Merge branch 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / arch / powerpc / platforms / cell / spu_manage.c
1 /*
2  * spu management operations for of based platforms
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  * Copyright 2006 Sony Corp.
6  * (C) Copyright 2007 TOSHIBA CORPORATION
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; version 2 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21
22 #include <linux/interrupt.h>
23 #include <linux/list.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/wait.h>
27 #include <linux/mm.h>
28 #include <linux/io.h>
29 #include <linux/mutex.h>
30 #include <linux/device.h>
31
32 #include <asm/spu.h>
33 #include <asm/spu_priv1.h>
34 #include <asm/firmware.h>
35 #include <asm/prom.h>
36
37 #include "spufs/spufs.h"
38 #include "interrupt.h"
39
40 struct device_node *spu_devnode(struct spu *spu)
41 {
42         return spu->devnode;
43 }
44
45 EXPORT_SYMBOL_GPL(spu_devnode);
46
47 static u64 __init find_spu_unit_number(struct device_node *spe)
48 {
49         const unsigned int *prop;
50         int proplen;
51
52         /* new device trees should provide the physical-id attribute */
53         prop = of_get_property(spe, "physical-id", &proplen);
54         if (proplen == 4)
55                 return (u64)*prop;
56
57         /* celleb device tree provides the unit-id */
58         prop = of_get_property(spe, "unit-id", &proplen);
59         if (proplen == 4)
60                 return (u64)*prop;
61
62         /* legacy device trees provide the id in the reg attribute */
63         prop = of_get_property(spe, "reg", &proplen);
64         if (proplen == 4)
65                 return (u64)*prop;
66
67         return 0;
68 }
69
70 static void spu_unmap(struct spu *spu)
71 {
72         if (!firmware_has_feature(FW_FEATURE_LPAR))
73                 iounmap(spu->priv1);
74         iounmap(spu->priv2);
75         iounmap(spu->problem);
76         iounmap((__force u8 __iomem *)spu->local_store);
77 }
78
79 static int __init spu_map_interrupts_old(struct spu *spu,
80         struct device_node *np)
81 {
82         unsigned int isrc;
83         const u32 *tmp;
84         int nid;
85
86         /* Get the interrupt source unit from the device-tree */
87         tmp = of_get_property(np, "isrc", NULL);
88         if (!tmp)
89                 return -ENODEV;
90         isrc = tmp[0];
91
92         tmp = of_get_property(np->parent->parent, "node-id", NULL);
93         if (!tmp) {
94                 printk(KERN_WARNING "%s: can't find node-id\n", __func__);
95                 nid = spu->node;
96         } else
97                 nid = tmp[0];
98
99         /* Add the node number */
100         isrc |= nid << IIC_IRQ_NODE_SHIFT;
101
102         /* Now map interrupts of all 3 classes */
103         spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
104         spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
105         spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
106
107         /* Right now, we only fail if class 2 failed */
108         return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
109 }
110
111 static void __iomem * __init spu_map_prop_old(struct spu *spu,
112                                               struct device_node *n,
113                                               const char *name)
114 {
115         const struct address_prop {
116                 unsigned long address;
117                 unsigned int len;
118         } __attribute__((packed)) *prop;
119         int proplen;
120
121         prop = of_get_property(n, name, &proplen);
122         if (prop == NULL || proplen != sizeof (struct address_prop))
123                 return NULL;
124
125         return ioremap(prop->address, prop->len);
126 }
127
128 static int __init spu_map_device_old(struct spu *spu)
129 {
130         struct device_node *node = spu->devnode;
131         const char *prop;
132         int ret;
133
134         ret = -ENODEV;
135         spu->name = of_get_property(node, "name", NULL);
136         if (!spu->name)
137                 goto out;
138
139         prop = of_get_property(node, "local-store", NULL);
140         if (!prop)
141                 goto out;
142         spu->local_store_phys = *(unsigned long *)prop;
143
144         /* we use local store as ram, not io memory */
145         spu->local_store = (void __force *)
146                 spu_map_prop_old(spu, node, "local-store");
147         if (!spu->local_store)
148                 goto out;
149
150         prop = of_get_property(node, "problem", NULL);
151         if (!prop)
152                 goto out_unmap;
153         spu->problem_phys = *(unsigned long *)prop;
154
155         spu->problem = spu_map_prop_old(spu, node, "problem");
156         if (!spu->problem)
157                 goto out_unmap;
