cxl: Add support for interrupts on the Mellanox CX4
[cascardo/linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
52 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
56 #define POWERNV_IOMMU_MAX_LEVELS        5
57
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62                             const char *fmt, ...)
63 {
64         struct va_format vaf;
65         va_list args;
66         char pfix[32];
67
68         va_start(args, fmt);
69
70         vaf.fmt = fmt;
71         vaf.va = &args;
72
73         if (pe->flags & PNV_IODA_PE_DEV)
74                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76                 sprintf(pfix, "%04x:%02x     ",
77                         pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79         else if (pe->flags & PNV_IODA_PE_VF)
80                 sprintf(pfix, "%04x:%02x:%2x.%d",
81                         pci_domain_nr(pe->parent_dev->bus),
82                         (pe->rid & 0xff00) >> 8,
83                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85
86         printk("%spci %s: [PE# %.3d] %pV",
87                level, pfix, pe->pe_number, &vaf);
88
89         va_end(args);
90 }
91
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93
94 static int __init iommu_setup(char *str)
95 {
96         if (!str)
97                 return -EINVAL;
98
99         while (*str) {
100                 if (!strncmp(str, "nobypass", 8)) {
101                         pnv_iommu_bypass_disabled = true;
102                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
103                         break;
104                 }
105                 str += strcspn(str, ",");
106                 if (*str == ',')
107                         str++;
108         }
109
110         return 0;
111 }
112 early_param("iommu", iommu_setup);
113
114 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
115 {
116         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
117                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
118 }
119
120 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
121 {
122         phb->ioda.pe_array[pe_no].phb = phb;
123         phb->ioda.pe_array[pe_no].pe_number = pe_no;
124
125         return &phb->ioda.pe_array[pe_no];
126 }
127
128 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
129 {
130         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
131                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
132                         __func__, pe_no, phb->hose->global_number);
133                 return;
134         }
135
136         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
137                 pr_debug("%s: PE %d was reserved on PHB#%x\n",
138                          __func__, pe_no, phb->hose->global_number);
139
140         pnv_ioda_init_pe(phb, pe_no);
141 }
142
143 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
144 {
145         unsigned long pe = phb->ioda.total_pe_num - 1;
146
147         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
148                 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
149                         return pnv_ioda_init_pe(phb, pe);
150         }
151
152         return NULL;
153 }
154
155 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
156 {
157         struct pnv_phb *phb = pe->phb;
158
159         WARN_ON(pe->pdev);
160
161         memset(pe, 0, sizeof(struct pnv_ioda_pe));
162         clear_bit(pe->pe_number, phb->ioda.pe_alloc);
163 }
164
165 /* The default M64 BAR is shared by all PEs */
166 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
167 {
168         const char *desc;
169         struct resource *r;
170         s64 rc;
171
172         /* Configure the default M64 BAR */
173         rc = opal_pci_set_phb_mem_window(phb->opal_id,
174                                          OPAL_M64_WINDOW_TYPE,
175                                          phb->ioda.m64_bar_idx,
176                                          phb->ioda.m64_base,
177                                          0, /* unused */
178                                          phb->ioda.m64_size);
179         if (rc != OPAL_SUCCESS) {
180                 desc = "configuring";
181                 goto fail;
182         }
183
184         /* Enable the default M64 BAR */
185         rc = opal_pci_phb_mmio_enable(phb->opal_id,
186                                       OPAL_M64_WINDOW_TYPE,
187                                       phb->ioda.m64_bar_idx,
188                                       OPAL_ENABLE_M64_SPLIT);
189         if (rc != OPAL_SUCCESS) {
190                 desc = "enabling";
191                 goto fail;
192         }
193
194         /* Mark the M64 BAR assigned */
195         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
196
197         /*
198          * Exclude the segments for reserved and root bus PE, which
199          * are first or last two PEs.
200          */
201         r = &phb->hose->mem_resources[1];
202         if (phb->ioda.reserved_pe_idx == 0)
203                 r->start += (2 * phb->ioda.m64_segsize);
204         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
205                 r->end -= (2 * phb->ioda.m64_segsize);
206         else
207                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
208                         phb->ioda.reserved_pe_idx);
209
210         return 0;
211
212 fail:
213         pr_warn("  Failure %lld %s M64 BAR#%d\n",
214                 rc, desc, phb->ioda.m64_bar_idx);
215         opal_pci_phb_mmio_enable(phb->opal_id,
216                                  OPAL_M64_WINDOW_TYPE,
217                                  phb->ioda.m64_bar_idx,
218                                  OPAL_DISABLE_M64);
219         return -EIO;
220 }
221
222 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
223                                          unsigned long *pe_bitmap)
224 {
225         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
226         struct pnv_phb *phb = hose->private_data;
227         struct resource *r;
228         resource_size_t base, sgsz, start, end;
229         int segno, i;
230
231         base = phb->ioda.m64_base;
232         sgsz = phb->ioda.m64_segsize;
233         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
234                 r = &pdev->resource[i];
235                 if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
236                         continue;
237
238                 start = _ALIGN_DOWN(r->start - base, sgsz);
239                 end = _ALIGN_UP(r->end - base, sgsz);
240                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
241                         if (pe_bitmap)
242                                 set_bit(segno, pe_bitmap);
243                         else
244                                 pnv_ioda_reserve_pe(phb, segno);
245                 }
246         }
247 }
248
249 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
250 {
251         struct resource *r;
252         int index;
253
254         /*
255          * There are 16 M64 BARs, each of which has 8 segments. So
256          * there are as many M64 segments as the maximum number of
257          * PEs, which is 128.
258          */
259         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
260                 unsigned long base, segsz = phb->ioda.m64_segsize;
261                 int64_t rc;
262
263                 base = phb->ioda.m64_base +
264                        index * PNV_IODA1_M64_SEGS * segsz;
265                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
266                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
267                                 PNV_IODA1_M64_SEGS * segsz);
268                 if (rc != OPAL_SUCCESS) {
269                         pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
270                                 rc, phb->hose->global_number, index);
271                         goto fail;
272                 }
273
274                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
275                                 OPAL_M64_WINDOW_TYPE, index,
276                                 OPAL_ENABLE_M64_SPLIT);
277                 if (rc != OPAL_SUCCESS) {
278                         pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
279                                 rc, phb->hose->global_number, index);
280                         goto fail;
281                 }
282         }
283
284         /*
285          * Exclude the segments for reserved and root bus PE, which
286          * are first or last two PEs.
