Merge branches 'misc' and 'sa1111-base' into for-linus
[cascardo/linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
52 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
56 #define POWERNV_IOMMU_MAX_LEVELS        5
57
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62                             const char *fmt, ...)
63 {
64         struct va_format vaf;
65         va_list args;
66         char pfix[32];
67
68         va_start(args, fmt);
69
70         vaf.fmt = fmt;
71         vaf.va = &args;
72
73         if (pe->flags & PNV_IODA_PE_DEV)
74                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76                 sprintf(pfix, "%04x:%02x     ",
77                         pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79         else if (pe->flags & PNV_IODA_PE_VF)
80                 sprintf(pfix, "%04x:%02x:%2x.%d",
81                         pci_domain_nr(pe->parent_dev->bus),
82                         (pe->rid & 0xff00) >> 8,
83                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85
86         printk("%spci %s: [PE# %.3d] %pV",
87                level, pfix, pe->pe_number, &vaf);
88
89         va_end(args);
90 }
91
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93
94 static int __init iommu_setup(char *str)
95 {
96         if (!str)
97                 return -EINVAL;
98
99         while (*str) {
100                 if (!strncmp(str, "nobypass", 8)) {
101                         pnv_iommu_bypass_disabled = true;
102                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
103                         break;
104                 }
105                 str += strcspn(str, ",");
106                 if (*str == ',')
107                         str++;
108         }
109
110         return 0;
111 }
112 early_param("iommu", iommu_setup);
113
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115 {
116         /*
117          * WARNING: We cannot rely on the resource flags. The Linux PCI
118          * allocation code sometimes decides to put a 64-bit prefetchable
119          * BAR in the 32-bit window, so we have to compare the addresses.
120          *
121          * For simplicity we only test resource start.
122          */
123         return (r->start >= phb->ioda.m64_base &&
124                 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 }
126
127 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
128 {
129         phb->ioda.pe_array[pe_no].phb = phb;
130         phb->ioda.pe_array[pe_no].pe_number = pe_no;
131
132         return &phb->ioda.pe_array[pe_no];
133 }
134
135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
136 {
137         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
138                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
139                         __func__, pe_no, phb->hose->global_number);
140                 return;
141         }
142
143         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
144                 pr_debug("%s: PE %d was reserved on PHB#%x\n",
145                          __func__, pe_no, phb->hose->global_number);
146
147         pnv_ioda_init_pe(phb, pe_no);
148 }
149
150 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
151 {
152         long pe;
153
154         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
155                 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
156                         return pnv_ioda_init_pe(phb, pe);
157         }
158
159         return NULL;
160 }
161
162 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
163 {
164         struct pnv_phb *phb = pe->phb;
165         unsigned int pe_num = pe->pe_number;
166
167         WARN_ON(pe->pdev);
168
169         memset(pe, 0, sizeof(struct pnv_ioda_pe));
170         clear_bit(pe_num, phb->ioda.pe_alloc);
171 }
172
173 /* The default M64 BAR is shared by all PEs */
174 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
175 {
176         const char *desc;
177         struct resource *r;
178         s64 rc;
179
180         /* Configure the default M64 BAR */
181         rc = opal_pci_set_phb_mem_window(phb->opal_id,
182                                          OPAL_M64_WINDOW_TYPE,
183                                          phb->ioda.m64_bar_idx,
184                                          phb->ioda.m64_base,
185                                          0, /* unused */
186                                          phb->ioda.m64_size);
187         if (rc != OPAL_SUCCESS) {
188                 desc = "configuring";
189                 goto fail;
190         }
191
192         /* Enable the default M64 BAR */
193         rc = opal_pci_phb_mmio_enable(phb->opal_id,
194                                       OPAL_M64_WINDOW_TYPE,
195                                       phb->ioda.m64_bar_idx,
196                                       OPAL_ENABLE_M64_SPLIT);
197         if (rc != OPAL_SUCCESS) {
198                 desc = "enabling";
199                 goto fail;
200         }
201
202         /*
203          * Exclude the segments for reserved and root bus PE, which
204          * are first or last two PEs.
205          */
206         r = &phb->hose->mem_resources[1];
207         if (phb->ioda.reserved_pe_idx == 0)
208                 r->start += (2 * phb->ioda.m64_segsize);
209         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
210                 r->end -= (2 * phb->ioda.m64_segsize);
211         else
212                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
213                         phb->ioda.reserved_pe_idx);
214
215         return 0;
216
217 fail:
218         pr_warn("  Failure %lld %s M64 BAR#%d\n",
219                 rc, desc, phb->ioda.m64_bar_idx);
220         opal_pci_phb_mmio_enable(phb->opal_id,
221                                  OPAL_M64_WINDOW_TYPE,
222                                  phb->ioda.m64_bar_idx,
223                                  OPAL_DISABLE_M64);
224         return -EIO;
225 }
226
227 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
228                                          unsigned long *pe_bitmap)
229 {
230         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
231         struct pnv_phb *phb = hose->private_data;
232         struct resource *r;
233         resource_size_t base, sgsz, start, end;
234         int segno, i;
235
236         base = phb->ioda.m64_base;
237         sgsz = phb->ioda.m64_segsize;
238         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
239                 r = &pdev->resource[i];
240                 if (!r->parent || !pnv_pci_is_m64(phb, r))
241                         continue;
242
243                 start = _ALIGN_DOWN(r->start - base, sgsz);
244                 end = _ALIGN_UP(r->end - base, sgsz);
245                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
246                         if (pe_bitmap)
247                                 set_bit(segno, pe_bitmap);
248                         else
249                                 pnv_ioda_reserve_pe(phb, segno);
250                 }
251         }
252 }
253
254 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
255 {
256         struct resource *r;
257         int index;
258
259         /*
260          * There are 16 M64 BARs, each of which has 8 segments. So
261          * there are as many M64 segments as the maximum number of
262          * PEs, which is 128.
263          */
264         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
265                 unsigned long base, segsz = phb->ioda.m64_segsize;
266                 int64_t rc;
267
268                 base = phb->ioda.m64_base +
269                        index * PNV_IODA1_M64_SEGS * segsz;
270                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
271                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
272                                 PNV_IODA1_M64_SEGS * segsz);
273                 if (rc != OPAL_SUCCESS) {
274                         pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
275                                 rc, phb->hose->global_number, index);
276                         goto fail;
277                 }
278
279                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
280                                 OPAL_M64_WINDOW_TYPE, index,
281                                 OPAL_ENABLE_M64_SPLIT);
282                 if (rc != OPAL_SUCCESS) {
283                         pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
284                                 rc, phb->hose->global_number, index);
285                         goto fail;
286                 }
287         }
288
289         /*
290          * Exclude the segments for reserved and root bus PE, which
291          * are first or last two PEs.
292          */
293         r = &phb->hose->mem_resources[1];
294         if (phb->ioda.reserved_pe_idx == 0)
295                 r->start += (2 * phb->ioda.m64_segsize);
296         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
297                 r->end -= (2 * phb->ioda.m64_segsize);
298         else
299                 WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
300                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
301
302         return 0;
303
304 fail:
305         for ( ; index >= 0; index--)
306                 opal_pci_phb_mmio_enable(phb->opal_id,
307                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
308
309         return -EIO;
310 }
311
312 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
313                                     unsigned long *pe_bitmap,
314                                     bool all)
315 {
316         struct pci_dev *pdev;
317
318         list_for_each_entry(pdev, &bus->devices, bus_list) {
319                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
320
321                 if (all && pdev->subordinate)
322                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
323                                                 pe_bitmap, all);
324         }
325 }
326
327 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
328 {
329         struct pci_controller *hose = pci_bus_to_host(bus);
330         struct pnv_phb *phb = hose->private_data;
331         struct pnv_ioda_pe *master_pe, *pe;
332         unsigned long size, *pe_alloc;
333         int i;
334
335         /* Root bus shouldn't use M64 */
336         if (pci_is_root_bus(bus))
337                 return NULL;
338
339         /* Allocate bitmap */
340         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
341         pe_alloc = kzalloc(size, GFP_KERNEL);
342         if (!pe_alloc) {
343                 pr_warn("%s: Out of memory !\n",
344                         __func__);
345                 return NULL;
346         }
347
348         /* Figure out reserved PE numbers by the PE */
349         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
350
351         /*
352          * the current bus might not own M64 window and that's all
353          * contributed by its child buses. For the case, we needn't
354          * pick M64 dependent PE#.
355          */
356         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
357                 kfree(pe_alloc);
358                 return NULL;
359         }
360
361         /*
362          * Figure out the master PE and put all slave PEs to master
363          * PE's list to form compound PE.
364          */
365         master_pe = NULL;
366         i = -1;
367         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
368                 phb->ioda.total_pe_num) {
369                 pe = &phb->ioda.pe_array[i];
370
371                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
372                 if (!master_pe) {
373                         pe->flags |= PNV_IODA_PE_MASTER;
374                         INIT_LIST_HEAD(&pe->slaves);
375                         master_pe = pe;
376                 } else {
377                         pe->flags |= PNV_IODA_PE_SLAVE;
378                         pe->master = master_pe;
379                         list_add_tail(&pe->list, &master_pe->slaves);
380                 }
381
382                 /*
383                  * P7IOC supports M64DT, which helps mapping M64 segment
384                  * to one particular PE#. However, PHB3 has fixed mapping
385                  * between M64 segment and PE#. In order to have same logic
386                  * for P7IOC and PHB3, we enforce fixed mapping between M64
387                  * segment and PE# on P7IOC.
388                  */
389                 if (phb->type == PNV_PHB_IODA1) {
390                         int64_t rc;
391
392                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
393                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
394                                         pe->pe_number / PNV_IODA1_M64_SEGS,
395                                         pe->pe_number % PNV_IODA1_M64_SEGS);
396                         if (rc != OPAL_SUCCESS)
397                                 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
398                                         __func__, rc, phb->hose->global_number,
399                                         pe->pe_number);
400                 }
401         }
402
403         kfree(pe_alloc);
404         return master_pe;
405 }
406
407 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
408 {
409         struct pci_controller *hose = phb->hose;
410         struct device_node *dn = hose->dn;
411         struct resource *res;
412         u32 m64_range[2], i;
413         const u32 *r;
414         u64 pci_addr;
415
416         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
417                 pr_info("  Not support M64 window\n");
418                 return;
419         }
420
421         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
422                 pr_info("  Firmware too old to support M64 window\n");
423                 return;
424         }
425
426         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
427         if (!r) {
428                 pr_info("  No <ibm,opal-m64-window> on %s\n",
429                         dn->full_name);
430                 return;
431         }
432
433         /*
434          * Find the available M64 BAR range and pickup the last one for
435          * covering the whole 64-bits space. We support only one range.
436          */
437         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
438                                        m64_range, 2)) {
439                 /* In absence of the property, assume 0..15 */
440                 m64_range[0] = 0;
441                 m64_range[1] = 16;
442         }
443         /* We only support 64 bits in our allocator */
444         if (m64_range[1] > 63) {
445                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
446                         __func__, m64_range[1], phb->hose->global_number);
447                 m64_range[1] = 63;
448         }
449         /* Empty range, no m64 */
450         if (m64_range[1] <= m64_range[0]) {
451                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
452                         __func__, phb->hose->global_number);
453                 return;
454         }
455
456         /* Configure M64 informations */
457         res = &hose->mem_resources[1];
458         res->name = dn->full_name;
459         res->start = of_translate_address(dn, r + 2);
460         res->end = res->start + of_read_number(r + 4, 2) - 1;
461         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
462         pci_addr = of_read_number(r, 2);
463         hose->mem_offset[1] = res->start - pci_addr;
464
465         phb->ioda.m64_size = resource_size(res);
466         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
467         phb->ioda.m64_base = pci_addr;
468
469         /* This lines up nicely with the display from processing OF ranges */
470         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
471                 res->start, res->end, pci_addr, m64_range[0],
472                 m64_range[0] + m64_range[1] - 1);
473
474         /* Mark all M64 used up by default */
475         phb->ioda.m64_bar_alloc = (unsigned long)-1;
476
477         /* Use last M64 BAR to cover M64 window */
478         m64_range[1]--;
479         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
480
481         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
482
483         /* Mark remaining ones free */
484         for (i = m64_range[0]; i < m64_range[1]; i++)
485                 clear_bit(i, &phb->ioda.m64_bar_alloc);
486
487         /*
488          * Setup init functions for M64 based on IODA version, IODA3 uses
489          * the IODA2 code.
