Merge tag 'renesas-defconfig-fixes-for-v3.19' of git://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39 #include <asm/firmware.h>
40 #include <asm/pnv-pci.h>
41
42 #include <misc/cxl.h>
43
44 #include "powernv.h"
45 #include "pci.h"
46
47 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
48                             const char *fmt, ...)
49 {
50         struct va_format vaf;
51         va_list args;
52         char pfix[32];
53
54         va_start(args, fmt);
55
56         vaf.fmt = fmt;
57         vaf.va = &args;
58
59         if (pe->pdev)
60                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
61         else
62                 sprintf(pfix, "%04x:%02x     ",
63                         pci_domain_nr(pe->pbus), pe->pbus->number);
64
65         printk("%spci %s: [PE# %.3d] %pV",
66                level, pfix, pe->pe_number, &vaf);
67
68         va_end(args);
69 }
70
71 #define pe_err(pe, fmt, ...)                                    \
72         pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
73 #define pe_warn(pe, fmt, ...)                                   \
74         pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
75 #define pe_info(pe, fmt, ...)                                   \
76         pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
77
78 /*
79  * stdcix is only supposed to be used in hypervisor real mode as per
80  * the architecture spec
81  */
82 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
83 {
84         __asm__ __volatile__("stdcix %0,0,%1"
85                 : : "r" (val), "r" (paddr) : "memory");
86 }
87
88 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
89 {
90         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
91                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
92 }
93
94 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
95 {
96         unsigned long pe;
97
98         do {
99                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
100                                         phb->ioda.total_pe, 0);
101                 if (pe >= phb->ioda.total_pe)
102                         return IODA_INVALID_PE;
103         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
104
105         phb->ioda.pe_array[pe].phb = phb;
106         phb->ioda.pe_array[pe].pe_number = pe;
107         return pe;
108 }
109
110 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
111 {
112         WARN_ON(phb->ioda.pe_array[pe].pdev);
113
114         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
115         clear_bit(pe, phb->ioda.pe_alloc);
116 }
117
118 /* The default M64 BAR is shared by all PEs */
119 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
120 {
121         const char *desc;
122         struct resource *r;
123         s64 rc;
124
125         /* Configure the default M64 BAR */
126         rc = opal_pci_set_phb_mem_window(phb->opal_id,
127                                          OPAL_M64_WINDOW_TYPE,
128                                          phb->ioda.m64_bar_idx,
129                                          phb->ioda.m64_base,
130                                          0, /* unused */
131                                          phb->ioda.m64_size);
132         if (rc != OPAL_SUCCESS) {
133                 desc = "configuring";
134                 goto fail;
135         }
136
137         /* Enable the default M64 BAR */
138         rc = opal_pci_phb_mmio_enable(phb->opal_id,
139                                       OPAL_M64_WINDOW_TYPE,
140                                       phb->ioda.m64_bar_idx,
141                                       OPAL_ENABLE_M64_SPLIT);
142         if (rc != OPAL_SUCCESS) {
143                 desc = "enabling";
144                 goto fail;
145         }
146
147         /* Mark the M64 BAR assigned */
148         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
149
150         /*
151          * Strip off the segment used by the reserved PE, which is
152          * expected to be 0 or last one of PE capabicity.
153          */
154         r = &phb->hose->mem_resources[1];
155         if (phb->ioda.reserved_pe == 0)
156                 r->start += phb->ioda.m64_segsize;
157         else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
158                 r->end -= phb->ioda.m64_segsize;
159         else
160                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
161                         phb->ioda.reserved_pe);
162
163         return 0;
164
165 fail:
166         pr_warn("  Failure %lld %s M64 BAR#%d\n",
167                 rc, desc, phb->ioda.m64_bar_idx);
168         opal_pci_phb_mmio_enable(phb->opal_id,
169                                  OPAL_M64_WINDOW_TYPE,
170                                  phb->ioda.m64_bar_idx,
171                                  OPAL_DISABLE_M64);
172         return -EIO;
173 }
174
175 static void pnv_ioda2_alloc_m64_pe(struct pnv_phb *phb)
176 {
177         resource_size_t sgsz = phb->ioda.m64_segsize;
178         struct pci_dev *pdev;
179         struct resource *r;
180         int base, step, i;
181
182         /*
183          * Root bus always has full M64 range and root port has
184          * M64 range used in reality. So we're checking root port
185          * instead of root bus.
186          */
187         list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
188                 for (i = PCI_BRIDGE_RESOURCES;
189                      i <= PCI_BRIDGE_RESOURCE_END; i++) {
190                         r = &pdev->resource[i];
191                         if (!r->parent ||
192                             !pnv_pci_is_mem_pref_64(r->flags))
193                                 continue;
194
195                         base = (r->start - phb->ioda.m64_base) / sgsz;
196                         for (step = 0; step < resource_size(r) / sgsz; step++)
197                                 set_bit(base + step, phb->ioda.pe_alloc);
198                 }
199         }
200 }
201
202 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
203                                  struct pci_bus *bus, int all)
204 {
205         resource_size_t segsz = phb->ioda.m64_segsize;
206         struct pci_dev *pdev;
207         struct resource *r;
208         struct pnv_ioda_pe *master_pe, *pe;
209         unsigned long size, *pe_alloc;
210         bool found;
211         int start, i, j;
212
213         /* Root bus shouldn't use M64 */
214         if (pci_is_root_bus(bus))
215                 return IODA_INVALID_PE;
216
217         /* We support only one M64 window on each bus */
218         found = false;
219         pci_bus_for_each_resource(bus, r, i) {
220                 if (r && r->parent &&
221                     pnv_pci_is_mem_pref_64(r->flags)) {
222                         found = true;
223                         break;
224                 }
225         }
226
227         /* No M64 window found ? */
228         if (!found)
229                 return IODA_INVALID_PE;
230
231         /* Allocate bitmap */
232         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
233         pe_alloc = kzalloc(size, GFP_KERNEL);
234         if (!pe_alloc) {
235                 pr_warn("%s: Out of memory !\n",
236                         __func__);
237                 return IODA_INVALID_PE;
238         }
239
240         /*
241          * Figure out reserved PE numbers by the PE
242          * the its child PEs.
243          */
244         start = (r->start - phb->ioda.m64_base) / segsz;
245         for (i = 0; i < resource_size(r) / segsz; i++)
246                 set_bit(start + i, pe_alloc);
247
248         if (all)
249                 goto done;
250
251         /*
252          * If the PE doesn't cover all subordinate buses,
253          * we need subtract from reserved PEs for children.
254          */
255         list_for_each_entry(pdev, &bus->devices, bus_list) {
256                 if (!pdev->subordinate)
257                         continue;
258
259                 pci_bus_for_each_resource(pdev->subordinate, r, i) {
260                         if (!r || !r->parent ||
261                             !pnv_pci_is_mem_pref_64(r->flags))
262                                 continue;
263
264                         start = (r->start - phb->ioda.m64_base) / segsz;
265                         for (j = 0; j < resource_size(r) / segsz ; j++)
266                                 clear_bit(start + j, pe_alloc);
267                 }
268         }
269
270         /*
271          * the current bus might not own M64 window and that's all
272          * contributed by its child buses. For the case, we needn't
273          * pick M64 dependent PE#.
274          */
275         if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
276                 kfree(pe_alloc);
277                 return IODA_INVALID_PE;
278         }
279
280         /*
281          * Figure out the master PE and put all slave PEs to master
282          * PE's list to form compound PE.
