powerpc/numa: Use of_get_next_parent to simplify code
[cascardo/linux.git] / arch / powerpc / mm / numa.c
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #define pr_fmt(fmt) "numa: " fmt
12
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43
44 static int numa_enabled = 1;
45
46 static char *cmdline __initdata;
47
48 static int numa_debug;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50
51 int numa_cpu_lookup_table[NR_CPUS];
52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53 struct pglist_data *node_data[MAX_NUMNODES];
54
55 EXPORT_SYMBOL(numa_cpu_lookup_table);
56 EXPORT_SYMBOL(node_to_cpumask_map);
57 EXPORT_SYMBOL(node_data);
58
59 static int min_common_depth;
60 static int n_mem_addr_cells, n_mem_size_cells;
61 static int form1_affinity;
62
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth;
65 static const __be32 *distance_ref_points;
66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67
68 /*
69  * Allocate node_to_cpumask_map based on number of available nodes
70  * Requires node_possible_map to be valid.
71  *
72  * Note: cpumask_of_node() is not valid until after this is done.
73  */
74 static void __init setup_node_to_cpumask_map(void)
75 {
76         unsigned int node;
77
78         /* setup nr_node_ids if not done yet */
79         if (nr_node_ids == MAX_NUMNODES)
80                 setup_nr_node_ids();
81
82         /* allocate the map */
83         for (node = 0; node < nr_node_ids; node++)
84                 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86         /* cpumask_of_node() will now work */
87         dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88 }
89
90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91                                                 unsigned int *nid)
92 {
93         unsigned long long mem;
94         char *p = cmdline;
95         static unsigned int fake_nid;
96         static unsigned long long curr_boundary;
97
98         /*
99          * Modify node id, iff we started creating NUMA nodes
100          * We want to continue from where we left of the last time
101          */
102         if (fake_nid)
103                 *nid = fake_nid;
104         /*
105          * In case there are no more arguments to parse, the
106          * node_id should be the same as the last fake node id
107          * (we've handled this above).
108          */
109         if (!p)
110                 return 0;
111
112         mem = memparse(p, &p);
113         if (!mem)
114                 return 0;
115
116         if (mem < curr_boundary)
117                 return 0;
118
119         curr_boundary = mem;
120
121         if ((end_pfn << PAGE_SHIFT) > mem) {
122                 /*
123                  * Skip commas and spaces
124                  */
125                 while (*p == ',' || *p == ' ' || *p == '\t')
126                         p++;
127
128                 cmdline = p;
129                 fake_nid++;
130                 *nid = fake_nid;
131                 dbg("created new fake_node with id %d\n", fake_nid);
132                 return 1;
133         }
134         return 0;
135 }
136
137 static void reset_numa_cpu_lookup_table(void)
138 {
139         unsigned int cpu;
140
141         for_each_possible_cpu(cpu)
142                 numa_cpu_lookup_table[cpu] = -1;
143 }
144
145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
146 {
147         numa_cpu_lookup_table[cpu] = node;
148 }
149
150 static void map_cpu_to_node(int cpu, int node)
151 {
152         update_numa_cpu_lookup_table(cpu, node);
153
154         dbg("adding cpu %d to node %d\n", cpu, node);
155
156         if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157                 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
158 }
159
160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
161 static void unmap_cpu_from_node(unsigned long cpu)
162 {
163         int node = numa_cpu_lookup_table[cpu];
164
165         dbg("removing cpu %lu from node %d\n", cpu, node);
166
167         if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168                 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
169         } else {
170                 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171                        cpu, node);
172         }
173 }
174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
175
176 /* must hold reference to node during call */
177 static const __be32 *of_get_associativity(struct device_node *dev)
178 {
179         return of_get_property(dev, "ibm,associativity", NULL);
180 }
181
182 /*
183  * Returns the property linux,drconf-usable-memory if
184  * it exists (the property exists only in kexec/kdump kernels,
185  * added by kexec-tools)
186  */
187 static const __be32 *of_get_usable_memory(struct device_node *memory)
188 {
189         const __be32 *prop;
190         u32 len;
191         prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192         if (!prop || len < sizeof(unsigned int))
193                 return NULL;
194         return prop;
195 }
196
197 int __node_distance(int a, int b)
198 {
199         int i;
200         int distance = LOCAL_DISTANCE;
201
202         if (!form1_affinity)
203                 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204
205         for (i = 0; i < distance_ref_points_depth; i++) {
206                 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207                         break;
208
209                 /* Double the distance for each NUMA level */
210                 distance *= 2;
211         }
212
213         return distance;
214 }
215 EXPORT_SYMBOL(__node_distance);
216
217 static void initialize_distance_lookup_table(int nid,
218                 const __be32 *associativity)
219 {
220         int i;
221
222         if (!form1_affinity)
223                 return;
224
225         for (i = 0; i < distance_ref_points_depth; i++) {
226                 const __be32 *entry;
227
228                 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229                 distance_lookup_table[nid][i] = of_read_number(entry, 1);
230         }
231 }
232
233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234  * info is found.
235  */
236 static int associativity_to_nid(const __be32 *associativity)
237 {
238         int nid = -1;
239
240         if (min_common_depth == -1)
241                 goto out;
242
243         if (of_read_number(associativity, 1) >= min_common_depth)
244                 nid = of_read_number(&associativity[min_common_depth], 1);
245
246         /* POWER4 LPAR uses 0xffff as invalid node */
247         if (nid == 0xffff || nid >= MAX_NUMNODES)
248                 nid = -1;
249
250         if (nid > 0 &&
251                 of_read_number(associativity, 1) >= distance_ref_points_depth) {
252                 /*
253                  * Skip the length field and send start of associativity array
254                  */
255                 initialize_distance_lookup_table(nid, associativity + 1);
256         }
257
258 out:
259         return nid;
260 }
261
262 /* Returns the nid associated with the given device tree node,
263  * or -1 if not found.
