pinctrl: Add NVIDIA Tegra XUSB pad controller support
[cascardo/linux.git] / arch / powerpc / perf / power8-pmu.c
1 /*
2  * Performance counter support for POWER8 processors.
3  *
4  * Copyright 2009 Paul Mackerras, IBM Corporation.
5  * Copyright 2013 Michael Ellerman, IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12
13 #define pr_fmt(fmt)     "power8-pmu: " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <asm/firmware.h>
18
19
20 /*
21  * Some power8 event codes.
22  */
23 #define PM_CYC                          0x0001e
24 #define PM_GCT_NOSLOT_CYC               0x100f8
25 #define PM_CMPLU_STALL                  0x4000a
26 #define PM_INST_CMPL                    0x00002
27 #define PM_BRU_FIN                      0x10068
28 #define PM_BR_MPRED_CMPL                0x400f6
29
30 /* All L1 D cache load references counted at finish, gated by reject */
31 #define PM_LD_REF_L1                    0x100ee
32 /* Load Missed L1 */
33 #define PM_LD_MISS_L1                   0x3e054
34 /* Store Missed L1 */
35 #define PM_ST_MISS_L1                   0x300f0
36 /* L1 cache data prefetches */
37 #define PM_L1_PREF                      0x0d8b8
38 /* Instruction fetches from L1 */
39 #define PM_INST_FROM_L1                 0x04080
40 /* Demand iCache Miss */
41 #define PM_L1_ICACHE_MISS               0x200fd
42 /* Instruction Demand sectors wriittent into IL1 */
43 #define PM_L1_DEMAND_WRITE              0x0408c
44 /* Instruction prefetch written into IL1 */
45 #define PM_IC_PREF_WRITE                0x0408e
46 /* The data cache was reloaded from local core's L3 due to a demand load */
47 #define PM_DATA_FROM_L3                 0x4c042
48 /* Demand LD - L3 Miss (not L2 hit and not L3 hit) */
49 #define PM_DATA_FROM_L3MISS             0x300fe
50 /* All successful D-side store dispatches for this thread */
51 #define PM_L2_ST                        0x17080
52 /* All successful D-side store dispatches for this thread that were L2 Miss */
53 #define PM_L2_ST_MISS                   0x17082
54 /* Total HW L3 prefetches(Load+store) */
55 #define PM_L3_PREF_ALL                  0x4e052
56 /* Data PTEG reload */
57 #define PM_DTLB_MISS                    0x300fc
58 /* ITLB Reloaded */
59 #define PM_ITLB_MISS                    0x400fc
60
61
62 /*
63  * Raw event encoding for POWER8:
64  *
65  *        60        56        52        48        44        40        36        32
66  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
67  *   | | [ ]                           [      thresh_cmp     ]   [  thresh_ctl   ]
68  *   | |  |                                                              |
69  *   | |  *- IFM (Linux)                 thresh start/stop OR FAB match -*
70  *   | *- BHRB (Linux)
71  *   *- EBB (Linux)
72  *
73  *        28        24        20        16        12         8         4         0
74  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
75  *   [   ] [  sample ]   [cache]   [ pmc ]   [unit ]   c     m   [    pmcxsel    ]
76  *     |        |           |                          |     |
77  *     |        |           |                          |     *- mark
78  *     |        |           *- L1/L2/L3 cache_sel      |
79  *     |        |                                      |
80  *     |        *- sampling mode for marked events     *- combine
81  *     |
82  *     *- thresh_sel
83  *
84  * Below uses IBM bit numbering.