283          */
284 done:
285         master_pe = NULL;
286         i = -1;
287         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
288                 phb->ioda.total_pe) {
289                 pe = &phb->ioda.pe_array[i];
290                 pe->phb = phb;
291                 pe->pe_number = i;
292
293                 if (!master_pe) {
294                         pe->flags |= PNV_IODA_PE_MASTER;
295                         INIT_LIST_HEAD(&pe->slaves);
296                         master_pe = pe;
297                 } else {
298                         pe->flags |= PNV_IODA_PE_SLAVE;
299                         pe->master = master_pe;
300                         list_add_tail(&pe->list, &master_pe->slaves);
301                 }
302         }
303
304         kfree(pe_alloc);
305         return master_pe->pe_number;
306 }
307
308 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
309 {
310         struct pci_controller *hose = phb->hose;
311         struct device_node *dn = hose->dn;
312         struct resource *res;
313         const u32 *r;
314         u64 pci_addr;
315
316         if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
317                 pr_info("  Firmware too old to support M64 window\n");
318                 return;
319         }
320
321         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
322         if (!r) {
323                 pr_info("  No <ibm,opal-m64-window> on %s\n",
324                         dn->full_name);
325                 return;
326         }
327
328         /* FIXME: Support M64 for P7IOC */
329         if (phb->type != PNV_PHB_IODA2) {
330                 pr_info("  Not support M64 window\n");
331                 return;
332         }
333
334         res = &hose->mem_resources[1];
335         res->start = of_translate_address(dn, r + 2);
336         res->end = res->start + of_read_number(r + 4, 2) - 1;
337         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
338         pci_addr = of_read_number(r, 2);
339         hose->mem_offset[1] = res->start - pci_addr;
340
341         phb->ioda.m64_size = resource_size(res);
342         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
343         phb->ioda.m64_base = pci_addr;
344
345         /* Use last M64 BAR to cover M64 window */
346         phb->ioda.m64_bar_idx = 15;
347         phb->init_m64 = pnv_ioda2_init_m64;
348         phb->alloc_m64_pe = pnv_ioda2_alloc_m64_pe;
349         phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
350 }
351
352 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
353 {
354         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
355         struct pnv_ioda_pe *slave;
356         s64 rc;
357
358         /* Fetch master PE */
359         if (pe->flags & PNV_IODA_PE_SLAVE) {
360                 pe = pe->master;
361                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
362                 pe_no = pe->pe_number;
363         }
364
365         /* Freeze master PE */
366         rc = opal_pci_eeh_freeze_set(phb->opal_id,
367                                      pe_no,
368                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
369         if (rc != OPAL_SUCCESS) {
370                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
371                         __func__, rc, phb->hose->global_number, pe_no);
372                 return;
373         }
374
375         /* Freeze slave PEs */
376         if (!(pe->flags & PNV_IODA_PE_MASTER))
377                 return;
378
379         list_for_each_entry(slave, &pe->slaves, list) {
380                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
381                                              slave->pe_number,
382                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
383                 if (rc != OPAL_SUCCESS)
384                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
385                                 __func__, rc, phb->hose->global_number,
386                                 slave->pe_number);
387         }
388 }
389
390 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
391 {
392         struct pnv_ioda_pe *pe, *slave;
393         s64 rc;
394
395         /* Find master PE */
396         pe = &phb->ioda.pe_array[pe_no];
397         if (pe->flags & PNV_IODA_PE_SLAVE) {
398                 pe = pe->master;
399                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
400                 pe_no = pe->pe_number;
401         }
402
403         /* Clear frozen state for master PE */
404         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
405         if (rc != OPAL_SUCCESS) {
406                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
407                         __func__, rc, opt, phb->hose->global_number, pe_no);
408                 return -EIO;
409         }
410
411         if (!(pe->flags & PNV_IODA_PE_MASTER))
412                 return 0;
413
414         /* Clear frozen state for slave PEs */
415         list_for_each_entry(slave, &pe->slaves, list) {
416                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
417                                              slave->pe_number,
418                                              opt);
419                 if (rc != OPAL_SUCCESS) {
420                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
421                                 __func__, rc, opt, phb->hose->global_number,
422                                 slave->pe_number);
423                         return -EIO;
424                 }
425         }
426
427         return 0;
428 }
429
430 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
431 {
432         struct pnv_ioda_pe *slave, *pe;
433         u8 fstate, state;
434         __be16 pcierr;
435         s64 rc;
436
437         /* Sanity check on PE number */
438         if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
439                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
440
441         /*
442          * Fetch the master PE and the PE instance might be
443          * not initialized yet.
444          */
445         pe = &phb->ioda.pe_array[pe_no];
446         if (pe->flags & PNV_IODA_PE_SLAVE) {
447                 pe = pe->master;
448                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
449                 pe_no = pe->pe_number;
450         }
451
452         /* Check the master PE */
453         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
454                                         &state, &pcierr, NULL);
455         if (rc != OPAL_SUCCESS) {
456                 pr_warn("%s: Failure %lld getting "
457                         "PHB#%x-PE#%x state\n",
458                         __func__, rc,
459                         phb->hose->global_number, pe_no);
460                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
461         }
462
463         /* Check the slave PE */
464         if (!(pe->flags & PNV_IODA_PE_MASTER))
465                 return state;
466
467         list_for_each_entry(slave, &pe->slaves, list) {
468                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
469                                                 slave->pe_number,
470                                                 &fstate,
471                                                 &pcierr,
472                                                 NULL);
473                 if (rc != OPAL_SUCCESS) {
474                         pr_warn("%s: Failure %lld getting "
475                                 "PHB#%x-PE#%x state\n",
476                                 __func__, rc,
477                                 phb->hose->global_number, slave->pe_number);
478                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
479                 }
480
481                 /*
482                  * Override the result based on the ascending
483                  * priority.
484                  */
485                 if (fstate > state)
486                         state = fstate;
487         }
488
489         return state;
490 }
491
492 /* Currently those 2 are only used when MSIs are enabled, this will change
493  * but in the meantime, we need to protect them to avoid warnings
494  */
495 #ifdef CONFIG_PCI_MSI
496 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
497 {
498         struct pci_controller *hose = pci_bus_to_host(dev->bus);
499         struct pnv_phb *phb = hose->private_data;
500         struct pci_dn *pdn = pci_get_pdn(dev);
501
502         if (!pdn)
503                 return NULL;
504         if (pdn->pe_number == IODA_INVALID_PE)
505                 return NULL;
506         return &phb->ioda.pe_array[pdn->pe_number];
507 }
508 #endif /* CONFIG_PCI_MSI */
509
510 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
511 {
512         struct pci_dev *parent;
513         uint8_t bcomp, dcomp, fcomp;
514         long rc, rid_end, rid;
515
516         /* Bus validation ? */
517         if (pe->pbus) {
518                 int count;
519
520                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
521                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
522                 parent = pe->pbus->self;
523                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
524                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
525                 else
526                         count = 1;
527
528                 switch(count) {
529                 case  1: bcomp = OpalPciBusAll;         break;
530                 case  2: bcomp = OpalPciBus7Bits;       break;
531                 case  4: bcomp = OpalPciBus6Bits;       break;
532                 case  8: bcomp = OpalPciBus5Bits;       break;
533                 case 16: bcomp = OpalPciBus4Bits;       break;
534                 case 32: bcomp = OpalPciBus3Bits;       break;
535                 default:
536                         pr_err("%s: Number of subordinate busses %d"
537                                " unsupported\n",
538                                pci_name(pe->pbus->self), count);
539                         /* Do an exact match only */
540                         bcomp = OpalPciBusAll;
541                 }
542                 rid_end = pe->rid + (count << 8);
543         } else {
544                 parent = pe->pdev->bus->self;
545                 bcomp = OpalPciBusAll;
546                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
547                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
548                 rid_end = pe->rid + 1;
549         }
550
551         /*
552          * Associate PE in PELT. We need add the PE into the
553          * corresponding PELT-V as well. Otherwise, the error
554          * originated from the PE might contribute to other
555          * PEs.