158
159         spu->priv2 = spu_map_prop_old(spu, node, "priv2");
160         if (!spu->priv2)
161                 goto out_unmap;
162
163         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
164                 spu->priv1 = spu_map_prop_old(spu, node, "priv1");
165                 if (!spu->priv1)
166                         goto out_unmap;
167         }
168
169         ret = 0;
170         goto out;
171
172 out_unmap:
173         spu_unmap(spu);
174 out:
175         return ret;
176 }
177
178 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
179 {
180         struct of_phandle_args oirq;
181         int ret;
182         int i;
183
184         for (i=0; i < 3; i++) {
185                 ret = of_irq_parse_one(np, i, &oirq);
186                 if (ret) {
187                         pr_debug("spu_new: failed to get irq %d\n", i);
188                         goto err;
189                 }
190                 ret = -EINVAL;
191                 pr_debug("  irq %d no 0x%x on %s\n", i, oirq.args[0],
192                          oirq.np->full_name);
193                 spu->irqs[i] = irq_create_of_mapping(&oirq);
194                 if (spu->irqs[i] == NO_IRQ) {
195                         pr_debug("spu_new: failed to map it !\n");
196                         goto err;
197                 }
198         }
199         return 0;
200
201 err:
202         pr_debug("failed to map irq %x for spu %s\n", *oirq.args,
203                 spu->name);
204         for (; i >= 0; i--) {
205                 if (spu->irqs[i] != NO_IRQ)
206                         irq_dispose_mapping(spu->irqs[i]);
207         }
208         return ret;
209 }
210
211 static int spu_map_resource(struct spu *spu, int nr,
212                             void __iomem** virt, unsigned long *phys)
213 {
214         struct device_node *np = spu->devnode;
215         struct resource resource = { };
216         unsigned long len;
217         int ret;
218
219         ret = of_address_to_resource(np, nr, &resource);
220         if (ret)
221                 return ret;
222         if (phys)
223                 *phys = resource.start;
224         len = resource_size(&resource);
225         *virt = ioremap(resource.start, len);
226         if (!*virt)
227                 return -EINVAL;
228         return 0;
229 }
230
231 static int __init spu_map_device(struct spu *spu)
232 {
233         struct device_node *np = spu->devnode;
234         int ret = -ENODEV;
235
236         spu->name = of_get_property(np, "name", NULL);
237         if (!spu->name)
238                 goto out;
239
240         ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
241                                &spu->local_store_phys);
242         if (ret) {
243                 pr_debug("spu_new: failed to map %s resource 0\n",
244                          np->full_name);
245                 goto out;
246         }
247         ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
248                                &spu->problem_phys);
249         if (ret) {
250                 pr_debug("spu_new: failed to map %s resource 1\n",
251                          np->full_name);
252                 goto out_unmap;
253         }
254         ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
255         if (ret) {
256                 pr_debug("spu_new: failed to map %s resource 2\n",
257                          np->full_name);
258                 goto out_unmap;
259         }
260         if (!firmware_has_feature(FW_FEATURE_LPAR))
261                 ret = spu_map_resource(spu, 3,
262                                (void __iomem**)&spu->priv1, NULL);
263         if (ret) {
264                 pr_debug("spu_new: failed to map %s resource 3\n",
265                          np->full_name);
266                 goto out_unmap;
267         }
268         pr_debug("spu_new: %s maps:\n", np->full_name);
269         pr_debug("  local store   : 0x%016lx -> 0x%p\n",
270                  spu->local_store_phys, spu->local_store);
271         pr_debug("  problem state : 0x%016lx -> 0x%p\n",
272                  spu->problem_phys, spu->problem);
273         pr_debug("  priv2         :                       0x%p\n", spu->priv2);
274         pr_debug("  priv1         :                       0x%p\n", spu->priv1);
275
276         return 0;
277
278 out_unmap:
279         spu_unmap(spu);
280 out:
281         pr_debug("failed to map spe %s: %d\n", spu->name, ret);
282         return ret;
283 }
284
285 static int __init of_enumerate_spus(int (*fn)(void *data))
286 {
287         int ret;
288         struct device_node *node;
289         unsigned int n = 0;
290
291         ret = -ENODEV;
292         for (node = of_find_node_by_type(NULL, "spe");
293                         node; node = of_find_node_by_type(node, "spe")) {
