, def->tlbiel, def->penc[idx]);
391                         }
392                 }
393                 return 1;
394         }
395         return 0;
396 }
397
398 #ifdef CONFIG_HUGETLB_PAGE
399 /* Scan for 16G memory blocks that have been set aside for huge pages
400  * and reserve those blocks for 16G huge pages.
401  */
402 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
403                                         const char *uname, int depth,
404                                         void *data) {
405         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
406         __be64 *addr_prop;
407         __be32 *page_count_prop;
408         unsigned int expected_pages;
409         long unsigned int phys_addr;
410         long unsigned int block_size;
411
412         /* We are scanning "memory" nodes only */
413         if (type == NULL || strcmp(type, "memory") != 0)
414                 return 0;
415
416         /* This property is the log base 2 of the number of virtual pages that
417          * will represent this memory block. */
418         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
419         if (page_count_prop == NULL)
420                 return 0;
421         expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
422         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
423         if (addr_prop == NULL)
424                 return 0;
425         phys_addr = be64_to_cpu(addr_prop[0]);
426         block_size = be64_to_cpu(addr_prop[1]);
427         if (block_size != (16 * GB))
428                 return 0;
429         printk(KERN_INFO "Huge page(16GB) memory: "
430                         "addr = 0x%lX size = 0x%lX pages = %d\n",
431                         phys_addr, block_size, expected_pages);
432         if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
433                 memblock_reserve(phys_addr, block_size * expected_pages);
434                 add_gpage(phys_addr, block_size, expected_pages);
435         }
436         return 0;
437 }
438 #endif /* CONFIG_HUGETLB_PAGE */
439
440 static void mmu_psize_set_default_penc(void)
441 {
442         int bpsize, apsize;
443         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
444                 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
445                         mmu_psize_defs[bpsize].penc[apsize] = -1;
446 }
447
448 static void __init htab_init_page_sizes(void)
449 {
450         int rc;
451
452         /* se the invalid penc to -1 */
453         mmu_psize_set_default_penc();
454
455         /* Default to 4K pages only */
456         memcpy(mmu_psize_defs, mmu_psize_defaults_old,
457                sizeof(mmu_psize_defaults_old));
458
459         /*
460          * Try to find the available page sizes in the device-tree
461          */
462         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
463         if (rc != 0)  /* Found */
464                 goto found;
465
466         /*
467          * Not in the device-tree, let's fallback on known size
468          * list for 16M capable GP & GR
469          */
470         if (mmu_has_feature(MMU_FTR_16M_PAGE))
471                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
472                        sizeof(mmu_psize_defaults_gp));
473  found:
474 #ifndef CONFIG_DEBUG_PAGEALLOC
475         /*
476          * Pick a size for the linear mapping. Currently, we only support
477          * 16M, 1M and 4K which is the default
478          */
479         if (mmu_psize_defs[MMU_PAGE_16M].shift)
480                 mmu_linear_psize = MMU_PAGE_16M;
481         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
482                 mmu_linear_psize = MMU_PAGE_1M;
483 #endif /* CONFIG_DEBUG_PAGEALLOC */
484
485 #ifdef CONFIG_PPC_64K_PAGES
486         /*
487          * Pick a size for the ordinary pages. Default is 4K, we support
488          * 64K for user mappings and vmalloc if supported by the processor.
489          * We only use 64k for ioremap if the processor
490          * (and firmware) support cache-inhibited large pages.
491          * If not, we use 4k and set mmu_ci_restrictions so that
492          * hash_page knows to switch processes that use cache-inhibited
493          * mappings to 4k pages.
494          */
495         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
496                 mmu_virtual_psize = MMU_PAGE_64K;
497                 mmu_vmalloc_psize = MMU_PAGE_64K;
498                 if (mmu_linear_psize == MMU_PAGE_4K)
499                         mmu_linear_psize = MMU_PAGE_64K;
500                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
501                         /*
502                          * Don't use 64k pages for ioremap on pSeries, since
503                          * that would stop us accessing the HEA ethernet.