556          */
557         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
558                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
559         if (rc) {
560                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
561                 return -ENXIO;
562         }
563
564         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
565                                 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
566         if (rc)
567                 pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc);
568         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
569                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
570
571         /* Add to all parents PELT-V */
572         while (parent) {
573                 struct pci_dn *pdn = pci_get_pdn(parent);
574                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
575                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
576                                                 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
577                         /* XXX What to do in case of error ? */
578                 }
579                 parent = parent->bus->self;
580         }
581         /* Setup reverse map */
582         for (rid = pe->rid; rid < rid_end; rid++)
583                 phb->ioda.pe_rmap[rid] = pe->pe_number;
584
585         /* Setup one MVTs on IODA1 */
586         if (phb->type == PNV_PHB_IODA1) {
587                 pe->mve_number = pe->pe_number;
588                 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
589                                       pe->pe_number);
590                 if (rc) {
591                         pe_err(pe, "OPAL error %ld setting up MVE %d\n",
592                                rc, pe->mve_number);
593                         pe->mve_number = -1;
594                 } else {
595                         rc = opal_pci_set_mve_enable(phb->opal_id,
596                                                      pe->mve_number, OPAL_ENABLE_MVE);
597                         if (rc) {
598                                 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
599                                        rc, pe->mve_number);
600                                 pe->mve_number = -1;
601                         }
602                 }
603         } else if (phb->type == PNV_PHB_IODA2)
604                 pe->mve_number = 0;
605
606         return 0;
607 }
608
609 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
610                                        struct pnv_ioda_pe *pe)
611 {
612         struct pnv_ioda_pe *lpe;
613
614         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
615                 if (lpe->dma_weight < pe->dma_weight) {
616                         list_add_tail(&pe->dma_link, &lpe->dma_link);
617                         return;
618                 }
619         }
620         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
621 }
622
623 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
624 {
625         /* This is quite simplistic. The "base" weight of a device
626          * is 10. 0 means no DMA is to be accounted for it.
627          */
628
629         /* If it's a bridge, no DMA */
630         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
631                 return 0;
632
633         /* Reduce the weight of slow USB controllers */
634         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
635             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
636             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
637                 return 3;
638
639         /* Increase the weight of RAID (includes Obsidian) */
640         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
641                 return 15;
642
643         /* Default */
644         return 10;
645 }
646
647 #if 0
648 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
649 {
650         struct pci_controller *hose = pci_bus_to_host(dev->bus);
651         struct pnv_phb *phb = hose->private_data;
652         struct pci_dn *pdn = pci_get_pdn(dev);
653         struct pnv_ioda_pe *pe;
654         int pe_num;
655
656         if (!pdn) {
657                 pr_err("%s: Device tree node not associated properly\n",
658                            pci_name(dev));
659                 return NULL;
660         }
661         if (pdn->pe_number != IODA_INVALID_PE)
662                 return NULL;
663
664         /* PE#0 has been pre-set */
665         if (dev->bus->number == 0)
666                 pe_num = 0;
667         else
668                 pe_num = pnv_ioda_alloc_pe(phb);
669         if (pe_num == IODA_INVALID_PE) {
670                 pr_warning("%s: Not enough PE# available, disabling device\n",
671                            pci_name(dev));
672                 return NULL;
673         }
674
675         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
676          * pointer in the PE data structure, both should be destroyed at the
677          * same time. However, this needs to be looked at more closely again
678          * once we actually start removing things (Hotplug, SR-IOV, ...)
679          *
680          * At some point we want to remove the PDN completely anyways
681          */
682         pe = &phb->ioda.pe_array[pe_num];
683         pci_dev_get(dev);
684         pdn->pcidev = dev;
685         pdn->pe_number = pe_num;
686         pe->pdev = dev;
687         pe->pbus = NULL;
688         pe->tce32_seg = -1;
689         pe->mve_number = -1;
690         pe->rid = dev->bus->number << 8 | pdn->devfn;
691
692         pe_info(pe, "Associated device to PE\n");
693
694         if (pnv_ioda_configure_pe(phb, pe)) {
695                 /* XXX What do we do here ? */
696                 if (pe_num)
697                         pnv_ioda_free_pe(phb, pe_num);
698                 pdn->pe_number = IODA_INVALID_PE;
699                 pe->pdev = NULL;
700                 pci_dev_put(dev);
701                 return NULL;
702         }
703
704         /* Assign a DMA weight to the device */
705         pe->dma_weight = pnv_ioda_dma_weight(dev);
706         if (pe->dma_weight != 0) {
707                 phb->ioda.dma_weight += pe->dma_weight;
708                 phb->ioda.dma_pe_count++;
709         }
710
711         /* Link the PE */
712         pnv_ioda_link_pe_by_weight(phb, pe);
713
714         return pe;
715 }
716 #endif /* Useful for SRIOV case */
717
718 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
719 {
720         struct pci_dev *dev;
721
722         list_for_each_entry(dev, &bus->devices, bus_list) {
723                 struct pci_dn *pdn = pci_get_pdn(dev);
724
725                 if (pdn == NULL) {
726                         pr_warn("%s: No device node associated with device !\n",
727                                 pci_name(dev));
728                         continue;
729                 }
730                 pdn->pcidev = dev;
731                 pdn->pe_number = pe->pe_number;
732                 pe->dma_weight += pnv_ioda_dma_weight(dev);
733                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
734                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
735         }
736 }
737
738 /*
739  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
740  * single PCI bus. Another one that contains the primary PCI bus and its
741  * subordinate PCI devices and buses. The second type of PE is normally
742  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
743  */
744 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
745 {
746         struct pci_controller *hose = pci_bus_to_host(bus);
747         struct pnv_phb *phb = hose->private_data;
748         struct pnv_ioda_pe *pe;
749         int pe_num = IODA_INVALID_PE;
750
751         /* Check if PE is determined by M64 */
752         if (phb->pick_m64_pe)
753                 pe_num = phb->pick_m64_pe(phb, bus, all);
754
755         /* The PE number isn't pinned by M64 */
756         if (pe_num == IODA_INVALID_PE)
757                 pe_num = pnv_ioda_alloc_pe(phb);
758
759         if (pe_num == IODA_INVALID_PE) {
760                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
761                         __func__, pci_domain_nr(bus), bus->number);
762                 return;
763         }
764
765         pe = &phb->ioda.pe_array[pe_num];
766         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
767         pe->pbus = bus;
768         pe->pdev = NULL;
769         pe->tce32_seg = -1;
770         pe->mve_number = -1;
771         pe->rid = bus->busn_res.start << 8;
772         pe->dma_weight = 0;
773
774         if (all)
775                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
776                         bus->busn_res.start, bus->busn_res.end, pe_num);
777         else
778                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
779                         bus->busn_res.start, pe_num);
780
781         if (pnv_ioda_configure_pe(phb, pe)) {
782                 /* XXX What do we do here ? */
783                 if (pe_num)
784                         pnv_ioda_free_pe(phb, pe_num);
785                 pe->pbus = NULL;
786                 return;
787         }
788
789         /* Associate it with all child devices */
790         pnv_ioda_setup_same_PE(bus, pe);
791
792         /* Put PE to the list */
793         list_add_tail(&pe->list, &phb->ioda.pe_list);
794
795         /* Account for one DMA PE if at least one DMA capable device exist
796          * below the bridge
797          */
798         if (pe->dma_weight != 0) {
799                 phb->ioda.dma_weight += pe->dma_weight;
800                 phb->ioda.dma_pe_count++;
801         }
802
803         /* Link the PE */
804         pnv_ioda_link_pe_by_weight(phb, pe);
805 }
806
807 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
808 {
809         struct pci_dev *dev;
810
811         pnv_ioda_setup_bus_PE(bus, 0);
812
813         list_for_each_entry(dev, &bus->devices, bus_list) {
814                 if (dev->subordinate) {
815                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
816                                 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
817                         else
818                                 pnv_ioda_setup_PEs(dev->subordinate);
819                 }
820         }
821 }
822
823 /*
824  * Configure PEs so that the downstream PCI buses and devices
825  * could have their associated PE#. Unfortunately, we didn't
826  * figure out the way to identify the PLX bridge yet. So we
827  * simply put the PCI bus and the subordinate behind the root
828  * port to PE# here. The game rule here is expected to be changed
829  * as soon as we can detected PLX bridge correctly.
