Merge remote-tracking branches 'regmap/topic/devm-irq', 'regmap/topic/doc', 'regmap...
[cascardo/linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
52 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
53
54 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
55 #define POWERNV_IOMMU_MAX_LEVELS        5
56
57 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
58
59 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60                             const char *fmt, ...)
61 {
62         struct va_format vaf;
63         va_list args;
64         char pfix[32];
65
66         va_start(args, fmt);
67
68         vaf.fmt = fmt;
69         vaf.va = &args;
70
71         if (pe->flags & PNV_IODA_PE_DEV)
72                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
73         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
74                 sprintf(pfix, "%04x:%02x     ",
75                         pci_domain_nr(pe->pbus), pe->pbus->number);
76 #ifdef CONFIG_PCI_IOV
77         else if (pe->flags & PNV_IODA_PE_VF)
78                 sprintf(pfix, "%04x:%02x:%2x.%d",
79                         pci_domain_nr(pe->parent_dev->bus),
80                         (pe->rid & 0xff00) >> 8,
81                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
82 #endif /* CONFIG_PCI_IOV*/
83
84         printk("%spci %s: [PE# %.3d] %pV",
85                level, pfix, pe->pe_number, &vaf);
86
87         va_end(args);
88 }
89
90 #define pe_err(pe, fmt, ...)                                    \
91         pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
92 #define pe_warn(pe, fmt, ...)                                   \
93         pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
94 #define pe_info(pe, fmt, ...)                                   \
95         pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
96
97 static bool pnv_iommu_bypass_disabled __read_mostly;
98
99 static int __init iommu_setup(char *str)
100 {
101         if (!str)
102                 return -EINVAL;
103
104         while (*str) {
105                 if (!strncmp(str, "nobypass", 8)) {
106                         pnv_iommu_bypass_disabled = true;
107                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
108                         break;
109                 }
110                 str += strcspn(str, ",");
111                 if (*str == ',')
112                         str++;
113         }
114
115         return 0;
116 }
117 early_param("iommu", iommu_setup);
118
119 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
120 {
121         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
122                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
123 }
124
125 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
126 {
127         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
128                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
129                         __func__, pe_no, phb->hose->global_number);
130                 return;
131         }
132
133         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
134                 pr_debug("%s: PE %d was reserved on PHB#%x\n",
135                          __func__, pe_no, phb->hose->global_number);
136
137         phb->ioda.pe_array[pe_no].phb = phb;
138         phb->ioda.pe_array[pe_no].pe_number = pe_no;
139 }
140
141 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
142 {
143         unsigned long pe;
144
145         do {
146                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
147                                         phb->ioda.total_pe, 0);
148                 if (pe >= phb->ioda.total_pe)
149                         return IODA_INVALID_PE;
150         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
151
152         phb->ioda.pe_array[pe].phb = phb;
153         phb->ioda.pe_array[pe].pe_number = pe;
154         return pe;
155 }
156
157 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
158 {
159         WARN_ON(phb->ioda.pe_array[pe].pdev);
160
161         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
162         clear_bit(pe, phb->ioda.pe_alloc);
163 }
164
165 /* The default M64 BAR is shared by all PEs */
166 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
167 {
168         const char *desc;
169         struct resource *r;
170         s64 rc;
171
172         /* Configure the default M64 BAR */
173         rc = opal_pci_set_phb_mem_window(phb->opal_id,
174                                          OPAL_M64_WINDOW_TYPE,
175                                          phb->ioda.m64_bar_idx,
176                                          phb->ioda.m64_base,
177                                          0, /* unused */
178                                          phb->ioda.m64_size);
179         if (rc != OPAL_SUCCESS) {
180                 desc = "configuring";
181                 goto fail;
182         }
183
184         /* Enable the default M64 BAR */
185         rc = opal_pci_phb_mmio_enable(phb->opal_id,
186                                       OPAL_M64_WINDOW_TYPE,
187                                       phb->ioda.m64_bar_idx,
188                                       OPAL_ENABLE_M64_SPLIT);
189         if (rc != OPAL_SUCCESS) {
190                 desc = "enabling";
191                 goto fail;
192         }
193
194         /* Mark the M64 BAR assigned */
195         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
196
197         /*
198          * Strip off the segment used by the reserved PE, which is
199          * expected to be 0 or last one of PE capabicity.
200          */
201         r = &phb->hose->mem_resources[1];
202         if (phb->ioda.reserved_pe == 0)
203                 r->start += phb->ioda.m64_segsize;
204         else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
205                 r->end -= phb->ioda.m64_segsize;
206         else
207                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
208                         phb->ioda.reserved_pe);
209
210         return 0;
211
212 fail:
213         pr_warn("  Failure %lld %s M64 BAR#%d\n",
214                 rc, desc, phb->ioda.m64_bar_idx);
215         opal_pci_phb_mmio_enable(phb->opal_id,
216                                  OPAL_M64_WINDOW_TYPE,
217                                  phb->ioda.m64_bar_idx,
218                                  OPAL_DISABLE_M64);
219         return -EIO;
220 }
221
222 static void pnv_ioda2_reserve_dev_m64_pe(struct pci_dev *pdev,
223                                          unsigned long *pe_bitmap)
224 {
225         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
226         struct pnv_phb *phb = hose->private_data;
227         struct resource *r;
228         resource_size_t base, sgsz, start, end;
229         int segno, i;
230
231         base = phb->ioda.m64_base;
232         sgsz = phb->ioda.m64_segsize;
233         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
234                 r = &pdev->resource[i];
235                 if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
236                         continue;
237
238                 start = _ALIGN_DOWN(r->start - base, sgsz);
239                 end = _ALIGN_UP(r->end - base, sgsz);
240                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
241                         if (pe_bitmap)
242                                 set_bit(segno, pe_bitmap);
243                         else
244                                 pnv_ioda_reserve_pe(phb, segno);
245                 }
246         }
247 }
248
249 static void pnv_ioda2_reserve_m64_pe(struct pci_bus *bus,
250                                      unsigned long *pe_bitmap,
251                                      bool all)
252 {
253         struct pci_dev *pdev;
254
255         list_for_each_entry(pdev, &bus->devices, bus_list) {
256                 pnv_ioda2_reserve_dev_m64_pe(pdev, pe_bitmap);
257
258                 if (all && pdev->subordinate)
259                         pnv_ioda2_reserve_m64_pe(pdev->subordinate,
260                                                  pe_bitmap, all);
261         }
262 }
263
264 static int pnv_ioda2_pick_m64_pe(struct pci_bus *bus, bool all)
265 {
266         struct pci_controller *hose = pci_bus_to_host(bus);
267         struct pnv_phb *phb = hose->private_data;
268         struct pnv_ioda_pe *master_pe, *pe;
269         unsigned long size, *pe_alloc;
270         int i;
271
272         /* Root bus shouldn't use M64 */
273         if (pci_is_root_bus(bus))
274                 return IODA_INVALID_PE;
275
276         /* Allocate bitmap */
277         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
278         pe_alloc = kzalloc(size, GFP_KERNEL);
279         if (!pe_alloc) {
280                 pr_warn("%s: Out of memory !\n",
281                         __func__);
282                 return IODA_INVALID_PE;
283         }
284
285         /* Figure out reserved PE numbers by the PE */
286         pnv_ioda2_reserve_m64_pe(bus, pe_alloc, all);
287
288         /*
289          * the current bus might not own M64 window and that's all
290          * contributed by its child buses. For the case, we needn't
291          * pick M64 dependent PE#.
292          */
293         if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
294                 kfree(pe_alloc);
295                 return IODA_INVALID_PE;
296         }
297
298         /*
299          * Figure out the master PE and put all slave PEs to master
300          * PE's list to form compound PE.
301          */
302         master_pe = NULL;
303         i = -1;
304         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
305                 phb->ioda.total_pe) {
306                 pe = &phb->ioda.pe_array[i];
307
308                 if (!master_pe) {
309                         pe->flags |= PNV_IODA_PE_MASTER;
310                         INIT_LIST_HEAD(&pe->slaves);
311                         master_pe = pe;
312                 } else {
313                         pe->flags |= PNV_IODA_PE_SLAVE;
314                         pe->master = master_pe;
315                         list_add_tail(&pe->list, &master_pe->slaves);
316                 }
317         }
318
319         kfree(pe_alloc);
320         return master_pe->pe_number;
321 }
322
323 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
324 {
325         struct pci_controller *hose = phb->hose;
326         struct device_node *dn = hose->dn;
327         struct resource *res;
328         const u32 *r;
329         u64 pci_addr;
330
331         /* FIXME: Support M64 for P7IOC */
332         if (phb->type != PNV_PHB_IODA2) {
333                 pr_info("  Not support M64 window\n");
334                 return;
335         }
336
337         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
338                 pr_info("  Firmware too old to support M64 window\n");
339                 return;
340         }
341
342         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
343         if (!r) {
344                 pr_info("  No <ibm,opal-m64-window> on %s\n",
345                         dn->full_name);
346                 return;
347         }
348
349         res = &hose->mem_resources[1];
350         res->name = dn->full_name;
351         res->start = of_translate_address(dn, r + 2);
352         res->end = res->start + of_read_number(r + 4, 2) - 1;
353         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
354         pci_addr = of_read_number(r, 2);
355         hose->mem_offset[1] = res->start - pci_addr;
356
357         phb->ioda.m64_size = resource_size(res);
358         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
359         phb->ioda.m64_base = pci_addr;
360
361         pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
362                         res->start, res->end, pci_addr);
363
364         /* Use last M64 BAR to cover M64 window */
365         phb->ioda.m64_bar_idx = 15;
366         phb->init_m64 = pnv_ioda2_init_m64;
367         phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
368         phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
369 }
370
371 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
372 {
373         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
374         struct pnv_ioda_pe *slave;
375         s64 rc;
376
377         /* Fetch master PE */
378         if (pe->flags & PNV_IODA_PE_SLAVE) {
379                 pe = pe->master;
380                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
381                         return;
382
383                 pe_no = pe->pe_number;
384         }
385
386         /* Freeze master PE */
387         rc = opal_pci_eeh_freeze_set(phb->opal_id,
388                                      pe_no,
389                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
390         if (rc != OPAL_SUCCESS) {
391                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
392                         __func__, rc, phb->hose->global_number, pe_no);
393                 return;
394         }
395
396         /* Freeze slave PEs */
397         if (!(pe->flags & PNV_IODA_PE_MASTER))
398                 return;
399
400         list_for_each_entry(slave, &pe->slaves, list) {
401                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
402                                              slave->pe_number,
403                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
404                 if (rc != OPAL_SUCCESS)
405                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
406                                 __func__, rc, phb->hose->global_number,
407                                 slave->pe_number);
408         }
409 }
410
411 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
412 {
413         struct pnv_ioda_pe *pe, *slave;
414         s64 rc;
415
416         /* Find master PE */
417         pe = &phb->ioda.pe_array[pe_no];
418         if (pe->flags & PNV_IODA_PE_SLAVE) {
419                 pe = pe->master;
420                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
421                 pe_no = pe->pe_number;
422         }
423
424         /* Clear frozen state for master PE */
425         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
426         if (rc != OPAL_SUCCESS) {
427                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
428                         __func__, rc, opt, phb->hose->global_number, pe_no);
429                 return -EIO;
430         }
431
432         if (!(pe->flags & PNV_IODA_PE_MASTER))
433                 return 0;
434
435         /* Clear frozen state for slave PEs */
436         list_for_each_entry(slave, &pe->slaves, list) {
437                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
438                                              slave->pe_number,
439                                              opt);
440                 if (rc != OPAL_SUCCESS) {
441                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
442                                 __func__, rc, opt, phb->hose->global_number,
443                                 slave->pe_number);
444                         return -EIO;
445                 }
446         }
447
448         return 0;
449 }
450
451 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
452 {
453         struct pnv_ioda_pe *slave, *pe;
454         u8 fstate, state;
455         __be16 pcierr;
456         s64 rc;
457
458         /* Sanity check on PE number */
459         if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
460                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
461
462         /*
463          * Fetch the master PE and the PE instance might be
464          * not initialized yet.