287          */
288         r = &phb->hose->mem_resources[1];
289         if (phb->ioda.reserved_pe_idx == 0)
290                 r->start += (2 * phb->ioda.m64_segsize);
291         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
292                 r->end -= (2 * phb->ioda.m64_segsize);
293         else
294                 WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
295                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
296
297         return 0;
298
299 fail:
300         for ( ; index >= 0; index--)
301                 opal_pci_phb_mmio_enable(phb->opal_id,
302                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
303
304         return -EIO;
305 }
306
307 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
308                                     unsigned long *pe_bitmap,
309                                     bool all)
310 {
311         struct pci_dev *pdev;
312
313         list_for_each_entry(pdev, &bus->devices, bus_list) {
314                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
315
316                 if (all && pdev->subordinate)
317                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
318                                                 pe_bitmap, all);
319         }
320 }
321
322 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
323 {
324         struct pci_controller *hose = pci_bus_to_host(bus);
325         struct pnv_phb *phb = hose->private_data;
326         struct pnv_ioda_pe *master_pe, *pe;
327         unsigned long size, *pe_alloc;
328         int i;
329
330         /* Root bus shouldn't use M64 */
331         if (pci_is_root_bus(bus))
332                 return NULL;
333
334         /* Allocate bitmap */
335         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
336         pe_alloc = kzalloc(size, GFP_KERNEL);
337         if (!pe_alloc) {
338                 pr_warn("%s: Out of memory !\n",
339                         __func__);
340                 return NULL;
341         }
342
343         /* Figure out reserved PE numbers by the PE */
344         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
345
346         /*
347          * the current bus might not own M64 window and that's all
348          * contributed by its child buses. For the case, we needn't
349          * pick M64 dependent PE#.
350          */
351         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
352                 kfree(pe_alloc);
353                 return NULL;
354         }
355
356         /*
357          * Figure out the master PE and put all slave PEs to master
358          * PE's list to form compound PE.
359          */
360         master_pe = NULL;
361         i = -1;
362         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
363                 phb->ioda.total_pe_num) {
364                 pe = &phb->ioda.pe_array[i];
365
366                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
367                 if (!master_pe) {
368                         pe->flags |= PNV_IODA_PE_MASTER;
369                         INIT_LIST_HEAD(&pe->slaves);
370                         master_pe = pe;
371                 } else {
372                         pe->flags |= PNV_IODA_PE_SLAVE;
373                         pe->master = master_pe;
374                         list_add_tail(&pe->list, &master_pe->slaves);
375                 }
376
377                 /*
378                  * P7IOC supports M64DT, which helps mapping M64 segment
379                  * to one particular PE#. However, PHB3 has fixed mapping
380                  * between M64 segment and PE#. In order to have same logic
381                  * for P7IOC and PHB3, we enforce fixed mapping between M64
382                  * segment and PE# on P7IOC.
383                  */
384                 if (phb->type == PNV_PHB_IODA1) {
385                         int64_t rc;
386
387                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
388                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
389                                         pe->pe_number / PNV_IODA1_M64_SEGS,
390                                         pe->pe_number % PNV_IODA1_M64_SEGS);
391                         if (rc != OPAL_SUCCESS)
392                                 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
393                                         __func__, rc, phb->hose->global_number,
394                                         pe->pe_number);
395                 }
396         }
397
398         kfree(pe_alloc);
399         return master_pe;
400 }
401
402 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
403 {
404         struct pci_controller *hose = phb->hose;
405         struct device_node *dn = hose->dn;
406         struct resource *res;
407         const u32 *r;
408         u64 pci_addr;
409
410         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
411                 pr_info("  Not support M64 window\n");
412                 return;
413         }
414
415         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
416                 pr_info("  Firmware too old to support M64 window\n");
417                 return;
418         }
419
420         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
421         if (!r) {
422                 pr_info("  No <ibm,opal-m64-window> on %s\n",
423                         dn->full_name);
424                 return;
425         }
426
427         res = &hose->mem_resources[1];
428         res->name = dn->full_name;
429         res->start = of_translate_address(dn, r + 2);
430         res->end = res->start + of_read_number(r + 4, 2) - 1;
431         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
432         pci_addr = of_read_number(r, 2);
433         hose->mem_offset[1] = res->start - pci_addr;
434
435         phb->ioda.m64_size = resource_size(res);
436         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
437         phb->ioda.m64_base = pci_addr;
438
439         pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
440                         res->start, res->end, pci_addr);
441
442         /* Use last M64 BAR to cover M64 window */
443         phb->ioda.m64_bar_idx = 15;
444         if (phb->type == PNV_PHB_IODA1)
445                 phb->init_m64 = pnv_ioda1_init_m64;
446         else
447                 phb->init_m64 = pnv_ioda2_init_m64;
448         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
449         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
450 }
451
452 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
453 {
454         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
455         struct pnv_ioda_pe *slave;
456         s64 rc;
457
458         /* Fetch master PE */
459         if (pe->flags & PNV_IODA_PE_SLAVE) {
460                 pe = pe->master;
461                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
462                         return;
463
464                 pe_no = pe->pe_number;
465         }
466
467         /* Freeze master PE */
468         rc = opal_pci_eeh_freeze_set(phb->opal_id,
469                                      pe_no,
470                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
471         if (rc != OPAL_SUCCESS) {
472                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
473                         __func__, rc, phb->hose->global_number, pe_no);
474                 return;
475         }
476
477         /* Freeze slave PEs */
478         if (!(pe->flags & PNV_IODA_PE_MASTER))
479                 return;
480
481         list_for_each_entry(slave, &pe->slaves, list) {
482                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
483                                              slave->pe_number,
484                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
485                 if (rc != OPAL_SUCCESS)
486                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
487                                 __func__, rc, phb->hose->global_number,
488                                 slave->pe_number);
489         }
490 }
491
492 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
493 {
494         struct pnv_ioda_pe *pe, *slave;
495         s64 rc;
496
497         /* Find master PE */
498         pe = &phb->ioda.pe_array[pe_no];
499         if (pe->flags & PNV_IODA_PE_SLAVE) {
500                 pe = pe->master;
501                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
502                 pe_no = pe->pe_number;
503         }
504
505         /* Clear frozen state for master PE */
506         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
507         if (rc != OPAL_SUCCESS) {
508                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
509                         __func__, rc, opt, phb->hose->global_number, pe_no);
510                 return -EIO;
511         }
512
513         if (!(pe->flags & PNV_IODA_PE_MASTER))
514                 return 0;
515
516         /* Clear frozen state for slave PEs */
517         list_for_each_entry(slave, &pe->slaves, list) {
518                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
519                                              slave->pe_number,
520                                              opt);
521                 if (rc != OPAL_SUCCESS) {
522                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
523                                 __func__, rc, opt, phb->hose->global_number,
524                                 slave->pe_number);
525                         return -EIO;
526                 }
527         }
528
529         return 0;
530 }
531
532 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
533 {
534         struct pnv_ioda_pe *slave, *pe;
535         u8 fstate, state;
536         __be16 pcierr;
537         s64 rc;
538
539         /* Sanity check on PE number */
540         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
541                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
542
543         /*
544          * Fetch the master PE and the PE instance might be
545          * not initialized yet.