830  */
831 static void pnv_pci_ioda_setup_PEs(void)
832 {
833         struct pci_controller *hose, *tmp;
834         struct pnv_phb *phb;
835
836         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
837                 phb = hose->private_data;
838
839                 /* M64 layout might affect PE allocation */
840                 if (phb->alloc_m64_pe)
841                         phb->alloc_m64_pe(phb);
842
843                 pnv_ioda_setup_PEs(hose->bus);
844         }
845 }
846
847 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
848 {
849         struct pci_dn *pdn = pci_get_pdn(pdev);
850         struct pnv_ioda_pe *pe;
851
852         /*
853          * The function can be called while the PE#
854          * hasn't been assigned. Do nothing for the
855          * case.
856          */
857         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
858                 return;
859
860         pe = &phb->ioda.pe_array[pdn->pe_number];
861         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
862         set_iommu_table_base_and_group(&pdev->dev, &pe->tce32_table);
863 }
864
865 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
866                                      struct pci_dev *pdev, u64 dma_mask)
867 {
868         struct pci_dn *pdn = pci_get_pdn(pdev);
869         struct pnv_ioda_pe *pe;
870         uint64_t top;
871         bool bypass = false;
872
873         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
874                 return -ENODEV;;
875
876         pe = &phb->ioda.pe_array[pdn->pe_number];
877         if (pe->tce_bypass_enabled) {
878                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
879                 bypass = (dma_mask >= top);
880         }
881
882         if (bypass) {
883                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
884                 set_dma_ops(&pdev->dev, &dma_direct_ops);
885                 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
886         } else {
887                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
888                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
889                 set_iommu_table_base(&pdev->dev, &pe->tce32_table);
890         }
891         *pdev->dev.dma_mask = dma_mask;
892         return 0;
893 }
894
895 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
896                                               struct pci_dev *pdev)
897 {
898         struct pci_dn *pdn = pci_get_pdn(pdev);
899         struct pnv_ioda_pe *pe;
900         u64 end, mask;
901
902         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
903                 return 0;
904
905         pe = &phb->ioda.pe_array[pdn->pe_number];
906         if (!pe->tce_bypass_enabled)
907                 return __dma_get_required_mask(&pdev->dev);
908
909
910         end = pe->tce_bypass_base + memblock_end_of_DRAM();
911         mask = 1ULL << (fls64(end) - 1);
912         mask += mask - 1;
913
914         return mask;
915 }
916
917 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
918                                    struct pci_bus *bus,
919                                    bool add_to_iommu_group)
920 {
921         struct pci_dev *dev;
922
923         list_for_each_entry(dev, &bus->devices, bus_list) {
924                 if (add_to_iommu_group)
925                         set_iommu_table_base_and_group(&dev->dev,
926                                                        &pe->tce32_table);
927                 else
928                         set_iommu_table_base(&dev->dev, &pe->tce32_table);
929
930                 if (dev->subordinate)
931                         pnv_ioda_setup_bus_dma(pe, dev->subordinate,
932                                                add_to_iommu_group);
933         }
934 }
935
936 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
937                                          struct iommu_table *tbl,
938                                          __be64 *startp, __be64 *endp, bool rm)
939 {
940         __be64 __iomem *invalidate = rm ?
941                 (__be64 __iomem *)pe->tce_inval_reg_phys :
942                 (__be64 __iomem *)tbl->it_index;
943         unsigned long start, end, inc;
944         const unsigned shift = tbl->it_page_shift;
945
946         start = __pa(startp);
947         end = __pa(endp);
948
949         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
950         if (tbl->it_busno) {
951                 start <<= shift;
952                 end <<= shift;
953                 inc = 128ull << shift;
954                 start |= tbl->it_busno;
955                 end |= tbl->it_busno;
956         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
957                 /* p7ioc-style invalidation, 2 TCEs per write */
958                 start |= (1ull << 63);
959                 end |= (1ull << 63);
960                 inc = 16;
961         } else {
962                 /* Default (older HW) */
963                 inc = 128;
964         }
965
966         end |= inc - 1; /* round up end to be different than start */
967
968         mb(); /* Ensure above stores are visible */
969         while (start <= end) {
970                 if (rm)
971                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
972                 else
973                         __raw_writeq(cpu_to_be64(start), invalidate);
974                 start += inc;
975         }
976
977         /*
978          * The iommu layer will do another mb() for us on build()
979          * and we don't care on free()
980          */
981 }
982
983 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
984                                          struct iommu_table *tbl,
985                                          __be64 *startp, __be64 *endp, bool rm)
986 {
987         unsigned long start, end, inc;
988         __be64 __iomem *invalidate = rm ?