504                          */
505                         if (!machine_is(pseries))
506                                 mmu_io_psize = MMU_PAGE_64K;
507                 } else
508                         mmu_ci_restrictions = 1;
509         }
510 #endif /* CONFIG_PPC_64K_PAGES */
511
512 #ifdef CONFIG_SPARSEMEM_VMEMMAP
513         /* We try to use 16M pages for vmemmap if that is supported
514          * and we have at least 1G of RAM at boot
515          */
516         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
517             memblock_phys_mem_size() >= 0x40000000)
518                 mmu_vmemmap_psize = MMU_PAGE_16M;
519         else if (mmu_psize_defs[MMU_PAGE_64K].shift)
520                 mmu_vmemmap_psize = MMU_PAGE_64K;
521         else
522                 mmu_vmemmap_psize = MMU_PAGE_4K;
523 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
524
525         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
526                "virtual = %d, io = %d"
527 #ifdef CONFIG_SPARSEMEM_VMEMMAP
528                ", vmemmap = %d"
529 #endif
530                "\n",
531                mmu_psize_defs[mmu_linear_psize].shift,
532                mmu_psize_defs[mmu_virtual_psize].shift,
533                mmu_psize_defs[mmu_io_psize].shift
534 #ifdef CONFIG_SPARSEMEM_VMEMMAP
535                ,mmu_psize_defs[mmu_vmemmap_psize].shift
536 #endif
537                );
538
539 #ifdef CONFIG_HUGETLB_PAGE
540         /* Reserve 16G huge page memory sections for huge pages */
541         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
542 #endif /* CONFIG_HUGETLB_PAGE */
543 }
544
545 static int __init htab_dt_scan_pftsize(unsigned long node,
546                                        const char *uname, int depth,
547                                        void *data)
548 {
549         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
550         __be32 *prop;
551
552         /* We are scanning "cpu" nodes only */
553         if (type == NULL || strcmp(type, "cpu") != 0)
554                 return 0;
555
556         prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
557         if (prop != NULL) {
558                 /* pft_size[0] is the NUMA CEC cookie */
559                 ppc64_pft_size = be32_to_cpu(prop[1]);
560                 return 1;
561         }
562         return 0;
563 }
564
565 static unsigned long __init htab_get_table_size(void)
566 {
567         unsigned long mem_size, rnd_mem_size, pteg_count, psize;
568
569         /* If hash size isn't already provided by the platform, we try to
570          * retrieve it from the device-tree. If it's not there neither, we
571          * calculate it now based on the total RAM size
572          */
573         if (ppc64_pft_size == 0)
574                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
575         if (ppc64_pft_size)
576                 return 1UL << ppc64_pft_size;
577
578         /* round mem_size up to next power of 2 */
579         mem_size = memblock_phys_mem_size();
580         rnd_mem_size = 1UL << __ilog2(mem_size);
581         if (rnd_mem_size < mem_size)
582                 rnd_mem_size <<= 1;
583
584         /* # pages / 2 */
585         psize = mmu_psize_defs[mmu_virtual_psize].shift;
586         pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
587
588         return pteg_count << 7;
589 }
590
591 #ifdef CONFIG_MEMORY_HOTPLUG
592 int create_section_mapping(unsigned long start, unsigned long end)
593 {
594         return htab_bolt_mapping(start, end, __pa(start),
595                                  pgprot_val(PAGE_KERNEL), mmu_linear_psize,
596                                  mmu_kernel_ssize);
597 }
598
599 int remove_section_mapping(unsigned long start, unsigned long end)
600 {
601         return htab_remove_mapping(start, end, mmu_linear_psize,
602                         mmu_kernel_ssize);
603 }
604 #endif /* CONFIG_MEMORY_HOTPLUG */
605
606 #define FUNCTION_TEXT(A)        ((*(unsigned long *)(A)))
607
608 static void __init htab_finish_init(void)
609 {
610         extern unsigned int *htab_call_hpte_insert1;
611         extern unsigned int *htab_call_hpte_insert2;
612         extern unsigned int *htab_call_hpte_remove;
613         extern unsigned int *htab_call_hpte_updatepp;
614
615 #ifdef CONFIG_PPC_HAS_HASH_64K
616         extern unsigned int *ht64_call_hpte_insert1;
617         extern unsigned int *ht64_call_hpte_insert2;
618         extern unsigned int *ht64_call_hpte_remove;
619         extern unsigned int *ht64_call_hpte_updatepp;
620
621         patch_branch(ht64_call_hpte_insert1,
622                 FUNCTION_TEXT(ppc_md.hpte_insert),
623                 BRANCH_SET_LINK);
624         patch_branch(ht64_call_hpte_insert2,
625                 FUNCTION_TEXT(ppc_md.hpte_insert),
626                 BRANCH_SET_LINK);
627         patch_branch(ht64_call_hpte_remove,
628                 FUNCTION_TEXT(ppc_md.hpte_remove),
629                 BRANCH_SET_LINK);
630         patch_branch(ht64_call_hpte_updatepp,