490          */
491         if (phb->type == PNV_PHB_IODA1)
492                 phb->init_m64 = pnv_ioda1_init_m64;
493         else
494                 phb->init_m64 = pnv_ioda2_init_m64;
495         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
496         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
497 }
498
499 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
500 {
501         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
502         struct pnv_ioda_pe *slave;
503         s64 rc;
504
505         /* Fetch master PE */
506         if (pe->flags & PNV_IODA_PE_SLAVE) {
507                 pe = pe->master;
508                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
509                         return;
510
511                 pe_no = pe->pe_number;
512         }
513
514         /* Freeze master PE */
515         rc = opal_pci_eeh_freeze_set(phb->opal_id,
516                                      pe_no,
517                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
518         if (rc != OPAL_SUCCESS) {
519                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
520                         __func__, rc, phb->hose->global_number, pe_no);
521                 return;
522         }
523
524         /* Freeze slave PEs */
525         if (!(pe->flags & PNV_IODA_PE_MASTER))
526                 return;
527
528         list_for_each_entry(slave, &pe->slaves, list) {
529                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
530                                              slave->pe_number,
531                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
532                 if (rc != OPAL_SUCCESS)
533                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
534                                 __func__, rc, phb->hose->global_number,
535                                 slave->pe_number);
536         }
537 }
538
539 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
540 {
541         struct pnv_ioda_pe *pe, *slave;
542         s64 rc;
543
544         /* Find master PE */
545         pe = &phb->ioda.pe_array[pe_no];
546         if (pe->flags & PNV_IODA_PE_SLAVE) {
547                 pe = pe->master;
548                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
549                 pe_no = pe->pe_number;
550         }
551
552         /* Clear frozen state for master PE */
553         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
554         if (rc != OPAL_SUCCESS) {
555                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
556                         __func__, rc, opt, phb->hose->global_number, pe_no);
557                 return -EIO;
558         }
559
560         if (!(pe->flags & PNV_IODA_PE_MASTER))
561                 return 0;
562
563         /* Clear frozen state for slave PEs */
564         list_for_each_entry(slave, &pe->slaves, list) {
565                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
566                                              slave->pe_number,
567                                              opt);
568                 if (rc != OPAL_SUCCESS) {
569                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
570                                 __func__, rc, opt, phb->hose->global_number,
571                                 slave->pe_number);
572                         return -EIO;
573                 }
574         }
575
576         return 0;
577 }
578
579 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
580 {
581         struct pnv_ioda_pe *slave, *pe;
582         u8 fstate, state;
583         __be16 pcierr;
584         s64 rc;
585
586         /* Sanity check on PE number */
587         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
588                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
589
590         /*
591          * Fetch the master PE and the PE instance might be
592          * not initialized yet.
593          */
594         pe = &phb->ioda.pe_array[pe_no];
595         if (pe->flags & PNV_IODA_PE_SLAVE) {
596                 pe = pe->master;
597                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
598                 pe_no = pe->pe_number;
599         }
600
601         /* Check the master PE */
602         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
603                                         &state, &pcierr, NULL);
604         if (rc != OPAL_SUCCESS) {
605                 pr_warn("%s: Failure %lld getting "
606                         "PHB#%x-PE#%x state\n",
607                         __func__, rc,
608                         phb->hose->global_number, pe_no);
609                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
610         }
611
612         /* Check the slave PE */
613         if (!(pe->flags & PNV_IODA_PE_MASTER))
614                 return state;
615
616         list_for_each_entry(slave, &pe->slaves, list) {
617                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
618                                                 slave->pe_number,
619                                                 &fstate,
620                                                 &pcierr,
621                                                 NULL);
622                 if (rc != OPAL_SUCCESS) {
623                         pr_warn("%s: Failure %lld getting "
624                                 "PHB#%x-PE#%x state\n",
625                                 __func__, rc,
626                                 phb->hose->global_number, slave->pe_number);
627                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
628                 }
629
630                 /*
631                  * Override the result based on the ascending
632                  * priority.
633                  */
634                 if (fstate > state)
635                         state = fstate;
636         }
637
638         return state;
639 }
640
641 /* Currently those 2 are only used when MSIs are enabled, this will change
642  * but in the meantime, we need to protect them to avoid warnings
643  */
644 #ifdef CONFIG_PCI_MSI
645 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
646 {
647         struct pci_controller *hose = pci_bus_to_host(dev->bus);
648         struct pnv_phb *phb = hose->private_data;
649         struct pci_dn *pdn = pci_get_pdn(dev);
650
651         if (!pdn)
652                 return NULL;
653         if (pdn->pe_number == IODA_INVALID_PE)
654                 return NULL;
655         return &phb->ioda.pe_array[pdn->pe_number];
656 }
657 #endif /* CONFIG_PCI_MSI */
658
659 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
660                                   struct pnv_ioda_pe *parent,
661                                   struct pnv_ioda_pe *child,
662                                   bool is_add)
663 {
664         const char *desc = is_add ? "adding" : "removing";
665         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
666                               OPAL_REMOVE_PE_FROM_DOMAIN;
667         struct pnv_ioda_pe *slave;
668         long rc;
669
670         /* Parent PE affects child PE */
671         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
672                                 child->pe_number, op);
673         if (rc != OPAL_SUCCESS) {
674                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
675                         rc, desc);
676                 return -ENXIO;
677         }
678
679         if (!(child->flags & PNV_IODA_PE_MASTER))
680                 return 0;
681
682         /* Compound case: parent PE affects slave PEs */
683         list_for_each_entry(slave, &child->slaves, list) {
684                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
685                                         slave->pe_number, op);
686                 if (rc != OPAL_SUCCESS) {
687                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
688                                 rc, desc);
689                         return -ENXIO;
690                 }
691         }
692
693         return 0;
694 }
695
696 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
697                               struct pnv_ioda_pe *pe,
698                               bool is_add)
699 {
700         struct pnv_ioda_pe *slave;
701         struct pci_dev *pdev = NULL;
702         int ret;
703
704         /*
705          * Clear PE frozen state. If it's master PE, we need
706          * clear slave PE frozen state as well.
707          */
708         if (is_add) {
709                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
710                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
711                 if (pe->flags & PNV_IODA_PE_MASTER) {
712                         list_for_each_entry(slave, &pe->slaves, list)
713                                 opal_pci_eeh_freeze_clear(phb->opal_id,
714                                                           slave->pe_number,
715                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
716                 }
717         }
718
719         /*
720          * Associate PE in PELT. We need add the PE into the
721          * corresponding PELT-V as well. Otherwise, the error
722          * originated from the PE might contribute to other
723          * PEs.
724          */
725         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
726         if (ret)
727                 return ret;
728
729         /* For compound PEs, any one affects all of them */
730         if (pe->flags & PNV_IODA_PE_MASTER) {
731                 list_for_each_entry(slave, &pe->slaves, list) {
732                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
733                         if (ret)
734                                 return ret;
735                 }
736         }
737
738         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
739                 pdev = pe->pbus->self;
740         else if (pe->flags & PNV_IODA_PE_DEV)
741                 pdev = pe->pdev->bus->self;
742 #ifdef CONFIG_PCI_IOV
743         else if (pe->flags & PNV_IODA_PE_VF)
744                 pdev = pe->parent_dev;
745 #endif /* CONFIG_PCI_IOV */
746         while (pdev) {
747                 struct pci_dn *pdn = pci_get_pdn(pdev);
748                 struct pnv_ioda_pe *parent;
749
750                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
751                         parent = &phb->ioda.pe_array[pdn->pe_number];
752                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
753                         if (ret)
754                                 return ret;
755                 }
756
757                 pdev = pdev->bus->self;
758         }
759
760         return 0;
761 }
762
763 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
764 {
765         struct pci_dev *parent;
766         uint8_t bcomp, dcomp, fcomp;
767         int64_t rc;
768         long rid_end, rid;
769
770         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
771         if (pe->pbus) {
772                 int count;
773
774                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
775                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
776                 parent = pe->pbus->self;
777                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
778                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
779                 else
780                         count = 1;
781
782                 switch(count) {
783                 case  1: bcomp = OpalPciBusAll;         break;
784                 case  2: bcomp = OpalPciBus7Bits;       break;
785                 case  4: bcomp = OpalPciBus6Bits;       break;
786                 case  8: bcomp = OpalPciBus5Bits;       break;
787                 case 16: bcomp = OpalPciBus4Bits;       break;
788                 case 32: bcomp = OpalPciBus3Bits;       break;
789                 default:
790                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
791                                 count);
792                         /* Do an exact match only */
793                         bcomp = OpalPciBusAll;
794                 }
795                 rid_end = pe->rid + (count << 8);
796         } else {
797 #ifdef CONFIG_PCI_IOV
798                 if (pe->flags & PNV_IODA_PE_VF)
799                         parent = pe->parent_dev;
800                 else
801 #endif
802                         parent = pe->pdev->bus->self;
803                 bcomp = OpalPciBusAll;
804                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
805                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
806                 rid_end = pe->rid + 1;
807         }
808
809         /* Clear the reverse map */
810         for (rid = pe->rid; rid < rid_end; rid++)
811                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
812
813         /* Release from all parents PELT-V */
814         while (parent) {
815                 struct pci_dn *pdn = pci_get_pdn(parent);
816                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
817                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
818                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
819                         /* XXX What to do in case of error ? */
820                 }
821                 parent = parent->bus->self;
822         }
823
824         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
825                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
826
827         /* Disassociate PE in PELT */
828         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
829                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
830         if (rc)
831                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
832         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
833                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
834         if (rc)
835                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
836
837         pe->pbus = NULL;
838         pe->pdev = NULL;
839 #ifdef CONFIG_PCI_IOV
840         pe->parent_dev = NULL;
841 #endif
842
843         return 0;
844 }
845
846 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
847 {
848         struct pci_dev *parent;
849         uint8_t bcomp, dcomp, fcomp;
850         long rc, rid_end, rid;
851
852         /* Bus validation ? */
853         if (pe->pbus) {
854                 int count;
855
856                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
857                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
858                 parent = pe->pbus->self;
859                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
860                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
861                 else
862                         count = 1;
863
864                 switch(count) {
865                 case  1: bcomp = OpalPciBusAll;         break;
866                 case  2: bcomp = OpalPciBus7Bits;       break;
867                 case  4: bcomp = OpalPciBus6Bits;       break;
868                 case  8: bcomp = OpalPciBus5Bits;       break;
869                 case 16: bcomp = OpalPciBus4Bits;       break;
870                 case 32: bcomp = OpalPciBus3Bits;       break;
871                 default:
872                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
873                                 count);
874                         /* Do an exact match only */
875                         bcomp = OpalPciBusAll;
876                 }
877                 rid_end = pe->rid + (count << 8);
878         } else {
879 #ifdef CONFIG_PCI_IOV
880                 if (pe->flags & PNV_IODA_PE_VF)
881                         parent = pe->parent_dev;
882                 else
883 #endif /* CONFIG_PCI_IOV */
884                         parent = pe->pdev->bus->self;
885                 bcomp = OpalPciBusAll;
886                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
887                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
888                 rid_end = pe->rid + 1;
889         }
890
891         /*
892          * Associate PE in PELT. We need add the PE into the
893          * corresponding PELT-V as well. Otherwise, the error
894          * originated from the PE might contribute to other
895          * PEs.
896          */
897         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
898                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
899         if (rc) {
900                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
901                 return -ENXIO;
902         }
903
904         /*
905          * Configure PELTV. NPUs don't have a PELTV table so skip
906          * configuration on them.
907          */
908         if (phb->type != PNV_PHB_NPU)
909                 pnv_ioda_set_peltv(phb, pe, true);
910
911         /* Setup reverse map */
912         for (rid = pe->rid; rid < rid_end; rid++)
913                 phb->ioda.pe_rmap[rid] = pe->pe_number;
914
915         /* Setup one MVTs on IODA1 */
916         if (phb->type != PNV_PHB_IODA1) {
917                 pe->mve_number = 0;
918                 goto out;
919         }
920
921         pe->mve_number = pe->pe_number;
922         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
923         if (rc != OPAL_SUCCESS) {
924                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
925                        rc, pe->mve_number);
926                 pe->mve_number = -1;
927         } else {
928                 rc = opal_pci_set_mve_enable(phb->opal_id,
929                                              pe->mve_number, OPAL_ENABLE_MVE);
930                 if (rc) {
931                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
932                                rc, pe->mve_number);
933                         pe->mve_number = -1;
934                 }
935         }
936
937 out:
938         return 0;
939 }
940
941 #ifdef CONFIG_PCI_IOV
942 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
943 {
944         struct pci_dn *pdn = pci_get_pdn(dev);
945         int i;
946         struct resource *res, res2;
947         resource_size_t size;
948         u16 num_vfs;
949
950         if (!dev->is_physfn)
951                 return -EINVAL;
952
953         /*
954          * "offset" is in VFs.  The M64 windows are sized so that when they
955          * are segmented, each segment is the same size as the IOV BAR.
956          * Each segment is in a separate PE, and the high order bits of the
957          * address are the PE number.  Therefore, each VF's BAR is in a
958          * separate PE, and changing the IOV BAR start address changes the
959          * range of PEs the VFs are in.
960          */
961         num_vfs = pdn->num_vfs;
962         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
963                 res = &dev->resource[i + PCI_IOV_RESOURCES];
964                 if (!res->flags || !res->parent)
965                         continue;
966
967                 /*
968                  * The actual IOV BAR range is determined by the start address
969                  * and the actual size for num_vfs VFs BAR.  This check is to
970                  * make sure that after shifting, the range will not overlap
971                  * with another device.
972                  */
973                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
974                 res2.flags = res->flags;
975                 res2.start = res->start + (size * offset);
976                 res2.end = res2.start + (size * num_vfs) - 1;
977
978                 if (res2.end > res->end) {
979                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
980                                 i, &res2, res, num_vfs, offset);
981                         return -EBUSY;
982                 }
983         }
984
985         /*
986          * After doing so, there would be a "hole" in the /proc/iomem when
987          * offset is a positive value. It looks like the device return some
988          * mmio back to the system, which actually no one could use it.