989                 (__be64 __iomem *)pe->tce_inval_reg_phys :
990                 (__be64 __iomem *)tbl->it_index;
991         const unsigned shift = tbl->it_page_shift;
992
993         /* We'll invalidate DMA address in PE scope */
994         start = 0x2ull << 60;
995         start |= (pe->pe_number & 0xFF);
996         end = start;
997
998         /* Figure out the start, end and step */
999         inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
1000         start |= (inc << shift);
1001         inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
1002         end |= (inc << shift);
1003         inc = (0x1ull << shift);
1004         mb();
1005
1006         while (start <= end) {
1007                 if (rm)
1008                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1009                 else
1010                         __raw_writeq(cpu_to_be64(start), invalidate);
1011                 start += inc;
1012         }
1013 }
1014
1015 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
1016                                  __be64 *startp, __be64 *endp, bool rm)
1017 {
1018         struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
1019                                               tce32_table);
1020         struct pnv_phb *phb = pe->phb;
1021
1022         if (phb->type == PNV_PHB_IODA1)
1023                 pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
1024         else
1025                 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
1026 }
1027
1028 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1029                                       struct pnv_ioda_pe *pe, unsigned int base,
1030                                       unsigned int segs)
1031 {
1032
1033         struct page *tce_mem = NULL;
1034         const __be64 *swinvp;
1035         struct iommu_table *tbl;
1036         unsigned int i;
1037         int64_t rc;
1038         void *addr;
1039
1040         /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
1041 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
1042
1043         /* XXX FIXME: Handle 64-bit only DMA devices */
1044         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1045         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1046
1047         /* We shouldn't already have a 32-bit DMA associated */
1048         if (WARN_ON(pe->tce32_seg >= 0))
1049                 return;
1050
1051         /* Grab a 32-bit TCE table */
1052         pe->tce32_seg = base;
1053         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1054                 (base << 28), ((base + segs) << 28) - 1);
1055
1056         /* XXX Currently, we allocate one big contiguous table for the
1057          * TCEs. We only really need one chunk per 256M of TCE space
1058          * (ie per segment) but that's an optimization for later, it
1059          * requires some added smarts with our get/put_tce implementation
1060          */
1061         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1062                                    get_order(TCE32_TABLE_SIZE * segs));
1063         if (!tce_mem) {
1064                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1065                 goto fail;
1066         }
1067         addr = page_address(tce_mem);
1068         memset(addr, 0, TCE32_TABLE_SIZE * segs);
1069
1070         /* Configure HW */
1071         for (i = 0; i < segs; i++) {
1072                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1073                                               pe->pe_number,
1074                                               base + i, 1,
1075                                               __pa(addr) + TCE32_TABLE_SIZE * i,
1076                                               TCE32_TABLE_SIZE, 0x1000);
1077                 if (rc) {
1078                         pe_err(pe, " Failed to configure 32-bit TCE table,"
1079                                " err %ld\n", rc);
1080                         goto fail;
1081                 }
1082         }
1083
1084         /* Setup linux iommu table */
1085         tbl = &pe->tce32_table;
1086         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1087                                   base << 28, IOMMU_PAGE_SHIFT_4K);
1088
1089         /* OPAL variant of P7IOC SW invalidated TCEs */
1090         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1091         if (swinvp) {
1092                 /* We need a couple more fields -- an address and a data
1093                  * to or.  Since the bus is only printed out on table free
1094                  * errors, and on the first pass the data will be a relative
1095                  * bus number, print that out instead.
1096                  */
1097                 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1098                 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1099                                 8);
1100                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1101                                  TCE_PCI_SWINV_FREE   |
1102                                  TCE_PCI_SWINV_PAIR);
1103         }
1104         iommu_init_table(tbl, phb->hose->node);
1105         iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1106
1107         if (pe->pdev)
1108                 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1109         else
1110                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1111
1112         return;
1113  fail:
1114         /* XXX Failure: Try to fallback to 64-bit only ? */
1115         if (pe->tce32_seg >= 0)
1116                 pe->tce32_seg = -1;
1117         if (tce_mem)
1118                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1119 }
1120
1121 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
1122 {
1123         struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
1124                                               tce32_table);
1125         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1126         int64_t rc;
1127
1128         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1129         if (enable) {
1130                 phys_addr_t top = memblock_end_of_DRAM();
1131
1132                 top = roundup_pow_of_two(top);
1133                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1134                                                      pe->pe_number,
1135                                                      window_id,
1136                                                      pe->tce_bypass_base,
1137                                                      top);
1138         } else {
1139                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1140                                                      pe->pe_number,
1141                                                      window_id,
1142                                                      pe->tce_bypass_base,
1143                                                      0);
1144
1145                 /*
1146                  * EEH needs the mapping between IOMMU table and group
1147                  * of those VFIO/KVM pass-through devices. We can postpone
1148                  * resetting DMA ops until the DMA mask is configured in
1149                  * host side.
1150                  */
1151                 if (pe->pdev)
1152                         set_iommu_table_base(&pe->pdev->dev, tbl);
1153                 else
1154                         pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
1155         }
1156         if (rc)
1157                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1158         else
1159                 pe->tce_bypass_enabled = enable;
1160 }
1161
1162 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
1163                                           struct pnv_ioda_pe *pe)
1164 {
1165         /* TVE #1 is selected by PCI address bit 59 */
1166         pe->tce_bypass_base = 1ull << 59;
1167
1168         /* Install set_bypass callback for VFIO */
1169         pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;
1170
1171         /* Enable bypass by default */
1172         pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
1173 }
1174
1175 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1176                                        struct pnv_ioda_pe *pe)
1177 {
1178         struct page *tce_mem = NULL;
1179         void *addr;
1180         const __be64 *swinvp;
1181         struct iommu_table *tbl;
1182         unsigned int tce_table_size, end;
1183         int64_t rc;
1184
1185         /* We shouldn't already have a 32-bit DMA associated */
1186         if (WARN_ON(pe->tce32_seg >= 0))
1187                 return;
1188
1189         /* The PE will reserve all possible 32-bits space */
1190         pe->tce32_seg = 0;
1191         end = (1 << ilog2(phb->ioda.m32_pci_base));
1192         tce_table_size = (end / 0x1000) * 8;
1193         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1194                 end);
1195
1196         /* Allocate TCE table */
1197         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1198                                    get_order(tce_table_size));
1199         if (!tce_mem) {
1200                 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
1201                 goto fail;
1202         }
1203         addr = page_address(tce_mem);
1204         memset(addr, 0, tce_table_size);
1205
1206         /*
1207          * Map TCE table through TVT. The TVE index is the PE number
1208          * shifted by 1 bit for 32-bits DMA space.
1209          */
1210         rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1211                                         pe->pe_number << 1, 1, __pa(addr),
1212                                         tce_table_size, 0x1000);
1213         if (rc) {
1214                 pe_err(pe, "Failed to configure 32-bit TCE table,"
1215                        " err %ld\n", rc);
1216                 goto fail;
1217         }
1218
1219         /* Setup linux iommu table */
1220         tbl = &pe->tce32_table;
1221         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
1222                         IOMMU_PAGE_SHIFT_4K);
1223
1224         /* OPAL variant of PHB3 invalidated TCEs */
1225         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1226         if (swinvp) {
1227                 /* We need a couple more fields -- an address and a data
1228                  * to or.  Since the bus is only printed out on table free
1229                  * errors, and on the first pass the data will be a relative
1230                  * bus number, print that out instead.
1231                  */
1232                 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1233                 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1234                                 8);
1235                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
1236         }
1237         iommu_init_table(tbl, phb->hose->node);
1238         iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1239
1240         if (pe->pdev)
1241                 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1242         else
1243                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1244
1245         /* Also create a bypass window */
1246         pnv_pci_ioda2_setup_bypass_pe(phb, pe);
1247         return;
1248 fail:
1249         if (pe->tce32_seg >= 0)
1250                 pe->tce32_seg = -1;
1251         if (tce_mem)
1252                 __free_pages(tce_mem, get_order(tce_table_size));
1253 }
1254
1255 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
1256 {
1257         struct pci_controller *hose = phb->hose;
1258         unsigned int residual, remaining, segs, tw, base;
1259         struct pnv_ioda_pe *pe;
1260
1261         /* If we have more PE# than segments available, hand out one
1262          * per PE until we run out and let the rest fail. If not,
1263          * then we assign at least one segment per PE, plus more based
1264          * on the amount of devices under that PE
1265          */
1266         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
1267                 residual = 0;
1268         else
1269                 residual = phb->ioda.tce32_count -
1270                         phb->ioda.dma_pe_count;
1271
1272         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
1273                 hose->global_number, phb->ioda.tce32_count);
1274         pr_info("PCI: %d PE# for a total weight of %d\n",
1275                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
1276
1277         /* Walk our PE list and configure their DMA segments, hand them
1278          * out one base segment plus any residual segments based on
1279          * weight
1280          */
1281         remaining = phb->ioda.tce32_count;
1282         tw = phb->ioda.dma_weight;
1283         base = 0;
1284         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
1285                 if (!pe->dma_weight)
1286                         continue;
1287                 if (!remaining) {
1288                         pe_warn(pe, "No DMA32 resources available\n");
1289                         continue;
1290                 }
1291                 segs = 1;
1292                 if (residual) {
1293                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
1294                         if (segs > remaining)
1295                                 segs = remaining;
1296                 }
1297
1298                 /*
1299                  * For IODA2 compliant PHB3, we needn't care about the weight.