631                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
632                 BRANCH_SET_LINK);
633
634 #endif /* CONFIG_PPC_HAS_HASH_64K */
635
636         patch_branch(htab_call_hpte_insert1,
637                 FUNCTION_TEXT(ppc_md.hpte_insert),
638                 BRANCH_SET_LINK);
639         patch_branch(htab_call_hpte_insert2,
640                 FUNCTION_TEXT(ppc_md.hpte_insert),
641                 BRANCH_SET_LINK);
642         patch_branch(htab_call_hpte_remove,
643                 FUNCTION_TEXT(ppc_md.hpte_remove),
644                 BRANCH_SET_LINK);
645         patch_branch(htab_call_hpte_updatepp,
646                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
647                 BRANCH_SET_LINK);
648 }
649
650 static void __init htab_initialize(void)
651 {
652         unsigned long table;
653         unsigned long pteg_count;
654         unsigned long prot;
655         unsigned long base = 0, size = 0, limit;
656         struct memblock_region *reg;
657
658         DBG(" -> htab_initialize()\n");
659
660         /* Initialize segment sizes */
661         htab_init_seg_sizes();
662
663         /* Initialize page sizes */
664         htab_init_page_sizes();
665
666         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
667                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
668                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
669                 printk(KERN_INFO "Using 1TB segments\n");
670         }
671
672         /*
673          * Calculate the required size of the htab.  We want the number of
674          * PTEGs to equal one half the number of real pages.
675          */ 
676         htab_size_bytes = htab_get_table_size();
677         pteg_count = htab_size_bytes >> 7;
678
679         htab_hash_mask = pteg_count - 1;
680
681         if (firmware_has_feature(FW_FEATURE_LPAR)) {
682                 /* Using a hypervisor which owns the htab */
683                 htab_address = NULL;
684                 _SDR1 = 0; 
685 #ifdef CONFIG_FA_DUMP
686                 /*
687                  * If firmware assisted dump is active firmware preserves
688                  * the contents of htab along with entire partition memory.
689                  * Clear the htab if firmware assisted dump is active so
690                  * that we dont end up using old mappings.
691                  */
692                 if (is_fadump_active() && ppc_md.hpte_clear_all)
693                         ppc_md.hpte_clear_all();
694 #endif
695         } else {
696                 /* Find storage for the HPT.  Must be contiguous in
697                  * the absolute address space. On cell we want it to be
698                  * in the first 2 Gig so we can use it for IOMMU hacks.
699                  */
700                 if (machine_is(cell))
701                         limit = 0x80000000;
702                 else
703                         limit = MEMBLOCK_ALLOC_ANYWHERE;
704
705                 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
706
707                 DBG("Hash table allocated at %lx, size: %lx\n", table,
708                     htab_size_bytes);
709
710                 htab_address = __va(table);
711
712                 /* htab absolute addr + encoded htabsize */
713                 _SDR1 = table + __ilog2(pteg_count) - 11;
714
715                 /* Initialize the HPT with no entries */
716                 memset((void *)table, 0, htab_size_bytes);
717
718                 /* Set SDR1 */
719                 mtspr(SPRN_SDR1, _SDR1);
720         }
721
722         prot = pgprot_val(PAGE_KERNEL);
723
724 #ifdef CONFIG_DEBUG_PAGEALLOC
725         linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
726         linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
727                                                     1, ppc64_rma_size));
728         memset(linear_map_hash_slots, 0, linear_map_hash_count);
729 #endif /* CONFIG_DEBUG_PAGEALLOC */
730
731         /* On U3 based machines, we need to reserve the DART area and
732          * _NOT_ map it to avoid cache paradoxes as it's remapped non
733          * cacheable later on
734          */
735
736         /* create bolted the linear mapping in the hash table */
737         for_each_memblock(memory, reg) {
738                 base = (unsigned long)__va(reg->base);
739                 size = reg->size;
740
741                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
742                     base, size, prot);
743
744 #ifdef CONFIG_U3_DART
745                 /* Do not map the DART space. Fortunately, it will be aligned
746                  * in such a way that it will not cross two memblock regions and
747                  * will fit within a single 16Mb page.
748                  * The DART space is assumed to be a full 16Mb region even if
749                  * we only use 2Mb of that space. We will use more of it later
750                  * for AGP GART. We have to use a full 16Mb large page.