989          */
990         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
991                 res = &dev->resource[i + PCI_IOV_RESOURCES];
992                 if (!res->flags || !res->parent)
993                         continue;
994
995                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
996                 res2 = *res;
997                 res->start += size * offset;
998
999                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1000                          i, &res2, res, (offset > 0) ? "En" : "Dis",
1001                          num_vfs, offset);
1002                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1003         }
1004         return 0;
1005 }
1006 #endif /* CONFIG_PCI_IOV */
1007
1008 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1009 {
1010         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1011         struct pnv_phb *phb = hose->private_data;
1012         struct pci_dn *pdn = pci_get_pdn(dev);
1013         struct pnv_ioda_pe *pe;
1014
1015         if (!pdn) {
1016                 pr_err("%s: Device tree node not associated properly\n",
1017                            pci_name(dev));
1018                 return NULL;
1019         }
1020         if (pdn->pe_number != IODA_INVALID_PE)
1021                 return NULL;
1022
1023         pe = pnv_ioda_alloc_pe(phb);
1024         if (!pe) {
1025                 pr_warning("%s: Not enough PE# available, disabling device\n",
1026                            pci_name(dev));
1027                 return NULL;
1028         }
1029
1030         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1031          * pointer in the PE data structure, both should be destroyed at the
1032          * same time. However, this needs to be looked at more closely again
1033          * once we actually start removing things (Hotplug, SR-IOV, ...)
1034          *
1035          * At some point we want to remove the PDN completely anyways
1036          */
1037         pci_dev_get(dev);
1038         pdn->pcidev = dev;
1039         pdn->pe_number = pe->pe_number;
1040         pe->flags = PNV_IODA_PE_DEV;
1041         pe->pdev = dev;
1042         pe->pbus = NULL;
1043         pe->mve_number = -1;
1044         pe->rid = dev->bus->number << 8 | pdn->devfn;
1045
1046         pe_info(pe, "Associated device to PE\n");
1047
1048         if (pnv_ioda_configure_pe(phb, pe)) {
1049                 /* XXX What do we do here ? */
1050                 pnv_ioda_free_pe(pe);
1051                 pdn->pe_number = IODA_INVALID_PE;
1052                 pe->pdev = NULL;
1053                 pci_dev_put(dev);
1054                 return NULL;
1055         }
1056
1057         /* Put PE to the list */
1058         list_add_tail(&pe->list, &phb->ioda.pe_list);
1059
1060         return pe;
1061 }
1062
1063 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1064 {
1065         struct pci_dev *dev;
1066
1067         list_for_each_entry(dev, &bus->devices, bus_list) {
1068                 struct pci_dn *pdn = pci_get_pdn(dev);
1069
1070                 if (pdn == NULL) {
1071                         pr_warn("%s: No device node associated with device !\n",
1072                                 pci_name(dev));
1073                         continue;
1074                 }
1075
1076                 /*
1077                  * In partial hotplug case, the PCI device might be still
1078                  * associated with the PE and needn't attach it to the PE
1079                  * again.
1080                  */
1081                 if (pdn->pe_number != IODA_INVALID_PE)
1082                         continue;
1083
1084                 pe->device_count++;
1085                 pdn->pcidev = dev;
1086                 pdn->pe_number = pe->pe_number;
1087                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1088                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1089         }
1090 }
1091
1092 /*
1093  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1094  * single PCI bus. Another one that contains the primary PCI bus and its
1095  * subordinate PCI devices and buses. The second type of PE is normally
1096  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1097  */
1098 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1099 {
1100         struct pci_controller *hose = pci_bus_to_host(bus);
1101         struct pnv_phb *phb = hose->private_data;
1102         struct pnv_ioda_pe *pe = NULL;
1103         unsigned int pe_num;
1104
1105         /*
1106          * In partial hotplug case, the PE instance might be still alive.
1107          * We should reuse it instead of allocating a new one.
1108          */
1109         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1110         if (pe_num != IODA_INVALID_PE) {
1111                 pe = &phb->ioda.pe_array[pe_num];
1112                 pnv_ioda_setup_same_PE(bus, pe);
1113                 return NULL;
1114         }
1115
1116         /* PE number for root bus should have been reserved */
1117         if (pci_is_root_bus(bus) &&
1118             phb->ioda.root_pe_idx != IODA_INVALID_PE)
1119                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1120
1121         /* Check if PE is determined by M64 */
1122         if (!pe && phb->pick_m64_pe)
1123                 pe = phb->pick_m64_pe(bus, all);
1124
1125         /* The PE number isn't pinned by M64 */
1126         if (!pe)
1127                 pe = pnv_ioda_alloc_pe(phb);
1128
1129         if (!pe) {
1130                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1131                         __func__, pci_domain_nr(bus), bus->number);
1132                 return NULL;
1133         }
1134
1135         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1136         pe->pbus = bus;
1137         pe->pdev = NULL;
1138         pe->mve_number = -1;
1139         pe->rid = bus->busn_res.start << 8;
1140
1141         if (all)
1142                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1143                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1144         else
1145                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1146                         bus->busn_res.start, pe->pe_number);
1147
1148         if (pnv_ioda_configure_pe(phb, pe)) {
1149                 /* XXX What do we do here ? */
1150                 pnv_ioda_free_pe(pe);
1151                 pe->pbus = NULL;
1152                 return NULL;
1153         }
1154
1155         /* Associate it with all child devices */
1156         pnv_ioda_setup_same_PE(bus, pe);
1157
1158         /* Put PE to the list */
1159         list_add_tail(&pe->list, &phb->ioda.pe_list);
1160
1161         return pe;
1162 }
1163
1164 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1165 {
1166         int pe_num, found_pe = false, rc;
1167         long rid;
1168         struct pnv_ioda_pe *pe;
1169         struct pci_dev *gpu_pdev;
1170         struct pci_dn *npu_pdn;
1171         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1172         struct pnv_phb *phb = hose->private_data;
1173
1174         /*
1175          * Due to a hardware errata PE#0 on the NPU is reserved for
1176          * error handling. This means we only have three PEs remaining
1177          * which need to be assigned to four links, implying some
1178          * links must share PEs.
1179          *
1180          * To achieve this we assign PEs such that NPUs linking the
1181          * same GPU get assigned the same PE.
1182          */
1183         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1184         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1185                 pe = &phb->ioda.pe_array[pe_num];
1186                 if (!pe->pdev)
1187                         continue;
1188
1189                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1190                         /*
1191                          * This device has the same peer GPU so should
1192                          * be assigned the same PE as the existing
1193                          * peer NPU.
1194                          */
1195                         dev_info(&npu_pdev->dev,
1196                                 "Associating to existing PE %d\n", pe_num);
1197                         pci_dev_get(npu_pdev);
1198                         npu_pdn = pci_get_pdn(npu_pdev);
1199                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1200                         npu_pdn->pcidev = npu_pdev;
1201                         npu_pdn->pe_number = pe_num;
1202                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1203
1204                         /* Map the PE to this link */
1205                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1206                                         OpalPciBusAll,
1207                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1208                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1209                                         OPAL_MAP_PE);
1210                         WARN_ON(rc != OPAL_SUCCESS);
1211                         found_pe = true;
1212                         break;
1213                 }
1214         }
1215
1216         if (!found_pe)
1217                 /*
1218                  * Could not find an existing PE so allocate a new
1219                  * one.
1220                  */
1221                 return pnv_ioda_setup_dev_PE(npu_pdev);
1222         else
1223                 return pe;
1224 }
1225
1226 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1227 {
1228         struct pci_dev *pdev;
1229
1230         list_for_each_entry(pdev, &bus->devices, bus_list)
1231                 pnv_ioda_setup_npu_PE(pdev);
1232 }
1233
1234 static void pnv_pci_ioda_setup_PEs(void)
1235 {
1236         struct pci_controller *hose, *tmp;
1237         struct pnv_phb *phb;
1238
1239         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1240                 phb = hose->private_data;
1241                 if (phb->type == PNV_PHB_NPU) {
1242                         /* PE#0 is needed for error reporting */
1243                         pnv_ioda_reserve_pe(phb, 0);
1244                         pnv_ioda_setup_npu_PEs(hose->bus);
1245                 }
1246         }
1247 }
1248
1249 #ifdef CONFIG_PCI_IOV
1250 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1251 {
1252         struct pci_bus        *bus;
1253         struct pci_controller *hose;
1254         struct pnv_phb        *phb;
1255         struct pci_dn         *pdn;
1256         int                    i, j;
1257         int                    m64_bars;
1258
1259         bus = pdev->bus;
1260         hose = pci_bus_to_host(bus);
1261         phb = hose->private_data;
1262         pdn = pci_get_pdn(pdev);
1263
1264         if (pdn->m64_single_mode)
1265                 m64_bars = num_vfs;
1266         else
1267                 m64_bars = 1;
1268
1269         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1270                 for (j = 0; j < m64_bars; j++) {
1271                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1272                                 continue;
1273                         opal_pci_phb_mmio_enable(phb->opal_id,
1274                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1275                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1276                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1277                 }
1278
1279         kfree(pdn->m64_map);
1280         return 0;
1281 }
1282
1283 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1284 {
1285         struct pci_bus        *bus;
1286         struct pci_controller *hose;
1287         struct pnv_phb        *phb;
1288         struct pci_dn         *pdn;
1289         unsigned int           win;
1290         struct resource       *res;
1291         int                    i, j;
1292         int64_t                rc;
1293         int                    total_vfs;
1294         resource_size_t        size, start;
1295         int                    pe_num;
1296         int                    m64_bars;
1297
1298         bus = pdev->bus;
1299         hose = pci_bus_to_host(bus);
1300         phb = hose->private_data;
1301         pdn = pci_get_pdn(pdev);
1302         total_vfs = pci_sriov_get_totalvfs(pdev);
1303
1304         if (pdn->m64_single_mode)
1305                 m64_bars = num_vfs;
1306         else
1307                 m64_bars = 1;
1308
1309         pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1310         if (!pdn->m64_map)
1311                 return -ENOMEM;
1312         /* Initialize the m64_map to IODA_INVALID_M64 */
1313         for (i = 0; i < m64_bars ; i++)
1314                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1315                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1316
1317
1318         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1319                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1320                 if (!res->flags || !res->parent)
1321                         continue;
1322
1323                 for (j = 0; j < m64_bars; j++) {
1324                         do {
1325                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1326                                                 phb->ioda.m64_bar_idx + 1, 0);
1327
1328                                 if (win >= phb->ioda.m64_bar_idx + 1)
1329                                         goto m64_failed;
1330                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1331
1332                         pdn->m64_map[j][i] = win;
1333
1334                         if (pdn->m64_single_mode) {
1335                                 size = pci_iov_resource_size(pdev,
1336                                                         PCI_IOV_RESOURCES + i);
1337                                 start = res->start + size * j;
1338                         } else {
1339                                 size = resource_size(res);
1340                                 start = res->start;
1341                         }
1342
1343                         /* Map the M64 here */
1344                         if (pdn->m64_single_mode) {
1345                                 pe_num = pdn->pe_num_map[j];
1346                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1347                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1348                                                 pdn->m64_map[j][i], 0);
1349                         }
1350
1351                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1352                                                  OPAL_M64_WINDOW_TYPE,
1353                                                  pdn->m64_map[j][i],
1354                                                  start,
1355                                                  0, /* unused */
1356                                                  size);
1357
1358
1359                         if (rc != OPAL_SUCCESS) {
1360                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1361                                         win, rc);
1362                                 goto m64_failed;
1363                         }
1364
1365                         if (pdn->m64_single_mode)
1366                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1367                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1368                         else
1369                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1370                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1371
1372                         if (rc != OPAL_SUCCESS) {
1373                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1374                                         win, rc);
1375                                 goto m64_failed;
1376                         }
1377                 }
1378         }
1379         return 0;
1380
1381 m64_failed:
1382         pnv_pci_vf_release_m64(pdev, num_vfs);
1383         return -EBUSY;
1384 }
1385
1386 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1387                 int num);
1388 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1389
1390 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1391 {
1392         struct iommu_table    *tbl;
1393         int64_t               rc;
1394
1395         tbl = pe->table_group.tables[0];
1396         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1397         if (rc)
1398                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1399
1400         pnv_pci_ioda2_set_bypass(pe, false);
1401         if (pe->table_group.group) {
1402                 iommu_group_put(pe->table_group.group);
1403                 BUG_ON(pe->table_group.group);
1404         }
1405         pnv_pci_ioda2_table_free_pages(tbl);
1406         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1407 }
1408
1409 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1410 {
1411         struct pci_bus        *bus;
1412         struct pci_controller *hose;
1413         struct pnv_phb        *phb;
1414         struct pnv_ioda_pe    *pe, *pe_n;
1415         struct pci_dn         *pdn;
1416
1417         bus = pdev->bus;
1418         hose = pci_bus_to_host(bus);
1419         phb = hose->private_data;
1420         pdn = pci_get_pdn(pdev);
1421
1422         if (!pdev->is_physfn)
1423                 return;
1424
1425         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1426                 if (pe->parent_dev != pdev)
1427                         continue;
1428
1429                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1430
1431                 /* Remove from list */
1432                 mutex_lock(&phb->ioda.pe_list_mutex);
1433                 list_del(&pe->list);
1434                 mutex_unlock(&phb->ioda.pe_list_mutex);
1435
1436                 pnv_ioda_deconfigure_pe(phb, pe);
1437
1438                 pnv_ioda_free_pe(pe);
1439         }
1440 }
1441
1442 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1443 {
1444         struct pci_bus        *bus;
1445         struct pci_controller *hose;
1446         struct pnv_phb        *phb;
1447         struct pnv_ioda_pe    *pe;
1448         struct pci_dn         *pdn;
1449         struct pci_sriov      *iov;
1450         u16                    num_vfs, i;
1451
1452         bus = pdev->bus;
1453         hose = pci_bus_to_host(bus);
1454         phb = hose->private_data;
1455         pdn = pci_get_pdn(pdev);
1456         iov = pdev->sriov;
1457         num_vfs = pdn->num_vfs;
1458
1459         /* Release VF PEs */
1460         pnv_ioda_release_vf_PE(pdev);
1461
1462         if (phb->type == PNV_PHB_IODA2) {
1463                 if (!pdn->m64_single_mode)
1464                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1465
1466                 /* Release M64 windows */
1467                 pnv_pci_vf_release_m64(pdev, num_vfs);
1468
1469                 /* Release PE numbers */
1470                 if (pdn->m64_single_mode) {
1471                         for (i = 0; i < num_vfs; i++) {
1472                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1473                                         continue;
1474
1475                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1476                                 pnv_ioda_free_pe(pe);
1477                         }
1478                 } else
1479                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1480                 /* Releasing pe_num_map */
1481                 kfree(pdn->pe_num_map);
1482         }
1483 }
1484
1485 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1486                                        struct pnv_ioda_pe *pe);
1487 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1488 {
1489         struct pci_bus        *bus;
1490         struct pci_controller *hose;
1491         struct pnv_phb        *phb;
1492         struct pnv_ioda_pe    *pe;
1493         int                    pe_num;
1494         u16                    vf_index;
1495         struct pci_dn         *pdn;
1496
1497         bus = pdev->bus;
1498         hose = pci_bus_to_host(bus);
1499         phb = hose->private_data;
1500         pdn = pci_get_pdn(pdev);
1501
1502         if (!pdev->is_physfn)
1503                 return;
1504
1505         /* Reserve PE for each VF */
1506         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1507                 if (pdn->m64_single_mode)
1508                         pe_num = pdn->pe_num_map[vf_index];
1509                 else
1510                         pe_num = *pdn->pe_num_map + vf_index;
1511
1512                 pe = &phb->ioda.pe_array[pe_num];
1513                 pe->pe_number = pe_num;
1514                 pe->phb = phb;
1515                 pe->flags = PNV_IODA_PE_VF;
1516                 pe->pbus = NULL;
1517                 pe->parent_dev = pdev;
1518                 pe->mve_number = -1;
1519                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1520                            pci_iov_virtfn_devfn(pdev, vf_index);
1521
1522                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1523                         hose->global_number, pdev->bus->number,
1524                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1525                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1526
1527                 if (pnv_ioda_configure_pe(phb, pe)) {
1528                         /* XXX What do we do here ? */
1529                         pnv_ioda_free_pe(pe);
1530                         pe->pdev = NULL;
1531                         continue;
1532                 }
1533
1534                 /* Put PE to the list */
1535                 mutex_lock(&phb->ioda.pe_list_mutex);
1536                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1537                 mutex_unlock(&phb->ioda.pe_list_mutex);
1538
1539                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1540         }
1541 }
1542
1543 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1544 {
1545         struct pci_bus        *bus;
1546         struct pci_controller *hose;
1547         struct pnv_phb        *phb;
1548         struct pnv_ioda_pe    *pe;
1549         struct pci_dn         *pdn;
1550         int                    ret;
1551         u16                    i;
1552
1553         bus = pdev->bus;
1554         hose = pci_bus_to_host(bus);
1555         phb = hose->private_data;
1556         pdn = pci_get_pdn(pdev);
1557
1558         if (phb->type == PNV_PHB_IODA2) {
1559                 if (!pdn->vfs_expanded) {
1560                         dev_info(&pdev->dev, "don't support this SRIOV device"
1561                                 " with non 64bit-prefetchable IOV BAR\n");
1562                         return -ENOSPC;
1563                 }
1564
1565                 /*
1566                  * When M64 BARs functions in Single PE mode, the number of VFs
1567                  * could be enabled must be less than the number of M64 BARs.
