fs: Avoid premature clearing of capabilities
[cascardo/linux.git] / arch / powerpc / platforms / powernv / opal.c
1 /*
2  * PowerNV OPAL high level interfaces
3  *
4  * Copyright 2011 IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #define pr_fmt(fmt)     "opal: " fmt
13
14 #include <linux/printk.h>
15 #include <linux/types.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_platform.h>
19 #include <linux/interrupt.h>
20 #include <linux/notifier.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/kobject.h>
24 #include <linux/delay.h>
25 #include <linux/memblock.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28
29 #include <asm/machdep.h>
30 #include <asm/opal.h>
31 #include <asm/firmware.h>
32 #include <asm/mce.h>
33
34 #include "powernv.h"
35
36 /* /sys/firmware/opal */
37 struct kobject *opal_kobj;
38
39 struct opal {
40         u64 base;
41         u64 entry;
42         u64 size;
43 } opal;
44
45 struct mcheck_recoverable_range {
46         u64 start_addr;
47         u64 end_addr;
48         u64 recover_addr;
49 };
50
51 static struct mcheck_recoverable_range *mc_recoverable_range;
52 static int mc_recoverable_range_len;
53
54 struct device_node *opal_node;
55 static DEFINE_SPINLOCK(opal_write_lock);
56 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
57 static uint32_t opal_heartbeat;
58 static struct task_struct *kopald_tsk;
59
60 void opal_configure_cores(void)
61 {
62         /* Do the actual re-init, This will clobber all FPRs, VRs, etc...
63          *
64          * It will preserve non volatile GPRs and HSPRG0/1. It will
65          * also restore HIDs and other SPRs to their original value
66          * but it might clobber a bunch.
67          */
68 #ifdef __BIG_ENDIAN__
69         opal_reinit_cpus(OPAL_REINIT_CPUS_HILE_BE);
70 #else
71         opal_reinit_cpus(OPAL_REINIT_CPUS_HILE_LE);
72 #endif
73
74         /* Restore some bits */
75         if (cur_cpu_spec->cpu_restore)
76                 cur_cpu_spec->cpu_restore();
77 }
78
79 int __init early_init_dt_scan_opal(unsigned long node,
80                                    const char *uname, int depth, void *data)
81 {
82         const void *basep, *entryp, *sizep;
83         int basesz, entrysz, runtimesz;
84
85         if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
86                 return 0;
87
88         basep  = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
89         entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
90         sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
91
92         if (!basep || !entryp || !sizep)
93                 return 1;
94
95         opal.base = of_read_number(basep, basesz/4);
96         opal.entry = of_read_number(entryp, entrysz/4);
97         opal.size = of_read_number(sizep, runtimesz/4);
98
99         pr_debug("OPAL Base  = 0x%llx (basep=%p basesz=%d)\n",
100                  opal.base, basep, basesz);
101         pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
102                  opal.entry, entryp, entrysz);
103         pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
104                  opal.size, sizep, runtimesz);
105
106         if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
107                 powerpc_firmware_features |= FW_FEATURE_OPAL;
108                 pr_info("OPAL detected !\n");
109         } else {
110                 panic("OPAL != V3 detected, no longer supported.\n");
111         }
112
113         return 1;
114 }
115
116 int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
117                                    const char *uname, int depth, void *data)
118 {
119         int i, psize, size;
120         const __be32 *prop;
121
122         if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
123                 return 0;
124
125         prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
126
127         if (!prop)
128                 return 1;
129
130         pr_debug("Found machine check recoverable ranges.\n");
131
132         /*
133          * Calculate number of available entries.
134          *
135          * Each recoverable address range entry is (start address, len,
136          * recovery address), 2 cells each for start and recovery address,
137          * 1 cell for len, totalling 5 cells per entry.
138          */
139         mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
140
141         /* Sanity check */
142         if (!mc_recoverable_range_len)
143                 return 1;
144
145         /* Size required to hold all the entries. */
146         size = mc_recoverable_range_len *
147                         sizeof(struct mcheck_recoverable_range);
148
149         /*
150          * Allocate a buffer to hold the MC recoverable ranges. We would be
151          * accessing them in real mode, hence it needs to be within
152          * RMO region.