546          */
547         pe = &phb->ioda.pe_array[pe_no];
548         if (pe->flags & PNV_IODA_PE_SLAVE) {
549                 pe = pe->master;
550                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
551                 pe_no = pe->pe_number;
552         }
553
554         /* Check the master PE */
555         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
556                                         &state, &pcierr, NULL);
557         if (rc != OPAL_SUCCESS) {
558                 pr_warn("%s: Failure %lld getting "
559                         "PHB#%x-PE#%x state\n",
560                         __func__, rc,
561                         phb->hose->global_number, pe_no);
562                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
563         }
564
565         /* Check the slave PE */
566         if (!(pe->flags & PNV_IODA_PE_MASTER))
567                 return state;
568
569         list_for_each_entry(slave, &pe->slaves, list) {
570                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
571                                                 slave->pe_number,
572                                                 &fstate,
573                                                 &pcierr,
574                                                 NULL);
575                 if (rc != OPAL_SUCCESS) {
576                         pr_warn("%s: Failure %lld getting "
577                                 "PHB#%x-PE#%x state\n",
578                                 __func__, rc,
579                                 phb->hose->global_number, slave->pe_number);
580                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
581                 }
582
583                 /*
584                  * Override the result based on the ascending
585                  * priority.
586                  */
587                 if (fstate > state)
588                         state = fstate;
589         }
590
591         return state;
592 }
593
594 /* Currently those 2 are only used when MSIs are enabled, this will change
595  * but in the meantime, we need to protect them to avoid warnings
596  */
597 #ifdef CONFIG_PCI_MSI
598 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
599 {
600         struct pci_controller *hose = pci_bus_to_host(dev->bus);
601         struct pnv_phb *phb = hose->private_data;
602         struct pci_dn *pdn = pci_get_pdn(dev);
603
604         if (!pdn)
605                 return NULL;
606         if (pdn->pe_number == IODA_INVALID_PE)
607                 return NULL;
608         return &phb->ioda.pe_array[pdn->pe_number];
609 }
610 #endif /* CONFIG_PCI_MSI */
611
612 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
613                                   struct pnv_ioda_pe *parent,
614                                   struct pnv_ioda_pe *child,
615                                   bool is_add)
616 {
617         const char *desc = is_add ? "adding" : "removing";
618         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
619                               OPAL_REMOVE_PE_FROM_DOMAIN;
620         struct pnv_ioda_pe *slave;
621         long rc;
622
623         /* Parent PE affects child PE */
624         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
625                                 child->pe_number, op);
626         if (rc != OPAL_SUCCESS) {
627                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
628                         rc, desc);
629                 return -ENXIO;
630         }
631
632         if (!(child->flags & PNV_IODA_PE_MASTER))
633                 return 0;
634
635         /* Compound case: parent PE affects slave PEs */
636         list_for_each_entry(slave, &child->slaves, list) {
637                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
638                                         slave->pe_number, op);
639                 if (rc != OPAL_SUCCESS) {
640                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
641                                 rc, desc);
642                         return -ENXIO;
643                 }
644         }
645
646         return 0;
647 }
648
649 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
650                               struct pnv_ioda_pe *pe,
651                               bool is_add)
652 {
653         struct pnv_ioda_pe *slave;
654         struct pci_dev *pdev = NULL;
655         int ret;
656
657         /*
658          * Clear PE frozen state. If it's master PE, we need
659          * clear slave PE frozen state as well.
660          */
661         if (is_add) {
662                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
663                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
664                 if (pe->flags & PNV_IODA_PE_MASTER) {
665                         list_for_each_entry(slave, &pe->slaves, list)
666                                 opal_pci_eeh_freeze_clear(phb->opal_id,
667                                                           slave->pe_number,
668                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
669                 }
670         }
671
672         /*
673          * Associate PE in PELT. We need add the PE into the
674          * corresponding PELT-V as well. Otherwise, the error
675          * originated from the PE might contribute to other
676          * PEs.