294                 ret = fn(node);
295                 if (ret) {
296                         printk(KERN_WARNING "%s: Error initializing %s\n",
297                                 __func__, node->name);
298                         break;
299                 }
300                 n++;
301         }
302         return ret ? ret : n;
303 }
304
305 static int __init of_create_spu(struct spu *spu, void *data)
306 {
307         int ret;
308         struct device_node *spe = (struct device_node *)data;
309         static int legacy_map = 0, legacy_irq = 0;
310
311         spu->devnode = of_node_get(spe);
312         spu->spe_id = find_spu_unit_number(spe);
313
314         spu->node = of_node_to_nid(spe);
315         if (spu->node >= MAX_NUMNODES) {
316                 printk(KERN_WARNING "SPE %s on node %d ignored,"
317                        " node number too big\n", spe->full_name, spu->node);
318                 printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
319                 ret = -ENODEV;
320                 goto out;
321         }
322
323         ret = spu_map_device(spu);
324         if (ret) {
325                 if (!legacy_map) {
326                         legacy_map = 1;
327                         printk(KERN_WARNING "%s: Legacy device tree found, "
328                                 "trying to map old style\n", __func__);
329                 }
330                 ret = spu_map_device_old(spu);
331                 if (ret) {
332                         printk(KERN_ERR "Unable to map %s\n",
333                                 spu->name);
334                         goto out;
335                 }
336         }
337
338         ret = spu_map_interrupts(spu, spe);
339         if (ret) {
340                 if (!legacy_irq) {
341                         legacy_irq = 1;
342                         printk(KERN_WARNING "%s: Legacy device tree found, "
343                                 "trying old style irq\n", __func__);
344                 }
345                 ret = spu_map_interrupts_old(spu, spe);
346                 if (ret) {
347                         printk(KERN_ERR "%s: could not map interrupts\n",
348                                 spu->name);
349                         goto out_unmap;
350                 }
351         }
352
353         pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
354                 spu->local_store, spu->problem, spu->priv1,
355                 spu->priv2, spu->number);
356         goto out;
357
358 out_unmap:
359         spu_unmap(spu);
360 out:
361         return ret;
362 }
363
364 static int of_destroy_spu(struct spu *spu)
365 {
366         spu_unmap(spu);
367         of_node_put(spu->devnode);
368         return 0;
369 }
370
371 static void enable_spu_by_master_run(struct spu_context *ctx)
372 {
373         ctx->ops->master_start(ctx);
374 }
375
376 static void disable_spu_by_master_run(struct spu_context *ctx)
377 {
378         ctx->ops->master_stop(ctx);
379 }
380
381 /* Hardcoded affinity idxs for qs20 */
382 #define QS20_SPES_PER_BE 8
383 static int qs20_reg_idxs[QS20_SPES_PER_BE] =   { 0, 2, 4, 6, 7, 5, 3, 1 };
384 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
385
386 static struct spu *spu_lookup_reg(int node, u32 reg)
387 {
388         struct spu *spu;
389         const u32 *spu_reg;
390
391         list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
392                 spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
393                 if (*spu_reg == reg)
394                         return spu;
395         }
396         return NULL;
397 }
398
399 static void init_affinity_qs20_harcoded(void)
400 {
401         int node, i;
402         struct spu *last_spu, *spu;
403         u32 reg;
404
405         for (node = 0; node < MAX_NUMNODES; node++) {
406                 last_spu = NULL;
407                 for (i = 0; i < QS20_SPES_PER_BE; i++) {
408                         reg = qs20_reg_idxs[i];
409                         spu = spu_lookup_reg(node, reg);
410                         if (!spu)
411                                 continue;
412                         spu->has_mem_affinity = qs20_reg_memory[reg];
413                         if (last_spu)
414                                 list_add_tail(&spu->aff_list,
415                                                 &last_spu->aff_list);
416                         last_spu = spu;
417                 }
418         }
419 }
420
421 static int of_has_vicinity(void)
422 {
423         struct device_node *dn;
424
425         for_each_node_by_type(dn, "spe") {
426                 if (of_find_property(dn, "vicinity", NULL))  {
427                         of_node_put(dn);
428                         return 1;
429                 }
430         }
431         return 0;
432 }
433