153          */
154         mc_recoverable_range =__va(memblock_alloc_base(size, __alignof__(u64),
155                                                         ppc64_rma_size));
156         memset(mc_recoverable_range, 0, size);
157
158         for (i = 0; i < mc_recoverable_range_len; i++) {
159                 mc_recoverable_range[i].start_addr =
160                                         of_read_number(prop + (i * 5) + 0, 2);
161                 mc_recoverable_range[i].end_addr =
162                                         mc_recoverable_range[i].start_addr +
163                                         of_read_number(prop + (i * 5) + 2, 1);
164                 mc_recoverable_range[i].recover_addr =
165                                         of_read_number(prop + (i * 5) + 3, 2);
166
167                 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
168                                 mc_recoverable_range[i].start_addr,
169                                 mc_recoverable_range[i].end_addr,
170                                 mc_recoverable_range[i].recover_addr);
171         }
172         return 1;
173 }
174
175 static int __init opal_register_exception_handlers(void)
176 {
177 #ifdef __BIG_ENDIAN__
178         u64 glue;
179
180         if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
181                 return -ENODEV;
182
183         /* Hookup some exception handlers except machine check. We use the
184          * fwnmi area at 0x7000 to provide the glue space to OPAL
185          */
186         glue = 0x7000;
187
188         /*
189          * Check if we are running on newer firmware that exports
190          * OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch
191          * the HMI interrupt and we catch it directly in Linux.
192          *
193          * For older firmware (i.e currently released POWER8 System Firmware
194          * as of today <= SV810_087), we fallback to old behavior and let OPAL
195          * patch the HMI vector and handle it inside OPAL firmware.
196          *
197          * For newer firmware (in development/yet to be released) we will
198          * start catching/handling HMI directly in Linux.
199          */
200         if (!opal_check_token(OPAL_HANDLE_HMI)) {
201                 pr_info("Old firmware detected, OPAL handles HMIs.\n");
202                 opal_register_exception_handler(
203                                 OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
204                                 0, glue);
205                 glue += 128;
206         }
207
208         opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
209 #endif
210
211         return 0;
212 }
213 machine_early_initcall(powernv, opal_register_exception_handlers);
214
215 /*
216  * Opal message notifier based on message type. Allow subscribers to get
217  * notified for specific messgae type.
218  */
219 int opal_message_notifier_register(enum opal_msg_type msg_type,
220                                         struct notifier_block *nb)
221 {
222         if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
223                 pr_warning("%s: Invalid arguments, msg_type:%d\n",
224                            __func__, msg_type);
225                 return -EINVAL;
226         }
227
228         return atomic_notifier_chain_register(
229                                 &opal_msg_notifier_head[msg_type], nb);
230 }
231 EXPORT_SYMBOL_GPL(opal_message_notifier_register);
232
233 int opal_message_notifier_unregister(enum opal_msg_type msg_type,
234                                      struct notifier_block *nb)
235 {
236         return atomic_notifier_chain_unregister(
237                         &opal_msg_notifier_head[msg_type], nb);
238 }
239 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
240
241 static void opal_message_do_notify(uint32_t msg_type, void *msg)
242 {
243         /* notify subscribers */
244         atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
245                                         msg_type, msg);
246 }
247
248 static void opal_handle_message(void)
249 {
250         s64 ret;
251         /*
252          * TODO: pre-allocate a message buffer depending on opal-msg-size
253          * value in /proc/device-tree.