465          */
466         pe = &phb->ioda.pe_array[pe_no];
467         if (pe->flags & PNV_IODA_PE_SLAVE) {
468                 pe = pe->master;
469                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
470                 pe_no = pe->pe_number;
471         }
472
473         /* Check the master PE */
474         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
475                                         &state, &pcierr, NULL);
476         if (rc != OPAL_SUCCESS) {
477                 pr_warn("%s: Failure %lld getting "
478                         "PHB#%x-PE#%x state\n",
479                         __func__, rc,
480                         phb->hose->global_number, pe_no);
481                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
482         }
483
484         /* Check the slave PE */
485         if (!(pe->flags & PNV_IODA_PE_MASTER))
486                 return state;
487
488         list_for_each_entry(slave, &pe->slaves, list) {
489                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
490                                                 slave->pe_number,
491                                                 &fstate,
492                                                 &pcierr,
493                                                 NULL);
494                 if (rc != OPAL_SUCCESS) {
495                         pr_warn("%s: Failure %lld getting "
496                                 "PHB#%x-PE#%x state\n",
497                                 __func__, rc,
498                                 phb->hose->global_number, slave->pe_number);
499                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
500                 }
501
502                 /*
503                  * Override the result based on the ascending
504                  * priority.
505                  */
506                 if (fstate > state)
507                         state = fstate;
508         }
509
510         return state;
511 }
512
513 /* Currently those 2 are only used when MSIs are enabled, this will change
514  * but in the meantime, we need to protect them to avoid warnings
515  */
516 #ifdef CONFIG_PCI_MSI
517 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
518 {
519         struct pci_controller *hose = pci_bus_to_host(dev->bus);
520         struct pnv_phb *phb = hose->private_data;
521         struct pci_dn *pdn = pci_get_pdn(dev);
522
523         if (!pdn)
524                 return NULL;
525         if (pdn->pe_number == IODA_INVALID_PE)
526                 return NULL;
527         return &phb->ioda.pe_array[pdn->pe_number];
528 }
529 #endif /* CONFIG_PCI_MSI */
530
531 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
532                                   struct pnv_ioda_pe *parent,
533                                   struct pnv_ioda_pe *child,
534                                   bool is_add)
535 {
536         const char *desc = is_add ? "adding" : "removing";
537         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
538                               OPAL_REMOVE_PE_FROM_DOMAIN;
539         struct pnv_ioda_pe *slave;
540         long rc;
541
542         /* Parent PE affects child PE */
543         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
544                                 child->pe_number, op);
545         if (rc != OPAL_SUCCESS) {
546                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
547                         rc, desc);
548                 return -ENXIO;
549         }
550
551         if (!(child->flags & PNV_IODA_PE_MASTER))
552                 return 0;
553
554         /* Compound case: parent PE affects slave PEs */
555         list_for_each_entry(slave, &child->slaves, list) {
556                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
557                                         slave->pe_number, op);
558                 if (rc != OPAL_SUCCESS) {
559                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
560                                 rc, desc);
561                         return -ENXIO;
562                 }
563         }
564
565         return 0;
566 }
567
568 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
569                               struct pnv_ioda_pe *pe,
570                               bool is_add)
571 {
572         struct pnv_ioda_pe *slave;
573         struct pci_dev *pdev = NULL;
574         int ret;
575
576         /*
577          * Clear PE frozen state. If it's master PE, we need
578          * clear slave PE frozen state as well.
579          */
580         if (is_add) {
581                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
582                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
583                 if (pe->flags & PNV_IODA_PE_MASTER) {
584                         list_for_each_entry(slave, &pe->slaves, list)
585                                 opal_pci_eeh_freeze_clear(phb->opal_id,
586                                                           slave->pe_number,
587                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
588                 }
589         }
590
591         /*
592          * Associate PE in PELT. We need add the PE into the
593          * corresponding PELT-V as well. Otherwise, the error
594          * originated from the PE might contribute to other
595          * PEs.
596          */
597         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
598         if (ret)
599                 return ret;
600
601         /* For compound PEs, any one affects all of them */
602         if (pe->flags & PNV_IODA_PE_MASTER) {
603                 list_for_each_entry(slave, &pe->slaves, list) {
604                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
605                         if (ret)
606                                 return ret;
607                 }
608         }
609
610         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
611                 pdev = pe->pbus->self;
612         else if (pe->flags & PNV_IODA_PE_DEV)
613                 pdev = pe->pdev->bus->self;
614 #ifdef CONFIG_PCI_IOV
615         else if (pe->flags & PNV_IODA_PE_VF)
616                 pdev = pe->parent_dev;
617 #endif /* CONFIG_PCI_IOV */
618         while (pdev) {
619                 struct pci_dn *pdn = pci_get_pdn(pdev);
620                 struct pnv_ioda_pe *parent;
621
622                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
623                         parent = &phb->ioda.pe_array[pdn->pe_number];
624                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
625                         if (ret)
626                                 return ret;
627                 }
628
629                 pdev = pdev->bus->self;
630         }
631
632         return 0;
633 }
634
635 #ifdef CONFIG_PCI_IOV
636 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
637 {
638         struct pci_dev *parent;
639         uint8_t bcomp, dcomp, fcomp;
640         int64_t rc;
641         long rid_end, rid;
642
643         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
644         if (pe->pbus) {
645                 int count;
646
647                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
648                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
649                 parent = pe->pbus->self;
650                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
651                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
652                 else
653                         count = 1;
654
655                 switch(count) {
656                 case  1: bcomp = OpalPciBusAll;         break;
657                 case  2: bcomp = OpalPciBus7Bits;       break;
658                 case  4: bcomp = OpalPciBus6Bits;       break;
659                 case  8: bcomp = OpalPciBus5Bits;       break;
660                 case 16: bcomp = OpalPciBus4Bits;       break;
661                 case 32: bcomp = OpalPciBus3Bits;       break;
662                 default:
663                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
664                                 count);
665                         /* Do an exact match only */
666                         bcomp = OpalPciBusAll;
667                 }
668                 rid_end = pe->rid + (count << 8);
669         } else {
670                 if (pe->flags & PNV_IODA_PE_VF)
671                         parent = pe->parent_dev;
672                 else
673                         parent = pe->pdev->bus->self;
674                 bcomp = OpalPciBusAll;
675                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
676                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
677                 rid_end = pe->rid + 1;
678         }
679
680         /* Clear the reverse map */
681         for (rid = pe->rid; rid < rid_end; rid++)
682                 phb->ioda.pe_rmap[rid] = 0;
683
684         /* Release from all parents PELT-V */
685         while (parent) {
686                 struct pci_dn *pdn = pci_get_pdn(parent);
687                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
688                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
689                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
690                         /* XXX What to do in case of error ? */
691                 }
692                 parent = parent->bus->self;
693         }
694
695         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
696                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
697
698         /* Disassociate PE in PELT */
699         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
700                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
701         if (rc)
702                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
703         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
704                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
705         if (rc)
706                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
707
708         pe->pbus = NULL;
709         pe->pdev = NULL;
710         pe->parent_dev = NULL;
711
712         return 0;
713 }
714 #endif /* CONFIG_PCI_IOV */
715
716 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
717 {
718         struct pci_dev *parent;
719         uint8_t bcomp, dcomp, fcomp;
720         long rc, rid_end, rid;
721
722         /* Bus validation ? */
723         if (pe->pbus) {
724                 int count;
725
726                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
727                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
728                 parent = pe->pbus->self;
729                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
730                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
731                 else
732                         count = 1;
733
734                 switch(count) {
735                 case  1: bcomp = OpalPciBusAll;         break;
736                 case  2: bcomp = OpalPciBus7Bits;       break;
737                 case  4: bcomp = OpalPciBus6Bits;       break;
738                 case  8: bcomp = OpalPciBus5Bits;       break;
739                 case 16: bcomp = OpalPciBus4Bits;       break;
740                 case 32: bcomp = OpalPciBus3Bits;       break;
741                 default:
742                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
743                                 count);
744                         /* Do an exact match only */
745                         bcomp = OpalPciBusAll;
746                 }
747                 rid_end = pe->rid + (count << 8);
748         } else {
749 #ifdef CONFIG_PCI_IOV
750                 if (pe->flags & PNV_IODA_PE_VF)
751                         parent = pe->parent_dev;
752                 else
753 #endif /* CONFIG_PCI_IOV */
754                         parent = pe->pdev->bus->self;
755                 bcomp = OpalPciBusAll;
756                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
757                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
758                 rid_end = pe->rid + 1;
759         }
760
761         /*
762          * Associate PE in PELT. We need add the PE into the
763          * corresponding PELT-V as well. Otherwise, the error
764          * originated from the PE might contribute to other
765          * PEs.
766          */
767         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
768                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
769         if (rc) {
770                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
771                 return -ENXIO;
772         }
773
774         /*
775          * Configure PELTV. NPUs don't have a PELTV table so skip
776          * configuration on them.
777          */
778         if (phb->type != PNV_PHB_NPU)
779                 pnv_ioda_set_peltv(phb, pe, true);
780
781         /* Setup reverse map */
782         for (rid = pe->rid; rid < rid_end; rid++)
783                 phb->ioda.pe_rmap[rid] = pe->pe_number;
784
785         /* Setup one MVTs on IODA1 */
786         if (phb->type != PNV_PHB_IODA1) {
787                 pe->mve_number = 0;
788                 goto out;
789         }
790
791         pe->mve_number = pe->pe_number;
792         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
793         if (rc != OPAL_SUCCESS) {
794                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
795                        rc, pe->mve_number);
796                 pe->mve_number = -1;
797         } else {
798                 rc = opal_pci_set_mve_enable(phb->opal_id,
799                                              pe->mve_number, OPAL_ENABLE_MVE);
800                 if (rc) {
801                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
802                                rc, pe->mve_number);
803                         pe->mve_number = -1;
804                 }
805         }
806
807 out:
808         return 0;
809 }
810
811 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
812                                        struct pnv_ioda_pe *pe)
813 {
814         struct pnv_ioda_pe *lpe;
815
816         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
817                 if (lpe->dma_weight < pe->dma_weight) {
818                         list_add_tail(&pe->dma_link, &lpe->dma_link);
819                         return;
820                 }
821         }
822         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
823 }
824
825 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
826 {
827         /* This is quite simplistic. The "base" weight of a device
828          * is 10. 0 means no DMA is to be accounted for it.
829          */
830
831         /* If it's a bridge, no DMA */
832         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
833                 return 0;
834
835         /* Reduce the weight of slow USB controllers */
836         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
837             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
838             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
839                 return 3;
840
841         /* Increase the weight of RAID (includes Obsidian) */
842         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
843                 return 15;
844
845         /* Default */
846         return 10;
847 }
848
849 #ifdef CONFIG_PCI_IOV
850 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
851 {
852         struct pci_dn *pdn = pci_get_pdn(dev);
853         int i;
854         struct resource *res, res2;
855         resource_size_t size;
856         u16 num_vfs;
857
858         if (!dev->is_physfn)
859                 return -EINVAL;
860
861         /*
862          * "offset" is in VFs.  The M64 windows are sized so that when they
863          * are segmented, each segment is the same size as the IOV BAR.
864          * Each segment is in a separate PE, and the high order bits of the
865          * address are the PE number.  Therefore, each VF's BAR is in a
866          * separate PE, and changing the IOV BAR start address changes the
867          * range of PEs the VFs are in.
868          */
869         num_vfs = pdn->num_vfs;
870         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
871                 res = &dev->resource[i + PCI_IOV_RESOURCES];
872                 if (!res->flags || !res->parent)
873                         continue;
874
875                 if (!pnv_pci_is_mem_pref_64(res->flags))
876                         continue;
877
878                 /*
879                  * The actual IOV BAR range is determined by the start address
880                  * and the actual size for num_vfs VFs BAR.  This check is to
881                  * make sure that after shifting, the range will not overlap
882                  * with another device.
883                  */
884                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
885                 res2.flags = res->flags;
886                 res2.start = res->start + (size * offset);
887                 res2.end = res2.start + (size * num_vfs) - 1;
888
889                 if (res2.end > res->end) {
890                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
891                                 i, &res2, res, num_vfs, offset);
892                         return -EBUSY;
893                 }
894         }
895
896         /*
897          * After doing so, there would be a "hole" in the /proc/iomem when
898          * offset is a positive value. It looks like the device return some
899          * mmio back to the system, which actually no one could use it.