85  *
86  * MMCR1[x:y] = unit    (PMCxUNIT)
87  * MMCR1[x]   = combine (PMCxCOMB)
88  *
89  * if pmc == 3 and unit == 0 and pmcxsel[0:6] == 0b0101011
90  *      # PM_MRK_FAB_RSP_MATCH
91  *      MMCR1[20:27] = thresh_ctl   (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
92  * else if pmc == 4 and unit == 0xf and pmcxsel[0:6] == 0b0101001
93  *      # PM_MRK_FAB_RSP_MATCH_CYC
94  *      MMCR1[20:27] = thresh_ctl   (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
95  * else
96  *      MMCRA[48:55] = thresh_ctl   (THRESH START/END)
97  *
98  * if thresh_sel:
99  *      MMCRA[45:47] = thresh_sel
100  *
101  * if thresh_cmp:
102  *      MMCRA[22:24] = thresh_cmp[0:2]
103  *      MMCRA[25:31] = thresh_cmp[3:9]
104  *
105  * if unit == 6 or unit == 7
106  *      MMCRC[53:55] = cache_sel[1:3]      (L2EVENT_SEL)
107  * else if unit == 8 or unit == 9:
108  *      if cache_sel[0] == 0: # L3 bank
109  *              MMCRC[47:49] = cache_sel[1:3]  (L3EVENT_SEL0)
110  *      else if cache_sel[0] == 1:
111  *              MMCRC[50:51] = cache_sel[2:3]  (L3EVENT_SEL1)
112  * else if cache_sel[1]: # L1 event
113  *      MMCR1[16] = cache_sel[2]
114  *     MMCR1[17] = cache_sel[3]
115  *
116  * if mark:
117  *      MMCRA[63]    = 1                (SAMPLE_ENABLE)
118  *      MMCRA[57:59] = sample[0:2]      (RAND_SAMP_ELIG)
119  *     MMCRA[61:62] = sample[3:4]      (RAND_SAMP_MODE)
120  *
121  * if EBB and BHRB:
122  *      MMCRA[32:33] = IFM
123  *
124  */
125
126 #define EVENT_EBB_MASK          1ull
127 #define EVENT_EBB_SHIFT         PERF_EVENT_CONFIG_EBB_SHIFT
128 #define EVENT_BHRB_MASK         1ull
129 #define EVENT_BHRB_SHIFT        62
130 #define EVENT_WANTS_BHRB        (EVENT_BHRB_MASK << EVENT_BHRB_SHIFT)
131 #define EVENT_IFM_MASK          3ull
132 #define EVENT_IFM_SHIFT         60
133 #define EVENT_THR_CMP_SHIFT     40      /* Threshold CMP value */
134 #define EVENT_THR_CMP_MASK      0x3ff
135 #define EVENT_THR_CTL_SHIFT     32      /* Threshold control value (start/stop) */
136 #define EVENT_THR_CTL_MASK      0xffull
137 #define EVENT_THR_SEL_SHIFT     29      /* Threshold select value */
138 #define EVENT_THR_SEL_MASK      0x7
139 #define EVENT_THRESH_SHIFT      29      /* All threshold bits */
140 #define EVENT_THRESH_MASK       0x1fffffull
141 #define EVENT_SAMPLE_SHIFT      24      /* Sampling mode & eligibility */
142 #define EVENT_SAMPLE_MASK       0x1f
143 #define EVENT_CACHE_SEL_SHIFT   20      /* L2/L3 cache select */
144 #define EVENT_CACHE_SEL_MASK    0xf
145 #define EVENT_IS_L1             (4 << EVENT_CACHE_SEL_SHIFT)
146 #define EVENT_PMC_SHIFT         16      /* PMC number (1-based) */
147 #define EVENT_PMC_MASK          0xf
148 #define EVENT_UNIT_SHIFT        12      /* Unit */
149 #define EVENT_UNIT_MASK         0xf
150 #define EVENT_COMBINE_SHIFT     11      /* Combine bit */
151 #define EVENT_COMBINE_MASK      0x1
152 #define EVENT_MARKED_SHIFT      8       /* Marked bit */
153 #define EVENT_MARKED_MASK       0x1
154 #define EVENT_IS_MARKED         (EVENT_MARKED_MASK << EVENT_MARKED_SHIFT)
155 #define EVENT_PSEL_MASK         0xff    /* PMCxSEL value */
156
157 /* Bits defined by Linux */
158 #define EVENT_LINUX_MASK        \
159         ((EVENT_EBB_MASK  << EVENT_EBB_SHIFT)                   |       \
160          (EVENT_BHRB_MASK << EVENT_BHRB_SHIFT)                  |       \
161          (EVENT_IFM_MASK  << EVENT_IFM_SHIFT))
162
163 #define EVENT_VALID_MASK        \
164         ((EVENT_THRESH_MASK    << EVENT_THRESH_SHIFT)           |       \
165          (EVENT_SAMPLE_MASK    << EVENT_SAMPLE_SHIFT)           |       \
166          (EVENT_CACHE_SEL_MASK << EVENT_CACHE_SEL_SHIFT)        |       \
167          (EVENT_PMC_MASK       << EVENT_PMC_SHIFT)              |       \
168          (EVENT_UNIT_MASK      << EVENT_UNIT_SHIFT)             |       \
169          (EVENT_COMBINE_MASK   << EVENT_COMBINE_SHIFT)          |       \
170          (EVENT_MARKED_MASK    << EVENT_MARKED_SHIFT)           |       \
171           EVENT_LINUX_MASK                                      |       \
172           EVENT_PSEL_MASK)
173
174 /* MMCRA IFM bits - POWER8 */
175 #define POWER8_MMCRA_IFM1               0x0000000040000000UL
176 #define POWER8_MMCRA_IFM2               0x0000000080000000UL
177 #define POWER8_MMCRA_IFM3               0x00000000C0000000UL
178
179 #define ONLY_PLM \
180         (PERF_SAMPLE_BRANCH_USER        |\
181          PERF_SAMPLE_BRANCH_KERNEL      |\
182          PERF_SAMPLE_BRANCH_HV)
183
184 /*
185  * Layout of constraint bits:
186  *
187  *        60        56        52        48        44        40        36        32
188  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
189  *   [   fab_match   ]         [       thresh_cmp      ] [   thresh_ctl    ] [   ]
190  *                                                                             |
191  *                                                                 thresh_sel -*
192  *
193  *        28        24        20        16        12         8         4         0
194  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
195  *               [ ] |   [ ]   [  sample ]   [     ]   [6] [5]   [4] [3]   [2] [1]
196  *                |  |    |                     |
197  *      BHRB IFM -*  |    |                     |      Count of events for each PMC.