751                  */
752                 DBG("DART base: %lx\n", dart_tablebase);
753
754                 if (dart_tablebase != 0 && dart_tablebase >= base
755                     && dart_tablebase < (base + size)) {
756                         unsigned long dart_table_end = dart_tablebase + 16 * MB;
757                         if (base != dart_tablebase)
758                                 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
759                                                         __pa(base), prot,
760                                                         mmu_linear_psize,
761                                                         mmu_kernel_ssize));
762                         if ((base + size) > dart_table_end)
763                                 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
764                                                         base + size,
765                                                         __pa(dart_table_end),
766                                                          prot,
767                                                          mmu_linear_psize,
768                                                          mmu_kernel_ssize));
769                         continue;
770                 }
771 #endif /* CONFIG_U3_DART */
772                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
773                                 prot, mmu_linear_psize, mmu_kernel_ssize));
774         }
775         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
776
777         /*
778          * If we have a memory_limit and we've allocated TCEs then we need to
779          * explicitly map the TCE area at the top of RAM. We also cope with the
780          * case that the TCEs start below memory_limit.
781          * tce_alloc_start/end are 16MB aligned so the mapping should work
782          * for either 4K or 16MB pages.
783          */
784         if (tce_alloc_start) {
785                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
786                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
787
788                 if (base + size >= tce_alloc_start)
789                         tce_alloc_start = base + size + 1;
790
791                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
792                                          __pa(tce_alloc_start), prot,
793                                          mmu_linear_psize, mmu_kernel_ssize));
794         }
795
796         htab_finish_init();
797
798         DBG(" <- htab_initialize()\n");
799 }
800 #undef KB
801 #undef MB
802
803 void __init early_init_mmu(void)
804 {
805         /* Setup initial STAB address in the PACA */
806         get_paca()->stab_real = __pa((u64)&initial_stab);
807         get_paca()->stab_addr = (u64)&initial_stab;
808
809         /* Initialize the MMU Hash table and create the linear mapping
810          * of memory. Has to be done before stab/slb initialization as
811          * this is currently where the page size encoding is obtained
812          */
813         htab_initialize();
814
815         /* Initialize stab / SLB management */
816         if (mmu_has_feature(MMU_FTR_SLB))
817                 slb_initialize();
818         else
819                 stab_initialize(get_paca()->stab_real);
820 }
821
822 #ifdef CONFIG_SMP
823 void early_init_mmu_secondary(void)
824 {
825         /* Initialize hash table for that CPU */
826         if (!firmware_has_feature(FW_FEATURE_LPAR))
827                 mtspr(SPRN_SDR1, _SDR1);
828
829         /* Initialize STAB/SLB. We use a virtual address as it works
830          * in real mode on pSeries.
831          */
832         if (mmu_has_feature(MMU_FTR_SLB))
833                 slb_initialize();
834         else
835                 stab_initialize(get_paca()->stab_addr);
836 }
837 #endif /* CONFIG_SMP */
838
839 /*
840  * Called by asm hashtable.S for doing lazy icache flush
841  */
842 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
843 {
844         struct page *page;
845
846         if (!pfn_valid(pte_pfn(pte)))
847                 return pp;
848
849         page = pte_page(pte);
850
851         /* page is dirty */
852         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
853                 if (trap == 0x400) {
854                         flush_dcache_icache_page(page);
855                         set_bit(PG_arch_1, &page->flags);
856                 } else
857                         pp |= HPTE_R_N;
858         }
859         return pp;
860 }
861
862 #ifdef CONFIG_PPC_MM_SLICES
863 unsigned int get_paca_psize(unsigned long addr)
864 {
865         u64 lpsizes;
866         unsigned char *hpsizes;
867         unsigned long index, mask_index;
868
869         if (addr < SLICE_LOW_TOP) {
870                 lpsizes = get_paca()->context.low_slices_psize;
871                 index = GET_LOW_SLICE_INDEX(addr);
872                 return (lpsizes >> (index * 4)) & 0xF;
873         }
874         hpsizes = get_paca()->context.high_slices_psize;
875         index = GET_HIGH_SLICE_INDEX(addr);
876         mask_index = index & 0x1;
877         return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
878 }
879
880 #else
881 unsigned int get_paca_psize(unsigned long addr)
882 {
883         return get_paca()->context.user_psize;
884 }
885 #endif
886
887 /*
888  * Demote a segment to using 4k pages.
889  * For now this makes the whole process use 4k pages.