264  */
265 static int of_node_to_nid_single(struct device_node *device)
266 {
267         int nid = -1;
268         const __be32 *tmp;
269
270         tmp = of_get_associativity(device);
271         if (tmp)
272                 nid = associativity_to_nid(tmp);
273         return nid;
274 }
275
276 /* Walk the device tree upwards, looking for an associativity id */
277 int of_node_to_nid(struct device_node *device)
278 {
279         int nid = -1;
280
281         of_node_get(device);
282         while (device) {
283                 nid = of_node_to_nid_single(device);
284                 if (nid != -1)
285                         break;
286
287                 device = of_get_next_parent(device);
288         }
289         of_node_put(device);
290
291         return nid;
292 }
293 EXPORT_SYMBOL_GPL(of_node_to_nid);
294
295 static int __init find_min_common_depth(void)
296 {
297         int depth;
298         struct device_node *root;
299
300         if (firmware_has_feature(FW_FEATURE_OPAL))
301                 root = of_find_node_by_path("/ibm,opal");
302         else
303                 root = of_find_node_by_path("/rtas");
304         if (!root)
305                 root = of_find_node_by_path("/");
306
307         /*
308          * This property is a set of 32-bit integers, each representing
309          * an index into the ibm,associativity nodes.
310          *
311          * With form 0 affinity the first integer is for an SMP configuration
312          * (should be all 0's) and the second is for a normal NUMA
313          * configuration. We have only one level of NUMA.
314          *
315          * With form 1 affinity the first integer is the most significant
316          * NUMA boundary and the following are progressively less significant
317          * boundaries. There can be more than one level of NUMA.
318          */
319         distance_ref_points = of_get_property(root,
320                                         "ibm,associativity-reference-points",
321                                         &distance_ref_points_depth);
322
323         if (!distance_ref_points) {
324                 dbg("NUMA: ibm,associativity-reference-points not found.\n");
325                 goto err;
326         }
327
328         distance_ref_points_depth /= sizeof(int);
329
330         if (firmware_has_feature(FW_FEATURE_OPAL) ||
331             firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332                 dbg("Using form 1 affinity\n");
333                 form1_affinity = 1;
334         }
335
336         if (form1_affinity) {
337                 depth = of_read_number(distance_ref_points, 1);
338         } else {
339                 if (distance_ref_points_depth < 2) {
340                         printk(KERN_WARNING "NUMA: "
341                                 "short ibm,associativity-reference-points\n");
342                         goto err;
343                 }
344
345                 depth = of_read_number(&distance_ref_points[1], 1);
346         }
347
348         /*
349          * Warn and cap if the hardware supports more than
350          * MAX_DISTANCE_REF_POINTS domains.
351          */
352         if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353                 printk(KERN_WARNING "NUMA: distance array capped at "
354                         "%d entries\n", MAX_DISTANCE_REF_POINTS);
355                 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356         }
357
358         of_node_put(root);
359         return depth;
360
361 err:
362         of_node_put(root);
363         return -1;
364 }
365
366 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
367 {
368         struct device_node *memory = NULL;
369
370         memory = of_find_node_by_type(memory, "memory");
371         if (!memory)
372                 panic("numa.c: No memory nodes found!");
373
374         *n_addr_cells = of_n_addr_cells(memory);
375         *n_size_cells = of_n_size_cells(memory);
376         of_node_put(memory);
377 }
378
379 static unsigned long read_n_cells(int n, const __be32 **buf)
380 {
381         unsigned long result = 0;
382
383         while (n--) {
384                 result = (result << 32) | of_read_number(*buf, 1);
385                 (*buf)++;
386         }
387         return result;
388 }
389
390 /*
391  * Read the next memblock list entry from the ibm,dynamic-memory property
392  * and return the information in the provided of_drconf_cell structure.
393  */
394 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
395 {
396         const __be32 *cp;
397
398         drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399
400         cp = *cellp;
401         drmem->drc_index = of_read_number(cp, 1);
402         drmem->reserved = of_read_number(&cp[1], 1);
403         drmem->aa_index = of_read_number(&cp[2], 1);
404         drmem->flags = of_read_number(&cp[3], 1);
405
406         *cellp = cp + 4;
407 }
408
409 /*
410  * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411  *
412  * The layout of the ibm,dynamic-memory property is a number N of memblock
413  * list entries followed by N memblock list entries.  Each memblock list entry
414  * contains information as laid out in the of_drconf_cell struct above.
415  */
416 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
417 {
418         const __be32 *prop;
419         u32 len, entries;
420
421         prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422         if (!prop || len < sizeof(unsigned int))
423                 return 0;
424
425         entries = of_read_number(prop++, 1);
426
427         /* Now that we know the number of entries, revalidate the size
428          * of the property read in to ensure we have everything
429          */
430         if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431                 return 0;
432
433         *dm = prop;
434         return entries;
435 }
436
437 /*
438  * Retrieve and validate the ibm,lmb-size property for drconf memory
439  * from the device tree.
440  */
441 static u64 of_get_lmb_size(struct device_node *memory)
442 {
443         const __be32 *prop;
444         u32 len;
445
446         prop = of_get_property(memory, "ibm,lmb-size", &len);
447         if (!prop || len < sizeof(unsigned int))
448                 return 0;
449
450         return read_n_cells(n_mem_size_cells, &prop);
451 }
452
453 struct assoc_arrays {
454         u32     n_arrays;
455         u32     array_sz;
456         const __be32 *arrays;
457 };
458
459 /*
460  * Retrieve and validate the list of associativity arrays for drconf
461  * memory from the ibm,associativity-lookup-arrays property of the
462  * device tree..
463  *
464  * The layout of the ibm,associativity-lookup-arrays property is a number N
465  * indicating the number of associativity arrays, followed by a number M
466  * indicating the size of each associativity array, followed by a list
467  * of N associativity arrays.