198  *              EBB -*    |                     |        p1, p2, p3, p4, p5, p6.
199  *      L1 I/D qualifier -*                     |
200  *                     nc - number of counters -*
201  *
202  * The PMC fields P1..P6, and NC, are adder fields. As we accumulate constraints
203  * we want the low bit of each field to be added to any existing value.
204  *
205  * Everything else is a value field.
206  */
207
208 #define CNST_FAB_MATCH_VAL(v)   (((v) & EVENT_THR_CTL_MASK) << 56)
209 #define CNST_FAB_MATCH_MASK     CNST_FAB_MATCH_VAL(EVENT_THR_CTL_MASK)
210
211 /* We just throw all the threshold bits into the constraint */
212 #define CNST_THRESH_VAL(v)      (((v) & EVENT_THRESH_MASK) << 32)
213 #define CNST_THRESH_MASK        CNST_THRESH_VAL(EVENT_THRESH_MASK)
214
215 #define CNST_EBB_VAL(v)         (((v) & EVENT_EBB_MASK) << 24)
216 #define CNST_EBB_MASK           CNST_EBB_VAL(EVENT_EBB_MASK)
217
218 #define CNST_IFM_VAL(v)         (((v) & EVENT_IFM_MASK) << 25)
219 #define CNST_IFM_MASK           CNST_IFM_VAL(EVENT_IFM_MASK)
220
221 #define CNST_L1_QUAL_VAL(v)     (((v) & 3) << 22)
222 #define CNST_L1_QUAL_MASK       CNST_L1_QUAL_VAL(3)
223
224 #define CNST_SAMPLE_VAL(v)      (((v) & EVENT_SAMPLE_MASK) << 16)
225 #define CNST_SAMPLE_MASK        CNST_SAMPLE_VAL(EVENT_SAMPLE_MASK)
226
227 /*
228  * For NC we are counting up to 4 events. This requires three bits, and we need
229  * the fifth event to overflow and set the 4th bit. To achieve that we bias the
230  * fields by 3 in test_adder.
231  */
232 #define CNST_NC_SHIFT           12
233 #define CNST_NC_VAL             (1 << CNST_NC_SHIFT)
234 #define CNST_NC_MASK            (8 << CNST_NC_SHIFT)
235 #define POWER8_TEST_ADDER       (3 << CNST_NC_SHIFT)
236
237 /*
238  * For the per-PMC fields we have two bits. The low bit is added, so if two
239  * events ask for the same PMC the sum will overflow, setting the high bit,
240  * indicating an error. So our mask sets the high bit.