890  */
891 #ifdef CONFIG_PPC_64K_PAGES
892 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
893 {
894         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
895                 return;
896         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
897 #ifdef CONFIG_SPU_BASE
898         spu_flush_all_slbs(mm);
899 #endif
900         if (get_paca_psize(addr) != MMU_PAGE_4K) {
901                 get_paca()->context = mm->context;
902                 slb_flush_and_rebolt();
903         }
904 }
905 #endif /* CONFIG_PPC_64K_PAGES */
906
907 #ifdef CONFIG_PPC_SUBPAGE_PROT
908 /*
909  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
910  * Userspace sets the subpage permissions using the subpage_prot system call.
911  *
912  * Result is 0: full permissions, _PAGE_RW: read-only,
913  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
914  */
915 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
916 {
917         struct subpage_prot_table *spt = &mm->context.spt;
918         u32 spp = 0;
919         u32 **sbpm, *sbpp;
920
921         if (ea >= spt->maxaddr)
922                 return 0;
923         if (ea < 0x100000000UL) {
924                 /* addresses below 4GB use spt->low_prot */
925                 sbpm = spt->low_prot;
926         } else {
927                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
928                 if (!sbpm)
929                         return 0;
930         }
931         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
932         if (!sbpp)
933                 return 0;
934         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
935
936         /* extract 2-bit bitfield for this 4k subpage */
937         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
938
939         /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
940         spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
941         return spp;
942 }
943
944 #else /* CONFIG_PPC_SUBPAGE_PROT */
945 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
946 {
947         return 0;
948 }
949 #endif
950
951 void hash_failure_debug(unsigned long ea, unsigned long access,
952                         unsigned long vsid, unsigned long trap,
953                         int ssize, int psize, int lpsize, unsigned long pte)
954 {
955         if (!printk_ratelimit())
956                 return;
957         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
958                 ea, access, current->comm);
959         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
960                 trap, vsid, ssize, psize, lpsize, pte);
961 }
962
963 /* Result code is:
964  *  0 - handled
965  *  1 - normal page fault
966  * -1 - critical hash insertion error
967  * -2 - access not permitted by subpage protection mechanism
968  */
969 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
970 {
971         enum ctx_state prev_state = exception_enter();
972         pgd_t *pgdir;
973         unsigned long vsid;
974         struct mm_struct *mm;
975         pte_t *ptep;
976         unsigned hugeshift;
977         const struct cpumask *tmp;
978         int rc, user_region = 0, local = 0;
979         int psize, ssize;
980
981         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
982                 ea, access, trap);
983
984         /* Get region & vsid */
985         switch (REGION_ID(ea)) {
986         case USER_REGION_ID:
987                 user_region = 1;
988                 mm = current->mm;
989                 if (! mm) {
990                         DBG_LOW(" user region with no mm !\n");
991                         rc = 1;
992                         goto bail;
993                 }
994                 psize = get_slice_psize(mm, ea);
995                 ssize = user_segment_size(ea);
996                 vsid = get_vsid(mm->context.id, ea, ssize);
997                 break;
998         case VMALLOC_REGION_ID:
999                 mm = &init_mm;
1000                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1001                 if (ea < VMALLOC_END)
1002                         psize = mmu_vmalloc_psize;
1003                 else
1004                         psize = mmu_io_psize;
1005                 ssize = mmu_kernel_ssize;
1006                 break;
1007         default:
1008                 /* Not a valid range
1009                  * Send the problem up to do_page_fault 
1010                  */
1011                 rc = 1;
1012                 goto bail;
1013         }
1014         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1015
1016         /* Bad address. */
1017         if (!vsid) {
1018                 DBG_LOW("Bad address!\n");
1019                 rc = 1;
1020                 goto bail;
1021         }
1022         /* Get pgdir */
1023         pgdir = mm->pgd;
1024         if (pgdir == NULL) {
1025                 rc = 1;
1026                 goto bail;
1027         }
1028
1029         /* Check CPU locality */
1030         tmp = cpumask_of(smp_processor_id());
1031         if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1032                 local = 1;
1033
1034 #ifndef CONFIG_PPC_64K_PAGES
1035         /* If we use 4K pages and our psize is not 4K, then we might
1036          * be hitting a special driver mapping, and need to align the
1037          * address before we fetch the PTE.
1038          *
1039          * It could also be a hugepage mapping, in which case this is
1040          * not necessary, but it's not harmful, either.