677          */
678         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
679         if (ret)
680                 return ret;
681
682         /* For compound PEs, any one affects all of them */
683         if (pe->flags & PNV_IODA_PE_MASTER) {
684                 list_for_each_entry(slave, &pe->slaves, list) {
685                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
686                         if (ret)
687                                 return ret;
688                 }
689         }
690
691         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
692                 pdev = pe->pbus->self;
693         else if (pe->flags & PNV_IODA_PE_DEV)
694                 pdev = pe->pdev->bus->self;
695 #ifdef CONFIG_PCI_IOV
696         else if (pe->flags & PNV_IODA_PE_VF)
697                 pdev = pe->parent_dev;
698 #endif /* CONFIG_PCI_IOV */
699         while (pdev) {
700                 struct pci_dn *pdn = pci_get_pdn(pdev);
701                 struct pnv_ioda_pe *parent;
702
703                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
704                         parent = &phb->ioda.pe_array[pdn->pe_number];
705                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
706                         if (ret)
707                                 return ret;
708                 }
709
710                 pdev = pdev->bus->self;
711         }
712
713         return 0;
714 }
715
716 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
717 {
718         struct pci_dev *parent;
719         uint8_t bcomp, dcomp, fcomp;
720         int64_t rc;
721         long rid_end, rid;
722
723         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
724         if (pe->pbus) {
725                 int count;
726
727                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
728                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
729                 parent = pe->pbus->self;
730                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
731                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
732                 else
733                         count = 1;
734
735                 switch(count) {
736                 case  1: bcomp = OpalPciBusAll;         break;
737                 case  2: bcomp = OpalPciBus7Bits;       break;
738                 case  4: bcomp = OpalPciBus6Bits;       break;
739                 case  8: bcomp = OpalPciBus5Bits;       break;
740                 case 16: bcomp = OpalPciBus4Bits;       break;
741                 case 32: bcomp = OpalPciBus3Bits;       break;
742                 default:
743                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
744                                 count);
745                         /* Do an exact match only */
746                         bcomp = OpalPciBusAll;
747                 }
748                 rid_end = pe->rid + (count << 8);
749         } else {
750 #ifdef CONFIG_PCI_IOV
751                 if (pe->flags & PNV_IODA_PE_VF)
752                         parent = pe->parent_dev;
753                 else
754 #endif
755                         parent = pe->pdev->bus->self;
756                 bcomp = OpalPciBusAll;
757                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
758                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
759                 rid_end = pe->rid + 1;
760         }
761
762         /* Clear the reverse map */
763         for (rid = pe->rid; rid < rid_end; rid++)
764                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
765
766         /* Release from all parents PELT-V */
767         while (parent) {
768                 struct pci_dn *pdn = pci_get_pdn(parent);
769                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
771                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
772                         /* XXX What to do in case of error ? */
773                 }
774                 parent = parent->bus->self;
775         }
776
777         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
778                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
779
780         /* Disassociate PE in PELT */
781         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
782                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
783         if (rc)
784                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
785         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
786                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
787         if (rc)
788                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
789
790         pe->pbus = NULL;
791         pe->pdev = NULL;
792 #ifdef CONFIG_PCI_IOV
793         pe->parent_dev = NULL;
794 #endif
795
796         return 0;
797 }
798
799 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
800 {
801         struct pci_dev *parent;
802         uint8_t bcomp, dcomp, fcomp;
803         long rc, rid_end, rid;
804
805         /* Bus validation ? */
806         if (pe->pbus) {
807                 int count;
808
809                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
810                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
811                 parent = pe->pbus->self;
812                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
813                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
814                 else
815                         count = 1;
816
817                 switch(count) {
818                 case  1: bcomp = OpalPciBusAll;         break;
819                 case  2: bcomp = OpalPciBus7Bits;       break;
820                 case  4: bcomp = OpalPciBus6Bits;       break;
821                 case  8: bcomp = OpalPciBus5Bits;       break;
822                 case 16: bcomp = OpalPciBus4Bits;       break;
823                 case 32: bcomp = OpalPciBus3Bits;       break;
824                 default:
825                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
826                                 count);
827                         /* Do an exact match only */
828                         bcomp = OpalPciBusAll;
829                 }
830                 rid_end = pe->rid + (count << 8);
831         } else {
832 #ifdef CONFIG_PCI_IOV
833                 if (pe->flags & PNV_IODA_PE_VF)
834                         parent = pe->parent_dev;
835                 else
836 #endif /* CONFIG_PCI_IOV */
837                         parent = pe->pdev->bus->self;
838                 bcomp = OpalPciBusAll;
839                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
840                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
841                 rid_end = pe->rid + 1;
842         }
843
844         /*
845          * Associate PE in PELT. We need add the PE into the
846          * corresponding PELT-V as well. Otherwise, the error
847          * originated from the PE might contribute to other
848          * PEs.
849          */
850         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
851                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
852         if (rc) {
853                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
854                 return -ENXIO;
855         }
856
857         /*
858          * Configure PELTV. NPUs don't have a PELTV table so skip
859          * configuration on them.
860          */
861         if (phb->type != PNV_PHB_NPU)
862                 pnv_ioda_set_peltv(phb, pe, true);
863
864         /* Setup reverse map */
865         for (rid = pe->rid; rid < rid_end; rid++)
866                 phb->ioda.pe_rmap[rid] = pe->pe_number;
867
868         /* Setup one MVTs on IODA1 */
869         if (phb->type != PNV_PHB_IODA1) {
870                 pe->mve_number = 0;
871                 goto out;
872         }
873
874         pe->mve_number = pe->pe_number;
875         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
876         if (rc != OPAL_SUCCESS) {
877                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
878                        rc, pe->mve_number);
879                 pe->mve_number = -1;
880         } else {
881                 rc = opal_pci_set_mve_enable(phb->opal_id,
882                                              pe->mve_number, OPAL_ENABLE_MVE);
883                 if (rc) {
884                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
885                                rc, pe->mve_number);
886                         pe->mve_number = -1;
887                 }
888         }
889
890 out:
891         return 0;
892 }
893
894 #ifdef CONFIG_PCI_IOV
895 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
896 {
897         struct pci_dn *pdn = pci_get_pdn(dev);
898         int i;
899         struct resource *res, res2;
900         resource_size_t size;
901         u16 num_vfs;
902
903         if (!dev->is_physfn)
904                 return -EINVAL;
905
906         /*
907          * "offset" is in VFs.  The M64 windows are sized so that when they
908          * are segmented, each segment is the same size as the IOV BAR.
909          * Each segment is in a separate PE, and the high order bits of the
910          * address are the PE number.  Therefore, each VF's BAR is in a
911          * separate PE, and changing the IOV BAR start address changes the
912          * range of PEs the VFs are in.
913          */
914         num_vfs = pdn->num_vfs;
915         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
916                 res = &dev->resource[i + PCI_IOV_RESOURCES];
917                 if (!res->flags || !res->parent)
918                         continue;
919
920                 /*
921                  * The actual IOV BAR range is determined by the start address
922                  * and the actual size for num_vfs VFs BAR.  This check is to
923                  * make sure that after shifting, the range will not overlap
924                  * with another device.
925                  */
926                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
927                 res2.flags = res->flags;
928                 res2.start = res->start + (size * offset);
929                 res2.end = res2.start + (size * num_vfs) - 1;
930
931                 if (res2.end > res->end) {
932                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
933                                 i, &res2, res, num_vfs, offset);
934                         return -EBUSY;
935                 }
936         }
937
938         /*
939          * After doing so, there would be a "hole" in the /proc/iomem when
940          * offset is a positive value. It looks like the device return some
941          * mmio back to the system, which actually no one could use it.