254          */
255         static struct opal_msg msg;
256         u32 type;
257
258         ret = opal_get_msg(__pa(&msg), sizeof(msg));
259         /* No opal message pending. */
260         if (ret == OPAL_RESOURCE)
261                 return;
262
263         /* check for errors. */
264         if (ret) {
265                 pr_warning("%s: Failed to retrieve opal message, err=%lld\n",
266                                 __func__, ret);
267                 return;
268         }
269
270         type = be32_to_cpu(msg.msg_type);
271
272         /* Sanity check */
273         if (type >= OPAL_MSG_TYPE_MAX) {
274                 pr_warn_once("%s: Unknown message type: %u\n", __func__, type);
275                 return;
276         }
277         opal_message_do_notify(type, (void *)&msg);
278 }
279
280 static irqreturn_t opal_message_notify(int irq, void *data)
281 {
282         opal_handle_message();
283         return IRQ_HANDLED;
284 }
285
286 static int __init opal_message_init(void)
287 {
288         int ret, i, irq;
289
290         for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
291                 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
292
293         irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
294         if (!irq) {
295                 pr_err("%s: Can't register OPAL event irq (%d)\n",
296                        __func__, irq);
297                 return irq;
298         }
299
300         ret = request_irq(irq, opal_message_notify,
301                         IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
302         if (ret) {
303                 pr_err("%s: Can't request OPAL event irq (%d)\n",
304                        __func__, ret);
305                 return ret;
306         }
307
308         return 0;
309 }
310
311 int opal_get_chars(uint32_t vtermno, char *buf, int count)
312 {
313         s64 rc;
314         __be64 evt, len;
315
316         if (!opal.entry)
317                 return -ENODEV;
318         opal_poll_events(&evt);
319         if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
320                 return 0;
321         len = cpu_to_be64(count);
322         rc = opal_console_read(vtermno, &len, buf);
323         if (rc == OPAL_SUCCESS)
324                 return be64_to_cpu(len);
325         return 0;
326 }
327
328 int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
329 {
330         int written = 0;
331         __be64 olen;
332         s64 len, rc;
333         unsigned long flags;
334         __be64 evt;
335
336         if (!opal.entry)
337                 return -ENODEV;
338
339         /* We want put_chars to be atomic to avoid mangling of hvsi
340          * packets. To do that, we first test for room and return
341          * -EAGAIN if there isn't enough.
342          *
343          * Unfortunately, opal_console_write_buffer_space() doesn't
344          * appear to work on opal v1, so we just assume there is
345          * enough room and be done with it
346          */
347         spin_lock_irqsave(&opal_write_lock, flags);
348         rc = opal_console_write_buffer_space(vtermno, &olen);
349         len = be64_to_cpu(olen);
350         if (rc || len < total_len) {
351                 spin_unlock_irqrestore(&opal_write_lock, flags);
352                 /* Closed -> drop characters */
353                 if (rc)
354                         return total_len;
355                 opal_poll_events(NULL);
356                 return -EAGAIN;
357         }
358
359         /* We still try to handle partial completions, though they
360          * should no longer happen.
361          */
362         rc = OPAL_BUSY;
363         while(total_len > 0 && (rc == OPAL_BUSY ||
364                                 rc == OPAL_BUSY_EVENT || rc == OPAL_SUCCESS)) {
365                 olen = cpu_to_be64(total_len);
366                 rc = opal_console_write(vtermno, &olen, data);
367                 len = be64_to_cpu(olen);
368
369                 /* Closed or other error drop */
370                 if (rc != OPAL_SUCCESS && rc != OPAL_BUSY &&
371                     rc != OPAL_BUSY_EVENT) {
372                         written = total_len;
373                         break;
374                 }
375                 if (rc == OPAL_SUCCESS) {
376                         total_len -= len;
377                         data += len;
378                         written += len;
379                 }
380                 /* This is a bit nasty but we need that for the console to
381                  * flush when there aren't any interrupts. We will clean
382                  * things a bit later to limit that to synchronous path
383                  * such as the kernel console and xmon/udbg
384                  */
385                 do
386                         opal_poll_events(&evt);
387                 while(rc == OPAL_SUCCESS &&
388                         (be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT));
389         }
390         spin_unlock_irqrestore(&opal_write_lock, flags);
391         return written;
392 }
393
394 static int opal_recover_mce(struct pt_regs *regs,
395                                         struct machine_check_event *evt)
396 {
397         int recovered = 0;
398         uint64_t ea = get_mce_fault_addr(evt);
399
400         if (!(regs->msr & MSR_RI)) {
401                 /* If MSR_RI isn't set, we cannot recover */
402                 recovered = 0;
403         } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
404                 /* Platform corrected itself */
405                 recovered = 1;
406         } else if (ea && !is_kernel_addr(ea)) {
407                 /*
408                  * Faulting address is not in kernel text. We should be fine.