1041          */
1042         if (psize != MMU_PAGE_4K)
1043                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1044 #endif /* CONFIG_PPC_64K_PAGES */
1045
1046         /* Get PTE and page size from page tables */
1047         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
1048         if (ptep == NULL || !pte_present(*ptep)) {
1049                 DBG_LOW(" no PTE !\n");
1050                 rc = 1;
1051                 goto bail;
1052         }
1053
1054         /* Add _PAGE_PRESENT to the required access perm */
1055         access |= _PAGE_PRESENT;
1056
1057         /* Pre-check access permissions (will be re-checked atomically
1058          * in __hash_page_XX but this pre-check is a fast path
1059          */
1060         if (access & ~pte_val(*ptep)) {
1061                 DBG_LOW(" no access !\n");
1062                 rc = 1;
1063                 goto bail;
1064         }
1065
1066         if (hugeshift) {
1067                 if (pmd_trans_huge(*(pmd_t *)ptep))
1068                         rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1069                                              trap, local, ssize, psize);
1070 #ifdef CONFIG_HUGETLB_PAGE
1071                 else
1072                         rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1073                                               local, ssize, hugeshift, psize);
1074 #else
1075                 else {
1076                         /*
1077                          * if we have hugeshift, and is not transhuge with
1078                          * hugetlb disabled, something is really wrong.
1079                          */
1080                         rc = 1;
1081                         WARN_ON(1);
1082                 }
1083 #endif
1084                 goto bail;
1085         }
1086
1087 #ifndef CONFIG_PPC_64K_PAGES
1088         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1089 #else
1090         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1091                 pte_val(*(ptep + PTRS_PER_PTE)));
1092 #endif
1093         /* Do actual hashing */
1094 #ifdef CONFIG_PPC_64K_PAGES
1095         /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1096         if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1097                 demote_segment_4k(mm, ea);
1098                 psize = MMU_PAGE_4K;
1099         }
1100
1101         /* If this PTE is non-cacheable and we have restrictions on
1102          * using non cacheable large pages, then we switch to 4k
1103          */
1104         if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1105             (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1106                 if (user_region) {
1107                         demote_segment_4k(mm, ea);
1108                         psize = MMU_PAGE_4K;
1109                 } else if (ea < VMALLOC_END) {
1110                         /*
1111                          * some driver did a non-cacheable mapping
1112                          * in vmalloc space, so switch vmalloc
1113                          * to 4k pages
1114                          */
1115                         printk(KERN_ALERT "Reducing vmalloc segment "
1116                                "to 4kB pages because of "
1117                                "non-cacheable mapping\n");
1118                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1119 #ifdef CONFIG_SPU_BASE
1120                         spu_flush_all_slbs(mm);
1121 #endif
1122                 }
1123         }
1124         if (user_region) {
1125                 if (psize != get_paca_psize(ea)) {
1126                         get_paca()->context = mm->context;
1127                         slb_flush_and_rebolt();
1128                 }
1129         } else if (get_paca()->vmalloc_sllp !=
1130                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1131                 get_paca()->vmalloc_sllp =
1132                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1133                 slb_vmalloc_update();
1134         }
1135 #endif /* CONFIG_PPC_64K_PAGES */
1136
1137 #ifdef CONFIG_PPC_HAS_HASH_64K
1138         if (psize == MMU_PAGE_64K)
1139                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1140         else
1141 #endif /* CONFIG_PPC_HAS_HASH_64K */
1142         {
1143                 int spp = subpage_protection(mm, ea);
1144                 if (access & spp)
1145                         rc = -2;
1146                 else
1147                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1148                                             local, ssize, spp);
1149         }
1150
1151         /* Dump some info in case of hash insertion failure, they should
1152          * never happen so it is really useful to know if/when they do
1153          */
1154         if (rc == -1)
1155                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1156                                    psize, pte_val(*ptep));
1157 #ifndef CONFIG_PPC_64K_PAGES
1158         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1159 #else
1160         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1161                 pte_val(*(ptep + PTRS_PER_PTE)));
1162 #endif
1163         DBG_LOW(" -> rc=%d\n", rc);
1164
1165 bail:
1166         exception_exit(prev_state);
1167         return rc;
1168 }
1169 EXPORT_SYMBOL_GPL(hash_page);
1170
1171 void hash_preload(struct mm_struct *mm, unsigned long ea,
1172                   unsigned long access, unsigned long trap)
1173 {
1174         int hugepage_shift;
1175         unsigned long vsid;
1176         pgd_t *pgdir;
1177         pte_t *ptep;
1178         unsigned long flags;
1179         int rc, ssize, local = 0;
1180
1181         BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1182
1183 #ifdef CONFIG_PPC_MM_SLICES
1184         /* We only prefault standard pages for now */
1185         if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1186                 return;
1187 #endif
1188
1189         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1190                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1191
1192         /* Get Linux PTE if available */
1193         pgdir = mm->pgd;
1194         if (pgdir == NULL)
1195                 return;
1196
1197         /* Get VSID */
1198         ssize = user_segment_size(ea);
1199         vsid = get_vsid(mm->context.id, ea, ssize);
1200         if (!vsid)
1201                 return;
1202         /*
1203          * Hash doesn't like irqs. Walking linux page table with irq disabled
1204          * saves us from holding multiple locks.