942          */
943         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
944                 res = &dev->resource[i + PCI_IOV_RESOURCES];
945                 if (!res->flags || !res->parent)
946                         continue;
947
948                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
949                 res2 = *res;
950                 res->start += size * offset;
951
952                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
953                          i, &res2, res, (offset > 0) ? "En" : "Dis",
954                          num_vfs, offset);
955                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
956         }
957         return 0;
958 }
959 #endif /* CONFIG_PCI_IOV */
960
961 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
962 {
963         struct pci_controller *hose = pci_bus_to_host(dev->bus);
964         struct pnv_phb *phb = hose->private_data;
965         struct pci_dn *pdn = pci_get_pdn(dev);
966         struct pnv_ioda_pe *pe;
967
968         if (!pdn) {
969                 pr_err("%s: Device tree node not associated properly\n",
970                            pci_name(dev));
971                 return NULL;
972         }
973         if (pdn->pe_number != IODA_INVALID_PE)
974                 return NULL;
975
976         pe = pnv_ioda_alloc_pe(phb);
977         if (!pe) {
978                 pr_warning("%s: Not enough PE# available, disabling device\n",
979                            pci_name(dev));
980                 return NULL;
981         }
982
983         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
984          * pointer in the PE data structure, both should be destroyed at the
985          * same time. However, this needs to be looked at more closely again
986          * once we actually start removing things (Hotplug, SR-IOV, ...)
987          *
988          * At some point we want to remove the PDN completely anyways
989          */
990         pci_dev_get(dev);
991         pdn->pcidev = dev;
992         pdn->pe_number = pe->pe_number;
993         pe->flags = PNV_IODA_PE_DEV;
994         pe->pdev = dev;
995         pe->pbus = NULL;
996         pe->mve_number = -1;
997         pe->rid = dev->bus->number << 8 | pdn->devfn;
998
999         pe_info(pe, "Associated device to PE\n");
1000
1001         if (pnv_ioda_configure_pe(phb, pe)) {
1002                 /* XXX What do we do here ? */
1003                 pnv_ioda_free_pe(pe);
1004                 pdn->pe_number = IODA_INVALID_PE;
1005                 pe->pdev = NULL;
1006                 pci_dev_put(dev);
1007                 return NULL;
1008         }
1009
1010         /* Put PE to the list */
1011         list_add_tail(&pe->list, &phb->ioda.pe_list);
1012
1013         return pe;
1014 }
1015
1016 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1017 {
1018         struct pci_dev *dev;
1019
1020         list_for_each_entry(dev, &bus->devices, bus_list) {
1021                 struct pci_dn *pdn = pci_get_pdn(dev);
1022
1023                 if (pdn == NULL) {
1024                         pr_warn("%s: No device node associated with device !\n",
1025                                 pci_name(dev));
1026                         continue;
1027                 }
1028
1029                 /*
1030                  * In partial hotplug case, the PCI device might be still
1031                  * associated with the PE and needn't attach it to the PE
1032                  * again.
1033                  */
1034                 if (pdn->pe_number != IODA_INVALID_PE)
1035                         continue;
1036
1037                 pe->device_count++;
1038                 pdn->pcidev = dev;
1039                 pdn->pe_number = pe->pe_number;
1040                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1041                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1042         }
1043 }
1044
1045 /*
1046  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1047  * single PCI bus. Another one that contains the primary PCI bus and its
1048  * subordinate PCI devices and buses. The second type of PE is normally
1049  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1050  */
1051 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1052 {
1053         struct pci_controller *hose = pci_bus_to_host(bus);
1054         struct pnv_phb *phb = hose->private_data;
1055         struct pnv_ioda_pe *pe = NULL;
1056         unsigned int pe_num;
1057
1058         /*
1059          * In partial hotplug case, the PE instance might be still alive.
1060          * We should reuse it instead of allocating a new one.
1061          */
1062         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1063         if (pe_num != IODA_INVALID_PE) {
1064                 pe = &phb->ioda.pe_array[pe_num];
1065                 pnv_ioda_setup_same_PE(bus, pe);
1066                 return NULL;
1067         }
1068
1069         /* PE number for root bus should have been reserved */
1070         if (pci_is_root_bus(bus) &&
1071             phb->ioda.root_pe_idx != IODA_INVALID_PE)
1072                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1073
1074         /* Check if PE is determined by M64 */
1075         if (!pe && phb->pick_m64_pe)
1076                 pe = phb->pick_m64_pe(bus, all);
1077
1078         /* The PE number isn't pinned by M64 */
1079         if (!pe)
1080                 pe = pnv_ioda_alloc_pe(phb);
1081
1082         if (!pe) {
1083                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1084                         __func__, pci_domain_nr(bus), bus->number);
1085                 return NULL;
1086         }
1087
1088         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1089         pe->pbus = bus;
1090         pe->pdev = NULL;
1091         pe->mve_number = -1;
1092         pe->rid = bus->busn_res.start << 8;
1093
1094         if (all)
1095                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1096                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1097         else
1098                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1099                         bus->busn_res.start, pe->pe_number);
1100
1101         if (pnv_ioda_configure_pe(phb, pe)) {
1102                 /* XXX What do we do here ? */
1103                 pnv_ioda_free_pe(pe);
1104                 pe->pbus = NULL;
1105                 return NULL;
1106         }
1107
1108         /* Associate it with all child devices */
1109         pnv_ioda_setup_same_PE(bus, pe);
1110
1111         /* Put PE to the list */
1112         list_add_tail(&pe->list, &phb->ioda.pe_list);
1113
1114         return pe;
1115 }
1116
1117 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1118 {
1119         int pe_num, found_pe = false, rc;
1120         long rid;
1121         struct pnv_ioda_pe *pe;
1122         struct pci_dev *gpu_pdev;
1123         struct pci_dn *npu_pdn;
1124         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1125         struct pnv_phb *phb = hose->private_data;
1126
1127         /*
1128          * Due to a hardware errata PE#0 on the NPU is reserved for
1129          * error handling. This means we only have three PEs remaining
1130          * which need to be assigned to four links, implying some
1131          * links must share PEs.