241  */
242 #define CNST_PMC_SHIFT(pmc)     ((pmc - 1) * 2)
243 #define CNST_PMC_VAL(pmc)       (1 << CNST_PMC_SHIFT(pmc))
244 #define CNST_PMC_MASK(pmc)      (2 << CNST_PMC_SHIFT(pmc))
245
246 /* Our add_fields is defined as: */
247 #define POWER8_ADD_FIELDS       \
248         CNST_PMC_VAL(1) | CNST_PMC_VAL(2) | CNST_PMC_VAL(3) | \
249         CNST_PMC_VAL(4) | CNST_PMC_VAL(5) | CNST_PMC_VAL(6) | CNST_NC_VAL
250
251
252 /* Bits in MMCR1 for POWER8 */
253 #define MMCR1_UNIT_SHIFT(pmc)           (60 - (4 * ((pmc) - 1)))
254 #define MMCR1_COMBINE_SHIFT(pmc)        (35 - ((pmc) - 1))
255 #define MMCR1_PMCSEL_SHIFT(pmc)         (24 - (((pmc) - 1)) * 8)
256 #define MMCR1_FAB_SHIFT                 36
257 #define MMCR1_DC_QUAL_SHIFT             47
258 #define MMCR1_IC_QUAL_SHIFT             46
259
260 /* Bits in MMCRA for POWER8 */
261 #define MMCRA_SAMP_MODE_SHIFT           1
262 #define MMCRA_SAMP_ELIG_SHIFT           4
263 #define MMCRA_THR_CTL_SHIFT             8
264 #define MMCRA_THR_SEL_SHIFT             16
265 #define MMCRA_THR_CMP_SHIFT             32
266 #define MMCRA_SDAR_MODE_TLB             (1ull << 42)
267 #define MMCRA_IFM_SHIFT                 30
268
269
270 static inline bool event_is_fab_match(u64 event)
271 {
272         /* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
273         event &= 0xff0fe;
274
275         /* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
276         return (event == 0x30056 || event == 0x4f052);
277 }
278
279 static int power8_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp)
280 {
281         unsigned int unit, pmc, cache, ebb;
282         unsigned long mask, value;
283
284         mask = value = 0;
285
286         if (event & ~EVENT_VALID_MASK)
287                 return -1;
288
289         pmc   = (event >> EVENT_PMC_SHIFT)        & EVENT_PMC_MASK;
290         unit  = (event >> EVENT_UNIT_SHIFT)       & EVENT_UNIT_MASK;
291         cache = (event >> EVENT_CACHE_SEL_SHIFT)  & EVENT_CACHE_SEL_MASK;
292         ebb   = (event >> EVENT_EBB_SHIFT)        & EVENT_EBB_MASK;
293
294         if (pmc) {
295                 u64 base_event;
296
297                 if (pmc > 6)
298                         return -1;
299
300                 /* Ignore Linux defined bits when checking event below */
301                 base_event = event & ~EVENT_LINUX_MASK;
302
303                 if (pmc >= 5 && base_event != 0x500fa && base_event != 0x600f4)
304                         return -1;
305
306                 mask  |= CNST_PMC_MASK(pmc);
307                 value |= CNST_PMC_VAL(pmc);
308         }
309
310         if (pmc <= 4) {
311                 /*
312                  * Add to number of counters in use. Note this includes events with
313                  * a PMC of 0 - they still need a PMC, it's just assigned later.
314                  * Don't count events on PMC 5 & 6, there is only one valid event
315                  * on each of those counters, and they are handled above.
316                  */
317                 mask  |= CNST_NC_MASK;
318                 value |= CNST_NC_VAL;
319         }
320
321         if (unit >= 6 && unit <= 9) {
322                 /*
323                  * L2/L3 events contain a cache selector field, which is
324                  * supposed to be programmed into MMCRC. However MMCRC is only
325                  * HV writable, and there is no API for guest kernels to modify
326                  * it. The solution is for the hypervisor to initialise the
327                  * field to zeroes, and for us to only ever allow events that
328                  * have a cache selector of zero. The bank selector (bit 3) is
329                  * irrelevant, as long as the rest of the value is 0.
330                  */
331                 if (cache & 0x7)
332                         return -1;
333
334         } else if (event & EVENT_IS_L1) {
335                 mask  |= CNST_L1_QUAL_MASK;
336                 value |= CNST_L1_QUAL_VAL(cache);
337         }
338
339         if (event & EVENT_IS_MARKED) {
340                 mask  |= CNST_SAMPLE_MASK;
341                 value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
342         }
343
344         /*
345          * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
346          * the threshold control bits are used for the match value.
347          */
348         if (event_is_fab_match(event)) {
349                 mask  |= CNST_FAB_MATCH_MASK;
350                 value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
351         } else {
352                 /*
353                  * Check the mantissa upper two bits are not zero, unless the
354                  * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
355                  */
356                 unsigned int cmp, exp;
357
358                 cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
359                 exp = cmp >> 7;
360
361                 if (exp && (cmp & 0x60) == 0)
362                         return -1;
363
364                 mask  |= CNST_THRESH_MASK;
365                 value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
366         }
367
368         if (!pmc && ebb)
369                 /* EBB events must specify the PMC */
370                 return -1;
371
372         if (event & EVENT_WANTS_BHRB) {
373                 if (!ebb)
374                         /* Only EBB events can request BHRB */
375                         return -1;
376
377                 mask  |= CNST_IFM_MASK;
378                 value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
379         }
380
381         /*
382          * All events must agree on EBB, either all request it or none.