468  */
469 static int of_get_assoc_arrays(struct device_node *memory,
470                                struct assoc_arrays *aa)
471 {
472         const __be32 *prop;
473         u32 len;
474
475         prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476         if (!prop || len < 2 * sizeof(unsigned int))
477                 return -1;
478
479         aa->n_arrays = of_read_number(prop++, 1);
480         aa->array_sz = of_read_number(prop++, 1);
481
482         /* Now that we know the number of arrays and size of each array,
483          * revalidate the size of the property read in.
484          */
485         if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486                 return -1;
487
488         aa->arrays = prop;
489         return 0;
490 }
491
492 /*
493  * This is like of_node_to_nid_single() for memory represented in the
494  * ibm,dynamic-reconfiguration-memory node.
495  */
496 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497                                    struct assoc_arrays *aa)
498 {
499         int default_nid = 0;
500         int nid = default_nid;
501         int index;
502
503         if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504             !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505             drmem->aa_index < aa->n_arrays) {
506                 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507                 nid = of_read_number(&aa->arrays[index], 1);
508
509                 if (nid == 0xffff || nid >= MAX_NUMNODES)
510                         nid = default_nid;
511
512                 if (nid > 0) {
513                         index = drmem->aa_index * aa->array_sz;
514                         initialize_distance_lookup_table(nid,
515                                                         &aa->arrays[index]);
516                 }
517         }
518
519         return nid;
520 }
521
522 /*
523  * Figure out to which domain a cpu belongs and stick it there.
524  * Return the id of the domain used.
525  */
526 static int numa_setup_cpu(unsigned long lcpu)
527 {
528         int nid = -1;
529         struct device_node *cpu;
530
531         /*
532          * If a valid cpu-to-node mapping is already available, use it
533          * directly instead of querying the firmware, since it represents
534          * the most recent mapping notified to us by the platform (eg: VPHN).
535          */
536         if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
537                 map_cpu_to_node(lcpu, nid);
538                 return nid;
539         }
540
541         cpu = of_get_cpu_node(lcpu, NULL);
542
543         if (!cpu) {
544                 WARN_ON(1);
545                 if (cpu_present(lcpu))
546                         goto out_present;
547                 else
548                         goto out;
549         }
550
551         nid = of_node_to_nid_single(cpu);
552
553 out_present:
554         if (nid < 0 || !node_online(nid))
555                 nid = first_online_node;
556
557         map_cpu_to_node(lcpu, nid);
558         of_node_put(cpu);
559 out:
560         return nid;
561 }
562
563 static void verify_cpu_node_mapping(int cpu, int node)
564 {
565         int base, sibling, i;
566
567         /* Verify that all the threads in the core belong to the same node */
568         base = cpu_first_thread_sibling(cpu);
569
570         for (i = 0; i < threads_per_core; i++) {
571                 sibling = base + i;
572
573                 if (sibling == cpu || cpu_is_offline(sibling))
574                         continue;
575
576                 if (cpu_to_node(sibling) != node) {
577                         WARN(1, "CPU thread siblings %d and %d don't belong"
578                                 " to the same node!\n", cpu, sibling);
579                         break;
580                 }
581         }
582 }
583
584 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
585                              void *hcpu)
586 {
587         unsigned long lcpu = (unsigned long)hcpu;
588         int ret = NOTIFY_DONE, nid;
589
590         switch (action) {
591         case CPU_UP_PREPARE:
592         case CPU_UP_PREPARE_FROZEN:
593                 nid = numa_setup_cpu(lcpu);
594                 verify_cpu_node_mapping((int)lcpu, nid);
595                 ret = NOTIFY_OK;
596                 break;
597 #ifdef CONFIG_HOTPLUG_CPU
598         case CPU_DEAD:
599         case CPU_DEAD_FROZEN:
600         case CPU_UP_CANCELED:
601         case CPU_UP_CANCELED_FROZEN:
602                 unmap_cpu_from_node(lcpu);
603                 ret = NOTIFY_OK;
604                 break;
605 #endif
606         }
607         return ret;
608 }
609
610 /*
611  * Check and possibly modify a memory region to enforce the memory limit.
612  *
613  * Returns the size the region should have to enforce the memory limit.
614  * This will either be the original value of size, a truncated value,
615  * or zero. If the returned value of size is 0 the region should be
616  * discarded as it lies wholly above the memory limit.
617  */
618 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
619                                                       unsigned long size)
620 {
621         /*
622          * We use memblock_end_of_DRAM() in here instead of memory_limit because
623          * we've already adjusted it for the limit and it takes care of
624          * having memory holes below the limit.  Also, in the case of
625          * iommu_is_off, memory_limit is not set but is implicitly enforced.
626          */
627
628         if (start + size <= memblock_end_of_DRAM())
629                 return size;
630
631         if (start >= memblock_end_of_DRAM())
632                 return 0;
633
634         return memblock_end_of_DRAM() - start;
635 }
636
637 /*
638  * Reads the counter for a given entry in
639  * linux,drconf-usable-memory property
640  */
641 static inline int __init read_usm_ranges(const __be32 **usm)
642 {
643         /*
644          * For each lmb in ibm,dynamic-memory a corresponding
645          * entry in linux,drconf-usable-memory property contains
646          * a counter followed by that many (base, size) duple.
647          * read the counter from linux,drconf-usable-memory
648          */
649         return read_n_cells(n_mem_size_cells, usm);
650 }
651
652 /*
653  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
654  * node.  This assumes n_mem_{addr,size}_cells have been set.