409                  * We need to find which process uses this address.
410                  * For now, kill the task if we have received exception when
411                  * in userspace.
412                  *
413                  * TODO: Queue up this address for hwpoisioning later.
414                  */
415                 if (user_mode(regs) && !is_global_init(current)) {
416                         _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
417                         recovered = 1;
418                 } else
419                         recovered = 0;
420         } else if (user_mode(regs) && !is_global_init(current) &&
421                 evt->severity == MCE_SEV_ERROR_SYNC) {
422                 /*
423                  * If we have received a synchronous error when in userspace
424                  * kill the task.
425                  */
426                 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
427                 recovered = 1;
428         }
429         return recovered;
430 }
431
432 int opal_machine_check(struct pt_regs *regs)
433 {
434         struct machine_check_event evt;
435         int ret;
436
437         if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
438                 return 0;
439
440         /* Print things out */
441         if (evt.version != MCE_V1) {
442                 pr_err("Machine Check Exception, Unknown event version %d !\n",
443                        evt.version);
444                 return 0;
445         }
446         machine_check_print_event_info(&evt);
447
448         if (opal_recover_mce(regs, &evt))
449                 return 1;
450
451         /*
452          * Unrecovered machine check, we are heading to panic path.
453          *
454          * We may have hit this MCE in very early stage of kernel
455          * initialization even before opal-prd has started running. If
456          * this is the case then this MCE error may go un-noticed or
457          * un-analyzed if we go down panic path. We need to inform
458          * BMC/OCC about this error so that they can collect relevant
459          * data for error analysis before rebooting.
460          * Use opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR) to do so.
461          * This function may not return on BMC based system.
462          */
463         ret = opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR,
464                         "Unrecoverable Machine Check exception");
465         if (ret == OPAL_UNSUPPORTED) {
466                 pr_emerg("Reboot type %d not supported\n",
467                                         OPAL_REBOOT_PLATFORM_ERROR);
468         }
469
470         /*
471          * We reached here. There can be three possibilities:
472          * 1. We are running on a firmware level that do not support
473          *    opal_cec_reboot2()
474          * 2. We are running on a firmware level that do not support
475          *    OPAL_REBOOT_PLATFORM_ERROR reboot type.
476          * 3. We are running on FSP based system that does not need opal
477          *    to trigger checkstop explicitly for error analysis. The FSP
478          *    PRD component would have already got notified about this
479          *    error through other channels.
480          *
481          * If hardware marked this as an unrecoverable MCE, we are
482          * going to panic anyway. Even if it didn't, it's not safe to
483          * continue at this point, so we should explicitly panic.
484          */
485
486         panic("PowerNV Unrecovered Machine Check");
487         return 0;
488 }
489
490 /* Early hmi handler called in real mode. */
491 int opal_hmi_exception_early(struct pt_regs *regs)
492 {
493         s64 rc;
494
495         /*
496          * call opal hmi handler. Pass paca address as token.
497          * The return value OPAL_SUCCESS is an indication that there is
498          * an HMI event generated waiting to pull by Linux.
499          */
500         rc = opal_handle_hmi();
501         if (rc == OPAL_SUCCESS) {
502                 local_paca->hmi_event_available = 1;
503                 return 1;
504         }
505         return 0;
506 }
507
508 /* HMI exception handler called in virtual mode during check_irq_replay. */
509 int opal_handle_hmi_exception(struct pt_regs *regs)
510 {
511         s64 rc;
512         __be64 evt = 0;
513
514         /*
515          * Check if HMI event is available.
516          * if Yes, then call opal_poll_events to pull opal messages and
517          * process them.