1205          */
1206         local_irq_save(flags);
1207
1208         /*
1209          * THP pages use update_mmu_cache_pmd. We don't do
1210          * hash preload there. Hence can ignore THP here
1211          */
1212         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugepage_shift);
1213         if (!ptep)
1214                 goto out_exit;
1215
1216         WARN_ON(hugepage_shift);
1217 #ifdef CONFIG_PPC_64K_PAGES
1218         /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1219          * a 64K kernel), then we don't preload, hash_page() will take
1220          * care of it once we actually try to access the page.
1221          * That way we don't have to duplicate all of the logic for segment
1222          * page size demotion here
1223          */
1224         if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1225                 goto out_exit;
1226 #endif /* CONFIG_PPC_64K_PAGES */
1227
1228         /* Is that local to this CPU ? */
1229         if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1230                 local = 1;
1231
1232         /* Hash it in */
1233 #ifdef CONFIG_PPC_HAS_HASH_64K
1234         if (mm->context.user_psize == MMU_PAGE_64K)
1235                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1236         else
1237 #endif /* CONFIG_PPC_HAS_HASH_64K */
1238                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1239                                     subpage_protection(mm, ea));
1240
1241         /* Dump some info in case of hash insertion failure, they should
1242          * never happen so it is really useful to know if/when they do
1243          */
1244         if (rc == -1)
1245                 hash_failure_debug(ea, access, vsid, trap, ssize,
1246                                    mm->context.user_psize,
1247                                    mm->context.user_psize,
1248                                    pte_val(*ptep));
1249 out_exit:
1250         local_irq_restore(flags);
1251 }
1252
1253 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1254  *          do not forget to update the assembly call site !
1255  */
1256 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1257                      int local)
1258 {
1259         unsigned long hash, index, shift, hidx, slot;
1260
1261         DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1262         pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1263                 hash = hpt_hash(vpn, shift, ssize);
1264                 hidx = __rpte_to_hidx(pte, index);
1265                 if (hidx & _PTEIDX_SECONDARY)
1266                         hash = ~hash;
1267                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1268                 slot += hidx & _PTEIDX_GROUP_IX;
1269                 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1270                 /*
1271                  * We use same base page size and actual psize, because we don't
1272                  * use these functions for hugepage
1273                  */
1274                 ppc_md.hpte_invalidate(slot, vpn, psize, psize, ssize, local);
1275         } pte_iterate_hashed_end();
1276
1277 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1278         /* Transactions are not aborted by tlbiel, only tlbie.
1279          * Without, syncing a page back to a block device w/ PIO could pick up
1280          * transactional data (bad!) so we force an abort here.  Before the
1281          * sync the page will be made read-only, which will flush_hash_page.
1282          * BIG ISSUE here: if the kernel uses a page from userspace without
1283          * unmapping it first, it may see the speculated version.