655  */
656 static void __init parse_drconf_memory(struct device_node *memory)
657 {
658         const __be32 *uninitialized_var(dm), *usm;
659         unsigned int n, rc, ranges, is_kexec_kdump = 0;
660         unsigned long lmb_size, base, size, sz;
661         int nid;
662         struct assoc_arrays aa = { .arrays = NULL };
663
664         n = of_get_drconf_memory(memory, &dm);
665         if (!n)
666                 return;
667
668         lmb_size = of_get_lmb_size(memory);
669         if (!lmb_size)
670                 return;
671
672         rc = of_get_assoc_arrays(memory, &aa);
673         if (rc)
674                 return;
675
676         /* check if this is a kexec/kdump kernel */
677         usm = of_get_usable_memory(memory);
678         if (usm != NULL)
679                 is_kexec_kdump = 1;
680
681         for (; n != 0; --n) {
682                 struct of_drconf_cell drmem;
683
684                 read_drconf_cell(&drmem, &dm);
685
686                 /* skip this block if the reserved bit is set in flags (0x80)
687                    or if the block is not assigned to this partition (0x8) */
688                 if ((drmem.flags & DRCONF_MEM_RESERVED)
689                     || !(drmem.flags & DRCONF_MEM_ASSIGNED))
690                         continue;
691
692                 base = drmem.base_addr;
693                 size = lmb_size;
694                 ranges = 1;
695
696                 if (is_kexec_kdump) {
697                         ranges = read_usm_ranges(&usm);
698                         if (!ranges) /* there are no (base, size) duple */
699                                 continue;
700                 }
701                 do {
702                         if (is_kexec_kdump) {
703                                 base = read_n_cells(n_mem_addr_cells, &usm);
704                                 size = read_n_cells(n_mem_size_cells, &usm);
705                         }
706                         nid = of_drconf_to_nid_single(&drmem, &aa);
707                         fake_numa_create_new_node(
708                                 ((base + size) >> PAGE_SHIFT),
709                                            &nid);
710                         node_set_online(nid);
711                         sz = numa_enforce_memory_limit(base, size);
712                         if (sz)
713                                 memblock_set_node(base, sz,
714                                                   &memblock.memory, nid);
715                 } while (--ranges);
716         }
717 }
718
719 static int __init parse_numa_properties(void)
720 {
721         struct device_node *memory;
722         int default_nid = 0;
723         unsigned long i;
724
725         if (numa_enabled == 0) {
726                 printk(KERN_WARNING "NUMA disabled by user\n");
727                 return -1;
728         }
729
730         min_common_depth = find_min_common_depth();
731
732         if (min_common_depth < 0)
733                 return min_common_depth;
734
735         dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
736
737         /*
738          * Even though we connect cpus to numa domains later in SMP
739          * init, we need to know the node ids now. This is because
740          * each node to be onlined must have NODE_DATA etc backing it.
741          */
742         for_each_present_cpu(i) {
743                 struct device_node *cpu;
744                 int nid;
745
746                 cpu = of_get_cpu_node(i, NULL);
747                 BUG_ON(!cpu);
748                 nid = of_node_to_nid_single(cpu);
749                 of_node_put(cpu);
750
751                 /*
752                  * Don't fall back to default_nid yet -- we will plug
753                  * cpus into nodes once the memory scan has discovered
754                  * the topology.
755                  */
756                 if (nid < 0)
757                         continue;
758                 node_set_online(nid);
759         }
760
761         get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
762
763         for_each_node_by_type(memory, "memory") {
764                 unsigned long start;
765                 unsigned long size;
766                 int nid;
767                 int ranges;
768                 const __be32 *memcell_buf;
769                 unsigned int len;
770
771                 memcell_buf = of_get_property(memory,
772                         "linux,usable-memory", &len);
773                 if (!memcell_buf || len <= 0)
774                         memcell_buf = of_get_property(memory, "reg", &len);
775                 if (!memcell_buf || len <= 0)
776                         continue;
777
778                 /* ranges in cell */
779                 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
780 new_range:
781                 /* these are order-sensitive, and modify the buffer pointer */
782                 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
783                 size = read_n_cells(n_mem_size_cells, &memcell_buf);
784
785                 /*
786                  * Assumption: either all memory nodes or none will
787                  * have associativity properties.  If none, then
788                  * everything goes to default_nid.
789                  */
790                 nid = of_node_to_nid_single(memory);
791                 if (nid < 0)
792                         nid = default_nid;
793
794                 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
795                 node_set_online(nid);
796
797                 if (!(size = numa_enforce_memory_limit(start, size))) {
798                         if (--ranges)
799                                 goto new_range;
800                         else
801                                 continue;
802                 }
803
804                 memblock_set_node(start, size, &memblock.memory, nid);
805
806                 if (--ranges)
807                         goto new_range;
808         }
809
810         /*
811          * Now do the same thing for each MEMBLOCK listed in the
812          * ibm,dynamic-memory property in the
813          * ibm,dynamic-reconfiguration-memory node.
814          */
815         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
816         if (memory)
817                 parse_drconf_memory(memory);
818
819         return 0;
820 }
821
822 static void __init setup_nonnuma(void)
823 {
824         unsigned long top_of_ram = memblock_end_of_DRAM();
825         unsigned long total_ram = memblock_phys_mem_size();
826         unsigned long start_pfn, end_pfn;
827         unsigned int nid = 0;
828         struct memblock_region *reg;
829
830         printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
831                top_of_ram, total_ram);
832         printk(KERN_DEBUG "Memory hole size: %ldMB\n",
833                (top_of_ram - total_ram) >> 20);
834
835         for_each_memblock(memory, reg) {
836                 start_pfn = memblock_region_memory_base_pfn(reg);
837                 end_pfn = memblock_region_memory_end_pfn(reg);
838
839                 fake_numa_create_new_node(end_pfn, &nid);
840                 memblock_set_node(PFN_PHYS(start_pfn),
841                                   PFN_PHYS(end_pfn - start_pfn),
842                                   &memblock.memory, nid);
843                 node_set_online(nid);
844         }
845 }
846
847 void __init dump_numa_cpu_topology(void)
848 {
849         unsigned int node;
850         unsigned int cpu, count;
851
852         if (min_common_depth == -1 || !numa_enabled)
853                 return;
854
855         for_each_online_node(node) {
856                 printk(KERN_DEBUG "Node %d CPUs:", node);
857
858                 count = 0;
859                 /*
860                  * If we used a CPU iterator here we would miss printing
861                  * the holes in the cpumap.