1300                  * The all available 32-bits DMA space will be assigned to
1301                  * the specific PE.
1302                  */
1303                 if (phb->type == PNV_PHB_IODA1) {
1304                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
1305                                 pe->dma_weight, segs);
1306                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
1307                 } else {
1308                         pe_info(pe, "Assign DMA32 space\n");
1309                         segs = 0;
1310                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
1311                 }
1312
1313                 remaining -= segs;
1314                 base += segs;
1315         }
1316 }
1317
1318 #ifdef CONFIG_PCI_MSI
1319 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1320 {
1321         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1322         struct irq_chip *chip = irq_data_get_irq_chip(d);
1323         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
1324                                            ioda.irq_chip);
1325         int64_t rc;
1326
1327         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1328         WARN_ON_ONCE(rc);
1329
1330         icp_native_eoi(d);
1331 }
1332
1333
1334 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1335 {
1336         struct irq_data *idata;
1337         struct irq_chip *ichip;
1338
1339         if (phb->type != PNV_PHB_IODA2)
1340                 return;
1341
1342         if (!phb->ioda.irq_chip_init) {
1343                 /*
1344                  * First time we setup an MSI IRQ, we need to setup the
1345                  * corresponding IRQ chip to route correctly.
1346                  */
1347                 idata = irq_get_irq_data(virq);
1348                 ichip = irq_data_get_irq_chip(idata);
1349                 phb->ioda.irq_chip_init = 1;
1350                 phb->ioda.irq_chip = *ichip;
1351                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1352         }
1353         irq_set_chip(virq, &phb->ioda.irq_chip);
1354 }
1355
1356 #ifdef CONFIG_CXL_BASE
1357
1358 struct device_node *pnv_pci_to_phb_node(struct pci_dev *dev)
1359 {
1360         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1361
1362         return hose->dn;
1363 }
1364 EXPORT_SYMBOL(pnv_pci_to_phb_node);
1365
1366 int pnv_phb_to_cxl(struct pci_dev *dev)
1367 {
1368         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1369         struct pnv_phb *phb = hose->private_data;
1370         struct pnv_ioda_pe *pe;
1371         int rc;
1372
1373         pe = pnv_ioda_get_pe(dev);
1374         if (!pe)
1375                 return -ENODEV;
1376
1377         pe_info(pe, "Switching PHB to CXL\n");
1378
1379         rc = opal_pci_set_phb_cxl_mode(phb->opal_id, 1, pe->pe_number);
1380         if (rc)
1381                 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
1382
1383         return rc;
1384 }
1385 EXPORT_SYMBOL(pnv_phb_to_cxl);
1386
1387 /* Find PHB for cxl dev and allocate MSI hwirqs?
1388  * Returns the absolute hardware IRQ number
1389  */
1390 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
1391 {
1392         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1393         struct pnv_phb *phb = hose->private_data;
1394         int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
1395
1396         if (hwirq < 0) {
1397                 dev_warn(&dev->dev, "Failed to find a free MSI\n");
1398                 return -ENOSPC;
1399         }
1400
1401         return phb->msi_base + hwirq;
1402 }
1403 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
1404
1405 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
1406 {
1407         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1408         struct pnv_phb *phb = hose->private_data;
1409
1410         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
1411 }
1412 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
1413
1414 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
1415                                   struct pci_dev *dev)
1416 {
1417         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1418         struct pnv_phb *phb = hose->private_data;
1419         int i, hwirq;
1420
1421         for (i = 1; i < CXL_IRQ_RANGES; i++) {
1422                 if (!irqs->range[i])
1423                         continue;
1424                 pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
1425                          i, irqs->offset[i],
1426                          irqs->range[i]);
1427                 hwirq = irqs->offset[i] - phb->msi_base;
1428                 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
1429                                        irqs->range[i]);
1430         }
1431 }
1432 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
1433
1434 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
1435                                struct pci_dev *dev, int num)
1436 {
1437         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1438         struct pnv_phb *phb = hose->private_data;
1439         int i, hwirq, try;
1440
1441         memset(irqs, 0, sizeof(struct cxl_irq_ranges));
1442
1443         /* 0 is reserved for the multiplexed PSL DSI interrupt */
1444         for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
1445                 try = num;
1446                 while (try) {
1447                         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
1448                         if (hwirq >= 0)
1449                                 break;
1450                         try /= 2;
1451                 }
1452                 if (!try)
1453                         goto fail;
1454
1455                 irqs->offset[i] = phb->msi_base + hwirq;
1456                 irqs->range[i] = try;
1457                 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
1458                          i, irqs->offset[i], irqs->range[i]);
1459                 num -= try;
1460         }
1461         if (num)
1462                 goto fail;
1463
1464         return 0;
1465 fail:
1466         pnv_cxl_release_hwirq_ranges(irqs, dev);
1467         return -ENOSPC;
1468 }
1469 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
1470
1471 int pnv_cxl_get_irq_count(struct pci_dev *dev)
1472 {
1473         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1474         struct pnv_phb *phb = hose->private_data;
1475
1476         return phb->msi_bmp.irq_count;
1477 }
1478 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
1479
1480 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
1481                            unsigned int virq)
1482 {
1483         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1484         struct pnv_phb *phb = hose->private_data;
1485         unsigned int xive_num = hwirq - phb->msi_base;
1486         struct pnv_ioda_pe *pe;
1487         int rc;
1488
1489         if (!(pe = pnv_ioda_get_pe(dev)))
1490                 return -ENODEV;
1491
1492         /* Assign XIVE to PE */
1493         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1494         if (rc) {
1495                 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
1496                         "hwirq 0x%x XIVE 0x%x PE\n",
1497                         pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
1498                 return -EIO;
1499         }
1500         set_msi_irq_chip(phb, virq);
1501
1502         return 0;
1503 }
1504 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
1505 #endif
1506
1507 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1508                                   unsigned int hwirq, unsigned int virq,
1509                                   unsigned int is_64, struct msi_msg *msg)
1510 {
1511         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1512         unsigned int xive_num = hwirq - phb->msi_base;
1513         __be32 data;
1514         int rc;
1515
1516         /* No PE assigned ? bail out ... no MSI for you ! */
1517         if (pe == NULL)
1518                 return -ENXIO;
1519
1520         /* Check if we have an MVE */
1521         if (pe->mve_number < 0)
1522                 return -ENXIO;
1523
1524         /* Force 32-bit MSI on some broken devices */
1525         if (dev->no_64bit_msi)
1526                 is_64 = 0;
1527
1528         /* Assign XIVE to PE */
1529         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1530         if (rc) {
1531                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1532                         pci_name(dev), rc, xive_num);
1533                 return -EIO;
1534         }
1535
1536         if (is_64) {
1537                 __be64 addr64;
1538
1539                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1540                                      &addr64, &data);
1541                 if (rc) {
1542                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1543                                 pci_name(dev), rc);
1544                         return -EIO;
1545                 }
1546                 msg->address_hi = be64_to_cpu(addr64) >> 32;
1547                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1548         } else {
1549                 __be32 addr32;
1550
1551                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1552                                      &addr32, &data);
1553                 if (rc) {
1554                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1555                                 pci_name(dev), rc);
1556                         return -EIO;
1557                 }
1558                 msg->address_hi = 0;
1559                 msg->address_lo = be32_to_cpu(addr32);
1560         }
1561         msg->data = be32_to_cpu(data);
1562
1563         set_msi_irq_chip(phb, virq);
1564
1565         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
1566                  " address=%x_%08x data=%x PE# %d\n",
1567                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
1568                  msg->address_hi, msg->address_lo, data, pe->pe_number);
1569
1570         return 0;
1571 }
1572
1573 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1574 {
1575         unsigned int count;
1576         const __be32 *prop = of_get_property(phb->hose->dn,
1577                                              "ibm,opal-msi-ranges", NULL);
1578         if (!prop) {
1579                 /* BML Fallback */
1580                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1581         }
1582         if (!prop)
1583                 return;
1584
1585         phb->msi_base = be32_to_cpup(prop);
1586         count = be32_to_cpup(prop + 1);
1587         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1588                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1589                        phb->hose->global_number);
1590                 return;
1591         }
1592
1593         phb->msi_setup = pnv_pci_ioda_msi_setup;
1594         phb->msi32_support = 1;
1595         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1596                 count, phb->msi_base);
1597 }
1598 #else
1599 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1600 #endif /* CONFIG_PCI_MSI */
1601
1602 /*
1603  * This function is supposed to be called on basis of PE from top
1604  * to bottom style. So the the I/O or MMIO segment assigned to
1605  * parent PE could be overrided by its child PEs if necessary.