900          */
901         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
902                 res = &dev->resource[i + PCI_IOV_RESOURCES];
903                 if (!res->flags || !res->parent)
904                         continue;
905
906                 if (!pnv_pci_is_mem_pref_64(res->flags))
907                         continue;
908
909                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
910                 res2 = *res;
911                 res->start += size * offset;
912
913                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
914                          i, &res2, res, (offset > 0) ? "En" : "Dis",
915                          num_vfs, offset);
916                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
917         }
918         return 0;
919 }
920 #endif /* CONFIG_PCI_IOV */
921
922 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
923 {
924         struct pci_controller *hose = pci_bus_to_host(dev->bus);
925         struct pnv_phb *phb = hose->private_data;
926         struct pci_dn *pdn = pci_get_pdn(dev);
927         struct pnv_ioda_pe *pe;
928         int pe_num;
929
930         if (!pdn) {
931                 pr_err("%s: Device tree node not associated properly\n",
932                            pci_name(dev));
933                 return NULL;
934         }
935         if (pdn->pe_number != IODA_INVALID_PE)
936                 return NULL;
937
938         pe_num = pnv_ioda_alloc_pe(phb);
939         if (pe_num == IODA_INVALID_PE) {
940                 pr_warning("%s: Not enough PE# available, disabling device\n",
941                            pci_name(dev));
942                 return NULL;
943         }
944
945         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
946          * pointer in the PE data structure, both should be destroyed at the
947          * same time. However, this needs to be looked at more closely again
948          * once we actually start removing things (Hotplug, SR-IOV, ...)
949          *
950          * At some point we want to remove the PDN completely anyways
951          */
952         pe = &phb->ioda.pe_array[pe_num];
953         pci_dev_get(dev);
954         pdn->pcidev = dev;
955         pdn->pe_number = pe_num;
956         pe->flags = PNV_IODA_PE_DEV;
957         pe->pdev = dev;
958         pe->pbus = NULL;
959         pe->tce32_seg = -1;
960         pe->mve_number = -1;
961         pe->rid = dev->bus->number << 8 | pdn->devfn;
962
963         pe_info(pe, "Associated device to PE\n");
964
965         if (pnv_ioda_configure_pe(phb, pe)) {
966                 /* XXX What do we do here ? */
967                 if (pe_num)
968                         pnv_ioda_free_pe(phb, pe_num);
969                 pdn->pe_number = IODA_INVALID_PE;
970                 pe->pdev = NULL;
971                 pci_dev_put(dev);
972                 return NULL;
973         }
974
975         /* Assign a DMA weight to the device */
976         pe->dma_weight = pnv_ioda_dma_weight(dev);
977         if (pe->dma_weight != 0) {
978                 phb->ioda.dma_weight += pe->dma_weight;
979                 phb->ioda.dma_pe_count++;
980         }
981
982         /* Link the PE */
983         pnv_ioda_link_pe_by_weight(phb, pe);
984
985         return pe;
986 }
987
988 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
989 {
990         struct pci_dev *dev;
991
992         list_for_each_entry(dev, &bus->devices, bus_list) {
993                 struct pci_dn *pdn = pci_get_pdn(dev);
994
995                 if (pdn == NULL) {
996                         pr_warn("%s: No device node associated with device !\n",
997                                 pci_name(dev));
998                         continue;
999                 }
1000                 pdn->pcidev = dev;
1001                 pdn->pe_number = pe->pe_number;
1002                 pe->dma_weight += pnv_ioda_dma_weight(dev);
1003                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1004                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1005         }
1006 }
1007
1008 /*
1009  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1010  * single PCI bus. Another one that contains the primary PCI bus and its
1011  * subordinate PCI devices and buses. The second type of PE is normally
1012  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1013  */
1014 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1015 {
1016         struct pci_controller *hose = pci_bus_to_host(bus);
1017         struct pnv_phb *phb = hose->private_data;
1018         struct pnv_ioda_pe *pe;
1019         int pe_num = IODA_INVALID_PE;
1020
1021         /* Check if PE is determined by M64 */
1022         if (phb->pick_m64_pe)
1023                 pe_num = phb->pick_m64_pe(bus, all);
1024
1025         /* The PE number isn't pinned by M64 */
1026         if (pe_num == IODA_INVALID_PE)
1027                 pe_num = pnv_ioda_alloc_pe(phb);
1028
1029         if (pe_num == IODA_INVALID_PE) {
1030                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1031                         __func__, pci_domain_nr(bus), bus->number);
1032                 return;
1033         }
1034
1035         pe = &phb->ioda.pe_array[pe_num];
1036         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1037         pe->pbus = bus;
1038         pe->pdev = NULL;
1039         pe->tce32_seg = -1;
1040         pe->mve_number = -1;
1041         pe->rid = bus->busn_res.start << 8;
1042         pe->dma_weight = 0;
1043
1044         if (all)
1045                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1046                         bus->busn_res.start, bus->busn_res.end, pe_num);
1047         else
1048                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1049                         bus->busn_res.start, pe_num);
1050
1051         if (pnv_ioda_configure_pe(phb, pe)) {
1052                 /* XXX What do we do here ? */
1053                 if (pe_num)
1054                         pnv_ioda_free_pe(phb, pe_num);
1055                 pe->pbus = NULL;
1056                 return;
1057         }
1058
1059         /* Associate it with all child devices */
1060         pnv_ioda_setup_same_PE(bus, pe);
1061
1062         /* Put PE to the list */
1063         list_add_tail(&pe->list, &phb->ioda.pe_list);
1064
1065         /* Account for one DMA PE if at least one DMA capable device exist
1066          * below the bridge
1067          */
1068         if (pe->dma_weight != 0) {
1069                 phb->ioda.dma_weight += pe->dma_weight;
1070                 phb->ioda.dma_pe_count++;
1071         }
1072
1073         /* Link the PE */
1074         pnv_ioda_link_pe_by_weight(phb, pe);
1075 }
1076
1077 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1078 {
1079         int pe_num, found_pe = false, rc;
1080         long rid;
1081         struct pnv_ioda_pe *pe;
1082         struct pci_dev *gpu_pdev;
1083         struct pci_dn *npu_pdn;
1084         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1085         struct pnv_phb *phb = hose->private_data;
1086
1087         /*
1088          * Due to a hardware errata PE#0 on the NPU is reserved for
1089          * error handling. This means we only have three PEs remaining
1090          * which need to be assigned to four links, implying some
1091          * links must share PEs.
1092          *
1093          * To achieve this we assign PEs such that NPUs linking the
1094          * same GPU get assigned the same PE.
1095          */
1096         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1097         for (pe_num = 0; pe_num < phb->ioda.total_pe; pe_num++) {
1098                 pe = &phb->ioda.pe_array[pe_num];
1099                 if (!pe->pdev)
1100                         continue;
1101
1102                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1103                         /*
1104                          * This device has the same peer GPU so should
1105                          * be assigned the same PE as the existing
1106                          * peer NPU.
1107                          */
1108                         dev_info(&npu_pdev->dev,
1109                                 "Associating to existing PE %d\n", pe_num);
1110                         pci_dev_get(npu_pdev);
1111                         npu_pdn = pci_get_pdn(npu_pdev);
1112                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1113                         npu_pdn->pcidev = npu_pdev;
1114                         npu_pdn->pe_number = pe_num;
1115                         pe->dma_weight += pnv_ioda_dma_weight(npu_pdev);
1116                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1117
1118                         /* Map the PE to this link */
1119                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1120                                         OpalPciBusAll,
1121                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1122                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1123                                         OPAL_MAP_PE);
1124                         WARN_ON(rc != OPAL_SUCCESS);
1125                         found_pe = true;
1126                         break;
1127                 }
1128         }
1129
1130         if (!found_pe)
1131                 /*
1132                  * Could not find an existing PE so allocate a new
1133                  * one.
1134                  */
1135                 return pnv_ioda_setup_dev_PE(npu_pdev);
1136         else
1137                 return pe;
1138 }
1139
1140 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1141 {
1142         struct pci_dev *pdev;
1143
1144         list_for_each_entry(pdev, &bus->devices, bus_list)
1145                 pnv_ioda_setup_npu_PE(pdev);
1146 }
1147
1148 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1149 {
1150         struct pci_dev *dev;
1151
1152         pnv_ioda_setup_bus_PE(bus, false);
1153
1154         list_for_each_entry(dev, &bus->devices, bus_list) {
1155                 if (dev->subordinate) {
1156                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1157                                 pnv_ioda_setup_bus_PE(dev->subordinate, true);
1158                         else
1159                                 pnv_ioda_setup_PEs(dev->subordinate);
1160                 }
1161         }
1162 }
1163
1164 /*
1165  * Configure PEs so that the downstream PCI buses and devices
1166  * could have their associated PE#. Unfortunately, we didn't
1167  * figure out the way to identify the PLX bridge yet. So we
1168  * simply put the PCI bus and the subordinate behind the root
1169  * port to PE# here. The game rule here is expected to be changed
1170  * as soon as we can detected PLX bridge correctly.
1171  */
1172 static void pnv_pci_ioda_setup_PEs(void)
1173 {
1174         struct pci_controller *hose, *tmp;
1175         struct pnv_phb *phb;
1176
1177         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1178                 phb = hose->private_data;
1179
1180                 /* M64 layout might affect PE allocation */
1181                 if (phb->reserve_m64_pe)
1182                         phb->reserve_m64_pe(hose->bus, NULL, true);
1183
1184                 /*
1185                  * On NPU PHB, we expect separate PEs for individual PCI
1186                  * functions. PCI bus dependent PEs are required for the
1187                  * remaining types of PHBs.