518          */
519         if (!local_paca->hmi_event_available)
520                 return 0;
521
522         local_paca->hmi_event_available = 0;
523         rc = opal_poll_events(&evt);
524         if (rc == OPAL_SUCCESS && evt)
525                 opal_handle_events(be64_to_cpu(evt));
526
527         return 1;
528 }
529
530 static uint64_t find_recovery_address(uint64_t nip)
531 {
532         int i;
533
534         for (i = 0; i < mc_recoverable_range_len; i++)
535                 if ((nip >= mc_recoverable_range[i].start_addr) &&
536                     (nip < mc_recoverable_range[i].end_addr))
537                     return mc_recoverable_range[i].recover_addr;
538         return 0;
539 }
540
541 bool opal_mce_check_early_recovery(struct pt_regs *regs)
542 {
543         uint64_t recover_addr = 0;
544
545         if (!opal.base || !opal.size)
546                 goto out;
547
548         if ((regs->nip >= opal.base) &&
549                         (regs->nip < (opal.base + opal.size)))
550                 recover_addr = find_recovery_address(regs->nip);
551
552         /*
553          * Setup regs->nip to rfi into fixup address.
554          */
555         if (recover_addr)
556                 regs->nip = recover_addr;
557
558 out:
559         return !!recover_addr;
560 }
561
562 static int opal_sysfs_init(void)
563 {
564         opal_kobj = kobject_create_and_add("opal", firmware_kobj);
565         if (!opal_kobj) {
566                 pr_warn("kobject_create_and_add opal failed\n");
567                 return -ENOMEM;
568         }
569
570         return 0;
571 }
572
573 static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj,
574                                struct bin_attribute *bin_attr,
575                                char *buf, loff_t off, size_t count)
576 {
577         return memory_read_from_buffer(buf, count, &off, bin_attr->private,
578                                        bin_attr->size);
579 }
580
581 static BIN_ATTR_RO(symbol_map, 0);
582
583 static void opal_export_symmap(void)
584 {
585         const __be64 *syms;
586         unsigned int size;
587         struct device_node *fw;
588         int rc;
589
590         fw = of_find_node_by_path("/ibm,opal/firmware");
591         if (!fw)
592                 return;
593         syms = of_get_property(fw, "symbol-map", &size);
594         if (!syms || size != 2 * sizeof(__be64))
595                 return;
596
597         /* Setup attributes */
598         bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0]));
599         bin_attr_symbol_map.size = be64_to_cpu(syms[1]);
600
601         rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map);
602         if (rc)
603                 pr_warn("Error %d creating OPAL symbols file\n", rc);
604 }
605
606 static void __init opal_dump_region_init(void)
607 {
608         void *addr;
609         uint64_t size;
610         int rc;
611
612         if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
613                 return;
614
615         /* Register kernel log buffer */
616         addr = log_buf_addr_get();
617         if (addr == NULL)
618                 return;
619
620         size = log_buf_len_get();
621         if (size == 0)
622                 return;
623
624         rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
625                                        __pa(addr), size);
626         /* Don't warn if this is just an older OPAL that doesn't
627          * know about that call
628          */
629         if (rc && rc != OPAL_UNSUPPORTED)
630                 pr_warn("DUMP: Failed to register kernel log buffer. "
631                         "rc = %d\n", rc);
632 }
633
634 static void opal_pdev_init(struct device_node *opal_node,
635                 const char *compatible)
636 {
637         struct device_node *np;
638
639         for_each_child_of_node(opal_node, np)
640                 if (of_device_is_compatible(np, compatible))
641                         of_platform_device_create(np, NULL, NULL);
642 }
643
644 static void opal_i2c_create_devs(void)
645 {
646         struct device_node *np;
647
648         for_each_compatible_node(np, NULL, "ibm,opal-i2c")
649                 of_platform_device_create(np, NULL, NULL);
650 }
651
652 static int kopald(void *unused)
653 {