1132          *
1133          * To achieve this we assign PEs such that NPUs linking the
1134          * same GPU get assigned the same PE.
1135          */
1136         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1137         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1138                 pe = &phb->ioda.pe_array[pe_num];
1139                 if (!pe->pdev)
1140                         continue;
1141
1142                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1143                         /*
1144                          * This device has the same peer GPU so should
1145                          * be assigned the same PE as the existing
1146                          * peer NPU.
1147                          */
1148                         dev_info(&npu_pdev->dev,
1149                                 "Associating to existing PE %d\n", pe_num);
1150                         pci_dev_get(npu_pdev);
1151                         npu_pdn = pci_get_pdn(npu_pdev);
1152                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1153                         npu_pdn->pcidev = npu_pdev;
1154                         npu_pdn->pe_number = pe_num;
1155                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1156
1157                         /* Map the PE to this link */
1158                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1159                                         OpalPciBusAll,
1160                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1161                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1162                                         OPAL_MAP_PE);
1163                         WARN_ON(rc != OPAL_SUCCESS);
1164                         found_pe = true;
1165                         break;
1166                 }
1167         }
1168
1169         if (!found_pe)
1170                 /*
1171                  * Could not find an existing PE so allocate a new
1172                  * one.
1173                  */
1174                 return pnv_ioda_setup_dev_PE(npu_pdev);
1175         else
1176                 return pe;
1177 }
1178
1179 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1180 {
1181         struct pci_dev *pdev;
1182
1183         list_for_each_entry(pdev, &bus->devices, bus_list)
1184                 pnv_ioda_setup_npu_PE(pdev);
1185 }
1186
1187 static void pnv_pci_ioda_setup_PEs(void)
1188 {
1189         struct pci_controller *hose, *tmp;
1190         struct pnv_phb *phb;
1191
1192         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1193                 phb = hose->private_data;
1194                 if (phb->type == PNV_PHB_NPU) {
1195                         /* PE#0 is needed for error reporting */
1196                         pnv_ioda_reserve_pe(phb, 0);
1197                         pnv_ioda_setup_npu_PEs(hose->bus);
1198                 }
1199         }
1200 }
1201
1202 #ifdef CONFIG_PCI_IOV
1203 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1204 {
1205         struct pci_bus        *bus;
1206         struct pci_controller *hose;
1207         struct pnv_phb        *phb;
1208         struct pci_dn         *pdn;
1209         int                    i, j;
1210         int                    m64_bars;
1211
1212         bus = pdev->bus;
1213         hose = pci_bus_to_host(bus);
1214         phb = hose->private_data;
1215         pdn = pci_get_pdn(pdev);
1216
1217         if (pdn->m64_single_mode)
1218                 m64_bars = num_vfs;
1219         else
1220                 m64_bars = 1;
1221
1222         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1223                 for (j = 0; j < m64_bars; j++) {
1224                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1225                                 continue;
1226                         opal_pci_phb_mmio_enable(phb->opal_id,
1227                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1228                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1229                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1230                 }
1231
1232         kfree(pdn->m64_map);
1233         return 0;
1234 }
1235
1236 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1237 {
1238         struct pci_bus        *bus;
1239         struct pci_controller *hose;
1240         struct pnv_phb        *phb;
1241         struct pci_dn         *pdn;
1242         unsigned int           win;
1243         struct resource       *res;
1244         int                    i, j;
1245         int64_t                rc;
1246         int                    total_vfs;
1247         resource_size_t        size, start;
1248         int                    pe_num;
1249         int                    m64_bars;
1250
1251         bus = pdev->bus;
1252         hose = pci_bus_to_host(bus);
1253         phb = hose->private_data;
1254         pdn = pci_get_pdn(pdev);
1255         total_vfs = pci_sriov_get_totalvfs(pdev);
1256
1257         if (pdn->m64_single_mode)
1258                 m64_bars = num_vfs;
1259         else
1260                 m64_bars = 1;
1261
1262         pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1263         if (!pdn->m64_map)
1264                 return -ENOMEM;
1265         /* Initialize the m64_map to IODA_INVALID_M64 */
1266         for (i = 0; i < m64_bars ; i++)
1267                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1268                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1269
1270
1271         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1272                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1273                 if (!res->flags || !res->parent)
1274                         continue;
1275
1276                 for (j = 0; j < m64_bars; j++) {
1277                         do {
1278                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1279                                                 phb->ioda.m64_bar_idx + 1, 0);
1280
1281                                 if (win >= phb->ioda.m64_bar_idx + 1)
1282                                         goto m64_failed;
1283                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1284
1285                         pdn->m64_map[j][i] = win;
1286
1287                         if (pdn->m64_single_mode) {
1288                                 size = pci_iov_resource_size(pdev,
1289                                                         PCI_IOV_RESOURCES + i);
1290                                 start = res->start + size * j;
1291                         } else {
1292                                 size = resource_size(res);
1293                                 start = res->start;
1294                         }
1295
1296                         /* Map the M64 here */
1297                         if (pdn->m64_single_mode) {
1298                                 pe_num = pdn->pe_num_map[j];
1299                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1300                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1301                                                 pdn->m64_map[j][i], 0);
1302                         }
1303
1304                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1305                                                  OPAL_M64_WINDOW_TYPE,
1306                                                  pdn->m64_map[j][i],
1307                                                  start,
1308                                                  0, /* unused */
1309                                                  size);
1310
1311
1312                         if (rc != OPAL_SUCCESS) {
1313                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1314                                         win, rc);
1315                                 goto m64_failed;