383          * EBB events are pinned & exclusive, so this should never actually
384          * hit, but we leave it as a fallback in case.
385          */
386         mask  |= CNST_EBB_VAL(ebb);
387         value |= CNST_EBB_MASK;
388
389         *maskp = mask;
390         *valp = value;
391
392         return 0;
393 }
394
395 static int power8_compute_mmcr(u64 event[], int n_ev,
396                                unsigned int hwc[], unsigned long mmcr[])
397 {
398         unsigned long mmcra, mmcr1, unit, combine, psel, cache, val;
399         unsigned int pmc, pmc_inuse;
400         int i;
401
402         pmc_inuse = 0;
403
404         /* First pass to count resource use */
405         for (i = 0; i < n_ev; ++i) {
406                 pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
407                 if (pmc)
408                         pmc_inuse |= 1 << pmc;
409         }
410
411         /* In continous sampling mode, update SDAR on TLB miss */
412         mmcra = MMCRA_SDAR_MODE_TLB;
413         mmcr1 = 0;
414
415         /* Second pass: assign PMCs, set all MMCR1 fields */
416         for (i = 0; i < n_ev; ++i) {
417                 pmc     = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
418                 unit    = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
419                 combine = (event[i] >> EVENT_COMBINE_SHIFT) & EVENT_COMBINE_MASK;
420                 psel    =  event[i] & EVENT_PSEL_MASK;
421
422                 if (!pmc) {
423                         for (pmc = 1; pmc <= 4; ++pmc) {
424                                 if (!(pmc_inuse & (1 << pmc)))
425                                         break;
426                         }
427
428                         pmc_inuse |= 1 << pmc;
429                 }
430
431                 if (pmc <= 4) {
432                         mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
433                         mmcr1 |= combine << MMCR1_COMBINE_SHIFT(pmc);
434                         mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
435                 }
436
437                 if (event[i] & EVENT_IS_L1) {
438                         cache = event[i] >> EVENT_CACHE_SEL_SHIFT;
439                         mmcr1 |= (cache & 1) << MMCR1_IC_QUAL_SHIFT;
440                         cache >>= 1;
441                         mmcr1 |= (cache & 1) << MMCR1_DC_QUAL_SHIFT;
442                 }
443
444                 if (event[i] & EVENT_IS_MARKED) {
445                         mmcra |= MMCRA_SAMPLE_ENABLE;
446
447                         val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
448                         if (val) {
449                                 mmcra |= (val &  3) << MMCRA_SAMP_MODE_SHIFT;
450                                 mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
451                         }
452                 }
453
454                 /*
455                  * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
456                  * the threshold bits are used for the match value.
457                  */
458                 if (event_is_fab_match(event[i])) {
459                         mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
460                                   EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
461                 } else {
462                         val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
463                         mmcra |= val << MMCRA_THR_CTL_SHIFT;
464                         val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
465                         mmcra |= val << MMCRA_THR_SEL_SHIFT;
466                         val = (event[i] >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
467                         mmcra |= val << MMCRA_THR_CMP_SHIFT;
468                 }
469
470                 if (event[i] & EVENT_WANTS_BHRB) {
471                         val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
472                         mmcra |= val << MMCRA_IFM_SHIFT;
473                 }
474
475                 hwc[i] = pmc - 1;
476         }
477
478         /* Return MMCRx values */
479         mmcr[0] = 0;
480
481         /* pmc_inuse is 1-based */
482         if (pmc_inuse & 2)
483                 mmcr[0] = MMCR0_PMC1CE;
484
485         if (pmc_inuse & 0x7c)
486                 mmcr[0] |= MMCR0_PMCjCE;
487
488         /* If we're not using PMC 5 or 6, freeze them */
489         if (!(pmc_inuse & 0x60))
490                 mmcr[0] |= MMCR0_FC56;
491
492         mmcr[1] = mmcr1;
493         mmcr[2] = mmcra;
494
495         return 0;
496 }
497
498 #define MAX_ALT 2
499
500 /* Table of alternatives, sorted by column 0 */
501 static const unsigned int event_alternatives[][MAX_ALT] = {
502         { 0x10134, 0x301e2 },           /* PM_MRK_ST_CMPL */
503         { 0x10138, 0x40138 },           /* PM_BR_MRK_2PATH */
504         { 0x18082, 0x3e05e },           /* PM_L3_CO_MEPF */
505         { 0x1d14e, 0x401e8 },           /* PM_MRK_DATA_FROM_L2MISS */
506         { 0x1e054, 0x4000a },           /* PM_CMPLU_STALL */
507         { 0x20036, 0x40036 },           /* PM_BR_2PATH */
508         { 0x200f2, 0x300f2 },           /* PM_INST_DISP */
509         { 0x200f4, 0x600f4 },           /* PM_RUN_CYC */
510         { 0x2013c, 0x3012e },           /* PM_MRK_FILT_MATCH */
511         { 0x3e054, 0x400f0 },           /* PM_LD_MISS_L1 */
512         { 0x400fa, 0x500fa },           /* PM_RUN_INST_CMPL */
513 };
514
515 /*
516  * Scan the alternatives table for a match and return the
517  * index into the alternatives table if found, else -1.