1568                  */
1569                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1570                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1571                         return -EBUSY;
1572                 }
1573
1574                 /* Allocating pe_num_map */
1575                 if (pdn->m64_single_mode)
1576                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1577                                         GFP_KERNEL);
1578                 else
1579                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1580
1581                 if (!pdn->pe_num_map)
1582                         return -ENOMEM;
1583
1584                 if (pdn->m64_single_mode)
1585                         for (i = 0; i < num_vfs; i++)
1586                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1587
1588                 /* Calculate available PE for required VFs */
1589                 if (pdn->m64_single_mode) {
1590                         for (i = 0; i < num_vfs; i++) {
1591                                 pe = pnv_ioda_alloc_pe(phb);
1592                                 if (!pe) {
1593                                         ret = -EBUSY;
1594                                         goto m64_failed;
1595                                 }
1596
1597                                 pdn->pe_num_map[i] = pe->pe_number;
1598                         }
1599                 } else {
1600                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1601                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1602                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1603                                 0, num_vfs, 0);
1604                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1605                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1606                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1607                                 kfree(pdn->pe_num_map);
1608                                 return -EBUSY;
1609                         }
1610                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1611                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1612                 }
1613                 pdn->num_vfs = num_vfs;
1614
1615                 /* Assign M64 window accordingly */
1616                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1617                 if (ret) {
1618                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1619                         goto m64_failed;
1620                 }
1621
1622                 /*
1623                  * When using one M64 BAR to map one IOV BAR, we need to shift
1624                  * the IOV BAR according to the PE# allocated to the VFs.
1625                  * Otherwise, the PE# for the VF will conflict with others.
1626                  */
1627                 if (!pdn->m64_single_mode) {
1628                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1629                         if (ret)
1630                                 goto m64_failed;
1631                 }
1632         }
1633
1634         /* Setup VF PEs */
1635         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1636
1637         return 0;
1638
1639 m64_failed:
1640         if (pdn->m64_single_mode) {
1641                 for (i = 0; i < num_vfs; i++) {
1642                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1643                                 continue;
1644
1645                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1646                         pnv_ioda_free_pe(pe);
1647                 }
1648         } else
1649                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1650
1651         /* Releasing pe_num_map */
1652         kfree(pdn->pe_num_map);
1653
1654         return ret;
1655 }
1656
1657 int pcibios_sriov_disable(struct pci_dev *pdev)
1658 {
1659         pnv_pci_sriov_disable(pdev);
1660
1661         /* Release PCI data */
1662         remove_dev_pci_data(pdev);
1663         return 0;
1664 }
1665
1666 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1667 {
1668         /* Allocate PCI data */
1669         add_dev_pci_data(pdev);
1670
1671         return pnv_pci_sriov_enable(pdev, num_vfs);
1672 }
1673 #endif /* CONFIG_PCI_IOV */
1674
1675 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1676 {
1677         struct pci_dn *pdn = pci_get_pdn(pdev);
1678         struct pnv_ioda_pe *pe;
1679
1680         /*
1681          * The function can be called while the PE#
1682          * hasn't been assigned. Do nothing for the
1683          * case.
1684          */
1685         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1686                 return;
1687
1688         pe = &phb->ioda.pe_array[pdn->pe_number];
1689         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1690         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1691         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1692         /*
1693          * Note: iommu_add_device() will fail here as
1694          * for physical PE: the device is already added by now;
1695          * for virtual PE: sysfs entries are not ready yet and
1696          * tce_iommu_bus_notifier will add the device to a group later.
1697          */
1698 }
1699
1700 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1701 {
1702         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1703         struct pnv_phb *phb = hose->private_data;
1704         struct pci_dn *pdn = pci_get_pdn(pdev);
1705         struct pnv_ioda_pe *pe;
1706         uint64_t top;
1707         bool bypass = false;
1708
1709         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1710                 return -ENODEV;;
1711
1712         pe = &phb->ioda.pe_array[pdn->pe_number];
1713         if (pe->tce_bypass_enabled) {
1714                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1715                 bypass = (dma_mask >= top);
1716         }
1717
1718         if (bypass) {
1719                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1720                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1721         } else {
1722                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1723                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1724         }
1725         *pdev->dev.dma_mask = dma_mask;
1726
1727         /* Update peer npu devices */
1728         pnv_npu_try_dma_set_bypass(pdev, bypass);
1729
1730         return 0;
1731 }
1732
1733 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1734 {
1735         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1736         struct pnv_phb *phb = hose->private_data;
1737         struct pci_dn *pdn = pci_get_pdn(pdev);
1738         struct pnv_ioda_pe *pe;
1739         u64 end, mask;
1740
1741         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1742                 return 0;
1743
1744         pe = &phb->ioda.pe_array[pdn->pe_number];
1745         if (!pe->tce_bypass_enabled)
1746                 return __dma_get_required_mask(&pdev->dev);
1747
1748
1749         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1750         mask = 1ULL << (fls64(end) - 1);
1751         mask += mask - 1;
1752
1753         return mask;
1754 }
1755
1756 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1757                                    struct pci_bus *bus)
1758 {
1759         struct pci_dev *dev;
1760
1761         list_for_each_entry(dev, &bus->devices, bus_list) {
1762                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1763                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1764                 iommu_add_device(&dev->dev);
1765
1766                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1767                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1768         }
1769 }
1770
1771 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1772                                                      bool real_mode)
1773 {
1774         return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1775                 (phb->regs + 0x210);
1776 }
1777
1778 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1779                 unsigned long index, unsigned long npages, bool rm)
1780 {
1781         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1782                         &tbl->it_group_list, struct iommu_table_group_link,
1783                         next);
1784         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1785                         struct pnv_ioda_pe, table_group);
1786         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1787         unsigned long start, end, inc;
1788
1789         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1790         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1791                         npages - 1);
1792
1793         /* p7ioc-style invalidation, 2 TCEs per write */
1794         start |= (1ull << 63);
1795         end |= (1ull << 63);
1796         inc = 16;
1797         end |= inc - 1; /* round up end to be different than start */
1798
1799         mb(); /* Ensure above stores are visible */
1800         while (start <= end) {
1801                 if (rm)
1802                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1803                 else
1804                         __raw_writeq(cpu_to_be64(start), invalidate);
1805                 start += inc;
1806         }
1807
1808         /*
1809          * The iommu layer will do another mb() for us on build()
1810          * and we don't care on free()
1811          */
1812 }
1813
1814 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1815                 long npages, unsigned long uaddr,
1816                 enum dma_data_direction direction,
1817                 unsigned long attrs)
1818 {
1819         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1820                         attrs);
1821
1822         if (!ret)
1823                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1824
1825         return ret;
1826 }
1827
1828 #ifdef CONFIG_IOMMU_API
1829 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1830                 unsigned long *hpa, enum dma_data_direction *direction)
1831 {
1832         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1833
1834         if (!ret)
1835                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1836
1837         return ret;
1838 }
1839 #endif
1840
1841 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1842                 long npages)
1843 {
1844         pnv_tce_free(tbl, index, npages);
1845
1846         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1847 }
1848
1849 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1850         .set = pnv_ioda1_tce_build,
1851 #ifdef CONFIG_IOMMU_API
1852         .exchange = pnv_ioda1_tce_xchg,
1853 #endif
1854         .clear = pnv_ioda1_tce_free,
1855         .get = pnv_tce_get,
1856 };
1857
1858 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
1859 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
1860 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
1861
1862 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1863 {
1864         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1865         const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1866
1867         mb(); /* Ensure previous TCE table stores are visible */
1868         if (rm)
1869                 __raw_rm_writeq(cpu_to_be64(val), invalidate);
1870         else
1871                 __raw_writeq(cpu_to_be64(val), invalidate);
1872 }
1873
1874 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1875 {
1876         /* 01xb - invalidate TCEs that match the specified PE# */
1877         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1878         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1879
1880         mb(); /* Ensure above stores are visible */
1881         __raw_writeq(cpu_to_be64(val), invalidate);
1882 }
1883
1884 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1885                                         unsigned shift, unsigned long index,
1886                                         unsigned long npages)
1887 {
1888         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1889         unsigned long start, end, inc;
1890
1891         /* We'll invalidate DMA address in PE scope */
1892         start = PHB3_TCE_KILL_INVAL_ONE;
1893         start |= (pe->pe_number & 0xFF);
1894         end = start;
1895
1896         /* Figure out the start, end and step */
1897         start |= (index << shift);
1898         end |= ((index + npages - 1) << shift);
1899         inc = (0x1ull << shift);
1900         mb();
1901
1902         while (start <= end) {
1903                 if (rm)
1904                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1905                 else
1906                         __raw_writeq(cpu_to_be64(start), invalidate);
1907                 start += inc;
1908         }
1909 }
1910
1911 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1912 {
1913         struct pnv_phb *phb = pe->phb;
1914
1915         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1916                 pnv_pci_phb3_tce_invalidate_pe(pe);
1917         else
1918                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1919                                   pe->pe_number, 0, 0, 0);
1920 }
1921
1922 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1923                 unsigned long index, unsigned long npages, bool rm)
1924 {
1925         struct iommu_table_group_link *tgl;
1926
1927         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1928                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1929                                 struct pnv_ioda_pe, table_group);
1930                 struct pnv_phb *phb = pe->phb;
1931                 unsigned int shift = tbl->it_page_shift;
1932
1933                 if (phb->type == PNV_PHB_NPU) {
1934                         /*
1935                          * The NVLink hardware does not support TCE kill
1936                          * per TCE entry so we have to invalidate
1937                          * the entire cache for it.