1316                         }
1317
1318                         if (pdn->m64_single_mode)
1319                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1320                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1321                         else
1322                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1323                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1324
1325                         if (rc != OPAL_SUCCESS) {
1326                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1327                                         win, rc);
1328                                 goto m64_failed;
1329                         }
1330                 }
1331         }
1332         return 0;
1333
1334 m64_failed:
1335         pnv_pci_vf_release_m64(pdev, num_vfs);
1336         return -EBUSY;
1337 }
1338
1339 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1340                 int num);
1341 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1342
1343 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1344 {
1345         struct iommu_table    *tbl;
1346         int64_t               rc;
1347
1348         tbl = pe->table_group.tables[0];
1349         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1350         if (rc)
1351                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1352
1353         pnv_pci_ioda2_set_bypass(pe, false);
1354         if (pe->table_group.group) {
1355                 iommu_group_put(pe->table_group.group);
1356                 BUG_ON(pe->table_group.group);
1357         }
1358         pnv_pci_ioda2_table_free_pages(tbl);
1359         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1360 }
1361
1362 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1363 {
1364         struct pci_bus        *bus;
1365         struct pci_controller *hose;
1366         struct pnv_phb        *phb;
1367         struct pnv_ioda_pe    *pe, *pe_n;
1368         struct pci_dn         *pdn;
1369
1370         bus = pdev->bus;
1371         hose = pci_bus_to_host(bus);
1372         phb = hose->private_data;
1373         pdn = pci_get_pdn(pdev);
1374
1375         if (!pdev->is_physfn)
1376                 return;
1377
1378         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1379                 if (pe->parent_dev != pdev)
1380                         continue;
1381
1382                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1383
1384                 /* Remove from list */
1385                 mutex_lock(&phb->ioda.pe_list_mutex);
1386                 list_del(&pe->list);
1387                 mutex_unlock(&phb->ioda.pe_list_mutex);
1388
1389                 pnv_ioda_deconfigure_pe(phb, pe);
1390
1391                 pnv_ioda_free_pe(pe);
1392         }
1393 }
1394
1395 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1396 {
1397         struct pci_bus        *bus;
1398         struct pci_controller *hose;
1399         struct pnv_phb        *phb;
1400         struct pnv_ioda_pe    *pe;
1401         struct pci_dn         *pdn;
1402         struct pci_sriov      *iov;
1403         u16                    num_vfs, i;
1404
1405         bus = pdev->bus;
1406         hose = pci_bus_to_host(bus);
1407         phb = hose->private_data;
1408         pdn = pci_get_pdn(pdev);
1409         iov = pdev->sriov;
1410         num_vfs = pdn->num_vfs;
1411
1412         /* Release VF PEs */
1413         pnv_ioda_release_vf_PE(pdev);
1414
1415         if (phb->type == PNV_PHB_IODA2) {
1416                 if (!pdn->m64_single_mode)
1417                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1418
1419                 /* Release M64 windows */
1420                 pnv_pci_vf_release_m64(pdev, num_vfs);
1421
1422                 /* Release PE numbers */
1423                 if (pdn->m64_single_mode) {
1424                         for (i = 0; i < num_vfs; i++) {
1425                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1426                                         continue;
1427
1428                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1429                                 pnv_ioda_free_pe(pe);
1430                         }
1431                 } else
1432                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1433                 /* Releasing pe_num_map */
1434                 kfree(pdn->pe_num_map);
1435         }
1436 }
1437
1438 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1439                                        struct pnv_ioda_pe *pe);
1440 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1441 {
1442         struct pci_bus        *bus;
1443         struct pci_controller *hose;
1444         struct pnv_phb        *phb;
1445         struct pnv_ioda_pe    *pe;
1446         int                    pe_num;
1447         u16                    vf_index;
1448         struct pci_dn         *pdn;
1449
1450         bus = pdev->bus;
1451         hose = pci_bus_to_host(bus);
1452         phb = hose->private_data;
1453         pdn = pci_get_pdn(pdev);
1454
1455         if (!pdev->is_physfn)
1456                 return;
1457
1458         /* Reserve PE for each VF */
1459         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1460                 if (pdn->m64_single_mode)
1461                         pe_num = pdn->pe_num_map[vf_index];
1462                 else
1463                         pe_num = *pdn->pe_num_map + vf_index;
1464
1465                 pe = &phb->ioda.pe_array[pe_num];
1466                 pe->pe_number = pe_num;
1467                 pe->phb = phb;
1468                 pe->flags = PNV_IODA_PE_VF;
1469                 pe->pbus = NULL;
1470                 pe->parent_dev = pdev;
1471                 pe->mve_number = -1;
1472                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1473                            pci_iov_virtfn_devfn(pdev, vf_index);
1474
1475                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1476                         hose->global_number, pdev->bus->number,
1477                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1478                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1479
1480                 if (pnv_ioda_configure_pe(phb, pe)) {
1481                         /* XXX What do we do here ? */
1482                         pnv_ioda_free_pe(pe);
1483                         pe->pdev = NULL;
1484                         continue;
1485                 }
1486
1487                 /* Put PE to the list */
1488                 mutex_lock(&phb->ioda.pe_list_mutex);
1489                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1490                 mutex_unlock(&phb->ioda.pe_list_mutex);
1491
1492                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1493         }
1494 }
1495
1496 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1497 {
1498         struct pci_bus        *bus;
1499         struct pci_controller *hose;
1500         struct pnv_phb        *phb;
1501         struct pnv_ioda_pe    *pe;
1502         struct pci_dn         *pdn;
1503         int                    ret;
1504         u16                    i;
1505
1506         bus = pdev->bus;
1507         hose = pci_bus_to_host(bus);
1508         phb = hose->private_data;
1509         pdn = pci_get_pdn(pdev);
1510
1511         if (phb->type == PNV_PHB_IODA2) {
1512                 if (!pdn->vfs_expanded) {
1513                         dev_info(&pdev->dev, "don't support this SRIOV device"
1514                                 " with non 64bit-prefetchable IOV BAR\n");
1515                         return -ENOSPC;
1516                 }
1517
1518                 /*
1519                  * When M64 BARs functions in Single PE mode, the number of VFs
1520                  * could be enabled must be less than the number of M64 BARs.