518  */
519 static int find_alternative(u64 event)
520 {
521         int i, j;
522
523         for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) {
524                 if (event < event_alternatives[i][0])
525                         break;
526
527                 for (j = 0; j < MAX_ALT && event_alternatives[i][j]; ++j)
528                         if (event == event_alternatives[i][j])
529                                 return i;
530         }
531
532         return -1;
533 }
534
535 static int power8_get_alternatives(u64 event, unsigned int flags, u64 alt[])
536 {
537         int i, j, num_alt = 0;
538         u64 alt_event;
539
540         alt[num_alt++] = event;
541
542         i = find_alternative(event);
543         if (i >= 0) {
544                 /* Filter out the original event, it's already in alt[0] */
545                 for (j = 0; j < MAX_ALT; ++j) {
546                         alt_event = event_alternatives[i][j];
547                         if (alt_event && alt_event != event)
548                                 alt[num_alt++] = alt_event;
549                 }
550         }
551
552         if (flags & PPMU_ONLY_COUNT_RUN) {
553                 /*
554                  * We're only counting in RUN state, so PM_CYC is equivalent to
555                  * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
556                  */
557                 j = num_alt;
558                 for (i = 0; i < num_alt; ++i) {
559                         switch (alt[i]) {
560                         case 0x1e:      /* PM_CYC */
561                                 alt[j++] = 0x600f4;     /* PM_RUN_CYC */
562                                 break;
563                         case 0x600f4:   /* PM_RUN_CYC */
564                                 alt[j++] = 0x1e;
565                                 break;
566                         case 0x2:       /* PM_PPC_CMPL */
567                                 alt[j++] = 0x500fa;     /* PM_RUN_INST_CMPL */
568                                 break;
569                         case 0x500fa:   /* PM_RUN_INST_CMPL */
570                                 alt[j++] = 0x2; /* PM_PPC_CMPL */
571                                 break;
572                         }
573                 }
574                 num_alt = j;
575         }
576
577         return num_alt;
578 }
579
580 static void power8_disable_pmc(unsigned int pmc, unsigned long mmcr[])
581 {
582         if (pmc <= 3)
583                 mmcr[1] &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
584 }
585
586 PMU_FORMAT_ATTR(event,          "config:0-49");
587 PMU_FORMAT_ATTR(pmcxsel,        "config:0-7");
588 PMU_FORMAT_ATTR(mark,           "config:8");
589 PMU_FORMAT_ATTR(combine,        "config:11");
590 PMU_FORMAT_ATTR(unit,           "config:12-15");
591 PMU_FORMAT_ATTR(pmc,            "config:16-19");
592 PMU_FORMAT_ATTR(cache_sel,      "config:20-23");
593 PMU_FORMAT_ATTR(sample_mode,    "config:24-28");
594 PMU_FORMAT_ATTR(thresh_sel,     "config:29-31");
595 PMU_FORMAT_ATTR(thresh_stop,    "config:32-35");
596 PMU_FORMAT_ATTR(thresh_start,   "config:36-39");
597 PMU_FORMAT_ATTR(thresh_cmp,     "config:40-49");
598
599 static struct attribute *power8_pmu_format_attr[] = {
600         &format_attr_event.attr,
601         &format_attr_pmcxsel.attr,
602         &format_attr_mark.attr,
603         &format_attr_combine.attr,
604         &format_attr_unit.attr,
605         &format_attr_pmc.attr,
606         &format_attr_cache_sel.attr,
607         &format_attr_sample_mode.attr,
608         &format_attr_thresh_sel.attr,
609         &format_attr_thresh_stop.attr,
610         &format_attr_thresh_start.attr,
611         &format_attr_thresh_cmp.attr,
612         NULL,
613 };
614
615 struct attribute_group power8_pmu_format_group = {
616         .name = "format",
617         .attrs = power8_pmu_format_attr,
618 };
619
620 static const struct attribute_group *power8_pmu_attr_groups[] = {
621         &power8_pmu_format_group,
622         NULL,
623 };
624
625 static int power8_generic_events[] = {