1938                          */
1939                         pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1940                         continue;
1941                 }
1942                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1943                         pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1944                                                     index, npages);
1945                 else if (rm)
1946                         opal_rm_pci_tce_kill(phb->opal_id,
1947                                              OPAL_PCI_TCE_KILL_PAGES,
1948                                              pe->pe_number, 1u << shift,
1949                                              index << shift, npages);
1950                 else
1951                         opal_pci_tce_kill(phb->opal_id,
1952                                           OPAL_PCI_TCE_KILL_PAGES,
1953                                           pe->pe_number, 1u << shift,
1954                                           index << shift, npages);
1955         }
1956 }
1957
1958 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1959                 long npages, unsigned long uaddr,
1960                 enum dma_data_direction direction,
1961                 unsigned long attrs)
1962 {
1963         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1964                         attrs);
1965
1966         if (!ret)
1967                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1968
1969         return ret;
1970 }
1971
1972 #ifdef CONFIG_IOMMU_API
1973 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1974                 unsigned long *hpa, enum dma_data_direction *direction)
1975 {
1976         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1977
1978         if (!ret)
1979                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1980
1981         return ret;
1982 }
1983 #endif
1984
1985 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1986                 long npages)
1987 {
1988         pnv_tce_free(tbl, index, npages);
1989
1990         pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1991 }
1992
1993 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1994 {
1995         pnv_pci_ioda2_table_free_pages(tbl);
1996         iommu_free_table(tbl, "pnv");
1997 }
1998
1999 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2000         .set = pnv_ioda2_tce_build,
2001 #ifdef CONFIG_IOMMU_API
2002         .exchange = pnv_ioda2_tce_xchg,
2003 #endif
2004         .clear = pnv_ioda2_tce_free,
2005         .get = pnv_tce_get,
2006         .free = pnv_ioda2_table_free,
2007 };
2008
2009 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2010 {
2011         unsigned int *weight = (unsigned int *)data;
2012
2013         /* This is quite simplistic. The "base" weight of a device
2014          * is 10. 0 means no DMA is to be accounted for it.
2015          */
2016         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2017                 return 0;
2018
2019         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2020             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2021             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2022                 *weight += 3;
2023         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2024                 *weight += 15;
2025         else
2026                 *weight += 10;
2027
2028         return 0;
2029 }
2030
2031 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2032 {
2033         unsigned int weight = 0;
2034
2035         /* SRIOV VF has same DMA32 weight as its PF */
2036 #ifdef CONFIG_PCI_IOV
2037         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2038                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2039                 return weight;
2040         }
2041 #endif
2042
2043         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2044                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2045         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2046                 struct pci_dev *pdev;
2047
2048                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2049                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2050         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2051                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2052         }
2053
2054         return weight;
2055 }
2056
2057 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2058                                        struct pnv_ioda_pe *pe)
2059 {
2060
2061         struct page *tce_mem = NULL;
2062         struct iommu_table *tbl;
2063         unsigned int weight, total_weight = 0;
2064         unsigned int tce32_segsz, base, segs, avail, i;
2065         int64_t rc;
2066         void *addr;
2067
2068         /* XXX FIXME: Handle 64-bit only DMA devices */
2069         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2070         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2071         weight = pnv_pci_ioda_pe_dma_weight(pe);
2072         if (!weight)
2073                 return;
2074
2075         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2076                      &total_weight);
2077         segs = (weight * phb->ioda.dma32_count) / total_weight;
2078         if (!segs)
2079                 segs = 1;
2080
2081         /*
2082          * Allocate contiguous DMA32 segments. We begin with the expected
2083          * number of segments. With one more attempt, the number of DMA32
2084          * segments to be allocated is decreased by one until one segment
2085          * is allocated successfully.
2086          */
2087         do {
2088                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2089                         for (avail = 0, i = base; i < base + segs; i++) {
2090                                 if (phb->ioda.dma32_segmap[i] ==
2091                                     IODA_INVALID_PE)
2092                                         avail++;
2093                         }
2094
2095                         if (avail == segs)
2096                                 goto found;
2097                 }
2098         } while (--segs);
2099
2100         if (!segs) {
2101                 pe_warn(pe, "No available DMA32 segments\n");
2102                 return;
2103         }
2104
2105 found:
2106         tbl = pnv_pci_table_alloc(phb->hose->node);
2107         iommu_register_group(&pe->table_group, phb->hose->global_number,
2108                         pe->pe_number);
2109         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2110
2111         /* Grab a 32-bit TCE table */
2112         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2113                 weight, total_weight, base, segs);
2114         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2115                 base * PNV_IODA1_DMA32_SEGSIZE,
2116                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2117
2118         /* XXX Currently, we allocate one big contiguous table for the
2119          * TCEs. We only really need one chunk per 256M of TCE space
2120          * (ie per segment) but that's an optimization for later, it
2121          * requires some added smarts with our get/put_tce implementation
2122          *
2123          * Each TCE page is 4KB in size and each TCE entry occupies 8
2124          * bytes
2125          */
2126         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2127         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2128                                    get_order(tce32_segsz * segs));
2129         if (!tce_mem) {
2130                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2131                 goto fail;
2132         }
2133         addr = page_address(tce_mem);
2134         memset(addr, 0, tce32_segsz * segs);
2135
2136         /* Configure HW */
2137         for (i = 0; i < segs; i++) {
2138                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2139                                               pe->pe_number,
2140                                               base + i, 1,
2141                                               __pa(addr) + tce32_segsz * i,
2142                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2143                 if (rc) {
2144                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2145                                " err %ld\n", rc);
2146                         goto fail;
2147                 }
2148         }
2149
2150         /* Setup DMA32 segment mapping */
2151         for (i = base; i < base + segs; i++)
2152                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2153
2154         /* Setup linux iommu table */
2155         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2156                                   base * PNV_IODA1_DMA32_SEGSIZE,
2157                                   IOMMU_PAGE_SHIFT_4K);
2158
2159         tbl->it_ops = &pnv_ioda1_iommu_ops;
2160         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2161         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2162         iommu_init_table(tbl, phb->hose->node);
2163
2164         if (pe->flags & PNV_IODA_PE_DEV) {
2165                 /*
2166                  * Setting table base here only for carrying iommu_group
2167                  * further down to let iommu_add_device() do the job.
2168                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2169                  */
2170                 set_iommu_table_base(&pe->pdev->dev, tbl);
2171                 iommu_add_device(&pe->pdev->dev);
2172         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2173                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2174
2175         return;
2176  fail:
2177         /* XXX Failure: Try to fallback to 64-bit only ? */
2178         if (tce_mem)
2179                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2180         if (tbl) {
2181                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2182                 iommu_free_table(tbl, "pnv");
2183         }
2184 }
2185
2186 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2187                 int num, struct iommu_table *tbl)
2188 {
2189         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2190                         table_group);
2191         struct pnv_phb *phb = pe->phb;
2192         int64_t rc;
2193         const unsigned long size = tbl->it_indirect_levels ?
2194                         tbl->it_level_size : tbl->it_size;
2195         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2196         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2197
2198         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2199                         start_addr, start_addr + win_size - 1,
2200                         IOMMU_PAGE_SIZE(tbl));
2201
2202         /*
2203          * Map TCE table through TVT. The TVE index is the PE number
2204          * shifted by 1 bit for 32-bits DMA space.
2205          */
2206         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2207                         pe->pe_number,
2208                         (pe->pe_number << 1) + num,
2209                         tbl->it_indirect_levels + 1,
2210                         __pa(tbl->it_base),
2211                         size << 3,
2212                         IOMMU_PAGE_SIZE(tbl));
2213         if (rc) {
2214                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2215                 return rc;
2216         }
2217
2218         pnv_pci_link_table_and_group(phb->hose->node, num,
2219                         tbl, &pe->table_group);
2220         pnv_pci_ioda2_tce_invalidate_pe(pe);
2221
2222         return 0;
2223 }
2224
2225 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2226 {
2227         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2228         int64_t rc;
2229
2230         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2231         if (enable) {
2232                 phys_addr_t top = memblock_end_of_DRAM();
2233
2234                 top = roundup_pow_of_two(top);
2235                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2236                                                      pe->pe_number,
2237                                                      window_id,
2238                                                      pe->tce_bypass_base,
2239                                                      top);
2240         } else {
2241                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2242                                                      pe->pe_number,
2243                                                      window_id,
2244                                                      pe->tce_bypass_base,
2245                                                      0);
2246         }
2247         if (rc)
2248                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2249         else
2250                 pe->tce_bypass_enabled = enable;
2251 }
2252
2253 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2254                 __u32 page_shift, __u64 window_size, __u32 levels,
2255                 struct iommu_table *tbl);
2256
2257 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2258                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2259                 struct iommu_table **ptbl)
2260 {
2261         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2262                         table_group);
2263         int nid = pe->phb->hose->node;
2264         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2265         long ret;
2266         struct iommu_table *tbl;
2267
2268         tbl = pnv_pci_table_alloc(nid);
2269         if (!tbl)
2270                 return -ENOMEM;
2271
2272         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2273                         bus_offset, page_shift, window_size,
2274                         levels, tbl);
2275         if (ret) {
2276                 iommu_free_table(tbl, "pnv");
2277                 return ret;
2278         }
2279
2280         tbl->it_ops = &pnv_ioda2_iommu_ops;
2281
2282         *ptbl = tbl;
2283
2284         return 0;
2285 }
2286
2287 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2288 {
2289         struct iommu_table *tbl = NULL;
2290         long rc;
2291
2292         /*
2293          * crashkernel= specifies the kdump kernel's maximum memory at
2294          * some offset and there is no guaranteed the result is a power
2295          * of 2, which will cause errors later.
2296          */
2297         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2298
2299         /*
2300          * In memory constrained environments, e.g. kdump kernel, the
2301          * DMA window can be larger than available memory, which will
2302          * cause errors later.
2303          */
2304         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2305
2306         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2307                         IOMMU_PAGE_SHIFT_4K,
2308                         window_size,
2309                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2310         if (rc) {
2311                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2312                                 rc);
2313                 return rc;
2314         }
2315
2316         iommu_init_table(tbl, pe->phb->hose->node);
2317
2318         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2319         if (rc) {
2320                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2321                                 rc);
2322                 pnv_ioda2_table_free(tbl);
2323                 return rc;
2324         }
2325
2326         if (!pnv_iommu_bypass_disabled)
2327                 pnv_pci_ioda2_set_bypass(pe, true);
2328
2329         /*
2330          * Setting table base here only for carrying iommu_group
2331          * further down to let iommu_add_device() do the job.
2332          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2333          */
2334         if (pe->flags & PNV_IODA_PE_DEV)
2335                 set_iommu_table_base(&pe->pdev->dev, tbl);
2336
2337         return 0;
2338 }
2339
2340 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2341 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2342                 int num)
2343 {
2344         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2345                         table_group);
2346         struct pnv_phb *phb = pe->phb;
2347         long ret;
2348
2349         pe_info(pe, "Removing DMA window #%d\n", num);
2350
2351         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2352                         (pe->pe_number << 1) + num,
2353                         0/* levels */, 0/* table address */,
2354                         0/* table size */, 0/* page size */);
2355         if (ret)
2356                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2357         else
2358                 pnv_pci_ioda2_tce_invalidate_pe(pe);
2359
2360         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2361
2362         return ret;
2363 }
2364 #endif
2365
2366 #ifdef CONFIG_IOMMU_API
2367 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2368                 __u64 window_size, __u32 levels)
2369 {
2370         unsigned long bytes = 0;
2371         const unsigned window_shift = ilog2(window_size);
2372         unsigned entries_shift = window_shift - page_shift;
2373         unsigned table_shift = entries_shift + 3;
2374         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2375         unsigned long direct_table_size;
2376
2377         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2378                         (window_size > memory_hotplug_max()) ||
2379                         !is_power_of_2(window_size))
2380                 return 0;
2381
2382         /* Calculate a direct table size from window_size and levels */
2383         entries_shift = (entries_shift + levels - 1) / levels;
2384         table_shift = entries_shift + 3;
2385         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2386         direct_table_size =  1UL << table_shift;
2387
2388         for ( ; levels; --levels) {
2389                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2390
2391                 tce_table_size /= direct_table_size;
2392                 tce_table_size <<= 3;
2393                 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2394         }
2395
2396         return bytes;
2397 }
2398
2399 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2400 {
2401         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2402                                                 table_group);
2403         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2404         struct iommu_table *tbl = pe->table_group.tables[0];
2405
2406         pnv_pci_ioda2_set_bypass(pe, false);
2407         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2408         pnv_ioda2_table_free(tbl);
2409 }
2410
2411 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2412 {
2413         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2414                                                 table_group);
2415
2416         pnv_pci_ioda2_setup_default_config(pe);
2417 }
2418
2419 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2420         .get_table_size = pnv_pci_ioda2_get_table_size,
2421         .create_table = pnv_pci_ioda2_create_table,
2422         .set_window = pnv_pci_ioda2_set_window,
2423         .unset_window = pnv_pci_ioda2_unset_window,
2424         .take_ownership = pnv_ioda2_take_ownership,
2425         .release_ownership = pnv_ioda2_release_ownership,
2426 };
2427
2428 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2429 {
2430         struct pci_controller *hose;
2431         struct pnv_phb *phb;
2432         struct pnv_ioda_pe **ptmppe = opaque;
2433         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2434         struct pci_dn *pdn = pci_get_pdn(pdev);
2435
2436         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2437                 return 0;
2438
2439         hose = pci_bus_to_host(pdev->bus);
2440         phb = hose->private_data;
2441         if (phb->type != PNV_PHB_NPU)
2442                 return 0;
2443
2444         *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2445
2446         return 1;
2447 }
2448
2449 /*
2450  * This returns PE of associated NPU.