654         unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1;
655         __be64 events;
656
657         set_freezable();
658         do {
659                 try_to_freeze();
660                 opal_poll_events(&events);
661                 opal_handle_events(be64_to_cpu(events));
662                 schedule_timeout_interruptible(timeout);
663         } while (!kthread_should_stop());
664
665         return 0;
666 }
667
668 void opal_wake_poller(void)
669 {
670         if (kopald_tsk)
671                 wake_up_process(kopald_tsk);
672 }
673
674 static void opal_init_heartbeat(void)
675 {
676         /* Old firwmware, we assume the HVC heartbeat is sufficient */
677         if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
678                                  &opal_heartbeat) != 0)
679                 opal_heartbeat = 0;
680
681         if (opal_heartbeat)
682                 kopald_tsk = kthread_run(kopald, NULL, "kopald");
683 }
684
685 static int __init opal_init(void)
686 {
687         struct device_node *np, *consoles, *leds;
688         int rc;
689
690         opal_node = of_find_node_by_path("/ibm,opal");
691         if (!opal_node) {
692                 pr_warn("Device node not found\n");
693                 return -ENODEV;
694         }
695
696         /* Register OPAL consoles if any ports */
697         consoles = of_find_node_by_path("/ibm,opal/consoles");
698         if (consoles) {
699                 for_each_child_of_node(consoles, np) {
700                         if (strcmp(np->name, "serial"))
701                                 continue;
702                         of_platform_device_create(np, NULL, NULL);
703                 }
704                 of_node_put(consoles);
705         }
706
707         /* Initialise OPAL messaging system */
708         opal_message_init();
709
710         /* Initialise OPAL asynchronous completion interface */
711         opal_async_comp_init();
712
713         /* Initialise OPAL sensor interface */
714         opal_sensor_init();
715
716         /* Initialise OPAL hypervisor maintainence interrupt handling */
717         opal_hmi_handler_init();
718
719         /* Create i2c platform devices */
720         opal_i2c_create_devs();
721
722         /* Setup a heatbeat thread if requested by OPAL */
723         opal_init_heartbeat();
724
725         /* Create leds platform devices */
726         leds = of_find_node_by_path("/ibm,opal/leds");
727         if (leds) {
728                 of_platform_device_create(leds, "opal_leds", NULL);
729                 of_node_put(leds);
730         }
731
732         /* Initialise OPAL message log interface */
733         opal_msglog_init();
734
735         /* Create "opal" kobject under /sys/firmware */
736         rc = opal_sysfs_init();
737         if (rc == 0) {
738                 /* Export symbol map to userspace */
739                 opal_export_symmap();
740                 /* Setup dump region interface */
741                 opal_dump_region_init();
742                 /* Setup error log interface */
743                 rc = opal_elog_init();
744                 /* Setup code update interface */
745                 opal_flash_update_init();
746                 /* Setup platform dump extract interface */
747                 opal_platform_dump_init();
748                 /* Setup system parameters interface */
749                 opal_sys_param_init();
750                 /* Setup message log sysfs interface. */
751                 opal_msglog_sysfs_init();
752         }
753
754         /* Initialize platform devices: IPMI backend, PRD & flash interface */
755         opal_pdev_init(opal_node, "ibm,opal-ipmi");
756         opal_pdev_init(opal_node, "ibm,opal-flash");
757         opal_pdev_init(opal_node, "ibm,opal-prd");
758
759         /* Initialise platform device: oppanel interface */
760         opal_pdev_init(opal_node, "ibm,opal-oppanel");
761
762         /* Initialise OPAL kmsg dumper for flushing console on panic */
763         opal_kmsg_init();
764
765         return 0;
766 }
767 machine_subsys_initcall(powernv, opal_init);
768
769 void opal_shutdown(void)
770 {
771         long rc = OPAL_BUSY;
772
773         opal_event_shutdown();
774
775         /*
776          * Then sync with OPAL which ensure anything that can