1188                  */
1189                 if (phb->type == PNV_PHB_NPU) {
1190                         /* PE#0 is needed for error reporting */
1191                         pnv_ioda_reserve_pe(phb, 0);
1192                         pnv_ioda_setup_npu_PEs(hose->bus);
1193                 } else
1194                         pnv_ioda_setup_PEs(hose->bus);
1195         }
1196 }
1197
1198 #ifdef CONFIG_PCI_IOV
1199 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1200 {
1201         struct pci_bus        *bus;
1202         struct pci_controller *hose;
1203         struct pnv_phb        *phb;
1204         struct pci_dn         *pdn;
1205         int                    i, j;
1206
1207         bus = pdev->bus;
1208         hose = pci_bus_to_host(bus);
1209         phb = hose->private_data;
1210         pdn = pci_get_pdn(pdev);
1211
1212         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1213                 for (j = 0; j < M64_PER_IOV; j++) {
1214                         if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1215                                 continue;
1216                         opal_pci_phb_mmio_enable(phb->opal_id,
1217                                 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1218                         clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1219                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1220                 }
1221
1222         return 0;
1223 }
1224
1225 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1226 {
1227         struct pci_bus        *bus;
1228         struct pci_controller *hose;
1229         struct pnv_phb        *phb;
1230         struct pci_dn         *pdn;
1231         unsigned int           win;
1232         struct resource       *res;
1233         int                    i, j;
1234         int64_t                rc;
1235         int                    total_vfs;
1236         resource_size_t        size, start;
1237         int                    pe_num;
1238         int                    vf_groups;
1239         int                    vf_per_group;
1240
1241         bus = pdev->bus;
1242         hose = pci_bus_to_host(bus);
1243         phb = hose->private_data;
1244         pdn = pci_get_pdn(pdev);
1245         total_vfs = pci_sriov_get_totalvfs(pdev);
1246
1247         /* Initialize the m64_wins to IODA_INVALID_M64 */
1248         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1249                 for (j = 0; j < M64_PER_IOV; j++)
1250                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1251
1252         if (pdn->m64_per_iov == M64_PER_IOV) {
1253                 vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1254                 vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1255                         roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1256         } else {
1257                 vf_groups = 1;
1258                 vf_per_group = 1;
1259         }
1260
1261         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1262                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1263                 if (!res->flags || !res->parent)
1264                         continue;
1265
1266                 if (!pnv_pci_is_mem_pref_64(res->flags))
1267                         continue;
1268
1269                 for (j = 0; j < vf_groups; j++) {
1270                         do {
1271                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1272                                                 phb->ioda.m64_bar_idx + 1, 0);
1273
1274                                 if (win >= phb->ioda.m64_bar_idx + 1)
1275                                         goto m64_failed;
1276                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1277
1278                         pdn->m64_wins[i][j] = win;
1279
1280                         if (pdn->m64_per_iov == M64_PER_IOV) {
1281                                 size = pci_iov_resource_size(pdev,
1282                                                         PCI_IOV_RESOURCES + i);
1283                                 size = size * vf_per_group;
1284                                 start = res->start + size * j;
1285                         } else {
1286                                 size = resource_size(res);
1287                                 start = res->start;
1288                         }
1289
1290                         /* Map the M64 here */
1291                         if (pdn->m64_per_iov == M64_PER_IOV) {
1292                                 pe_num = pdn->offset + j;
1293                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1294                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1295                                                 pdn->m64_wins[i][j], 0);
1296                         }
1297
1298                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1299                                                  OPAL_M64_WINDOW_TYPE,
1300                                                  pdn->m64_wins[i][j],
1301                                                  start,
1302                                                  0, /* unused */
1303                                                  size);
1304
1305
1306                         if (rc != OPAL_SUCCESS) {
1307                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1308                                         win, rc);
1309                                 goto m64_failed;
1310                         }
1311
1312                         if (pdn->m64_per_iov == M64_PER_IOV)
1313                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1314                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1315                         else
1316                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1317                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1318
1319                         if (rc != OPAL_SUCCESS) {
1320                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1321                                         win, rc);
1322                                 goto m64_failed;
1323                         }
1324                 }
1325         }
1326         return 0;
1327
1328 m64_failed:
1329         pnv_pci_vf_release_m64(pdev);
1330         return -EBUSY;
1331 }
1332
1333 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1334                 int num);
1335 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1336
1337 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1338 {
1339         struct iommu_table    *tbl;
1340         int64_t               rc;
1341
1342         tbl = pe->table_group.tables[0];
1343         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1344         if (rc)
1345                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1346
1347         pnv_pci_ioda2_set_bypass(pe, false);
1348         if (pe->table_group.group) {
1349                 iommu_group_put(pe->table_group.group);
1350                 BUG_ON(pe->table_group.group);
1351         }
1352         pnv_pci_ioda2_table_free_pages(tbl);
1353         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1354 }
1355
1356 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1357 {
1358         struct pci_bus        *bus;
1359         struct pci_controller *hose;
1360         struct pnv_phb        *phb;
1361         struct pnv_ioda_pe    *pe, *pe_n;
1362         struct pci_dn         *pdn;
1363         u16                    vf_index;
1364         int64_t                rc;
1365
1366         bus = pdev->bus;
1367         hose = pci_bus_to_host(bus);
1368         phb = hose->private_data;
1369         pdn = pci_get_pdn(pdev);
1370
1371         if (!pdev->is_physfn)
1372                 return;
1373
1374         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1375                 int   vf_group;
1376                 int   vf_per_group;
1377                 int   vf_index1;
1378
1379                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1380
1381                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1382                         for (vf_index = vf_group * vf_per_group;
1383                                 vf_index < (vf_group + 1) * vf_per_group &&
1384                                 vf_index < num_vfs;
1385                                 vf_index++)
1386                                 for (vf_index1 = vf_group * vf_per_group;
1387                                         vf_index1 < (vf_group + 1) * vf_per_group &&
1388                                         vf_index1 < num_vfs;
1389                                         vf_index1++){
1390
1391                                         rc = opal_pci_set_peltv(phb->opal_id,
1392                                                 pdn->offset + vf_index,
1393                                                 pdn->offset + vf_index1,
1394                                                 OPAL_REMOVE_PE_FROM_DOMAIN);
1395
1396                                         if (rc)
1397                                             dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1398                                                 __func__,
1399                                                 pdn->offset + vf_index1, rc);
1400                                 }
1401         }
1402
1403         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1404                 if (pe->parent_dev != pdev)
1405                         continue;
1406
1407                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1408
1409                 /* Remove from list */
1410                 mutex_lock(&phb->ioda.pe_list_mutex);
1411                 list_del(&pe->list);
1412                 mutex_unlock(&phb->ioda.pe_list_mutex);
1413
1414                 pnv_ioda_deconfigure_pe(phb, pe);
1415
1416                 pnv_ioda_free_pe(phb, pe->pe_number);
1417         }
1418 }
1419
1420 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1421 {
1422         struct pci_bus        *bus;
1423         struct pci_controller *hose;
1424         struct pnv_phb        *phb;
1425         struct pci_dn         *pdn;
1426         struct pci_sriov      *iov;
1427         u16 num_vfs;
1428
1429         bus = pdev->bus;
1430         hose = pci_bus_to_host(bus);
1431         phb = hose->private_data;
1432         pdn = pci_get_pdn(pdev);
1433         iov = pdev->sriov;
1434         num_vfs = pdn->num_vfs;
1435
1436         /* Release VF PEs */
1437         pnv_ioda_release_vf_PE(pdev, num_vfs);
1438
1439         if (phb->type == PNV_PHB_IODA2) {
1440                 if (pdn->m64_per_iov == 1)
1441                         pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1442
1443                 /* Release M64 windows */
1444                 pnv_pci_vf_release_m64(pdev);
1445
1446                 /* Release PE numbers */
1447                 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1448                 pdn->offset = 0;
1449         }
1450 }
1451
1452 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1453                                        struct pnv_ioda_pe *pe);
1454 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1455 {
1456         struct pci_bus        *bus;
1457         struct pci_controller *hose;
1458         struct pnv_phb        *phb;
1459         struct pnv_ioda_pe    *pe;
1460         int                    pe_num;
1461         u16                    vf_index;
1462         struct pci_dn         *pdn;
1463         int64_t                rc;
1464
1465         bus = pdev->bus;
1466         hose = pci_bus_to_host(bus);
1467         phb = hose->private_data;
1468         pdn = pci_get_pdn(pdev);
1469
1470         if (!pdev->is_physfn)
1471                 return;
1472
1473         /* Reserve PE for each VF */
1474         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1475                 pe_num = pdn->offset + vf_index;
1476
1477                 pe = &phb->ioda.pe_array[pe_num];
1478                 pe->pe_number = pe_num;
1479                 pe->phb = phb;
1480                 pe->flags = PNV_IODA_PE_VF;
1481                 pe->pbus = NULL;
1482                 pe->parent_dev = pdev;
1483                 pe->tce32_seg = -1;
1484                 pe->mve_number = -1;
1485                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1486                            pci_iov_virtfn_devfn(pdev, vf_index);
1487
1488                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1489                         hose->global_number, pdev->bus->number,
1490                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1491                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1492
1493                 if (pnv_ioda_configure_pe(phb, pe)) {
1494                         /* XXX What do we do here ? */
1495                         if (pe_num)
1496                                 pnv_ioda_free_pe(phb, pe_num);
1497                         pe->pdev = NULL;
1498                         continue;
1499                 }
1500
1501                 /* Put PE to the list */
1502                 mutex_lock(&phb->ioda.pe_list_mutex);
1503                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1504                 mutex_unlock(&phb->ioda.pe_list_mutex);
1505
1506                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1507         }
1508
1509         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1510                 int   vf_group;
1511                 int   vf_per_group;
1512                 int   vf_index1;
1513
1514                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1515
1516                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1517                         for (vf_index = vf_group * vf_per_group;
1518                              vf_index < (vf_group + 1) * vf_per_group &&
1519                              vf_index < num_vfs;
1520                              vf_index++) {
1521                                 for (vf_index1 = vf_group * vf_per_group;
1522                                      vf_index1 < (vf_group + 1) * vf_per_group &&
1523                                      vf_index1 < num_vfs;
1524                                      vf_index1++) {
1525
1526                                         rc = opal_pci_set_peltv(phb->opal_id,
1527                                                 pdn->offset + vf_index,
1528                                                 pdn->offset + vf_index1,
1529                                                 OPAL_ADD_PE_TO_DOMAIN);
1530
1531                                         if (rc)
1532                                             dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1533                                                 __func__,
1534                                                 pdn->offset + vf_index1, rc);
1535                                 }
1536                         }
1537                 }
1538         }
1539 }
1540
1541 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1542 {
1543         struct pci_bus        *bus;
1544         struct pci_controller *hose;
1545         struct pnv_phb        *phb;
1546         struct pci_dn         *pdn;
1547         int                    ret;
1548
1549         bus = pdev->bus;
1550         hose = pci_bus_to_host(bus);
1551         phb = hose->private_data;
1552         pdn = pci_get_pdn(pdev);
1553
1554         if (phb->type == PNV_PHB_IODA2) {
1555                 /* Calculate available PE for required VFs */
1556                 mutex_lock(&phb->ioda.pe_alloc_mutex);
1557                 pdn->offset = bitmap_find_next_zero_area(
1558                         phb->ioda.pe_alloc, phb->ioda.total_pe,
1559                         0, num_vfs, 0);
1560                 if (pdn->offset >= phb->ioda.total_pe) {
1561                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1562                         dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1563                         pdn->offset = 0;
1564                         return -EBUSY;
1565                 }
1566                 bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1567                 pdn->num_vfs = num_vfs;
1568                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1569
1570                 /* Assign M64 window accordingly */
1571                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1572                 if (ret) {
1573                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1574                         goto m64_failed;
1575                 }
1576
1577                 /*
1578                  * When using one M64 BAR to map one IOV BAR, we need to shift
1579                  * the IOV BAR according to the PE# allocated to the VFs.
1580                  * Otherwise, the PE# for the VF will conflict with others.
1581                  */
1582                 if (pdn->m64_per_iov == 1) {
1583                         ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1584                         if (ret)
1585                                 goto m64_failed;
1586                 }
1587         }
1588
1589         /* Setup VF PEs */
1590         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1591
1592         return 0;
1593
1594 m64_failed:
1595         bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1596         pdn->offset = 0;
1597
1598         return ret;
1599 }
1600
1601 int pcibios_sriov_disable(struct pci_dev *pdev)
1602 {
1603         pnv_pci_sriov_disable(pdev);
1604
1605         /* Release PCI data */
1606         remove_dev_pci_data(pdev);
1607         return 0;
1608 }
1609
1610 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1611 {
1612         /* Allocate PCI data */
1613         add_dev_pci_data(pdev);
1614
1615         pnv_pci_sriov_enable(pdev, num_vfs);
1616         return 0;
1617 }
1618 #endif /* CONFIG_PCI_IOV */
1619
1620 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1621 {
1622         struct pci_dn *pdn = pci_get_pdn(pdev);
1623         struct pnv_ioda_pe *pe;
1624
1625         /*
1626          * The function can be called while the PE#
1627          * hasn't been assigned. Do nothing for the
1628          * case.
1629          */
1630         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1631                 return;
1632
1633         pe = &phb->ioda.pe_array[pdn->pe_number];
1634         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1635         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1636         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1637         /*
1638          * Note: iommu_add_device() will fail here as
1639          * for physical PE: the device is already added by now;
1640          * for virtual PE: sysfs entries are not ready yet and
1641          * tce_iommu_bus_notifier will add the device to a group later.
1642          */
1643 }
1644
1645 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1646 {
1647         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1648         struct pnv_phb *phb = hose->private_data;
1649         struct pci_dn *pdn = pci_get_pdn(pdev);
1650         struct pnv_ioda_pe *pe;
1651         uint64_t top;
1652         bool bypass = false;
1653         struct pci_dev *linked_npu_dev;
1654         int i;
1655
1656         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1657                 return -ENODEV;;
1658
1659         pe = &phb->ioda.pe_array[pdn->pe_number];
1660         if (pe->tce_bypass_enabled) {
1661                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1662                 bypass = (dma_mask >= top);
1663         }
1664
1665         if (bypass) {
1666                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1667                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1668         } else {
1669                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1670                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1671         }
1672         *pdev->dev.dma_mask = dma_mask;
1673
1674         /* Update peer npu devices */
1675         if (pe->flags & PNV_IODA_PE_PEER)
1676                 for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1677                         if (!pe->peers[i])
1678                                 continue;
1679
1680                         linked_npu_dev = pe->peers[i]->pdev;
1681                         if (dma_get_mask(&linked_npu_dev->dev) != dma_mask)
1682                                 dma_set_mask(&linked_npu_dev->dev, dma_mask);
1683                 }
1684
1685         return 0;
1686 }
1687
1688 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1689 {
1690         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1691         struct pnv_phb *phb = hose->private_data;
1692         struct pci_dn *pdn = pci_get_pdn(pdev);
1693         struct pnv_ioda_pe *pe;
1694         u64 end, mask;
1695
1696         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1697                 return 0;
1698
1699         pe = &phb->ioda.pe_array[pdn->pe_number];
1700         if (!pe->tce_bypass_enabled)
1701                 return __dma_get_required_mask(&pdev->dev);
1702
1703
1704         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1705         mask = 1ULL << (fls64(end) - 1);
1706         mask += mask - 1;
1707
1708         return mask;
1709 }
1710
1711 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1712                                    struct pci_bus *bus)
1713 {
1714         struct pci_dev *dev;
1715
1716         list_for_each_entry(dev, &bus->devices, bus_list) {
1717                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1718                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1719                 iommu_add_device(&dev->dev);
1720
1721                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1722                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1723         }
1724 }
1725
1726 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1727                 unsigned long index, unsigned long npages, bool rm)
1728 {
1729         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1730                         &tbl->it_group_list, struct iommu_table_group_link,
1731                         next);
1732         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1733                         struct pnv_ioda_pe, table_group);
1734         __be64 __iomem *invalidate = rm ?