862                  */
863                 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
864                         if (cpumask_test_cpu(cpu,
865                                         node_to_cpumask_map[node])) {
866                                 if (count == 0)
867                                         printk(" %u", cpu);
868                                 ++count;
869                         } else {
870                                 if (count > 1)
871                                         printk("-%u", cpu - 1);
872                                 count = 0;
873                         }
874                 }
875
876                 if (count > 1)
877                         printk("-%u", nr_cpu_ids - 1);
878                 printk("\n");
879         }
880 }
881
882 static void __init dump_numa_memory_topology(void)
883 {
884         unsigned int node;
885         unsigned int count;
886
887         if (min_common_depth == -1 || !numa_enabled)
888                 return;
889
890         for_each_online_node(node) {
891                 unsigned long i;
892
893                 printk(KERN_DEBUG "Node %d Memory:", node);
894
895                 count = 0;
896
897                 for (i = 0; i < memblock_end_of_DRAM();
898                      i += (1 << SECTION_SIZE_BITS)) {
899                         if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
900                                 if (count == 0)
901                                         printk(" 0x%lx", i);
902                                 ++count;
903                         } else {
904                                 if (count > 0)
905                                         printk("-0x%lx", i);
906                                 count = 0;
907                         }
908                 }
909
910                 if (count > 0)
911                         printk("-0x%lx", i);
912                 printk("\n");
913         }
914 }
915
916 static struct notifier_block ppc64_numa_nb = {
917         .notifier_call = cpu_numa_callback,
918         .priority = 1 /* Must run before sched domains notifier. */
919 };
920
921 /* Initialize NODE_DATA for a node on the local memory */
922 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
923 {
924         u64 spanned_pages = end_pfn - start_pfn;
925         const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
926         u64 nd_pa;
927         void *nd;
928         int tnid;
929
930         if (spanned_pages)
931                 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
932                         nid, start_pfn << PAGE_SHIFT,
933                         (end_pfn << PAGE_SHIFT) - 1);
934         else
935                 pr_info("Initmem setup node %d\n", nid);
936
937         nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
938         nd = __va(nd_pa);
939
940         /* report and initialize */
941         pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
942                 nd_pa, nd_pa + nd_size - 1);
943         tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
944         if (tnid != nid)
945                 pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
946
947         node_data[nid] = nd;
948         memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
949         NODE_DATA(nid)->node_id = nid;
950         NODE_DATA(nid)->node_start_pfn = start_pfn;
951         NODE_DATA(nid)->node_spanned_pages = spanned_pages;
952 }
953
954 void __init initmem_init(void)
955 {
956         int nid, cpu;
957
958         max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
959         max_pfn = max_low_pfn;
960
961         if (parse_numa_properties())
962                 setup_nonnuma();
963         else
964                 dump_numa_memory_topology();
965
966         memblock_dump_all();
967
968         /*
969          * Reduce the possible NUMA nodes to the online NUMA nodes,
970          * since we do not support node hotplug. This ensures that  we
971          * lower the maximum NUMA node ID to what is actually present.
972          */
973         nodes_and(node_possible_map, node_possible_map, node_online_map);
974
975         for_each_online_node(nid) {
976                 unsigned long start_pfn, end_pfn;
977
978                 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
979                 setup_node_data(nid, start_pfn, end_pfn);
980                 sparse_memory_present_with_active_regions(nid);
981         }
982
983         sparse_init();
984
985         setup_node_to_cpumask_map();
986
987         reset_numa_cpu_lookup_table();
988         register_cpu_notifier(&ppc64_numa_nb);
989         /*
990          * We need the numa_cpu_lookup_table to be accurate for all CPUs,
991          * even before we online them, so that we can use cpu_to_{node,mem}
992          * early in boot, cf. smp_prepare_cpus().
993          */
994         for_each_present_cpu(cpu) {
995                 numa_setup_cpu((unsigned long)cpu);
996         }
997 }
998
999 static int __init early_numa(char *p)
1000 {
1001         if (!p)
1002                 return 0;
1003
1004         if (strstr(p, "off"))
1005                 numa_enabled = 0;
1006
1007         if (strstr(p, "debug"))
1008                 numa_debug = 1;
1009
1010         p = strstr(p, "fake=");
1011         if (p)
1012                 cmdline = p + strlen("fake=");
1013
1014         return 0;
1015 }
1016 early_param("numa", early_numa);
1017
1018 static bool topology_updates_enabled = true;
1019
1020 static int __init early_topology_updates(char *p)
1021 {
1022         if (!p)
1023                 return 0;
1024
1025         if (!strcmp(p, "off")) {
1026                 pr_info("Disabling topology updates\n");
1027                 topology_updates_enabled = false;
1028         }
1029
1030         return 0;
1031 }
1032 early_param("topology_updates", early_topology_updates);
1033
1034 #ifdef CONFIG_MEMORY_HOTPLUG
1035 /*
1036  * Find the node associated with a hot added memory section for
1037  * memory represented in the device tree by the property
1038  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1039  */
1040 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1041                                      unsigned long scn_addr)
1042 {
1043         const __be32 *dm;
1044         unsigned int drconf_cell_cnt, rc;
1045         unsigned long lmb_size;
1046         struct assoc_arrays aa;
1047         int nid = -1;
1048
1049         drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1050         if (!drconf_cell_cnt)
1051                 return -1;
1052
1053         lmb_size = of_get_lmb_size(memory);
1054         if (!lmb_size)
1055                 return -1;
1056
1057         rc = of_get_assoc_arrays(memory, &aa);
1058         if (rc)
1059                 return -1;
1060
1061         for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1062                 struct of_drconf_cell drmem;
1063
1064                 read_drconf_cell(&drmem, &dm);
1065
1066                 /* skip this block if it is reserved or not assigned to
1067                  * this partition */
1068                 if ((drmem.flags & DRCONF_MEM_RESERVED)
1069                     || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1070                         continue;
1071
1072                 if ((scn_addr < drmem.base_addr)
1073                     || (scn_addr >= (drmem.base_addr + lmb_size)))
1074                         continue;
1075
1076                 nid = of_drconf_to_nid_single(&drmem, &aa);
1077                 break;
1078         }
1079
1080         return nid;
1081 }
1082
1083 /*
1084  * Find the node associated with a hot added memory section for memory
1085  * represented in the device tree as a node (i.e. memory@XXXX) for
1086  * each memblock.