2451  * This assumes that NPU is in the same IOMMU group with GPU and there is
2452  * no other PEs.
2453  */
2454 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2455                 struct iommu_table_group *table_group)
2456 {
2457         struct pnv_ioda_pe *npe = NULL;
2458         int ret = iommu_group_for_each_dev(table_group->group, &npe,
2459                         gpe_table_group_to_npe_cb);
2460
2461         BUG_ON(!ret || !npe);
2462
2463         return npe;
2464 }
2465
2466 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2467                 int num, struct iommu_table *tbl)
2468 {
2469         long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2470
2471         if (ret)
2472                 return ret;
2473
2474         ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2475         if (ret)
2476                 pnv_pci_ioda2_unset_window(table_group, num);
2477
2478         return ret;
2479 }
2480
2481 static long pnv_pci_ioda2_npu_unset_window(
2482                 struct iommu_table_group *table_group,
2483                 int num)
2484 {
2485         long ret = pnv_pci_ioda2_unset_window(table_group, num);
2486
2487         if (ret)
2488                 return ret;
2489
2490         return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2491 }
2492
2493 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2494 {
2495         /*
2496          * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2497          * the iommu_table if 32bit DMA is enabled.
2498          */
2499         pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2500         pnv_ioda2_take_ownership(table_group);
2501 }
2502
2503 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2504         .get_table_size = pnv_pci_ioda2_get_table_size,
2505         .create_table = pnv_pci_ioda2_create_table,
2506         .set_window = pnv_pci_ioda2_npu_set_window,
2507         .unset_window = pnv_pci_ioda2_npu_unset_window,
2508         .take_ownership = pnv_ioda2_npu_take_ownership,
2509         .release_ownership = pnv_ioda2_release_ownership,
2510 };
2511
2512 static void pnv_pci_ioda_setup_iommu_api(void)
2513 {
2514         struct pci_controller *hose, *tmp;
2515         struct pnv_phb *phb;
2516         struct pnv_ioda_pe *pe, *gpe;
2517
2518         /*
2519          * Now we have all PHBs discovered, time to add NPU devices to
2520          * the corresponding IOMMU groups.
2521          */
2522         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2523                 phb = hose->private_data;
2524
2525                 if (phb->type != PNV_PHB_NPU)
2526                         continue;
2527
2528                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2529                         gpe = pnv_pci_npu_setup_iommu(pe);
2530                         if (gpe)
2531                                 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2532                 }
2533         }
2534 }
2535 #else /* !CONFIG_IOMMU_API */
2536 static void pnv_pci_ioda_setup_iommu_api(void) { };
2537 #endif
2538
2539 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2540                 unsigned levels, unsigned long limit,
2541                 unsigned long *current_offset, unsigned long *total_allocated)
2542 {
2543         struct page *tce_mem = NULL;
2544         __be64 *addr, *tmp;
2545         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2546         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2547         unsigned entries = 1UL << (shift - 3);
2548         long i;
2549
2550         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2551         if (!tce_mem) {
2552                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2553                 return NULL;
2554         }
2555         addr = page_address(tce_mem);
2556         memset(addr, 0, allocated);
2557         *total_allocated += allocated;
2558
2559         --levels;
2560         if (!levels) {
2561                 *current_offset += allocated;
2562                 return addr;
2563         }
2564
2565         for (i = 0; i < entries; ++i) {
2566                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2567                                 levels, limit, current_offset, total_allocated);
2568                 if (!tmp)
2569                         break;
2570
2571                 addr[i] = cpu_to_be64(__pa(tmp) |
2572                                 TCE_PCI_READ | TCE_PCI_WRITE);
2573
2574                 if (*current_offset >= limit)
2575                         break;
2576         }
2577
2578         return addr;
2579 }
2580
2581 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2582                 unsigned long size, unsigned level);
2583
2584 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2585                 __u32 page_shift, __u64 window_size, __u32 levels,
2586                 struct iommu_table *tbl)
2587 {
2588         void *addr;
2589         unsigned long offset = 0, level_shift, total_allocated = 0;
2590         const unsigned window_shift = ilog2(window_size);
2591         unsigned entries_shift = window_shift - page_shift;
2592         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2593         const unsigned long tce_table_size = 1UL << table_shift;
2594
2595         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2596                 return -EINVAL;
2597
2598         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2599                 return -EINVAL;
2600
2601         /* Adjust direct table size from window_size and levels */
2602         entries_shift = (entries_shift + levels - 1) / levels;
2603         level_shift = entries_shift + 3;
2604         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2605
2606         /* Allocate TCE table */
2607         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2608                         levels, tce_table_size, &offset, &total_allocated);
2609
2610         /* addr==NULL means that the first level allocation failed */
2611         if (!addr)
2612                 return -ENOMEM;
2613
2614         /*
2615          * First level was allocated but some lower level failed as
2616          * we did not allocate as much as we wanted,
2617          * release partially allocated table.
2618          */
2619         if (offset < tce_table_size) {
2620                 pnv_pci_ioda2_table_do_free_pages(addr,
2621                                 1ULL << (level_shift - 3), levels - 1);
2622                 return -ENOMEM;
2623         }
2624
2625         /* Setup linux iommu table */
2626         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2627                         page_shift);
2628         tbl->it_level_size = 1ULL << (level_shift - 3);
2629         tbl->it_indirect_levels = levels - 1;
2630         tbl->it_allocated_size = total_allocated;
2631
2632         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2633                         window_size, tce_table_size, bus_offset);
2634
2635         return 0;
2636 }
2637
2638 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2639                 unsigned long size, unsigned level)
2640 {
2641         const unsigned long addr_ul = (unsigned long) addr &
2642                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2643
2644         if (level) {
2645                 long i;
2646                 u64 *tmp = (u64 *) addr_ul;
2647
2648                 for (i = 0; i < size; ++i) {
2649                         unsigned long hpa = be64_to_cpu(tmp[i]);
2650
2651                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2652                                 continue;
2653
2654                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2655                                         level - 1);
2656                 }
2657         }
2658
2659         free_pages(addr_ul, get_order(size << 3));
2660 }
2661
2662 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2663 {
2664         const unsigned long size = tbl->it_indirect_levels ?
2665                         tbl->it_level_size : tbl->it_size;
2666
2667         if (!tbl->it_size)
2668                 return;
2669
2670         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2671                         tbl->it_indirect_levels);
2672 }
2673
2674 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2675                                        struct pnv_ioda_pe *pe)
2676 {
2677         int64_t rc;
2678
2679         if (!pnv_pci_ioda_pe_dma_weight(pe))
2680                 return;
2681
2682         /* TVE #1 is selected by PCI address bit 59 */
2683         pe->tce_bypass_base = 1ull << 59;
2684
2685         iommu_register_group(&pe->table_group, phb->hose->global_number,
2686                         pe->pe_number);
2687
2688         /* The PE will reserve all possible 32-bits space */
2689         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2690                 phb->ioda.m32_pci_base);
2691
2692         /* Setup linux iommu table */
2693         pe->table_group.tce32_start = 0;
2694         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2695         pe->table_group.max_dynamic_windows_supported =
2696                         IOMMU_TABLE_GROUP_MAX_TABLES;
2697         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2698         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2699 #ifdef CONFIG_IOMMU_API
2700         pe->table_group.ops = &pnv_pci_ioda2_ops;
2701 #endif
2702
2703         rc = pnv_pci_ioda2_setup_default_config(pe);
2704         if (rc)
2705                 return;
2706
2707         if (pe->flags & PNV_IODA_PE_DEV)
2708                 iommu_add_device(&pe->pdev->dev);
2709         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2710                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2711 }
2712
2713 #ifdef CONFIG_PCI_MSI
2714 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2715 {
2716         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2717         struct irq_chip *chip = irq_data_get_irq_chip(d);
2718         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2719                                            ioda.irq_chip);
2720         int64_t rc;
2721
2722         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2723         WARN_ON_ONCE(rc);
2724
2725         icp_native_eoi(d);
2726 }
2727
2728
2729 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2730 {
2731         struct irq_data *idata;
2732         struct irq_chip *ichip;
2733
2734         /* The MSI EOI OPAL call is only needed on PHB3 */
2735         if (phb->model != PNV_PHB_MODEL_PHB3)
2736                 return;
2737
2738         if (!phb->ioda.irq_chip_init) {
2739                 /*
2740                  * First time we setup an MSI IRQ, we need to setup the
2741                  * corresponding IRQ chip to route correctly.
2742                  */
2743                 idata = irq_get_irq_data(virq);
2744                 ichip = irq_data_get_irq_chip(idata);
2745                 phb->ioda.irq_chip_init = 1;
2746                 phb->ioda.irq_chip = *ichip;
2747                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2748         }
2749         irq_set_chip(virq, &phb->ioda.irq_chip);
2750 }
2751
2752 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2753                                   unsigned int hwirq, unsigned int virq,
2754                                   unsigned int is_64, struct msi_msg *msg)
2755 {
2756         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2757         unsigned int xive_num = hwirq - phb->msi_base;
2758         __be32 data;
2759         int rc;
2760
2761         /* No PE assigned ? bail out ... no MSI for you ! */
2762         if (pe == NULL)
2763                 return -ENXIO;
2764
2765         /* Check if we have an MVE */
2766         if (pe->mve_number < 0)
2767                 return -ENXIO;
2768
2769         /* Force 32-bit MSI on some broken devices */
2770         if (dev->no_64bit_msi)
2771                 is_64 = 0;
2772
2773         /* Assign XIVE to PE */
2774         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2775         if (rc) {
2776                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2777                         pci_name(dev), rc, xive_num);
2778                 return -EIO;
2779         }
2780
2781         if (is_64) {
2782                 __be64 addr64;
2783
2784                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2785                                      &addr64, &data);
2786                 if (rc) {
2787                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2788                                 pci_name(dev), rc);
2789                         return -EIO;
2790                 }
2791                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2792                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2793         } else {
2794                 __be32 addr32;
2795
2796                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2797                                      &addr32, &data);
2798                 if (rc) {
2799                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2800                                 pci_name(dev), rc);
2801                         return -EIO;
2802                 }
2803                 msg->address_hi = 0;
2804                 msg->address_lo = be32_to_cpu(addr32);
2805         }
2806         msg->data = be32_to_cpu(data);
2807
2808         pnv_set_msi_irq_chip(phb, virq);
2809
2810         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2811                  " address=%x_%08x data=%x PE# %d\n",
2812                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2813                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2814
2815         return 0;
2816 }
2817
2818 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2819 {
2820         unsigned int count;
2821         const __be32 *prop = of_get_property(phb->hose->dn,
2822                                              "ibm,opal-msi-ranges", NULL);
2823         if (!prop) {
2824                 /* BML Fallback */
2825                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2826         }
2827         if (!prop)
2828                 return;
2829
2830         phb->msi_base = be32_to_cpup(prop);
2831         count = be32_to_cpup(prop + 1);
2832         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2833                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2834                        phb->hose->global_number);
2835                 return;
2836         }
2837
2838         phb->msi_setup = pnv_pci_ioda_msi_setup;
2839         phb->msi32_support = 1;
2840         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2841                 count, phb->msi_base);
2842 }
2843 #else
2844 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2845 #endif /* CONFIG_PCI_MSI */
2846
2847 #ifdef CONFIG_PCI_IOV
2848 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2849 {
2850         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2851         struct pnv_phb *phb = hose->private_data;
2852         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2853         struct resource *res;
2854         int i;
2855         resource_size_t size, total_vf_bar_sz;
2856         struct pci_dn *pdn;
2857         int mul, total_vfs;
2858
2859         if (!pdev->is_physfn || pdev->is_added)
2860                 return;
2861
2862         pdn = pci_get_pdn(pdev);
2863         pdn->vfs_expanded = 0;
2864         pdn->m64_single_mode = false;
2865
2866         total_vfs = pci_sriov_get_totalvfs(pdev);
2867         mul = phb->ioda.total_pe_num;
2868         total_vf_bar_sz = 0;
2869
2870         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2871                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2872                 if (!res->flags || res->parent)
2873                         continue;
2874                 if (!pnv_pci_is_m64(phb, res)) {
2875                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
2876                                         " non M64 VF BAR%d: %pR. \n",
2877                                  i, res);
2878                         goto truncate_iov;
2879                 }
2880
2881                 total_vf_bar_sz += pci_iov_resource_size(pdev,
2882                                 i + PCI_IOV_RESOURCES);
2883
2884                 /*
2885                  * If bigger than quarter of M64 segment size, just round up
2886                  * power of two.
2887                  *
2888                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2889                  * with other devices, IOV BAR size is expanded to be
2890                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2891                  * segment size , the expanded size would equal to half of the
2892                  * whole M64 space size, which will exhaust the M64 Space and
2893                  * limit the system flexibility.  This is a design decision to
2894                  * set the boundary to quarter of the M64 segment size.
2895                  */
2896                 if (total_vf_bar_sz > gate) {
2897                         mul = roundup_pow_of_two(total_vfs);
2898                         dev_info(&pdev->dev,
2899                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2900                                 total_vf_bar_sz, gate, mul);
2901                         pdn->m64_single_mode = true;
2902                         break;
2903                 }
2904         }
2905
2906         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2907                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2908                 if (!res->flags || res->parent)
2909                         continue;
2910
2911                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2912                 /*
2913                  * On PHB3, the minimum size alignment of M64 BAR in single
2914                  * mode is 32MB.