626         [PERF_COUNT_HW_CPU_CYCLES] =                    PM_CYC,
627         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =       PM_GCT_NOSLOT_CYC,
628         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =        PM_CMPLU_STALL,
629         [PERF_COUNT_HW_INSTRUCTIONS] =                  PM_INST_CMPL,
630         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] =           PM_BRU_FIN,
631         [PERF_COUNT_HW_BRANCH_MISSES] =                 PM_BR_MPRED_CMPL,
632         [PERF_COUNT_HW_CACHE_REFERENCES] =              PM_LD_REF_L1,
633         [PERF_COUNT_HW_CACHE_MISSES] =                  PM_LD_MISS_L1,
634 };
635
636 static u64 power8_bhrb_filter_map(u64 branch_sample_type)
637 {
638         u64 pmu_bhrb_filter = 0;
639
640         /* BHRB and regular PMU events share the same privilege state
641          * filter configuration. BHRB is always recorded along with a
642          * regular PMU event. As the privilege state filter is handled
643          * in the basic PMC configuration of the accompanying regular
644          * PMU event, we ignore any separate BHRB specific request.
645          */
646
647         /* No branch filter requested */
648         if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY)
649                 return pmu_bhrb_filter;
650
651         /* Invalid branch filter options - HW does not support */
652         if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
653                 return -1;
654
655         if (branch_sample_type & PERF_SAMPLE_BRANCH_IND_CALL)
656                 return -1;
657
658         if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_CALL) {
659                 pmu_bhrb_filter |= POWER8_MMCRA_IFM1;
660                 return pmu_bhrb_filter;
661         }
662
663         /* Every thing else is unsupported */
664         return -1;
665 }
666
667 static void power8_config_bhrb(u64 pmu_bhrb_filter)
668 {
669         /* Enable BHRB filter in PMU */
670         mtspr(SPRN_MMCRA, (mfspr(SPRN_MMCRA) | pmu_bhrb_filter));
671 }
672
673 #define C(x)    PERF_COUNT_HW_CACHE_##x
674
675 /*
676  * Table of generalized cache-related events.
677  * 0 means not supported, -1 means nonsensical, other values
678  * are event codes.
679  */
680 static int power8_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
681         [ C(L1D) ] = {
682                 [ C(OP_READ) ] = {
683                         [ C(RESULT_ACCESS) ] = PM_LD_REF_L1,
684                         [ C(RESULT_MISS)   ] = PM_LD_MISS_L1,
685                 },
686                 [ C(OP_WRITE) ] = {
687                         [ C(RESULT_ACCESS) ] = 0,
688                         [ C(RESULT_MISS)   ] = PM_ST_MISS_L1,
689                 },
690                 [ C(OP_PREFETCH) ] = {
691                         [ C(RESULT_ACCESS) ] = PM_L1_PREF,
692                         [ C(RESULT_MISS)   ] = 0,
693                 },
694         },
695         [ C(L1I) ] = {
696                 [ C(OP_READ) ] = {
697                         [ C(RESULT_ACCESS) ] = PM_INST_FROM_L1,
698                         [ C(RESULT_MISS)   ] = PM_L1_ICACHE_MISS,
699                 },
700                 [ C(OP_WRITE) ] = {
701                         [ C(RESULT_ACCESS) ] = PM_L1_DEMAND_WRITE,
702                         [ C(RESULT_MISS)   ] = -1,
703                 },
704                 [ C(OP_PREFETCH) ] = {
705                         [ C(RESULT_ACCESS) ] = PM_IC_PREF_WRITE,
706                         [ C(RESULT_MISS)   ] = 0,
707                 },
708         },
709         [ C(LL) ] = {
710                 [ C(OP_READ) ] = {
711                         [ C(RESULT_ACCESS) ] = PM_DATA_FROM_L3,
712                         [ C(RESULT_MISS)   ] = PM_DATA_FROM_L3MISS,
713                 },
714                 [ C(OP_WRITE) ] = {
715                         [ C(RESULT_ACCESS) ] = PM_L2_ST,
716                         [ C(RESULT_MISS)   ] = PM_L2_ST_MISS,
717                 },
718                 [ C(OP_PREFETCH) ] = {
719                         [ C(RESULT_ACCESS) ] = PM_L3_PREF_ALL,
720                         [ C(RESULT_MISS)   ] = 0,