1087  */
1088 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1089 {
1090         struct device_node *memory;
1091         int nid = -1;
1092
1093         for_each_node_by_type(memory, "memory") {
1094                 unsigned long start, size;
1095                 int ranges;
1096                 const __be32 *memcell_buf;
1097                 unsigned int len;
1098
1099                 memcell_buf = of_get_property(memory, "reg", &len);
1100                 if (!memcell_buf || len <= 0)
1101                         continue;
1102
1103                 /* ranges in cell */
1104                 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1105
1106                 while (ranges--) {
1107                         start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1108                         size = read_n_cells(n_mem_size_cells, &memcell_buf);
1109
1110                         if ((scn_addr < start) || (scn_addr >= (start + size)))
1111                                 continue;
1112
1113                         nid = of_node_to_nid_single(memory);
1114                         break;
1115                 }
1116
1117                 if (nid >= 0)
1118                         break;
1119         }
1120
1121         of_node_put(memory);
1122
1123         return nid;
1124 }
1125
1126 /*
1127  * Find the node associated with a hot added memory section.  Section
1128  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1129  * sections are fully contained within a single MEMBLOCK.
1130  */
1131 int hot_add_scn_to_nid(unsigned long scn_addr)
1132 {
1133         struct device_node *memory = NULL;
1134         int nid, found = 0;
1135
1136         if (!numa_enabled || (min_common_depth < 0))
1137                 return first_online_node;
1138
1139         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1140         if (memory) {
1141                 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1142                 of_node_put(memory);
1143         } else {
1144                 nid = hot_add_node_scn_to_nid(scn_addr);
1145         }
1146
1147         if (nid < 0 || !node_online(nid))
1148                 nid = first_online_node;
1149
1150         if (NODE_DATA(nid)->node_spanned_pages)
1151                 return nid;
1152
1153         for_each_online_node(nid) {
1154                 if (NODE_DATA(nid)->node_spanned_pages) {
1155                         found = 1;
1156                         break;
1157                 }
1158         }
1159
1160         BUG_ON(!found);
1161         return nid;
1162 }
1163
1164 static u64 hot_add_drconf_memory_max(void)
1165 {
1166         struct device_node *memory = NULL;
1167         unsigned int drconf_cell_cnt = 0;
1168         u64 lmb_size = 0;
1169         const __be32 *dm = NULL;
1170
1171         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1172         if (memory) {
1173                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1174                 lmb_size = of_get_lmb_size(memory);
1175                 of_node_put(memory);
1176         }
1177         return lmb_size * drconf_cell_cnt;
1178 }
1179
1180 /*
1181  * memory_hotplug_max - return max address of memory that may be added
1182  *
1183  * This is currently only used on systems that support drconfig memory
1184  * hotplug.
1185  */
1186 u64 memory_hotplug_max(void)
1187 {
1188         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1189 }
1190 #endif /* CONFIG_MEMORY_HOTPLUG */
1191
1192 /* Virtual Processor Home Node (VPHN) support */
1193 #ifdef CONFIG_PPC_SPLPAR
1194
1195 #include "vphn.h"
1196
1197 struct topology_update_data {
1198         struct topology_update_data *next;
1199         unsigned int cpu;
1200         int old_nid;
1201         int new_nid;
1202 };
1203
1204 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1205 static cpumask_t cpu_associativity_changes_mask;
1206 static int vphn_enabled;
1207 static int prrn_enabled;
1208 static void reset_topology_timer(void);
1209
1210 /*
1211  * Store the current values of the associativity change counters in the
1212  * hypervisor.
1213  */
1214 static void setup_cpu_associativity_change_counters(void)
1215 {
1216         int cpu;
1217
1218         /* The VPHN feature supports a maximum of 8 reference points */
1219         BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1220
1221         for_each_possible_cpu(cpu) {
1222                 int i;
1223                 u8 *counts = vphn_cpu_change_counts[cpu];
1224                 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1225
1226                 for (i = 0; i < distance_ref_points_depth; i++)
1227                         counts[i] = hypervisor_counts[i];
1228         }
1229 }
1230
1231 /*
1232  * The hypervisor maintains a set of 8 associativity change counters in
1233  * the VPA of each cpu that correspond to the associativity levels in the
1234  * ibm,associativity-reference-points property. When an associativity
1235  * level changes, the corresponding counter is incremented.
1236  *
1237  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1238  * node associativity levels have changed.
1239  *
1240  * Returns the number of cpus with unhandled associativity changes.
1241  */
1242 static int update_cpu_associativity_changes_mask(void)
1243 {
1244         int cpu;
1245         cpumask_t *changes = &cpu_associativity_changes_mask;
1246
1247         for_each_possible_cpu(cpu) {
1248                 int i, changed = 0;
1249                 u8 *counts = vphn_cpu_change_counts[cpu];
1250                 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1251
1252                 for (i = 0; i < distance_ref_points_depth; i++) {
1253                         if (hypervisor_counts[i] != counts[i]) {
1254                                 counts[i] = hypervisor_counts[i];
1255                                 changed = 1;
1256                         }
1257                 }
1258                 if (changed) {
1259                         cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1260                         cpu = cpu_last_thread_sibling(cpu);
1261                 }
1262         }
1263
1264         return cpumask_weight(changes);
1265 }
1266
1267 /*
1268  * Retrieve the new associativity information for a virtual processor's
1269  * home node.