1606  */
1607 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1608                                   struct pnv_ioda_pe *pe)
1609 {
1610         struct pnv_phb *phb = hose->private_data;
1611         struct pci_bus_region region;
1612         struct resource *res;
1613         int i, index;
1614         int rc;
1615
1616         /*
1617          * NOTE: We only care PCI bus based PE for now. For PCI
1618          * device based PE, for example SRIOV sensitive VF should
1619          * be figured out later.
1620          */
1621         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1622
1623         pci_bus_for_each_resource(pe->pbus, res, i) {
1624                 if (!res || !res->flags ||
1625                     res->start > res->end)
1626                         continue;
1627
1628                 if (res->flags & IORESOURCE_IO) {
1629                         region.start = res->start - phb->ioda.io_pci_base;
1630                         region.end   = res->end - phb->ioda.io_pci_base;
1631                         index = region.start / phb->ioda.io_segsize;
1632
1633                         while (index < phb->ioda.total_pe &&
1634                                region.start <= region.end) {
1635                                 phb->ioda.io_segmap[index] = pe->pe_number;
1636                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1637                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1638                                 if (rc != OPAL_SUCCESS) {
1639                                         pr_err("%s: OPAL error %d when mapping IO "
1640                                                "segment #%d to PE#%d\n",
1641                                                __func__, rc, index, pe->pe_number);
1642                                         break;
1643                                 }
1644
1645                                 region.start += phb->ioda.io_segsize;
1646                                 index++;
1647                         }
1648                 } else if (res->flags & IORESOURCE_MEM) {
1649                         region.start = res->start -
1650                                        hose->mem_offset[0] -
1651                                        phb->ioda.m32_pci_base;
1652                         region.end   = res->end -
1653                                        hose->mem_offset[0] -
1654                                        phb->ioda.m32_pci_base;
1655                         index = region.start / phb->ioda.m32_segsize;
1656
1657                         while (index < phb->ioda.total_pe &&
1658                                region.start <= region.end) {
1659                                 phb->ioda.m32_segmap[index] = pe->pe_number;
1660                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1661                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1662                                 if (rc != OPAL_SUCCESS) {
1663                                         pr_err("%s: OPAL error %d when mapping M32 "
1664                                                "segment#%d to PE#%d",
1665                                                __func__, rc, index, pe->pe_number);
1666                                         break;
1667                                 }
1668
1669                                 region.start += phb->ioda.m32_segsize;
1670                                 index++;
1671                         }
1672                 }
1673         }
1674 }
1675
1676 static void pnv_pci_ioda_setup_seg(void)
1677 {
1678         struct pci_controller *tmp, *hose;
1679         struct pnv_phb *phb;
1680         struct pnv_ioda_pe *pe;
1681
1682         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1683                 phb = hose->private_data;
1684                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1685                         pnv_ioda_setup_pe_seg(hose, pe);
1686                 }
1687         }
1688 }
1689
1690 static void pnv_pci_ioda_setup_DMA(void)
1691 {
1692         struct pci_controller *hose, *tmp;
1693         struct pnv_phb *phb;
1694
1695         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1696                 pnv_ioda_setup_dma(hose->private_data);
1697
1698                 /* Mark the PHB initialization done */
1699                 phb = hose->private_data;
1700                 phb->initialized = 1;
1701         }
1702 }
1703
1704 static void pnv_pci_ioda_create_dbgfs(void)
1705 {
1706 #ifdef CONFIG_DEBUG_FS
1707         struct pci_controller *hose, *tmp;
1708         struct pnv_phb *phb;
1709         char name[16];
1710
1711         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1712                 phb = hose->private_data;
1713
1714                 sprintf(name, "PCI%04x", hose->global_number);
1715                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1716                 if (!phb->dbgfs)
1717                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1718                                 __func__, hose->global_number);
1719         }
1720 #endif /* CONFIG_DEBUG_FS */
1721 }
1722
1723 static void pnv_pci_ioda_fixup(void)
1724 {
1725         pnv_pci_ioda_setup_PEs();
1726         pnv_pci_ioda_setup_seg();
1727         pnv_pci_ioda_setup_DMA();
1728
1729         pnv_pci_ioda_create_dbgfs();
1730
1731 #ifdef CONFIG_EEH
1732         eeh_init();
1733         eeh_addr_cache_build();
1734 #endif
1735 }
1736
1737 /*
1738  * Returns the alignment for I/O or memory windows for P2P
1739  * bridges. That actually depends on how PEs are segmented.
1740  * For now, we return I/O or M32 segment size for PE sensitive
1741  * P2P bridges. Otherwise, the default values (4KiB for I/O,
1742  * 1MiB for memory) will be returned.
1743  *
1744  * The current PCI bus might be put into one PE, which was
1745  * create against the parent PCI bridge. For that case, we
1746  * needn't enlarge the alignment so that we can save some
1747  * resources.
1748  */
1749 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1750                                                 unsigned long type)
1751 {
1752         struct pci_dev *bridge;
1753         struct pci_controller *hose = pci_bus_to_host(bus);
1754         struct pnv_phb *phb = hose->private_data;
1755         int num_pci_bridges = 0;
1756
1757         bridge = bus->self;
1758         while (bridge) {
1759                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1760                         num_pci_bridges++;
1761                         if (num_pci_bridges >= 2)
1762                                 return 1;
1763                 }
1764
1765                 bridge = bridge->bus->self;
1766         }
1767
1768         /* We fail back to M32 if M64 isn't supported */
1769         if (phb->ioda.m64_segsize &&
1770             pnv_pci_is_mem_pref_64(type))
1771                 return phb->ioda.m64_segsize;
1772         if (type & IORESOURCE_MEM)
1773                 return phb->ioda.m32_segsize;
1774
1775         return phb->ioda.io_segsize;
1776 }
1777
1778 /* Prevent enabling devices for which we couldn't properly
1779  * assign a PE
1780  */
1781 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1782 {
1783         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1784         struct pnv_phb *phb = hose->private_data;
1785         struct pci_dn *pdn;
1786
1787         /* The function is probably called while the PEs have
1788          * not be created yet. For example, resource reassignment
1789          * during PCI probe period. We just skip the check if
1790          * PEs isn't ready.