1735                 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1736                 pe->phb->ioda.tce_inval_reg;
1737         unsigned long start, end, inc;
1738         const unsigned shift = tbl->it_page_shift;
1739
1740         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1741         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1742                         npages - 1);
1743
1744         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1745         if (tbl->it_busno) {
1746                 start <<= shift;
1747                 end <<= shift;
1748                 inc = 128ull << shift;
1749                 start |= tbl->it_busno;
1750                 end |= tbl->it_busno;
1751         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1752                 /* p7ioc-style invalidation, 2 TCEs per write */
1753                 start |= (1ull << 63);
1754                 end |= (1ull << 63);
1755                 inc = 16;
1756         } else {
1757                 /* Default (older HW) */
1758                 inc = 128;
1759         }
1760
1761         end |= inc - 1; /* round up end to be different than start */
1762
1763         mb(); /* Ensure above stores are visible */
1764         while (start <= end) {
1765                 if (rm)
1766                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1767                 else
1768                         __raw_writeq(cpu_to_be64(start), invalidate);
1769                 start += inc;
1770         }
1771
1772         /*
1773          * The iommu layer will do another mb() for us on build()
1774          * and we don't care on free()
1775          */
1776 }
1777
1778 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1779                 long npages, unsigned long uaddr,
1780                 enum dma_data_direction direction,
1781                 struct dma_attrs *attrs)
1782 {
1783         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1784                         attrs);
1785
1786         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1787                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1788
1789         return ret;
1790 }
1791
1792 #ifdef CONFIG_IOMMU_API
1793 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1794                 unsigned long *hpa, enum dma_data_direction *direction)
1795 {
1796         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1797
1798         if (!ret && (tbl->it_type &
1799                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1800                 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1801
1802         return ret;
1803 }
1804 #endif
1805
1806 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1807                 long npages)
1808 {
1809         pnv_tce_free(tbl, index, npages);
1810
1811         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1812                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1813 }
1814
1815 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1816         .set = pnv_ioda1_tce_build,
1817 #ifdef CONFIG_IOMMU_API
1818         .exchange = pnv_ioda1_tce_xchg,
1819 #endif
1820         .clear = pnv_ioda1_tce_free,
1821         .get = pnv_tce_get,
1822 };
1823
1824 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1825 {
1826         /* 01xb - invalidate TCEs that match the specified PE# */
1827         unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1828         struct pnv_phb *phb = pe->phb;
1829         struct pnv_ioda_pe *npe;
1830         int i;
1831
1832         if (!phb->ioda.tce_inval_reg)
1833                 return;
1834
1835         mb(); /* Ensure above stores are visible */
1836         __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1837
1838         if (pe->flags & PNV_IODA_PE_PEER)
1839                 for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1840                         npe = pe->peers[i];
1841                         if (!npe || npe->phb->type != PNV_PHB_NPU)
1842                                 continue;
1843
1844                         pnv_npu_tce_invalidate_entire(npe);
1845                 }
1846 }
1847
1848 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1849                 __be64 __iomem *invalidate, unsigned shift,
1850                 unsigned long index, unsigned long npages)
1851 {
1852         unsigned long start, end, inc;
1853
1854         /* We'll invalidate DMA address in PE scope */
1855         start = 0x2ull << 60;
1856         start |= (pe_number & 0xFF);
1857         end = start;
1858
1859         /* Figure out the start, end and step */
1860         start |= (index << shift);
1861         end |= ((index + npages - 1) << shift);
1862         inc = (0x1ull << shift);
1863         mb();
1864
1865         while (start <= end) {
1866                 if (rm)
1867                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1868                 else
1869                         __raw_writeq(cpu_to_be64(start), invalidate);
1870                 start += inc;
1871         }
1872 }
1873
1874 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1875                 unsigned long index, unsigned long npages, bool rm)
1876 {
1877         struct iommu_table_group_link *tgl;
1878
1879         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1880                 struct pnv_ioda_pe *npe;
1881                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1882                                 struct pnv_ioda_pe, table_group);
1883                 __be64 __iomem *invalidate = rm ?
1884                         (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1885                         pe->phb->ioda.tce_inval_reg;
1886                 int i;
1887
1888                 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1889                         invalidate, tbl->it_page_shift,
1890                         index, npages);
1891
1892                 if (pe->flags & PNV_IODA_PE_PEER)
1893                         /* Invalidate PEs using the same TCE table */
1894                         for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1895                                 npe = pe->peers[i];
1896                                 if (!npe || npe->phb->type != PNV_PHB_NPU)
1897                                         continue;
1898
1899                                 pnv_npu_tce_invalidate(npe, tbl, index,
1900                                                         npages, rm);
1901                         }
1902         }
1903 }
1904
1905 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1906                 long npages, unsigned long uaddr,
1907                 enum dma_data_direction direction,
1908                 struct dma_attrs *attrs)
1909 {
1910         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1911                         attrs);
1912
1913         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1914                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1915
1916         return ret;
1917 }
1918
1919 #ifdef CONFIG_IOMMU_API
1920 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1921                 unsigned long *hpa, enum dma_data_direction *direction)
1922 {
1923         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1924
1925         if (!ret && (tbl->it_type &
1926                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1927                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1928
1929         return ret;
1930 }
1931 #endif
1932
1933 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1934                 long npages)
1935 {
1936         pnv_tce_free(tbl, index, npages);
1937
1938         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1939                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1940 }
1941
1942 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1943 {
1944         pnv_pci_ioda2_table_free_pages(tbl);
1945         iommu_free_table(tbl, "pnv");
1946 }
1947
1948 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1949         .set = pnv_ioda2_tce_build,
1950 #ifdef CONFIG_IOMMU_API
1951         .exchange = pnv_ioda2_tce_xchg,
1952 #endif
1953         .clear = pnv_ioda2_tce_free,
1954         .get = pnv_tce_get,
1955         .free = pnv_ioda2_table_free,
1956 };
1957
1958 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1959                                       struct pnv_ioda_pe *pe, unsigned int base,
1960                                       unsigned int segs)
1961 {
1962
1963         struct page *tce_mem = NULL;
1964         struct iommu_table *tbl;
1965         unsigned int i;
1966         int64_t rc;
1967         void *addr;
1968
1969         /* XXX FIXME: Handle 64-bit only DMA devices */
1970         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1971         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1972
1973         /* We shouldn't already have a 32-bit DMA associated */
1974         if (WARN_ON(pe->tce32_seg >= 0))
1975                 return;
1976
1977         tbl = pnv_pci_table_alloc(phb->hose->node);
1978         iommu_register_group(&pe->table_group, phb->hose->global_number,
1979                         pe->pe_number);
1980         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1981
1982         /* Grab a 32-bit TCE table */
1983         pe->tce32_seg = base;
1984         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1985                 (base << 28), ((base + segs) << 28) - 1);
1986
1987         /* XXX Currently, we allocate one big contiguous table for the
1988          * TCEs. We only really need one chunk per 256M of TCE space
1989          * (ie per segment) but that's an optimization for later, it
1990          * requires some added smarts with our get/put_tce implementation
1991          */
1992         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1993                                    get_order(TCE32_TABLE_SIZE * segs));
1994         if (!tce_mem) {
1995                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1996                 goto fail;
1997         }
1998         addr = page_address(tce_mem);
1999         memset(addr, 0, TCE32_TABLE_SIZE * segs);
2000
2001         /* Configure HW */
2002         for (i = 0; i < segs; i++) {
2003                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2004                                               pe->pe_number,
2005                                               base + i, 1,
2006                                               __pa(addr) + TCE32_TABLE_SIZE * i,
2007                                               TCE32_TABLE_SIZE, 0x1000);
2008                 if (rc) {
2009                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2010                                " err %ld\n", rc);
2011                         goto fail;
2012                 }
2013         }
2014
2015         /* Setup linux iommu table */
2016         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
2017                                   base << 28, IOMMU_PAGE_SHIFT_4K);
2018
2019         /* OPAL variant of P7IOC SW invalidated TCEs */
2020         if (phb->ioda.tce_inval_reg)
2021                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2022                                  TCE_PCI_SWINV_FREE   |
2023                                  TCE_PCI_SWINV_PAIR);
2024
2025         tbl->it_ops = &pnv_ioda1_iommu_ops;
2026         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2027         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2028         iommu_init_table(tbl, phb->hose->node);
2029
2030         if (pe->flags & PNV_IODA_PE_DEV) {
2031                 /*
2032                  * Setting table base here only for carrying iommu_group
2033                  * further down to let iommu_add_device() do the job.
2034                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2035                  */
2036                 set_iommu_table_base(&pe->pdev->dev, tbl);
2037                 iommu_add_device(&pe->pdev->dev);
2038         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2039                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2040
2041         return;
2042  fail:
2043         /* XXX Failure: Try to fallback to 64-bit only ? */
2044         if (pe->tce32_seg >= 0)
2045                 pe->tce32_seg = -1;
2046         if (tce_mem)
2047                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
2048         if (tbl) {
2049                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2050                 iommu_free_table(tbl, "pnv");
2051         }
2052 }
2053
2054 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2055                 int num, struct iommu_table *tbl)
2056 {
2057         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2058                         table_group);
2059         struct pnv_phb *phb = pe->phb;
2060         int64_t rc;
2061         const unsigned long size = tbl->it_indirect_levels ?
2062                         tbl->it_level_size : tbl->it_size;
2063         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2064         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2065
2066         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2067                         start_addr, start_addr + win_size - 1,
2068                         IOMMU_PAGE_SIZE(tbl));
2069
2070         /*
2071          * Map TCE table through TVT. The TVE index is the PE number
2072          * shifted by 1 bit for 32-bits DMA space.
2073          */
2074         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2075                         pe->pe_number,
2076                         (pe->pe_number << 1) + num,
2077                         tbl->it_indirect_levels + 1,
2078                         __pa(tbl->it_base),
2079                         size << 3,
2080                         IOMMU_PAGE_SIZE(tbl));
2081         if (rc) {
2082                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2083                 return rc;
2084         }
2085
2086         pnv_pci_link_table_and_group(phb->hose->node, num,
2087                         tbl, &pe->table_group);
2088         pnv_pci_ioda2_tce_invalidate_entire(pe);
2089
2090         return 0;
2091 }
2092
2093 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2094 {
2095         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2096         int64_t rc;
2097
2098         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2099         if (enable) {
2100                 phys_addr_t top = memblock_end_of_DRAM();
2101
2102                 top = roundup_pow_of_two(top);
2103                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2104                                                      pe->pe_number,
2105                                                      window_id,
2106                                                      pe->tce_bypass_base,
2107                                                      top);
2108         } else {
2109                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2110                                                      pe->pe_number,
2111                                                      window_id,
2112                                                      pe->tce_bypass_base,
2113                                                      0);
2114         }
2115         if (rc)
2116                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2117         else
2118                 pe->tce_bypass_enabled = enable;
2119 }
2120
2121 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2122                 __u32 page_shift, __u64 window_size, __u32 levels,
2123                 struct iommu_table *tbl);
2124
2125 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2126                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2127                 struct iommu_table **ptbl)
2128 {
2129         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2130                         table_group);
2131         int nid = pe->phb->hose->node;
2132         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2133         long ret;
2134         struct iommu_table *tbl;
2135
2136         tbl = pnv_pci_table_alloc(nid);
2137         if (!tbl)
2138                 return -ENOMEM;
2139
2140         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2141                         bus_offset, page_shift, window_size,
2142                         levels, tbl);
2143         if (ret) {
2144                 iommu_free_table(tbl, "pnv");
2145                 return ret;
2146         }
2147
2148         tbl->it_ops = &pnv_ioda2_iommu_ops;
2149         if (pe->phb->ioda.tce_inval_reg)
2150                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2151
2152         *ptbl = tbl;
2153
2154         return 0;
2155 }
2156
2157 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2158 {
2159         struct iommu_table *tbl = NULL;
2160         long rc;
2161
2162         /*
2163          * crashkernel= specifies the kdump kernel's maximum memory at
2164          * some offset and there is no guaranteed the result is a power
2165          * of 2, which will cause errors later.