1270  */
1271 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1272 {
1273         long rc;
1274         long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1275         u64 flags = 1;
1276         int hwcpu = get_hard_smp_processor_id(cpu);
1277
1278         rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1279         vphn_unpack_associativity(retbuf, associativity);
1280
1281         return rc;
1282 }
1283
1284 static long vphn_get_associativity(unsigned long cpu,
1285                                         __be32 *associativity)
1286 {
1287         long rc;
1288
1289         rc = hcall_vphn(cpu, associativity);
1290
1291         switch (rc) {
1292         case H_FUNCTION:
1293                 printk(KERN_INFO
1294                         "VPHN is not supported. Disabling polling...\n");
1295                 stop_topology_update();
1296                 break;
1297         case H_HARDWARE:
1298                 printk(KERN_ERR
1299                         "hcall_vphn() experienced a hardware fault "
1300                         "preventing VPHN. Disabling polling...\n");
1301                 stop_topology_update();
1302         }
1303
1304         return rc;
1305 }
1306
1307 /*
1308  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1309  * characteristics change. This function doesn't perform any locking and is
1310  * only safe to call from stop_machine().
1311  */
1312 static int update_cpu_topology(void *data)
1313 {
1314         struct topology_update_data *update;
1315         unsigned long cpu;
1316
1317         if (!data)
1318                 return -EINVAL;
1319
1320         cpu = smp_processor_id();
1321
1322         for (update = data; update; update = update->next) {
1323                 int new_nid = update->new_nid;
1324                 if (cpu != update->cpu)
1325                         continue;
1326
1327                 unmap_cpu_from_node(cpu);
1328                 map_cpu_to_node(cpu, new_nid);
1329                 set_cpu_numa_node(cpu, new_nid);
1330                 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1331                 vdso_getcpu_init();
1332         }
1333
1334         return 0;
1335 }
1336
1337 static int update_lookup_table(void *data)
1338 {
1339         struct topology_update_data *update;
1340
1341         if (!data)
1342                 return -EINVAL;
1343
1344         /*
1345          * Upon topology update, the numa-cpu lookup table needs to be updated
1346          * for all threads in the core, including offline CPUs, to ensure that
1347          * future hotplug operations respect the cpu-to-node associativity
1348          * properly.
1349          */
1350         for (update = data; update; update = update->next) {
1351                 int nid, base, j;
1352
1353                 nid = update->new_nid;
1354                 base = cpu_first_thread_sibling(update->cpu);
1355
1356                 for (j = 0; j < threads_per_core; j++) {
1357                         update_numa_cpu_lookup_table(base + j, nid);
1358                 }
1359         }
1360
1361         return 0;
1362 }
1363
1364 /*
1365  * Update the node maps and sysfs entries for each cpu whose home node
1366  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1367  */
1368 int arch_update_cpu_topology(void)
1369 {
1370         unsigned int cpu, sibling, changed = 0;
1371         struct topology_update_data *updates, *ud;
1372         __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1373         cpumask_t updated_cpus;
1374         struct device *dev;
1375         int weight, new_nid, i = 0;
1376
1377         if (!prrn_enabled && !vphn_enabled)
1378                 return 0;
1379
1380         weight = cpumask_weight(&cpu_associativity_changes_mask);
1381         if (!weight)
1382                 return 0;
1383
1384         updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1385         if (!updates)
1386                 return 0;
1387
1388         cpumask_clear(&updated_cpus);
1389
1390         for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1391                 /*
1392                  * If siblings aren't flagged for changes, updates list
1393                  * will be too short. Skip on this update and set for next
1394                  * update.
1395                  */
1396                 if (!cpumask_subset(cpu_sibling_mask(cpu),
1397                                         &cpu_associativity_changes_mask)) {
1398                         pr_info("Sibling bits not set for associativity "
1399                                         "change, cpu%d\n", cpu);
1400                         cpumask_or(&cpu_associativity_changes_mask,
1401                                         &cpu_associativity_changes_mask,
1402                                         cpu_sibling_mask(cpu));
1403                         cpu = cpu_last_thread_sibling(cpu);
1404                         continue;
1405                 }
1406
1407                 /* Use associativity from first thread for all siblings */
1408                 vphn_get_associativity(cpu, associativity);
1409                 new_nid = associativity_to_nid(associativity);
1410                 if (new_nid < 0 || !node_online(new_nid))
1411                         new_nid = first_online_node;
1412
1413                 if (new_nid == numa_cpu_lookup_table[cpu]) {
1414                         cpumask_andnot(&cpu_associativity_changes_mask,
1415                                         &cpu_associativity_changes_mask,
1416                                         cpu_sibling_mask(cpu));
1417                         cpu = cpu_last_thread_sibling(cpu);
1418                         continue;
1419                 }
1420
1421                 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1422                         ud = &updates[i++];
1423                         ud->cpu = sibling;
1424                         ud->new_nid = new_nid;
1425                         ud->old_nid = numa_cpu_lookup_table[sibling];
1426                         cpumask_set_cpu(sibling, &updated_cpus);
1427                         if (i < weight)
1428                                 ud->next = &updates[i];
1429                 }
1430                 cpu = cpu_last_thread_sibling(cpu);
1431         }
1432
1433         pr_debug("Topology update for the following CPUs:\n");
1434         if (cpumask_weight(&updated_cpus)) {
1435                 for (ud = &updates[0]; ud; ud = ud->next) {
1436                         pr_debug("cpu %d moving from node %d "
1437                                           "to %d\n", ud->cpu,
1438                                           ud->old_nid, ud->new_nid);
1439                 }
1440         }
1441
1442         /*
1443          * In cases where we have nothing to update (because the updates list
1444          * is too short or because the new topology is same as the old one),
1445          * skip invoking update_cpu_topology() via stop-machine(). This is
1446          * necessary (and not just a fast-path optimization) since stop-machine
1447          * can end up electing a random CPU to run update_cpu_topology(), and
1448          * thus trick us into setting up incorrect cpu-node mappings (since
1449          * 'updates' is kzalloc()'ed).
1450          *
1451          * And for the similar reason, we will skip all the following updating.