1791          */
1792         if (!phb->initialized)
1793                 return 0;
1794
1795         pdn = pci_get_pdn(dev);
1796         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1797                 return -EINVAL;
1798
1799         return 0;
1800 }
1801
1802 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1803                                u32 devfn)
1804 {
1805         return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1806 }
1807
1808 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1809 {
1810         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
1811                        OPAL_ASSERT_RESET);
1812 }
1813
1814 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
1815                                          u64 hub_id, int ioda_type)
1816 {
1817         struct pci_controller *hose;
1818         struct pnv_phb *phb;
1819         unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1820         const __be64 *prop64;
1821         const __be32 *prop32;
1822         int len;
1823         u64 phb_id;
1824         void *aux;
1825         long rc;
1826
1827         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1828
1829         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1830         if (!prop64) {
1831                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
1832                 return;
1833         }
1834         phb_id = be64_to_cpup(prop64);
1835         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
1836
1837         phb = alloc_bootmem(sizeof(struct pnv_phb));
1838         if (!phb) {
1839                 pr_err("  Out of memory !\n");
1840                 return;
1841         }
1842
1843         /* Allocate PCI controller */
1844         memset(phb, 0, sizeof(struct pnv_phb));
1845         phb->hose = hose = pcibios_alloc_controller(np);
1846         if (!phb->hose) {
1847                 pr_err("  Can't allocate PCI controller for %s\n",
1848                        np->full_name);
1849                 free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
1850                 return;
1851         }
1852
1853         spin_lock_init(&phb->lock);
1854         prop32 = of_get_property(np, "bus-range", &len);
1855         if (prop32 && len == 8) {
1856                 hose->first_busno = be32_to_cpu(prop32[0]);
1857                 hose->last_busno = be32_to_cpu(prop32[1]);
1858         } else {
1859                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
1860                 hose->first_busno = 0;
1861                 hose->last_busno = 0xff;
1862         }
1863         hose->private_data = phb;
1864         phb->hub_id = hub_id;
1865         phb->opal_id = phb_id;
1866         phb->type = ioda_type;
1867
1868         /* Detect specific models for error handling */
1869         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1870                 phb->model = PNV_PHB_MODEL_P7IOC;
1871         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1872                 phb->model = PNV_PHB_MODEL_PHB3;
1873         else
1874                 phb->model = PNV_PHB_MODEL_UNKNOWN;
1875
1876         /* Parse 32-bit and IO ranges (if any) */
1877         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1878
1879         /* Get registers */
1880         phb->regs = of_iomap(np, 0);
1881         if (phb->regs == NULL)
1882                 pr_err("  Failed to map registers !\n");
1883
1884         /* Initialize more IODA stuff */
1885         phb->ioda.total_pe = 1;
1886         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1887         if (prop32)
1888                 phb->ioda.total_pe = be32_to_cpup(prop32);
1889         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
1890         if (prop32)
1891                 phb->ioda.reserved_pe = be32_to_cpup(prop32);
1892
1893         /* Parse 64-bit MMIO range */
1894         pnv_ioda_parse_m64_window(phb);
1895
1896         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1897         /* FW Has already off top 64k of M32 space (MSI space) */
1898         phb->ioda.m32_size += 0x10000;
1899
1900         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1901         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1902         phb->ioda.io_size = hose->pci_io_size;
1903         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1904         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1905
1906         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
1907         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1908         m32map_off = size;
1909         size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1910         if (phb->type == PNV_PHB_IODA1) {
1911                 iomap_off = size;
1912                 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
1913         }
1914         pemap_off = size;
1915         size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1916         aux = alloc_bootmem(size);
1917         memset(aux, 0, size);
1918         phb->ioda.pe_alloc = aux;
1919         phb->ioda.m32_segmap = aux + m32map_off;
1920         if (phb->type == PNV_PHB_IODA1)
1921                 phb->ioda.io_segmap = aux + iomap_off;
1922         phb->ioda.pe_array = aux + pemap_off;
1923         set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
1924
1925         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1926         INIT_LIST_HEAD(&phb->ioda.pe_list);
1927
1928         /* Calculate how many 32-bit TCE segments we have */
1929         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1930
1931 #if 0 /* We should really do that ... */
1932         rc = opal_pci_set_phb_mem_window(opal->phb_id,
1933                                          window_type,
1934                                          window_num,
1935                                          starting_real_address,
1936                                          starting_pci_address,
1937                                          segment_size);
1938 #endif
1939
1940         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
1941                 phb->ioda.total_pe, phb->ioda.reserved_pe,
1942                 phb->ioda.m32_size, phb->ioda.m32_segsize);
1943         if (phb->ioda.m64_size)
1944                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
1945                         phb->ioda.m64_size, phb->ioda.m64_segsize);
1946         if (phb->ioda.io_size)
1947                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
1948                         phb->ioda.io_size, phb->ioda.io_segsize);
1949
1950
1951         phb->hose->ops = &pnv_pci_ops;
1952         phb->get_pe_state = pnv_ioda_get_pe_state;
1953         phb->freeze_pe = pnv_ioda_freeze_pe;
1954         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
1955 #ifdef CONFIG_EEH
1956         phb->eeh_ops = &ioda_eeh_ops;
1957 #endif
1958
1959         /* Setup RID -> PE mapping function */
1960         phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1961
1962         /* Setup TCEs */
1963         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1964         phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
1965         phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
1966
1967         /* Setup shutdown function for kexec */
1968         phb->shutdown = pnv_pci_ioda_shutdown;
1969
1970         /* Setup MSI support */
1971         pnv_pci_init_ioda_msis(phb);
1972
1973         /*
1974          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
1975          * to let the PCI core do resource assignment. It's supposed
1976          * that the PCI core will do correct I/O and MMIO alignment
1977          * for the P2P bridge bars so that each PCI bus (excluding
1978          * the child P2P bridges) can form individual PE.
1979          */
1980         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1981         ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1982         ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1983         ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
1984         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1985
1986         /* Reset IODA tables to a clean state */
1987         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
1988         if (rc)
1989                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
1990
1991         /* If we're running in kdump kerenl, the previous kerenl never
1992          * shutdown PCI devices correctly. We already got IODA table
1993          * cleaned out. So we have to issue PHB reset to stop all PCI
1994          * transactions from previous kerenl.
1995          */
1996         if (is_kdump_kernel()) {
1997                 pr_info("  Issue PHB reset ...\n");
1998                 ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
1999                 ioda_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2000         }
2001
2002         /* Configure M64 window */
2003         if (phb->init_m64 && phb->init_m64(phb))
2004                 hose->mem_resources[1].flags = 0;
2005 }
2006
2007 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2008 {
2009         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2010 }
2011
2012 void __init pnv_pci_init_ioda_hub(struct device_node *np)
2013 {
2014         struct device_node *phbn;
2015         const __be64 *prop64;
2016         u64 hub_id;
2017
2018         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2019
2020         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2021         if (!prop64) {
2022                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2023                 return;
2024         }
2025         hub_id = be64_to_cpup(prop64);
2026         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2027
2028         /* Count child PHBs */
2029         for_each_child_of_node(np, phbn) {
2030                 /* Look for IODA1 PHBs */
2031                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
2032                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
2033         }
2034 }