2166          */
2167         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2168
2169         /*
2170          * In memory constrained environments, e.g. kdump kernel, the
2171          * DMA window can be larger than available memory, which will
2172          * cause errors later.
2173          */
2174         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2175
2176         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2177                         IOMMU_PAGE_SHIFT_4K,
2178                         window_size,
2179                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2180         if (rc) {
2181                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2182                                 rc);
2183                 return rc;
2184         }
2185
2186         iommu_init_table(tbl, pe->phb->hose->node);
2187
2188         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2189         if (rc) {
2190                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2191                                 rc);
2192                 pnv_ioda2_table_free(tbl);
2193                 return rc;
2194         }
2195
2196         if (!pnv_iommu_bypass_disabled)
2197                 pnv_pci_ioda2_set_bypass(pe, true);
2198
2199         /* OPAL variant of PHB3 invalidated TCEs */
2200         if (pe->phb->ioda.tce_inval_reg)
2201                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2202
2203         /*
2204          * Setting table base here only for carrying iommu_group
2205          * further down to let iommu_add_device() do the job.
2206          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2207          */
2208         if (pe->flags & PNV_IODA_PE_DEV)
2209                 set_iommu_table_base(&pe->pdev->dev, tbl);
2210
2211         return 0;
2212 }
2213
2214 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2215 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2216                 int num)
2217 {
2218         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2219                         table_group);
2220         struct pnv_phb *phb = pe->phb;
2221         long ret;
2222
2223         pe_info(pe, "Removing DMA window #%d\n", num);
2224
2225         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2226                         (pe->pe_number << 1) + num,
2227                         0/* levels */, 0/* table address */,
2228                         0/* table size */, 0/* page size */);
2229         if (ret)
2230                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2231         else
2232                 pnv_pci_ioda2_tce_invalidate_entire(pe);
2233
2234         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2235
2236         return ret;
2237 }
2238 #endif
2239
2240 #ifdef CONFIG_IOMMU_API
2241 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2242                 __u64 window_size, __u32 levels)
2243 {
2244         unsigned long bytes = 0;
2245         const unsigned window_shift = ilog2(window_size);
2246         unsigned entries_shift = window_shift - page_shift;
2247         unsigned table_shift = entries_shift + 3;
2248         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2249         unsigned long direct_table_size;
2250
2251         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2252                         (window_size > memory_hotplug_max()) ||
2253                         !is_power_of_2(window_size))
2254                 return 0;
2255
2256         /* Calculate a direct table size from window_size and levels */
2257         entries_shift = (entries_shift + levels - 1) / levels;
2258         table_shift = entries_shift + 3;
2259         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2260         direct_table_size =  1UL << table_shift;
2261
2262         for ( ; levels; --levels) {
2263                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2264
2265                 tce_table_size /= direct_table_size;
2266                 tce_table_size <<= 3;
2267                 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2268         }
2269
2270         return bytes;
2271 }
2272
2273 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2274 {
2275         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2276                                                 table_group);
2277         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2278         struct iommu_table *tbl = pe->table_group.tables[0];
2279
2280         pnv_pci_ioda2_set_bypass(pe, false);
2281         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2282         pnv_ioda2_table_free(tbl);
2283 }
2284
2285 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2286 {
2287         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2288                                                 table_group);
2289
2290         pnv_pci_ioda2_setup_default_config(pe);
2291 }
2292
2293 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2294         .get_table_size = pnv_pci_ioda2_get_table_size,
2295         .create_table = pnv_pci_ioda2_create_table,
2296         .set_window = pnv_pci_ioda2_set_window,
2297         .unset_window = pnv_pci_ioda2_unset_window,
2298         .take_ownership = pnv_ioda2_take_ownership,
2299         .release_ownership = pnv_ioda2_release_ownership,
2300 };
2301 #endif
2302
2303 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2304 {
2305         const __be64 *swinvp;
2306
2307         /* OPAL variant of PHB3 invalidated TCEs */
2308         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2309         if (!swinvp)
2310                 return;
2311
2312         phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2313         phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2314 }
2315
2316 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2317                 unsigned levels, unsigned long limit,
2318                 unsigned long *current_offset, unsigned long *total_allocated)
2319 {
2320         struct page *tce_mem = NULL;
2321         __be64 *addr, *tmp;
2322         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2323         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2324         unsigned entries = 1UL << (shift - 3);
2325         long i;
2326
2327         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2328         if (!tce_mem) {
2329                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2330                 return NULL;
2331         }
2332         addr = page_address(tce_mem);
2333         memset(addr, 0, allocated);
2334         *total_allocated += allocated;
2335
2336         --levels;
2337         if (!levels) {
2338                 *current_offset += allocated;
2339                 return addr;
2340         }
2341
2342         for (i = 0; i < entries; ++i) {
2343                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2344                                 levels, limit, current_offset, total_allocated);
2345                 if (!tmp)
2346                         break;
2347
2348                 addr[i] = cpu_to_be64(__pa(tmp) |
2349                                 TCE_PCI_READ | TCE_PCI_WRITE);
2350
2351                 if (*current_offset >= limit)
2352                         break;
2353         }
2354
2355         return addr;
2356 }
2357
2358 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2359                 unsigned long size, unsigned level);
2360
2361 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2362                 __u32 page_shift, __u64 window_size, __u32 levels,
2363                 struct iommu_table *tbl)
2364 {
2365         void *addr;
2366         unsigned long offset = 0, level_shift, total_allocated = 0;
2367         const unsigned window_shift = ilog2(window_size);
2368         unsigned entries_shift = window_shift - page_shift;
2369         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2370         const unsigned long tce_table_size = 1UL << table_shift;
2371
2372         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2373                 return -EINVAL;
2374
2375         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2376                 return -EINVAL;
2377
2378         /* Adjust direct table size from window_size and levels */
2379         entries_shift = (entries_shift + levels - 1) / levels;
2380         level_shift = entries_shift + 3;
2381         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2382
2383         /* Allocate TCE table */
2384         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2385                         levels, tce_table_size, &offset, &total_allocated);
2386
2387         /* addr==NULL means that the first level allocation failed */
2388         if (!addr)
2389                 return -ENOMEM;
2390
2391         /*
2392          * First level was allocated but some lower level failed as
2393          * we did not allocate as much as we wanted,
2394          * release partially allocated table.
2395          */
2396         if (offset < tce_table_size) {
2397                 pnv_pci_ioda2_table_do_free_pages(addr,
2398                                 1ULL << (level_shift - 3), levels - 1);
2399                 return -ENOMEM;
2400         }
2401
2402         /* Setup linux iommu table */
2403         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2404                         page_shift);
2405         tbl->it_level_size = 1ULL << (level_shift - 3);
2406         tbl->it_indirect_levels = levels - 1;
2407         tbl->it_allocated_size = total_allocated;
2408
2409         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2410                         window_size, tce_table_size, bus_offset);
2411
2412         return 0;
2413 }
2414
2415 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2416                 unsigned long size, unsigned level)
2417 {
2418         const unsigned long addr_ul = (unsigned long) addr &
2419                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2420
2421         if (level) {
2422                 long i;
2423                 u64 *tmp = (u64 *) addr_ul;
2424
2425                 for (i = 0; i < size; ++i) {
2426                         unsigned long hpa = be64_to_cpu(tmp[i]);
2427
2428                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2429                                 continue;
2430
2431                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2432                                         level - 1);
2433                 }
2434         }
2435
2436         free_pages(addr_ul, get_order(size << 3));
2437 }
2438
2439 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2440 {
2441         const unsigned long size = tbl->it_indirect_levels ?
2442                         tbl->it_level_size : tbl->it_size;
2443
2444         if (!tbl->it_size)
2445                 return;
2446
2447         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2448                         tbl->it_indirect_levels);
2449 }
2450
2451 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2452                                        struct pnv_ioda_pe *pe)
2453 {
2454         int64_t rc;
2455
2456         /* We shouldn't already have a 32-bit DMA associated */
2457         if (WARN_ON(pe->tce32_seg >= 0))
2458                 return;
2459
2460         /* TVE #1 is selected by PCI address bit 59 */
2461         pe->tce_bypass_base = 1ull << 59;
2462
2463         iommu_register_group(&pe->table_group, phb->hose->global_number,
2464                         pe->pe_number);
2465
2466         /* The PE will reserve all possible 32-bits space */
2467         pe->tce32_seg = 0;
2468         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2469                 phb->ioda.m32_pci_base);
2470
2471         /* Setup linux iommu table */
2472         pe->table_group.tce32_start = 0;
2473         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2474         pe->table_group.max_dynamic_windows_supported =
2475                         IOMMU_TABLE_GROUP_MAX_TABLES;
2476         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2477         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2478 #ifdef CONFIG_IOMMU_API
2479         pe->table_group.ops = &pnv_pci_ioda2_ops;
2480 #endif
2481
2482         rc = pnv_pci_ioda2_setup_default_config(pe);
2483         if (rc) {
2484                 if (pe->tce32_seg >= 0)
2485                         pe->tce32_seg = -1;
2486                 return;
2487         }
2488
2489         if (pe->flags & PNV_IODA_PE_DEV)
2490                 iommu_add_device(&pe->pdev->dev);
2491         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2492                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2493 }
2494
2495 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2496 {
2497         struct pci_controller *hose = phb->hose;
2498         unsigned int residual, remaining, segs, tw, base;
2499         struct pnv_ioda_pe *pe;
2500
2501         /* If we have more PE# than segments available, hand out one
2502          * per PE until we run out and let the rest fail. If not,
2503          * then we assign at least one segment per PE, plus more based
2504          * on the amount of devices under that PE
2505          */
2506         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2507                 residual = 0;
2508         else
2509                 residual = phb->ioda.tce32_count -
2510                         phb->ioda.dma_pe_count;
2511
2512         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2513                 hose->global_number, phb->ioda.tce32_count);
2514         pr_info("PCI: %d PE# for a total weight of %d\n",
2515                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2516
2517         pnv_pci_ioda_setup_opal_tce_kill(phb);
2518
2519         /* Walk our PE list and configure their DMA segments, hand them
2520          * out one base segment plus any residual segments based on
2521          * weight
2522          */
2523         remaining = phb->ioda.tce32_count;
2524         tw = phb->ioda.dma_weight;
2525         base = 0;
2526         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2527                 if (!pe->dma_weight)
2528                         continue;
2529                 if (!remaining) {
2530                         pe_warn(pe, "No DMA32 resources available\n");
2531                         continue;
2532                 }
2533                 segs = 1;
2534                 if (residual) {
2535                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2536                         if (segs > remaining)
2537                                 segs = remaining;
2538                 }
2539
2540                 /*
2541                  * For IODA2 compliant PHB3, we needn't care about the weight.
2542                  * The all available 32-bits DMA space will be assigned to
2543                  * the specific PE.
2544                  */
2545                 if (phb->type == PNV_PHB_IODA1) {
2546                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2547                                 pe->dma_weight, segs);
2548                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2549                 } else if (phb->type == PNV_PHB_IODA2) {
2550                         pe_info(pe, "Assign DMA32 space\n");
2551                         segs = 0;
2552                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
2553                 } else if (phb->type == PNV_PHB_NPU) {
2554                         /*
2555                          * We initialise the DMA space for an NPU PHB
2556                          * after setup of the PHB is complete as we
2557                          * point the NPU TVT to the the same location
2558                          * as the PHB3 TVT.