434 static struct spu *devnode_spu(int cbe, struct device_node *dn)
435 {
436         struct spu *spu;
437
438         list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
439                 if (spu_devnode(spu) == dn)
440                         return spu;
441         return NULL;
442 }
443
444 static struct spu *
445 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
446 {
447         struct spu *spu;
448         struct device_node *spu_dn;
449         const phandle *vic_handles;
450         int lenp, i;
451
452         list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
453                 spu_dn = spu_devnode(spu);
454                 if (spu_dn == avoid)
455                         continue;
456                 vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
457                 for (i=0; i < (lenp / sizeof(phandle)); i++) {
458                         if (vic_handles[i] == target->phandle)
459                                 return spu;
460                 }
461         }
462         return NULL;
463 }
464
465 static void init_affinity_node(int cbe)
466 {
467         struct spu *spu, *last_spu;
468         struct device_node *vic_dn, *last_spu_dn;
469         phandle avoid_ph;
470         const phandle *vic_handles;
471         const char *name;
472         int lenp, i, added;
473
474         last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
475                                                                 cbe_list);
476         avoid_ph = 0;
477         for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
478                 last_spu_dn = spu_devnode(last_spu);
479                 vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
480
481                 /*
482                  * Walk through each phandle in vicinity property of the spu
483                  * (tipically two vicinity phandles per spe node)
484                  */
485                 for (i = 0; i < (lenp / sizeof(phandle)); i++) {
486                         if (vic_handles[i] == avoid_ph)
487                                 continue;
488
489                         vic_dn = of_find_node_by_phandle(vic_handles[i]);
490                         if (!vic_dn)
491                                 continue;
492
493                         /* a neighbour might be spe, mic-tm, or bif0 */
494                         name = of_get_property(vic_dn, "name", NULL);
495                         if (!name)
496                                 continue;
497
498                         if (strcmp(name, "spe") == 0) {
499                                 spu = devnode_spu(cbe, vic_dn);
500                                 avoid_ph = last_spu_dn->phandle;
501                         } else {
502                                 /*
503                                  * "mic-tm" and "bif0" nodes do not have
504                                  * vicinity property. So we need to find the
505                                  * spe which has vic_dn as neighbour, but
506                                  * skipping the one we came from (last_spu_dn)
507                                  */
508                                 spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
509                                 if (!spu)
510                                         continue;
511                                 if (!strcmp(name, "mic-tm")) {
512                                         last_spu->has_mem_affinity = 1;
513                                         spu->has_mem_affinity = 1;
514                                 }
515                                 avoid_ph = vic_dn->phandle;
516                         }
517
518                         list_add_tail(&spu->aff_list, &last_spu->aff_list);
519                         last_spu = spu;
520                         break;
521                 }
522         }
523 }
524
525 static void init_affinity_fw(void)
526 {
527         int cbe;
528
529         for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
530                 init_affinity_node(cbe);
531 }
532
533 static int __init init_affinity(void)
534 {
535         if (of_has_vicinity()) {
536                 init_affinity_fw();
537         } else {
538                 if (of_machine_is_compatible("IBM,CPBW-1.0"))
539                         init_affinity_qs20_harcoded();
540                 else
541                         printk("No affinity configuration found\n");
542         }
543
544         return 0;
545 }
546
547 const struct spu_management_ops spu_management_of_ops = {
548         .enumerate_spus = of_enumerate_spus,
549         .create_spu = of_create_spu,
550         .destroy_spu = of_destroy_spu,
551         .enable_spu = enable_spu_by_master_run,
552         .disable_spu = disable_spu_by_master_run,
553         .init_affinity = init_affinity,
554 };