2915                  */
2916                 if (pdn->m64_single_mode && (size < SZ_32M))
2917                         goto truncate_iov;
2918                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2919                 res->end = res->start + size * mul - 1;
2920                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2921                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2922                          i, res, mul);
2923         }
2924         pdn->vfs_expanded = mul;
2925
2926         return;
2927
2928 truncate_iov:
2929         /* To save MMIO space, IOV BAR is truncated. */
2930         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2931                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2932                 res->flags = 0;
2933                 res->end = res->start - 1;
2934         }
2935 }
2936 #endif /* CONFIG_PCI_IOV */
2937
2938 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2939                                   struct resource *res)
2940 {
2941         struct pnv_phb *phb = pe->phb;
2942         struct pci_bus_region region;
2943         int index;
2944         int64_t rc;
2945
2946         if (!res || !res->flags || res->start > res->end)
2947                 return;
2948
2949         if (res->flags & IORESOURCE_IO) {
2950                 region.start = res->start - phb->ioda.io_pci_base;
2951                 region.end   = res->end - phb->ioda.io_pci_base;
2952                 index = region.start / phb->ioda.io_segsize;
2953
2954                 while (index < phb->ioda.total_pe_num &&
2955                        region.start <= region.end) {
2956                         phb->ioda.io_segmap[index] = pe->pe_number;
2957                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2958                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2959                         if (rc != OPAL_SUCCESS) {
2960                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
2961                                        __func__, rc, index, pe->pe_number);
2962                                 break;
2963                         }
2964
2965                         region.start += phb->ioda.io_segsize;
2966                         index++;
2967                 }
2968         } else if ((res->flags & IORESOURCE_MEM) &&
2969                    !pnv_pci_is_m64(phb, res)) {
2970                 region.start = res->start -
2971                                phb->hose->mem_offset[0] -
2972                                phb->ioda.m32_pci_base;
2973                 region.end   = res->end -
2974                                phb->hose->mem_offset[0] -
2975                                phb->ioda.m32_pci_base;
2976                 index = region.start / phb->ioda.m32_segsize;
2977
2978                 while (index < phb->ioda.total_pe_num &&
2979                        region.start <= region.end) {
2980                         phb->ioda.m32_segmap[index] = pe->pe_number;
2981                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2982                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2983                         if (rc != OPAL_SUCCESS) {
2984                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
2985                                        __func__, rc, index, pe->pe_number);
2986                                 break;
2987                         }
2988
2989                         region.start += phb->ioda.m32_segsize;
2990                         index++;
2991                 }
2992         }
2993 }
2994
2995 /*
2996  * This function is supposed to be called on basis of PE from top
2997  * to bottom style. So the the I/O or MMIO segment assigned to
2998  * parent PE could be overrided by its child PEs if necessary.
2999  */
3000 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3001 {
3002         struct pci_dev *pdev;
3003         int i;
3004
3005         /*
3006          * NOTE: We only care PCI bus based PE for now. For PCI
3007          * device based PE, for example SRIOV sensitive VF should
3008          * be figured out later.
3009          */
3010         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3011
3012         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3013                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3014                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3015
3016                 /*
3017                  * If the PE contains all subordinate PCI buses, the
3018                  * windows of the child bridges should be mapped to
3019                  * the PE as well.
3020                  */
3021                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3022                         continue;
3023                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3024                         pnv_ioda_setup_pe_res(pe,
3025                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3026         }
3027 }
3028
3029 static void pnv_pci_ioda_create_dbgfs(void)
3030 {
3031 #ifdef CONFIG_DEBUG_FS
3032         struct pci_controller *hose, *tmp;
3033         struct pnv_phb *phb;
3034         char name[16];
3035
3036         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3037                 phb = hose->private_data;
3038
3039                 /* Notify initialization of PHB done */
3040                 phb->initialized = 1;
3041
3042                 sprintf(name, "PCI%04x", hose->global_number);
3043                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3044                 if (!phb->dbgfs)
3045                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3046                                 __func__, hose->global_number);
3047         }
3048 #endif /* CONFIG_DEBUG_FS */
3049 }
3050
3051 static void pnv_pci_ioda_fixup(void)
3052 {
3053         pnv_pci_ioda_setup_PEs();
3054         pnv_pci_ioda_setup_iommu_api();
3055         pnv_pci_ioda_create_dbgfs();
3056
3057 #ifdef CONFIG_EEH
3058         eeh_init();
3059         eeh_addr_cache_build();
3060 #endif
3061 }
3062
3063 /*
3064  * Returns the alignment for I/O or memory windows for P2P
3065  * bridges. That actually depends on how PEs are segmented.
3066  * For now, we return I/O or M32 segment size for PE sensitive
3067  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3068  * 1MiB for memory) will be returned.
3069  *
3070  * The current PCI bus might be put into one PE, which was
3071  * create against the parent PCI bridge. For that case, we
3072  * needn't enlarge the alignment so that we can save some
3073  * resources.
3074  */
3075 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3076                                                 unsigned long type)
3077 {
3078         struct pci_dev *bridge;
3079         struct pci_controller *hose = pci_bus_to_host(bus);
3080         struct pnv_phb *phb = hose->private_data;
3081         int num_pci_bridges = 0;
3082
3083         bridge = bus->self;
3084         while (bridge) {
3085                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3086                         num_pci_bridges++;
3087                         if (num_pci_bridges >= 2)
3088                                 return 1;
3089                 }
3090
3091                 bridge = bridge->bus->self;
3092         }
3093
3094         /*
3095          * We fall back to M32 if M64 isn't supported. We enforce the M64
3096          * alignment for any 64-bit resource, PCIe doesn't care and
3097          * bridges only do 64-bit prefetchable anyway.
3098          */
3099         if (phb->ioda.m64_segsize && (type & IORESOURCE_MEM_64))
3100                 return phb->ioda.m64_segsize;
3101         if (type & IORESOURCE_MEM)
3102                 return phb->ioda.m32_segsize;
3103
3104         return phb->ioda.io_segsize;
3105 }
3106
3107 /*
3108  * We are updating root port or the upstream port of the
3109  * bridge behind the root port with PHB's windows in order
3110  * to accommodate the changes on required resources during
3111  * PCI (slot) hotplug, which is connected to either root
3112  * port or the downstream ports of PCIe switch behind the
3113  * root port.
3114  */
3115 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3116                                            unsigned long type)
3117 {
3118         struct pci_controller *hose = pci_bus_to_host(bus);
3119         struct pnv_phb *phb = hose->private_data;
3120         struct pci_dev *bridge = bus->self;
3121         struct resource *r, *w;
3122         bool msi_region = false;
3123         int i;
3124
3125         /* Check if we need apply fixup to the bridge's windows */
3126         if (!pci_is_root_bus(bridge->bus) &&
3127             !pci_is_root_bus(bridge->bus->self->bus))
3128                 return;
3129
3130         /* Fixup the resources */
3131         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3132                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3133                 if (!r->flags || !r->parent)
3134                         continue;
3135
3136                 w = NULL;
3137                 if (r->flags & type & IORESOURCE_IO)
3138                         w = &hose->io_resource;
3139                 else if (pnv_pci_is_m64(phb, r) &&
3140                          (type & IORESOURCE_PREFETCH) &&
3141                          phb->ioda.m64_segsize)
3142                         w = &hose->mem_resources[1];
3143                 else if (r->flags & type & IORESOURCE_MEM) {
3144                         w = &hose->mem_resources[0];
3145                         msi_region = true;
3146                 }
3147
3148                 r->start = w->start;
3149                 r->end = w->end;
3150
3151                 /* The 64KB 32-bits MSI region shouldn't be included in
3152                  * the 32-bits bridge window. Otherwise, we can see strange
3153                  * issues. One of them is EEH error observed on Garrison.
3154                  *
3155                  * Exclude top 1MB region which is the minimal alignment of
3156                  * 32-bits bridge window.
3157                  */
3158                 if (msi_region) {
3159                         r->end += 0x10000;
3160                         r->end -= 0x100000;
3161                 }
3162         }
3163 }
3164
3165 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3166 {
3167         struct pci_controller *hose = pci_bus_to_host(bus);
3168         struct pnv_phb *phb = hose->private_data;
3169         struct pci_dev *bridge = bus->self;
3170         struct pnv_ioda_pe *pe;
3171         bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3172
3173         /* Extend bridge's windows if necessary */
3174         pnv_pci_fixup_bridge_resources(bus, type);
3175
3176         /* The PE for root bus should be realized before any one else */
3177         if (!phb->ioda.root_pe_populated) {
3178                 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3179                 if (pe) {
3180                         phb->ioda.root_pe_idx = pe->pe_number;
3181                         phb->ioda.root_pe_populated = true;
3182                 }
3183         }
3184
3185         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3186         if (list_empty(&bus->devices))
3187                 return;
3188
3189         /* Reserve PEs according to used M64 resources */
3190         if (phb->reserve_m64_pe)
3191                 phb->reserve_m64_pe(bus, NULL, all);
3192
3193         /*
3194          * Assign PE. We might run here because of partial hotplug.
3195          * For the case, we just pick up the existing PE and should
3196          * not allocate resources again.
3197          */
3198         pe = pnv_ioda_setup_bus_PE(bus, all);
3199         if (!pe)
3200                 return;
3201
3202         pnv_ioda_setup_pe_seg(pe);
3203         switch (phb->type) {
3204         case PNV_PHB_IODA1:
3205                 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3206                 break;
3207         case PNV_PHB_IODA2:
3208                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3209                 break;
3210         default:
3211                 pr_warn("%s: No DMA for PHB#%d (type %d)\n",
3212                         __func__, phb->hose->global_number, phb->type);
3213         }
3214 }
3215
3216 #ifdef CONFIG_PCI_IOV
3217 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3218                                                       int resno)
3219 {
3220         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3221         struct pnv_phb *phb = hose->private_data;
3222         struct pci_dn *pdn = pci_get_pdn(pdev);
3223         resource_size_t align;
3224
3225         /*
3226          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3227          * SR-IOV. While from hardware perspective, the range mapped by M64
3228          * BAR should be size aligned.
3229          *
3230          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3231          * powernv-specific hardware restriction is gone. But if just use the
3232          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3233          * in one segment of M64 #15, which introduces the PE conflict between
3234          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3235          * m64_segsize.
3236          *
3237          * This function returns the total IOV BAR size if M64 BAR is in
3238          * Shared PE mode or just VF BAR size if not.
3239          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3240          * M64 segment size if IOV BAR size is less.
3241          */
3242         align = pci_iov_resource_size(pdev, resno);
3243         if (!pdn->vfs_expanded)
3244                 return align;
3245         if (pdn->m64_single_mode)
3246                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3247
3248         return pdn->vfs_expanded * align;
3249 }
3250 #endif /* CONFIG_PCI_IOV */
3251
3252 /* Prevent enabling devices for which we couldn't properly
3253  * assign a PE
3254  */
3255 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3256 {
3257         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3258         struct pnv_phb *phb = hose->private_data;
3259         struct pci_dn *pdn;
3260
3261         /* The function is probably called while the PEs have
3262          * not be created yet. For example, resource reassignment
3263          * during PCI probe period. We just skip the check if
3264          * PEs isn't ready.
3265          */
3266         if (!phb->initialized)
3267                 return true;
3268
3269         pdn = pci_get_pdn(dev);
3270         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3271                 return false;
3272
3273         return true;
3274 }
3275
3276 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3277                                        int num)
3278 {
3279         struct pnv_ioda_pe *pe = container_of(table_group,
3280                                               struct pnv_ioda_pe, table_group);
3281         struct pnv_phb *phb = pe->phb;
3282         unsigned int idx;
3283         long rc;
3284
3285         pe_info(pe, "Removing DMA window #%d\n", num);
3286         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3287                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3288                         continue;
3289
3290                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3291                                                 idx, 0, 0ul, 0ul, 0ul);
3292                 if (rc != OPAL_SUCCESS) {
3293                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3294                                 rc, idx);
3295                         return rc;
3296                 }
3297
3298                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3299         }
3300
3301         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3302         return OPAL_SUCCESS;
3303 }
3304
3305 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3306 {
3307         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3308         struct iommu_table *tbl = pe->table_group.tables[0];
3309         int64_t rc;
3310
3311         if (!weight)
3312                 return;
3313
3314         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3315         if (rc != OPAL_SUCCESS)
3316                 return;
3317
3318         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3319         if (pe->table_group.group) {
3320                 iommu_group_put(pe->table_group.group);
3321                 WARN_ON(pe->table_group.group);
3322         }
3323
3324         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3325         iommu_free_table(tbl, "pnv");
3326 }
3327
3328 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3329 {
3330         struct iommu_table *tbl = pe->table_group.tables[0];
3331         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3332 #ifdef CONFIG_IOMMU_API
3333         int64_t rc;
3334 #endif
3335
3336         if (!weight)
3337                 return;
3338
3339 #ifdef CONFIG_IOMMU_API
3340         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3341         if (rc)
3342                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3343 #endif
3344
3345         pnv_pci_ioda2_set_bypass(pe, false);
3346         if (pe->table_group.group) {
3347                 iommu_group_put(pe->table_group.group);
3348                 WARN_ON(pe->table_group.group);
3349         }
3350
3351         pnv_pci_ioda2_table_free_pages(tbl);
3352         iommu_free_table(tbl, "pnv");
3353 }
3354
3355 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3356                                  unsigned short win,
3357                                  unsigned int *map)
3358 {
3359         struct pnv_phb *phb = pe->phb;
3360         int idx;
3361         int64_t rc;
3362
3363         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3364                 if (map[idx] != pe->pe_number)
3365                         continue;
3366
3367                 if (win == OPAL_M64_WINDOW_TYPE)
3368                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3369                                         phb->ioda.reserved_pe_idx, win,
3370                                         idx / PNV_IODA1_M64_SEGS,
3371                                         idx % PNV_IODA1_M64_SEGS);
3372                 else
3373                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3374                                         phb->ioda.reserved_pe_idx, win, 0, idx);
3375
3376                 if (rc != OPAL_SUCCESS)
3377                         pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3378                                 rc, win, idx);
3379
3380                 map[idx] = IODA_INVALID_PE;
3381         }
3382 }
3383
3384 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3385 {
3386         struct pnv_phb *phb = pe->phb;
3387
3388         if (phb->type == PNV_PHB_IODA1) {
3389                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3390                                      phb->ioda.io_segmap);
3391                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3392                                      phb->ioda.m32_segmap);
3393                 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3394                                      phb->ioda.m64_segmap);
3395         } else if (phb->type == PNV_PHB_IODA2) {
3396                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3397                                      phb->ioda.m32_segmap);
3398         }
3399 }
3400
3401 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3402 {
3403         struct pnv_phb *phb = pe->phb;
3404         struct pnv_ioda_pe *slave, *tmp;
3405
3406         list_del(&pe->list);
3407         switch (phb->type) {
3408         case PNV_PHB_IODA1:
3409                 pnv_pci_ioda1_release_pe_dma(pe);
3410                 break;
3411         case PNV_PHB_IODA2:
3412                 pnv_pci_ioda2_release_pe_dma(pe);
3413                 break;
3414         default:
3415                 WARN_ON(1);
3416         }
3417
3418         pnv_ioda_release_pe_seg(pe);
3419         pnv_ioda_deconfigure_pe(pe->phb, pe);
3420
3421         /* Release slave PEs in the compound PE */
3422         if (pe->flags & PNV_IODA_PE_MASTER) {
3423                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3424                         list_del(&slave->list);
3425                         pnv_ioda_free_pe(slave);
3426                 }
3427         }
3428
3429         /*
3430          * The PE for root bus can be removed because of hotplug in EEH
3431          * recovery for fenced PHB error. We need to mark the PE dead so
3432          * that it can be populated again in PCI hot add path. The PE
3433          * shouldn't be destroyed as it's the global reserved resource.