2559                          */
2560                 }
2561
2562                 remaining -= segs;
2563                 base += segs;
2564         }
2565 }
2566
2567 #ifdef CONFIG_PCI_MSI
2568 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2569 {
2570         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2571         struct irq_chip *chip = irq_data_get_irq_chip(d);
2572         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2573                                            ioda.irq_chip);
2574         int64_t rc;
2575
2576         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2577         WARN_ON_ONCE(rc);
2578
2579         icp_native_eoi(d);
2580 }
2581
2582
2583 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2584 {
2585         struct irq_data *idata;
2586         struct irq_chip *ichip;
2587
2588         if (phb->type != PNV_PHB_IODA2)
2589                 return;
2590
2591         if (!phb->ioda.irq_chip_init) {
2592                 /*
2593                  * First time we setup an MSI IRQ, we need to setup the
2594                  * corresponding IRQ chip to route correctly.
2595                  */
2596                 idata = irq_get_irq_data(virq);
2597                 ichip = irq_data_get_irq_chip(idata);
2598                 phb->ioda.irq_chip_init = 1;
2599                 phb->ioda.irq_chip = *ichip;
2600                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2601         }
2602         irq_set_chip(virq, &phb->ioda.irq_chip);
2603 }
2604
2605 #ifdef CONFIG_CXL_BASE
2606
2607 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2608 {
2609         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2610
2611         return of_node_get(hose->dn);
2612 }
2613 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2614
2615 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2616 {
2617         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2618         struct pnv_phb *phb = hose->private_data;
2619         struct pnv_ioda_pe *pe;
2620         int rc;
2621
2622         pe = pnv_ioda_get_pe(dev);
2623         if (!pe)
2624                 return -ENODEV;
2625
2626         pe_info(pe, "Switching PHB to CXL\n");
2627
2628         rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2629         if (rc)
2630                 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2631
2632         return rc;
2633 }
2634 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2635
2636 /* Find PHB for cxl dev and allocate MSI hwirqs?
2637  * Returns the absolute hardware IRQ number
2638  */
2639 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2640 {
2641         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2642         struct pnv_phb *phb = hose->private_data;
2643         int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2644
2645         if (hwirq < 0) {
2646                 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2647                 return -ENOSPC;
2648         }
2649
2650         return phb->msi_base + hwirq;
2651 }
2652 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2653
2654 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2655 {
2656         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2657         struct pnv_phb *phb = hose->private_data;
2658
2659         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2660 }
2661 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2662
2663 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2664                                   struct pci_dev *dev)
2665 {
2666         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2667         struct pnv_phb *phb = hose->private_data;
2668         int i, hwirq;
2669
2670         for (i = 1; i < CXL_IRQ_RANGES; i++) {
2671                 if (!irqs->range[i])
2672                         continue;
2673                 pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2674                          i, irqs->offset[i],
2675                          irqs->range[i]);
2676                 hwirq = irqs->offset[i] - phb->msi_base;
2677                 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2678                                        irqs->range[i]);
2679         }
2680 }
2681 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2682
2683 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2684                                struct pci_dev *dev, int num)
2685 {
2686         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2687         struct pnv_phb *phb = hose->private_data;
2688         int i, hwirq, try;
2689
2690         memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2691
2692         /* 0 is reserved for the multiplexed PSL DSI interrupt */
2693         for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2694                 try = num;
2695                 while (try) {
2696                         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2697                         if (hwirq >= 0)
2698                                 break;
2699                         try /= 2;
2700                 }
2701                 if (!try)
2702                         goto fail;
2703
2704                 irqs->offset[i] = phb->msi_base + hwirq;
2705                 irqs->range[i] = try;
2706                 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2707                          i, irqs->offset[i], irqs->range[i]);
2708                 num -= try;
2709         }
2710         if (num)
2711                 goto fail;
2712
2713         return 0;
2714 fail:
2715         pnv_cxl_release_hwirq_ranges(irqs, dev);
2716         return -ENOSPC;
2717 }
2718 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2719
2720 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2721 {
2722         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2723         struct pnv_phb *phb = hose->private_data;
2724
2725         return phb->msi_bmp.irq_count;
2726 }
2727 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2728
2729 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2730                            unsigned int virq)
2731 {
2732         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2733         struct pnv_phb *phb = hose->private_data;
2734         unsigned int xive_num = hwirq - phb->msi_base;
2735         struct pnv_ioda_pe *pe;
2736         int rc;
2737
2738         if (!(pe = pnv_ioda_get_pe(dev)))
2739                 return -ENODEV;
2740
2741         /* Assign XIVE to PE */
2742         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2743         if (rc) {
2744                 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2745                         "hwirq 0x%x XIVE 0x%x PE\n",
2746                         pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2747                 return -EIO;
2748         }
2749         set_msi_irq_chip(phb, virq);
2750
2751         return 0;
2752 }
2753 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2754 #endif
2755
2756 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2757                                   unsigned int hwirq, unsigned int virq,
2758                                   unsigned int is_64, struct msi_msg *msg)
2759 {
2760         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2761         unsigned int xive_num = hwirq - phb->msi_base;
2762         __be32 data;
2763         int rc;
2764
2765         /* No PE assigned ? bail out ... no MSI for you ! */
2766         if (pe == NULL)
2767                 return -ENXIO;
2768
2769         /* Check if we have an MVE */
2770         if (pe->mve_number < 0)
2771                 return -ENXIO;
2772
2773         /* Force 32-bit MSI on some broken devices */
2774         if (dev->no_64bit_msi)
2775                 is_64 = 0;
2776
2777         /* Assign XIVE to PE */
2778         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2779         if (rc) {
2780                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2781                         pci_name(dev), rc, xive_num);
2782                 return -EIO;
2783         }
2784
2785         if (is_64) {
2786                 __be64 addr64;
2787
2788                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2789                                      &addr64, &data);
2790                 if (rc) {
2791                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2792                                 pci_name(dev), rc);
2793                         return -EIO;
2794                 }
2795                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2796                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2797         } else {
2798                 __be32 addr32;
2799
2800                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2801                                      &addr32, &data);
2802                 if (rc) {
2803                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2804                                 pci_name(dev), rc);
2805                         return -EIO;
2806                 }
2807                 msg->address_hi = 0;
2808                 msg->address_lo = be32_to_cpu(addr32);
2809         }
2810         msg->data = be32_to_cpu(data);
2811
2812         set_msi_irq_chip(phb, virq);
2813
2814         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2815                  " address=%x_%08x data=%x PE# %d\n",
2816                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2817                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2818
2819         return 0;
2820 }
2821
2822 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2823 {
2824         unsigned int count;
2825         const __be32 *prop = of_get_property(phb->hose->dn,
2826                                              "ibm,opal-msi-ranges", NULL);
2827         if (!prop) {
2828                 /* BML Fallback */
2829                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2830         }
2831         if (!prop)
2832                 return;
2833
2834         phb->msi_base = be32_to_cpup(prop);
2835         count = be32_to_cpup(prop + 1);
2836         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2837                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2838                        phb->hose->global_number);
2839                 return;
2840         }
2841
2842         phb->msi_setup = pnv_pci_ioda_msi_setup;
2843         phb->msi32_support = 1;
2844         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2845                 count, phb->msi_base);
2846 }
2847 #else
2848 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2849 #endif /* CONFIG_PCI_MSI */
2850
2851 #ifdef CONFIG_PCI_IOV
2852 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2853 {
2854         struct pci_controller *hose;
2855         struct pnv_phb *phb;
2856         struct resource *res;
2857         int i;
2858         resource_size_t size;
2859         struct pci_dn *pdn;
2860         int mul, total_vfs;
2861
2862         if (!pdev->is_physfn || pdev->is_added)
2863                 return;
2864
2865         hose = pci_bus_to_host(pdev->bus);
2866         phb = hose->private_data;
2867
2868         pdn = pci_get_pdn(pdev);
2869         pdn->vfs_expanded = 0;
2870
2871         total_vfs = pci_sriov_get_totalvfs(pdev);
2872         pdn->m64_per_iov = 1;
2873         mul = phb->ioda.total_pe;
2874
2875         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2876                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2877                 if (!res->flags || res->parent)
2878                         continue;
2879                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2880                         dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2881                                  i, res);
2882                         continue;
2883                 }
2884
2885                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2886
2887                 /* bigger than 64M */
2888                 if (size > (1 << 26)) {
2889                         dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2890                                  i, res);
2891                         pdn->m64_per_iov = M64_PER_IOV;
2892                         mul = roundup_pow_of_two(total_vfs);
2893                         break;
2894                 }
2895         }
2896
2897         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2898                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2899                 if (!res->flags || res->parent)
2900                         continue;
2901                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2902                         dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2903                                  i, res);
2904                         continue;
2905                 }
2906
2907                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2908                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2909                 res->end = res->start + size * mul - 1;
2910                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2911                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2912                          i, res, mul);
2913         }
2914         pdn->vfs_expanded = mul;
2915 }
2916 #endif /* CONFIG_PCI_IOV */
2917
2918 /*
2919  * This function is supposed to be called on basis of PE from top
2920  * to bottom style. So the the I/O or MMIO segment assigned to
2921  * parent PE could be overrided by its child PEs if necessary.
2922  */
2923 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2924                                   struct pnv_ioda_pe *pe)
2925 {
2926         struct pnv_phb *phb = hose->private_data;
2927         struct pci_bus_region region;
2928         struct resource *res;
2929         int i, index;
2930         int rc;
2931
2932         /*
2933          * NOTE: We only care PCI bus based PE for now. For PCI
2934          * device based PE, for example SRIOV sensitive VF should
2935          * be figured out later.
2936          */
2937         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2938
2939         pci_bus_for_each_resource(pe->pbus, res, i) {
2940                 if (!res || !res->flags ||
2941                     res->start > res->end)
2942                         continue;
2943
2944                 if (res->flags & IORESOURCE_IO) {
2945                         region.start = res->start - phb->ioda.io_pci_base;
2946                         region.end   = res->end - phb->ioda.io_pci_base;
2947                         index = region.start / phb->ioda.io_segsize;
2948
2949                         while (index < phb->ioda.total_pe &&
2950                                region.start <= region.end) {
2951                                 phb->ioda.io_segmap[index] = pe->pe_number;
2952                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2953                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2954                                 if (rc != OPAL_SUCCESS) {
2955                                         pr_err("%s: OPAL error %d when mapping IO "
2956                                                "segment #%d to PE#%d\n",
2957                                                __func__, rc, index, pe->pe_number);
2958                                         break;
2959                                 }
2960
2961                                 region.start += phb->ioda.io_segsize;
2962                                 index++;
2963                         }
2964                 } else if ((res->flags & IORESOURCE_MEM) &&
2965                            !pnv_pci_is_mem_pref_64(res->flags)) {
2966                         region.start = res->start -
2967                                        hose->mem_offset[0] -
2968                                        phb->ioda.m32_pci_base;
2969                         region.end   = res->end -
2970                                        hose->mem_offset[0] -
2971                                        phb->ioda.m32_pci_base;
2972                         index = region.start / phb->ioda.m32_segsize;
2973
2974                         while (index < phb->ioda.total_pe &&
2975                                region.start <= region.end) {
2976                                 phb->ioda.m32_segmap[index] = pe->pe_number;
2977                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2978                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2979                                 if (rc != OPAL_SUCCESS) {
2980                                         pr_err("%s: OPAL error %d when mapping M32 "
2981                                                "segment#%d to PE#%d",
2982                                                __func__, rc, index, pe->pe_number);
2983                                         break;
2984                                 }
2985
2986                                 region.start += phb->ioda.m32_segsize;
2987                                 index++;
2988                         }
2989                 }
2990         }
2991 }
2992
2993 static void pnv_pci_ioda_setup_seg(void)
2994 {
2995         struct pci_controller *tmp, *hose;
2996         struct pnv_phb *phb;
2997         struct pnv_ioda_pe *pe;
2998
2999         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3000                 phb = hose->private_data;
3001
3002                 /* NPU PHB does not support IO or MMIO segmentation */
3003                 if (phb->type == PNV_PHB_NPU)
3004                         continue;
3005
3006                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3007                         pnv_ioda_setup_pe_seg(hose, pe);
3008                 }
3009         }
3010 }
3011
3012 static void pnv_pci_ioda_setup_DMA(void)
3013 {
3014         struct pci_controller *hose, *tmp;
3015         struct pnv_phb *phb;
3016
3017         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3018                 pnv_ioda_setup_dma(hose->private_data);
3019
3020                 /* Mark the PHB initialization done */
3021                 phb = hose->private_data;
3022                 phb->initialized = 1;
3023         }
3024 }
3025
3026 static void pnv_pci_ioda_create_dbgfs(void)
3027 {
3028 #ifdef CONFIG_DEBUG_FS
3029         struct pci_controller *hose, *tmp;
3030         struct pnv_phb *phb;
3031         char name[16];
3032
3033         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3034                 phb = hose->private_data;
3035
3036                 sprintf(name, "PCI%04x", hose->global_number);
3037                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3038                 if (!phb->dbgfs)
3039                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3040                                 __func__, hose->global_number);
3041         }
3042 #endif /* CONFIG_DEBUG_FS */
3043 }
3044
3045 static void pnv_npu_ioda_fixup(void)
3046 {
3047         bool enable_bypass;
3048         struct pci_controller *hose, *tmp;
3049         struct pnv_phb *phb;
3050         struct pnv_ioda_pe *pe;
3051
3052         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3053                 phb = hose->private_data;
3054                 if (phb->type != PNV_PHB_NPU)
3055                         continue;
3056
3057                 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
3058                         enable_bypass = dma_get_mask(&pe->pdev->dev) ==
3059                                 DMA_BIT_MASK(64);
3060                         pnv_npu_init_dma_pe(pe);
3061                         pnv_npu_dma_set_bypass(pe, enable_bypass);
3062                 }
3063         }
3064 }
3065
3066 static void pnv_pci_ioda_fixup(void)
3067 {
3068         pnv_pci_ioda_setup_PEs();
3069         pnv_pci_ioda_setup_seg();
3070         pnv_pci_ioda_setup_DMA();
3071
3072         pnv_pci_ioda_create_dbgfs();
3073
3074 #ifdef CONFIG_EEH
3075         eeh_init();
3076         eeh_addr_cache_build();
3077 #endif
3078
3079         /* Link NPU IODA tables to their PCI devices. */
3080         pnv_npu_ioda_fixup();
3081 }
3082
3083 /*
3084  * Returns the alignment for I/O or memory windows for P2P
3085  * bridges. That actually depends on how PEs are segmented.