1452          */
1453         if (!cpumask_weight(&updated_cpus))
1454                 goto out;
1455
1456         stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1457
1458         /*
1459          * Update the numa-cpu lookup table with the new mappings, even for
1460          * offline CPUs. It is best to perform this update from the stop-
1461          * machine context.
1462          */
1463         stop_machine(update_lookup_table, &updates[0],
1464                                         cpumask_of(raw_smp_processor_id()));
1465
1466         for (ud = &updates[0]; ud; ud = ud->next) {
1467                 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1468                 register_cpu_under_node(ud->cpu, ud->new_nid);
1469
1470                 dev = get_cpu_device(ud->cpu);
1471                 if (dev)
1472                         kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1473                 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1474                 changed = 1;
1475         }
1476
1477 out:
1478         kfree(updates);
1479         return changed;
1480 }
1481
1482 static void topology_work_fn(struct work_struct *work)
1483 {
1484         rebuild_sched_domains();
1485 }
1486 static DECLARE_WORK(topology_work, topology_work_fn);
1487
1488 static void topology_schedule_update(void)
1489 {
1490         schedule_work(&topology_work);
1491 }
1492
1493 static void topology_timer_fn(unsigned long ignored)
1494 {
1495         if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1496                 topology_schedule_update();
1497         else if (vphn_enabled) {
1498                 if (update_cpu_associativity_changes_mask() > 0)
1499                         topology_schedule_update();
1500                 reset_topology_timer();
1501         }
1502 }
1503 static struct timer_list topology_timer =
1504         TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1505
1506 static void reset_topology_timer(void)
1507 {
1508         topology_timer.data = 0;
1509         topology_timer.expires = jiffies + 60 * HZ;
1510         mod_timer(&topology_timer, topology_timer.expires);
1511 }
1512
1513 #ifdef CONFIG_SMP
1514
1515 static void stage_topology_update(int core_id)
1516 {
1517         cpumask_or(&cpu_associativity_changes_mask,
1518                 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1519         reset_topology_timer();
1520 }
1521
1522 static int dt_update_callback(struct notifier_block *nb,
1523                                 unsigned long action, void *data)
1524 {
1525         struct of_reconfig_data *update = data;
1526         int rc = NOTIFY_DONE;
1527
1528         switch (action) {
1529         case OF_RECONFIG_UPDATE_PROPERTY:
1530                 if (!of_prop_cmp(update->dn->type, "cpu") &&
1531                     !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1532                         u32 core_id;
1533                         of_property_read_u32(update->dn, "reg", &core_id);
1534                         stage_topology_update(core_id);
1535                         rc = NOTIFY_OK;
1536                 }
1537                 break;
1538         }
1539
1540         return rc;
1541 }
1542
1543 static struct notifier_block dt_update_nb = {
1544         .notifier_call = dt_update_callback,
1545 };
1546
1547 #endif
1548
1549 /*
1550  * Start polling for associativity changes.
1551  */
1552 int start_topology_update(void)
1553 {
1554         int rc = 0;
1555
1556         if (firmware_has_feature(FW_FEATURE_PRRN)) {
1557                 if (!prrn_enabled) {
1558                         prrn_enabled = 1;
1559                         vphn_enabled = 0;
1560 #ifdef CONFIG_SMP
1561                         rc = of_reconfig_notifier_register(&dt_update_nb);
1562 #endif
1563                 }
1564         } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1565                    lppaca_shared_proc(get_lppaca())) {
1566                 if (!vphn_enabled) {
1567                         prrn_enabled = 0;
1568                         vphn_enabled = 1;
1569                         setup_cpu_associativity_change_counters();
1570                         init_timer_deferrable(&topology_timer);
1571                         reset_topology_timer();
1572                 }
1573         }
1574
1575         return rc;
1576 }
1577
1578 /*
1579  * Disable polling for VPHN associativity changes.
1580  */
1581 int stop_topology_update(void)
1582 {
1583         int rc = 0;
1584
1585         if (prrn_enabled) {
1586                 prrn_enabled = 0;
1587 #ifdef CONFIG_SMP
1588                 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1589 #endif
1590         } else if (vphn_enabled) {
1591                 vphn_enabled = 0;
1592                 rc = del_timer_sync(&topology_timer);
1593         }
1594
1595         return rc;
1596 }
1597
1598 int prrn_is_enabled(void)
1599 {
1600         return prrn_enabled;
1601 }
1602
1603 static int topology_read(struct seq_file *file, void *v)
1604 {
1605         if (vphn_enabled || prrn_enabled)
1606                 seq_puts(file, "on\n");
1607         else
1608                 seq_puts(file, "off\n");
1609
1610         return 0;
1611 }
1612
1613 static int topology_open(struct inode *inode, struct file *file)
1614 {
1615         return single_open(file, topology_read, NULL);
1616 }
1617
1618 static ssize_t topology_write(struct file *file, const char __user *buf,
1619                               size_t count, loff_t *off)
1620 {
1621         char kbuf[4]; /* "on" or "off" plus null. */
1622         int read_len;
1623
1624         read_len = count < 3 ? count : 3;
1625         if (copy_from_user(kbuf, buf, read_len))
1626                 return -EINVAL;
1627
1628         kbuf[read_len] = '\0';
1629
1630         if (!strncmp(kbuf, "on", 2))
1631                 start_topology_update();
1632         else if (!strncmp(kbuf, "off", 3))
1633                 stop_topology_update();
1634         else
1635                 return -EINVAL;
1636
1637         return count;
1638 }
1639
1640 static const struct file_operations topology_ops = {
1641         .read = seq_read,
1642         .write = topology_write,
1643         .open = topology_open,
1644         .release = single_release
1645 };
1646
1647 static int topology_update_init(void)
1648 {
1649         /* Do not poll for changes if disabled at boot */
1650         if (topology_updates_enabled)
1651                 start_topology_update();
1652
1653         if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1654                 return -ENOMEM;
1655
1656         return 0;
1657 }
1658 device_initcall(topology_update_init);
1659 #endif /* CONFIG_PPC_SPLPAR */