721                 },
722         },
723         [ C(DTLB) ] = {
724                 [ C(OP_READ) ] = {
725                         [ C(RESULT_ACCESS) ] = 0,
726                         [ C(RESULT_MISS)   ] = PM_DTLB_MISS,
727                 },
728                 [ C(OP_WRITE) ] = {
729                         [ C(RESULT_ACCESS) ] = -1,
730                         [ C(RESULT_MISS)   ] = -1,
731                 },
732                 [ C(OP_PREFETCH) ] = {
733                         [ C(RESULT_ACCESS) ] = -1,
734                         [ C(RESULT_MISS)   ] = -1,
735                 },
736         },
737         [ C(ITLB) ] = {
738                 [ C(OP_READ) ] = {
739                         [ C(RESULT_ACCESS) ] = 0,
740                         [ C(RESULT_MISS)   ] = PM_ITLB_MISS,
741                 },
742                 [ C(OP_WRITE) ] = {
743                         [ C(RESULT_ACCESS) ] = -1,
744                         [ C(RESULT_MISS)   ] = -1,
745                 },
746                 [ C(OP_PREFETCH) ] = {
747                         [ C(RESULT_ACCESS) ] = -1,
748                         [ C(RESULT_MISS)   ] = -1,
749                 },
750         },
751         [ C(BPU) ] = {
752                 [ C(OP_READ) ] = {
753                         [ C(RESULT_ACCESS) ] = PM_BRU_FIN,
754                         [ C(RESULT_MISS)   ] = PM_BR_MPRED_CMPL,
755                 },
756                 [ C(OP_WRITE) ] = {
757                         [ C(RESULT_ACCESS) ] = -1,
758                         [ C(RESULT_MISS)   ] = -1,
759                 },
760                 [ C(OP_PREFETCH) ] = {
761                         [ C(RESULT_ACCESS) ] = -1,
762                         [ C(RESULT_MISS)   ] = -1,
763                 },
764         },
765         [ C(NODE) ] = {
766                 [ C(OP_READ) ] = {
767                         [ C(RESULT_ACCESS) ] = -1,
768                         [ C(RESULT_MISS)   ] = -1,
769                 },
770                 [ C(OP_WRITE) ] = {
771                         [ C(RESULT_ACCESS) ] = -1,
772                         [ C(RESULT_MISS)   ] = -1,
773                 },
774                 [ C(OP_PREFETCH) ] = {
775                         [ C(RESULT_ACCESS) ] = -1,
776                         [ C(RESULT_MISS)   ] = -1,
777                 },
778         },
779 };
780
781 #undef C
782
783 static struct power_pmu power8_pmu = {
784         .name                   = "POWER8",
785         .n_counter              = 6,
786         .max_alternatives       = MAX_ALT + 1,
787         .add_fields             = POWER8_ADD_FIELDS,
788         .test_adder             = POWER8_TEST_ADDER,
789         .compute_mmcr           = power8_compute_mmcr,
790         .config_bhrb            = power8_config_bhrb,
791         .bhrb_filter_map        = power8_bhrb_filter_map,
792         .get_constraint         = power8_get_constraint,
793         .get_alternatives       = power8_get_alternatives,
794         .disable_pmc            = power8_disable_pmc,
795         .flags                  = PPMU_HAS_SSLOT | PPMU_HAS_SIER | PPMU_BHRB | PPMU_EBB,
796         .n_generic              = ARRAY_SIZE(power8_generic_events),
797         .generic_events         = power8_generic_events,
798         .cache_events           = &power8_cache_events,
799         .attr_groups            = power8_pmu_attr_groups,
800         .bhrb_nr                = 32,
801 };
802
803 static int __init init_power8_pmu(void)
804 {
805         int rc;
806
807         if (!cur_cpu_spec->oprofile_cpu_type ||
808             strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc64/power8"))
809                 return -ENODEV;
810
811         rc = register_power_pmu(&power8_pmu);
812         if (rc)
813                 return rc;
814
815         /* Tell userspace that EBB is supported */
816         cur_cpu_spec->cpu_user_features2 |= PPC_FEATURE2_EBB;
817
818         if (cpu_has_feature(CPU_FTR_PMAO_BUG))
819                 pr_info("PMAO restore workaround active.\n");
820
821         return 0;
822 }
823 early_initcall(init_power8_pmu);