3086  * For now, we return I/O or M32 segment size for PE sensitive
3087  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3088  * 1MiB for memory) will be returned.
3089  *
3090  * The current PCI bus might be put into one PE, which was
3091  * create against the parent PCI bridge. For that case, we
3092  * needn't enlarge the alignment so that we can save some
3093  * resources.
3094  */
3095 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3096                                                 unsigned long type)
3097 {
3098         struct pci_dev *bridge;
3099         struct pci_controller *hose = pci_bus_to_host(bus);
3100         struct pnv_phb *phb = hose->private_data;
3101         int num_pci_bridges = 0;
3102
3103         bridge = bus->self;
3104         while (bridge) {
3105                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3106                         num_pci_bridges++;
3107                         if (num_pci_bridges >= 2)
3108                                 return 1;
3109                 }
3110
3111                 bridge = bridge->bus->self;
3112         }
3113
3114         /* We fail back to M32 if M64 isn't supported */
3115         if (phb->ioda.m64_segsize &&
3116             pnv_pci_is_mem_pref_64(type))
3117                 return phb->ioda.m64_segsize;
3118         if (type & IORESOURCE_MEM)
3119                 return phb->ioda.m32_segsize;
3120
3121         return phb->ioda.io_segsize;
3122 }
3123
3124 #ifdef CONFIG_PCI_IOV
3125 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3126                                                       int resno)
3127 {
3128         struct pci_dn *pdn = pci_get_pdn(pdev);
3129         resource_size_t align, iov_align;
3130
3131         iov_align = resource_size(&pdev->resource[resno]);
3132         if (iov_align)
3133                 return iov_align;
3134
3135         align = pci_iov_resource_size(pdev, resno);
3136         if (pdn->vfs_expanded)
3137                 return pdn->vfs_expanded * align;
3138
3139         return align;
3140 }
3141 #endif /* CONFIG_PCI_IOV */
3142
3143 /* Prevent enabling devices for which we couldn't properly
3144  * assign a PE
3145  */
3146 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3147 {
3148         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3149         struct pnv_phb *phb = hose->private_data;
3150         struct pci_dn *pdn;
3151
3152         /* The function is probably called while the PEs have
3153          * not be created yet. For example, resource reassignment
3154          * during PCI probe period. We just skip the check if
3155          * PEs isn't ready.
3156          */
3157         if (!phb->initialized)
3158                 return true;
3159
3160         pdn = pci_get_pdn(dev);
3161         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3162                 return false;
3163
3164         return true;
3165 }
3166
3167 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
3168                                u32 devfn)
3169 {
3170         return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
3171 }
3172
3173 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3174 {
3175         struct pnv_phb *phb = hose->private_data;
3176
3177         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3178                        OPAL_ASSERT_RESET);
3179 }
3180
3181 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3182        .dma_dev_setup = pnv_pci_dma_dev_setup,
3183        .dma_bus_setup = pnv_pci_dma_bus_setup,
3184 #ifdef CONFIG_PCI_MSI
3185        .setup_msi_irqs = pnv_setup_msi_irqs,
3186        .teardown_msi_irqs = pnv_teardown_msi_irqs,
3187 #endif
3188        .enable_device_hook = pnv_pci_enable_device_hook,
3189        .window_alignment = pnv_pci_window_alignment,
3190        .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3191        .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3192        .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3193        .shutdown = pnv_pci_ioda_shutdown,
3194 };
3195
3196 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3197         .dma_dev_setup = pnv_pci_dma_dev_setup,
3198 #ifdef CONFIG_PCI_MSI
3199         .setup_msi_irqs = pnv_setup_msi_irqs,
3200         .teardown_msi_irqs = pnv_teardown_msi_irqs,
3201 #endif
3202         .enable_device_hook = pnv_pci_enable_device_hook,
3203         .window_alignment = pnv_pci_window_alignment,
3204         .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3205         .dma_set_mask = pnv_npu_dma_set_mask,
3206         .shutdown = pnv_pci_ioda_shutdown,
3207 };
3208
3209 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3210                                          u64 hub_id, int ioda_type)
3211 {
3212         struct pci_controller *hose;
3213         struct pnv_phb *phb;
3214         unsigned long size, m32map_off, pemap_off, iomap_off = 0;
3215         const __be64 *prop64;
3216         const __be32 *prop32;
3217         int len;
3218         u64 phb_id;
3219         void *aux;
3220         long rc;
3221
3222         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3223
3224         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3225         if (!prop64) {
3226                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3227                 return;
3228         }
3229         phb_id = be64_to_cpup(prop64);
3230         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3231
3232         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3233
3234         /* Allocate PCI controller */
3235         phb->hose = hose = pcibios_alloc_controller(np);
3236         if (!phb->hose) {
3237                 pr_err("  Can't allocate PCI controller for %s\n",
3238                        np->full_name);
3239                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3240                 return;
3241         }
3242
3243         spin_lock_init(&phb->lock);
3244         prop32 = of_get_property(np, "bus-range", &len);
3245         if (prop32 && len == 8) {
3246                 hose->first_busno = be32_to_cpu(prop32[0]);
3247                 hose->last_busno = be32_to_cpu(prop32[1]);
3248         } else {
3249                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3250                 hose->first_busno = 0;
3251                 hose->last_busno = 0xff;
3252         }
3253         hose->private_data = phb;
3254         phb->hub_id = hub_id;
3255         phb->opal_id = phb_id;
3256         phb->type = ioda_type;
3257         mutex_init(&phb->ioda.pe_alloc_mutex);
3258
3259         /* Detect specific models for error handling */
3260         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3261                 phb->model = PNV_PHB_MODEL_P7IOC;
3262         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3263                 phb->model = PNV_PHB_MODEL_PHB3;
3264         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3265                 phb->model = PNV_PHB_MODEL_NPU;
3266         else
3267                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3268
3269         /* Parse 32-bit and IO ranges (if any) */
3270         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3271
3272         /* Get registers */
3273         phb->regs = of_iomap(np, 0);
3274         if (phb->regs == NULL)
3275                 pr_err("  Failed to map registers !\n");
3276
3277         /* Initialize more IODA stuff */
3278         phb->ioda.total_pe = 1;
3279         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3280         if (prop32)
3281                 phb->ioda.total_pe = be32_to_cpup(prop32);
3282         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3283         if (prop32)
3284                 phb->ioda.reserved_pe = be32_to_cpup(prop32);
3285
3286         /* Parse 64-bit MMIO range */
3287         pnv_ioda_parse_m64_window(phb);
3288
3289         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3290         /* FW Has already off top 64k of M32 space (MSI space) */
3291         phb->ioda.m32_size += 0x10000;
3292
3293         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
3294         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3295         phb->ioda.io_size = hose->pci_io_size;
3296         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
3297         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3298
3299         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3300         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
3301         m32map_off = size;
3302         size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
3303         if (phb->type == PNV_PHB_IODA1) {
3304                 iomap_off = size;
3305                 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
3306         }
3307         pemap_off = size;
3308         size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
3309         aux = memblock_virt_alloc(size, 0);
3310         phb->ioda.pe_alloc = aux;
3311         phb->ioda.m32_segmap = aux + m32map_off;
3312         if (phb->type == PNV_PHB_IODA1)
3313                 phb->ioda.io_segmap = aux + iomap_off;
3314         phb->ioda.pe_array = aux + pemap_off;
3315         set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
3316
3317         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
3318         INIT_LIST_HEAD(&phb->ioda.pe_list);
3319         mutex_init(&phb->ioda.pe_list_mutex);
3320
3321         /* Calculate how many 32-bit TCE segments we have */
3322         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
3323
3324 #if 0 /* We should really do that ... */
3325         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3326                                          window_type,
3327                                          window_num,
3328                                          starting_real_address,
3329                                          starting_pci_address,
3330                                          segment_size);
3331 #endif
3332
3333         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3334                 phb->ioda.total_pe, phb->ioda.reserved_pe,
3335                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3336         if (phb->ioda.m64_size)
3337                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3338                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3339         if (phb->ioda.io_size)
3340                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3341                         phb->ioda.io_size, phb->ioda.io_segsize);
3342
3343
3344         phb->hose->ops = &pnv_pci_ops;
3345         phb->get_pe_state = pnv_ioda_get_pe_state;
3346         phb->freeze_pe = pnv_ioda_freeze_pe;
3347         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3348
3349         /* Setup RID -> PE mapping function */
3350         phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
3351
3352         /* Setup TCEs */
3353         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3354
3355         /* Setup MSI support */
3356         pnv_pci_init_ioda_msis(phb);
3357
3358         /*
3359          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3360          * to let the PCI core do resource assignment. It's supposed
3361          * that the PCI core will do correct I/O and MMIO alignment
3362          * for the P2P bridge bars so that each PCI bus (excluding
3363          * the child P2P bridges) can form individual PE.
3364          */
3365         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3366
3367         if (phb->type == PNV_PHB_NPU)
3368                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3369         else
3370                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3371
3372 #ifdef CONFIG_PCI_IOV
3373         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3374         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3375 #endif
3376
3377         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3378
3379         /* Reset IODA tables to a clean state */
3380         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3381         if (rc)
3382                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3383
3384         /* If we're running in kdump kerenl, the previous kerenl never
3385          * shutdown PCI devices correctly. We already got IODA table
3386          * cleaned out. So we have to issue PHB reset to stop all PCI
3387          * transactions from previous kerenl.
3388          */
3389         if (is_kdump_kernel()) {
3390                 pr_info("  Issue PHB reset ...\n");
3391                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3392                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3393         }
3394
3395         /* Remove M64 resource if we can't configure it successfully */
3396         if (!phb->init_m64 || phb->init_m64(phb))
3397                 hose->mem_resources[1].flags = 0;
3398 }
3399
3400 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3401 {
3402         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3403 }
3404
3405 void __init pnv_pci_init_npu_phb(struct device_node *np)
3406 {
3407         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3408 }
3409
3410 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3411 {
3412         struct device_node *phbn;
3413         const __be64 *prop64;
3414         u64 hub_id;
3415
3416         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3417
3418         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3419         if (!prop64) {
3420                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3421                 return;
3422         }
3423         hub_id = be64_to_cpup(prop64);
3424         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3425
3426         /* Count child PHBs */
3427         for_each_child_of_node(np, phbn) {
3428                 /* Look for IODA1 PHBs */
3429                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3430                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3431         }
3432 }