3434          */
3435         if (phb->ioda.root_pe_populated &&
3436             phb->ioda.root_pe_idx == pe->pe_number)
3437                 phb->ioda.root_pe_populated = false;
3438         else
3439                 pnv_ioda_free_pe(pe);
3440 }
3441
3442 static void pnv_pci_release_device(struct pci_dev *pdev)
3443 {
3444         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3445         struct pnv_phb *phb = hose->private_data;
3446         struct pci_dn *pdn = pci_get_pdn(pdev);
3447         struct pnv_ioda_pe *pe;
3448
3449         if (pdev->is_virtfn)
3450                 return;
3451
3452         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3453                 return;
3454
3455         /*
3456          * PCI hotplug can happen as part of EEH error recovery. The @pdn
3457          * isn't removed and added afterwards in this scenario. We should
3458          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3459          * device count is decreased on removing devices while failing to
3460          * be increased on adding devices. It leads to unbalanced PE's device
3461          * count and eventually make normal PCI hotplug path broken.
3462          */
3463         pe = &phb->ioda.pe_array[pdn->pe_number];
3464         pdn->pe_number = IODA_INVALID_PE;
3465
3466         WARN_ON(--pe->device_count < 0);
3467         if (pe->device_count == 0)
3468                 pnv_ioda_release_pe(pe);
3469 }
3470
3471 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3472 {
3473         struct pnv_phb *phb = hose->private_data;
3474
3475         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3476                        OPAL_ASSERT_RESET);
3477 }
3478
3479 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3480         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3481         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3482 #ifdef CONFIG_PCI_MSI
3483         .setup_msi_irqs         = pnv_setup_msi_irqs,
3484         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3485 #endif
3486         .enable_device_hook     = pnv_pci_enable_device_hook,
3487         .release_device         = pnv_pci_release_device,
3488         .window_alignment       = pnv_pci_window_alignment,
3489         .setup_bridge           = pnv_pci_setup_bridge,
3490         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3491         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3492         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3493         .shutdown               = pnv_pci_ioda_shutdown,
3494 };
3495
3496 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3497 {
3498         dev_err_once(&npdev->dev,
3499                         "%s operation unsupported for NVLink devices\n",
3500                         __func__);
3501         return -EPERM;
3502 }
3503
3504 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3505         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3506 #ifdef CONFIG_PCI_MSI
3507         .setup_msi_irqs         = pnv_setup_msi_irqs,
3508         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3509 #endif
3510         .enable_device_hook     = pnv_pci_enable_device_hook,
3511         .window_alignment       = pnv_pci_window_alignment,
3512         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3513         .dma_set_mask           = pnv_npu_dma_set_mask,
3514         .shutdown               = pnv_pci_ioda_shutdown,
3515 };
3516
3517 #ifdef CONFIG_CXL_BASE
3518 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3519         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3520         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3521 #ifdef CONFIG_PCI_MSI
3522         .setup_msi_irqs         = pnv_cxl_cx4_setup_msi_irqs,
3523         .teardown_msi_irqs      = pnv_cxl_cx4_teardown_msi_irqs,
3524 #endif
3525         .enable_device_hook     = pnv_cxl_enable_device_hook,
3526         .disable_device         = pnv_cxl_disable_device,
3527         .release_device         = pnv_pci_release_device,
3528         .window_alignment       = pnv_pci_window_alignment,
3529         .setup_bridge           = pnv_pci_setup_bridge,
3530         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3531         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3532         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3533         .shutdown               = pnv_pci_ioda_shutdown,
3534 };
3535 #endif
3536
3537 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3538                                          u64 hub_id, int ioda_type)
3539 {
3540         struct pci_controller *hose;
3541         struct pnv_phb *phb;
3542         unsigned long size, m64map_off, m32map_off, pemap_off;
3543         unsigned long iomap_off = 0, dma32map_off = 0;
3544         struct resource r;
3545         const __be64 *prop64;
3546         const __be32 *prop32;
3547         int len;
3548         unsigned int segno;
3549         u64 phb_id;
3550         void *aux;
3551         long rc;
3552
3553         if (!of_device_is_available(np))
3554                 return;
3555
3556         pr_info("Initializing %s PHB (%s)\n",
3557                 pnv_phb_names[ioda_type], of_node_full_name(np));
3558
3559         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3560         if (!prop64) {
3561                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3562                 return;
3563         }
3564         phb_id = be64_to_cpup(prop64);
3565         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3566
3567         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3568
3569         /* Allocate PCI controller */
3570         phb->hose = hose = pcibios_alloc_controller(np);
3571         if (!phb->hose) {
3572                 pr_err("  Can't allocate PCI controller for %s\n",
3573                        np->full_name);
3574                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3575                 return;
3576         }
3577
3578         spin_lock_init(&phb->lock);
3579         prop32 = of_get_property(np, "bus-range", &len);
3580         if (prop32 && len == 8) {
3581                 hose->first_busno = be32_to_cpu(prop32[0]);
3582                 hose->last_busno = be32_to_cpu(prop32[1]);
3583         } else {
3584                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3585                 hose->first_busno = 0;
3586                 hose->last_busno = 0xff;
3587         }
3588         hose->private_data = phb;
3589         phb->hub_id = hub_id;
3590         phb->opal_id = phb_id;
3591         phb->type = ioda_type;
3592         mutex_init(&phb->ioda.pe_alloc_mutex);
3593
3594         /* Detect specific models for error handling */
3595         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3596                 phb->model = PNV_PHB_MODEL_P7IOC;
3597         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3598                 phb->model = PNV_PHB_MODEL_PHB3;
3599         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3600                 phb->model = PNV_PHB_MODEL_NPU;
3601         else
3602                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3603
3604         /* Parse 32-bit and IO ranges (if any) */
3605         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3606
3607         /* Get registers */
3608         if (!of_address_to_resource(np, 0, &r)) {
3609                 phb->regs_phys = r.start;
3610                 phb->regs = ioremap(r.start, resource_size(&r));
3611                 if (phb->regs == NULL)
3612                         pr_err("  Failed to map registers !\n");
3613         }
3614
3615         /* Initialize more IODA stuff */
3616         phb->ioda.total_pe_num = 1;
3617         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3618         if (prop32)
3619                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3620         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3621         if (prop32)
3622                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3623
3624         /* Invalidate RID to PE# mapping */
3625         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3626                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3627
3628         /* Parse 64-bit MMIO range */
3629         pnv_ioda_parse_m64_window(phb);
3630
3631         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3632         /* FW Has already off top 64k of M32 space (MSI space) */
3633         phb->ioda.m32_size += 0x10000;
3634
3635         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3636         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3637         phb->ioda.io_size = hose->pci_io_size;
3638         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3639         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3640
3641         /* Calculate how many 32-bit TCE segments we have */
3642         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3643                                 PNV_IODA1_DMA32_SEGSIZE;
3644
3645         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3646         size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3647                         sizeof(unsigned long));
3648         m64map_off = size;
3649         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3650         m32map_off = size;
3651         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3652         if (phb->type == PNV_PHB_IODA1) {
3653                 iomap_off = size;
3654                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3655                 dma32map_off = size;
3656                 size += phb->ioda.dma32_count *
3657                         sizeof(phb->ioda.dma32_segmap[0]);
3658         }
3659         pemap_off = size;
3660         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3661         aux = memblock_virt_alloc(size, 0);
3662         phb->ioda.pe_alloc = aux;
3663         phb->ioda.m64_segmap = aux + m64map_off;
3664         phb->ioda.m32_segmap = aux + m32map_off;
3665         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3666                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3667                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3668         }
3669         if (phb->type == PNV_PHB_IODA1) {
3670                 phb->ioda.io_segmap = aux + iomap_off;
3671                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3672                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3673
3674                 phb->ioda.dma32_segmap = aux + dma32map_off;
3675                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3676                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3677         }
3678         phb->ioda.pe_array = aux + pemap_off;
3679
3680         /*
3681          * Choose PE number for root bus, which shouldn't have
3682          * M64 resources consumed by its child devices. To pick
3683          * the PE number adjacent to the reserved one if possible.
3684          */
3685         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3686         if (phb->ioda.reserved_pe_idx == 0) {
3687                 phb->ioda.root_pe_idx = 1;
3688                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3689         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3690                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3691                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3692         } else {
3693                 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3694         }
3695
3696         INIT_LIST_HEAD(&phb->ioda.pe_list);
3697         mutex_init(&phb->ioda.pe_list_mutex);
3698
3699         /* Calculate how many 32-bit TCE segments we have */
3700         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3701                                 PNV_IODA1_DMA32_SEGSIZE;
3702
3703 #if 0 /* We should really do that ... */
3704         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3705                                          window_type,
3706                                          window_num,
3707                                          starting_real_address,
3708                                          starting_pci_address,
3709                                          segment_size);
3710 #endif
3711
3712         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3713                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3714                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3715         if (phb->ioda.m64_size)
3716                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3717                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3718         if (phb->ioda.io_size)
3719                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3720                         phb->ioda.io_size, phb->ioda.io_segsize);
3721
3722
3723         phb->hose->ops = &pnv_pci_ops;
3724         phb->get_pe_state = pnv_ioda_get_pe_state;
3725         phb->freeze_pe = pnv_ioda_freeze_pe;
3726         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3727
3728         /* Setup MSI support */
3729         pnv_pci_init_ioda_msis(phb);
3730
3731         /*
3732          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3733          * to let the PCI core do resource assignment. It's supposed
3734          * that the PCI core will do correct I/O and MMIO alignment
3735          * for the P2P bridge bars so that each PCI bus (excluding
3736          * the child P2P bridges) can form individual PE.
3737          */
3738         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3739
3740         if (phb->type == PNV_PHB_NPU) {
3741                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3742         } else {
3743                 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3744                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3745         }
3746
3747 #ifdef CONFIG_PCI_IOV
3748         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3749         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3750 #endif
3751
3752         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3753
3754         /* Reset IODA tables to a clean state */
3755         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3756         if (rc)
3757                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3758
3759         /* If we're running in kdump kerenl, the previous kerenl never
3760          * shutdown PCI devices correctly. We already got IODA table
3761          * cleaned out. So we have to issue PHB reset to stop all PCI
3762          * transactions from previous kerenl.
3763          */
3764         if (is_kdump_kernel()) {
3765                 pr_info("  Issue PHB reset ...\n");
3766                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3767                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3768         }
3769
3770         /* Remove M64 resource if we can't configure it successfully */
3771         if (!phb->init_m64 || phb->init_m64(phb))
3772                 hose->mem_resources[1].flags = 0;
3773 }
3774
3775 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3776 {
3777         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3778 }
3779
3780 void __init pnv_pci_init_npu_phb(struct device_node *np)
3781 {
3782         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3783 }
3784
3785 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3786 {
3787         struct device_node *phbn;
3788         const __be64 *prop64;
3789         u64 hub_id;
3790
3791         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3792
3793         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3794         if (!prop64) {
3795                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3796                 return;
3797         }
3798         hub_id = be64_to_cpup(prop64);
3799         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3800
3801         /* Count child PHBs */
3802         for_each_child_of_node(np, phbn) {
3803                 /* Look for IODA1 PHBs */
3804                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3805                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3806         }
3807 }