777          * potentially write to our memory has completed such
778          * as an ongoing dump retrieval
779          */
780         while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
781                 rc = opal_sync_host_reboot();
782                 if (rc == OPAL_BUSY)
783                         opal_poll_events(NULL);
784                 else
785                         mdelay(10);
786         }
787
788         /* Unregister memory dump region */
789         if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
790                 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
791 }
792
793 /* Export this so that test modules can use it */
794 EXPORT_SYMBOL_GPL(opal_invalid_call);
795 EXPORT_SYMBOL_GPL(opal_xscom_read);
796 EXPORT_SYMBOL_GPL(opal_xscom_write);
797 EXPORT_SYMBOL_GPL(opal_ipmi_send);
798 EXPORT_SYMBOL_GPL(opal_ipmi_recv);
799 EXPORT_SYMBOL_GPL(opal_flash_read);
800 EXPORT_SYMBOL_GPL(opal_flash_write);
801 EXPORT_SYMBOL_GPL(opal_flash_erase);
802 EXPORT_SYMBOL_GPL(opal_prd_msg);
803
804 /* Convert a region of vmalloc memory to an opal sg list */
805 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
806                                              unsigned long vmalloc_size)
807 {
808         struct opal_sg_list *sg, *first = NULL;
809         unsigned long i = 0;
810
811         sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
812         if (!sg)
813                 goto nomem;
814
815         first = sg;
816
817         while (vmalloc_size > 0) {
818                 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
819                 uint64_t length = min(vmalloc_size, PAGE_SIZE);
820
821                 sg->entry[i].data = cpu_to_be64(data);
822                 sg->entry[i].length = cpu_to_be64(length);
823                 i++;
824
825                 if (i >= SG_ENTRIES_PER_NODE) {
826                         struct opal_sg_list *next;
827
828                         next = kzalloc(PAGE_SIZE, GFP_KERNEL);
829                         if (!next)
830                                 goto nomem;
831
832                         sg->length = cpu_to_be64(
833                                         i * sizeof(struct opal_sg_entry) + 16);
834                         i = 0;
835                         sg->next = cpu_to_be64(__pa(next));
836                         sg = next;
837                 }
838
839                 vmalloc_addr += length;
840                 vmalloc_size -= length;
841         }
842
843         sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
844
845         return first;
846
847 nomem:
848         pr_err("%s : Failed to allocate memory\n", __func__);
849         opal_free_sg_list(first);
850         return NULL;
851 }
852
853 void opal_free_sg_list(struct opal_sg_list *sg)
854 {
855         while (sg) {
856                 uint64_t next = be64_to_cpu(sg->next);
857
858                 kfree(sg);
859
860                 if (next)
861                         sg = __va(next);
862                 else
863                         sg = NULL;
864         }
865 }
866
867 int opal_error_code(int rc)
868 {
869         switch (rc) {
870         case OPAL_SUCCESS:              return 0;
871
872         case OPAL_PARAMETER:            return -EINVAL;
873         case OPAL_ASYNC_COMPLETION:     return -EINPROGRESS;
874         case OPAL_BUSY_EVENT:           return -EBUSY;
875         case OPAL_NO_MEM:               return -ENOMEM;
876         case OPAL_PERMISSION:           return -EPERM;
877
878         case OPAL_UNSUPPORTED:          return -EIO;
879         case OPAL_HARDWARE:             return -EIO;
880         case OPAL_INTERNAL_ERROR:       return -EIO;
881         default:
882                 pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
883                 return -EIO;
884         }
885 }
886
887 EXPORT_SYMBOL_GPL(opal_poll_events);
888 EXPORT_SYMBOL_GPL(opal_rtc_read);
889 EXPORT_SYMBOL_GPL(opal_rtc_write);
890 EXPORT_SYMBOL_GPL(opal_tpo_read);
891 EXPORT_SYMBOL_GPL(opal_tpo_write);
892 EXPORT_SYMBOL_GPL(opal_i2c_request);
893 /* Export these symbols for PowerNV LED class driver */
894 EXPORT_SYMBOL_GPL(opal_leds_get_ind);
895 EXPORT_SYMBOL_GPL(opal_leds_set_ind);
896 /* Export this symbol for PowerNV Operator Panel class driver */
897 EXPORT_SYMBOL_GPL(opal_write_oppanel_async);