1284          */
1285         if (local && cpu_has_feature(CPU_FTR_TM) &&
1286             current->thread.regs &&
1287             MSR_TM_ACTIVE(current->thread.regs->msr)) {
1288                 tm_enable();
1289                 tm_abort(TM_CAUSE_TLBI);
1290         }
1291 #endif
1292 }
1293
1294 void flush_hash_range(unsigned long number, int local)
1295 {
1296         if (ppc_md.flush_hash_range)
1297                 ppc_md.flush_hash_range(number, local);
1298         else {
1299                 int i;
1300                 struct ppc64_tlb_batch *batch =
1301                         &__get_cpu_var(ppc64_tlb_batch);
1302
1303                 for (i = 0; i < number; i++)
1304                         flush_hash_page(batch->vpn[i], batch->pte[i],
1305                                         batch->psize, batch->ssize, local);
1306         }
1307 }
1308
1309 /*
1310  * low_hash_fault is called when we the low level hash code failed
1311  * to instert a PTE due to an hypervisor error
1312  */
1313 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1314 {
1315         enum ctx_state prev_state = exception_enter();
1316
1317         if (user_mode(regs)) {
1318 #ifdef CONFIG_PPC_SUBPAGE_PROT
1319                 if (rc == -2)
1320                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1321                 else
1322 #endif
1323                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1324         } else
1325                 bad_page_fault(regs, address, SIGBUS);
1326
1327         exception_exit(prev_state);
1328 }
1329
1330 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1331                            unsigned long pa, unsigned long rflags,
1332                            unsigned long vflags, int psize, int ssize)
1333 {
1334         unsigned long hpte_group;
1335         long slot;
1336
1337 repeat:
1338         hpte_group = ((hash & htab_hash_mask) *
1339                        HPTES_PER_GROUP) & ~0x7UL;
1340
1341         /* Insert into the hash table, primary slot */
1342         slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1343                                   psize, psize, ssize);
1344
1345         /* Primary is full, try the secondary */
1346         if (unlikely(slot == -1)) {
1347                 hpte_group = ((~hash & htab_hash_mask) *
1348                               HPTES_PER_GROUP) & ~0x7UL;
1349                 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1350                                           vflags | HPTE_V_SECONDARY,
1351                                           psize, psize, ssize);
1352                 if (slot == -1) {
1353                         if (mftb() & 0x1)
1354                                 hpte_group = ((hash & htab_hash_mask) *
1355                                               HPTES_PER_GROUP)&~0x7UL;
1356
1357                         ppc_md.hpte_remove(hpte_group);
1358                         goto repeat;
1359                 }
1360         }
1361
1362         return slot;
1363 }
1364
1365 #ifdef CONFIG_DEBUG_PAGEALLOC
1366 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1367 {
1368         unsigned long hash;
1369         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1370         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1371         unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1372         long ret;
1373
1374         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1375
1376         /* Don't create HPTE entries for bad address */
1377         if (!vsid)
1378                 return;
1379
1380         ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1381                                     HPTE_V_BOLTED,
1382                                     mmu_linear_psize, mmu_kernel_ssize);
1383
1384         BUG_ON (ret < 0);
1385         spin_lock(&linear_map_hash_lock);
1386         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1387         linear_map_hash_slots[lmi] = ret | 0x80;
1388         spin_unlock(&linear_map_hash_lock);
1389 }
1390
1391 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1392 {
1393         unsigned long hash, hidx, slot;
1394         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1395         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1396
1397         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1398         spin_lock(&linear_map_hash_lock);
1399         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1400         hidx = linear_map_hash_slots[lmi] & 0x7f;
1401         linear_map_hash_slots[lmi] = 0;
1402         spin_unlock(&linear_map_hash_lock);
1403         if (hidx & _PTEIDX_SECONDARY)
1404                 hash = ~hash;
1405         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1406         slot += hidx & _PTEIDX_GROUP_IX;
1407         ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize,
1408                                mmu_kernel_ssize, 0);
1409 }
1410
1411 void kernel_map_pages(struct page *page, int numpages, int enable)
1412 {
1413         unsigned long flags, vaddr, lmi;
1414         int i;
1415
1416         local_irq_save(flags);
1417         for (i = 0; i < numpages; i++, page++) {
1418                 vaddr = (unsigned long)page_address(page);
1419                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1420                 if (lmi >= linear_map_hash_count)
1421                         continue;
1422                 if (enable)
1423                         kernel_map_linear_page(vaddr, lmi);
1424                 else
1425                         kernel_unmap_linear_page(vaddr, lmi);
1426         }
1427         local_irq_restore(flags);
1428 }
1429 #endif /* CONFIG_DEBUG_PAGEALLOC */
1430
1431 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1432                                 phys_addr_t first_memblock_size)
1433 {
1434         /* We don't currently support the first MEMBLOCK not mapping 0
1435          * physical on those processors
1436          */
1437         BUG_ON(first_memblock_base != 0);
1438
1439         /* On LPAR systems, the first entry is our RMA region,
1440          * non-LPAR 64-bit hash MMU systems don't have a limitation
1441          * on real mode access, but using the first entry works well
1442          * enough. We also clamp it to 1G to avoid some funky things
1443          * such as RTAS bugs etc...
1444          */
1445         ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1446
1447         /* Finally limit subsequent allocations */
1448         memblock_set_current_limit(ppc64_rma_size);
1449 }