1521                  */
1522                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1523                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1524                         return -EBUSY;
1525                 }
1526
1527                 /* Allocating pe_num_map */
1528                 if (pdn->m64_single_mode)
1529                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1530                                         GFP_KERNEL);
1531                 else
1532                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1533
1534                 if (!pdn->pe_num_map)
1535                         return -ENOMEM;
1536
1537                 if (pdn->m64_single_mode)
1538                         for (i = 0; i < num_vfs; i++)
1539                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1540
1541                 /* Calculate available PE for required VFs */
1542                 if (pdn->m64_single_mode) {
1543                         for (i = 0; i < num_vfs; i++) {
1544                                 pe = pnv_ioda_alloc_pe(phb);
1545                                 if (!pe) {
1546                                         ret = -EBUSY;
1547                                         goto m64_failed;
1548                                 }
1549
1550                                 pdn->pe_num_map[i] = pe->pe_number;
1551                         }
1552                 } else {
1553                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1554                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1555                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1556                                 0, num_vfs, 0);
1557                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1558                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1559                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1560                                 kfree(pdn->pe_num_map);
1561                                 return -EBUSY;
1562                         }
1563                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1564                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1565                 }
1566                 pdn->num_vfs = num_vfs;
1567
1568                 /* Assign M64 window accordingly */
1569                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1570                 if (ret) {
1571                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1572                         goto m64_failed;
1573                 }
1574
1575                 /*
1576                  * When using one M64 BAR to map one IOV BAR, we need to shift
1577                  * the IOV BAR according to the PE# allocated to the VFs.
1578                  * Otherwise, the PE# for the VF will conflict with others.
1579                  */
1580                 if (!pdn->m64_single_mode) {
1581                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1582                         if (ret)
1583                                 goto m64_failed;
1584                 }
1585         }
1586
1587         /* Setup VF PEs */
1588         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1589
1590         return 0;
1591
1592 m64_failed:
1593         if (pdn->m64_single_mode) {
1594                 for (i = 0; i < num_vfs; i++) {
1595                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1596                                 continue;
1597
1598                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1599                         pnv_ioda_free_pe(pe);
1600                 }
1601         } else
1602                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1603
1604         /* Releasing pe_num_map */
1605         kfree(pdn->pe_num_map);
1606
1607         return ret;
1608 }
1609
1610 int pcibios_sriov_disable(struct pci_dev *pdev)
1611 {
1612         pnv_pci_sriov_disable(pdev);
1613
1614         /* Release PCI data */
1615         remove_dev_pci_data(pdev);
1616         return 0;
1617 }
1618
1619 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1620 {
1621         /* Allocate PCI data */
1622         add_dev_pci_data(pdev);
1623
1624         return pnv_pci_sriov_enable(pdev, num_vfs);
1625 }
1626 #endif /* CONFIG_PCI_IOV */
1627
1628 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1629 {
1630         struct pci_dn *pdn = pci_get_pdn(pdev);
1631         struct pnv_ioda_pe *pe;
1632
1633         /*
1634          * The function can be called while the PE#
1635          * hasn't been assigned. Do nothing for the
1636          * case.
1637          */
1638         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1639                 return;
1640
1641         pe = &phb->ioda.pe_array[pdn->pe_number];
1642         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1643         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1644         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1645         /*
1646          * Note: iommu_add_device() will fail here as
1647          * for physical PE: the device is already added by now;
1648          * for virtual PE: sysfs entries are not ready yet and
1649          * tce_iommu_bus_notifier will add the device to a group later.
1650          */
1651 }
1652
1653 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1654 {
1655         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1656         struct pnv_phb *phb = hose->private_data;
1657         struct pci_dn *pdn = pci_get_pdn(pdev);
1658         struct pnv_ioda_pe *pe;
1659         uint64_t top;
1660         bool bypass = false;
1661
1662         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1663                 return -ENODEV;;
1664
1665         pe = &phb->ioda.pe_array[pdn->pe_number];
1666         if (pe->tce_bypass_enabled) {
1667                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1668                 bypass = (dma_mask >= top);
1669         }
1670
1671         if (bypass) {
1672                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1673                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1674         } else {
1675                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1676                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1677         }
1678         *pdev->dev.dma_mask = dma_mask;
1679
1680         /* Update peer npu devices */
1681         pnv_npu_try_dma_set_bypass(pdev, bypass);
1682
1683         return 0;
1684 }
1685
1686 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1687 {
1688         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1689         struct pnv_phb *phb = hose->private_data;
1690         struct pci_dn *pdn = pci_get_pdn(pdev);
1691         struct pnv_ioda_pe *pe;
1692         u64 end, mask;
1693
1694         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1695                 return 0;
1696
1697         pe = &phb->ioda.pe_array[pdn->pe_number];
1698         if (!pe->tce_bypass_enabled)
1699                 return __dma_get_required_mask(&pdev->dev);
1700
1701
1702         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1703         mask = 1ULL << (fls64(end) - 1);
1704         mask += mask - 1;
1705
1706         return mask;
1707 }
1708
1709 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1710                                    struct pci_bus *bus)
1711 {
1712         struct pci_dev *dev;
1713
1714         list_for_each_entry(dev, &bus->devices, bus_list) {
1715                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1716                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1717                 iommu_add_device(&dev->dev);
1718
1719                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1720                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1721         }
1722 }
1723
1724 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1725                 unsigned long index, unsigned long npages, bool rm)
1726 {
1727         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1728                         &tbl->it_group_list, struct iommu_table_group_link,
1729                         next);
1730         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1731                         struct pnv_ioda_pe, table_group);
1732         __be64 __iomem *invalidate = rm ?
1733                 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1734                 pe->phb->ioda.tce_inval_reg;
1735         unsigned long start, end, inc;
1736         const unsigned shift = tbl->it_page_shift;
1737
1738         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1739         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1740                         npages - 1);
1741
1742         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1743         if (tbl->it_busno) {
1744                 start <<= shift;
1745                 end <<= shift;
1746                 inc = 128ull << shift;
1747                 start |= tbl->it_busno;
1748                 end |= tbl->it_busno;
1749         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1750                 /* p7ioc-style invalidation, 2 TCEs per write */
1751                 start |= (1ull << 63);
1752                 end |= (1ull << 63);
1753                 inc = 16;
1754         } else {
1755                 /* Default (older HW) */
1756                 inc = 128;
1757         }
1758
1759         end |= inc - 1; /* round up end to be different than start */
1760
1761         mb(); /* Ensure above stores are visible */
1762         while (start <= end) {
1763                 if (rm)
1764                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1765                 else
1766                         __raw_writeq(cpu_to_be64(start), invalidate);
1767                 start += inc;
1768         }
1769
1770         /*
1771          * The iommu layer will do another mb() for us on build()
1772          * and we don't care on free()
1773          */
1774 }
1775
1776 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1777                 long npages, unsigned long uaddr,
1778                 enum dma_data_direction direction,
1779                 struct dma_attrs *attrs)
1780 {
1781         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1782                         attrs);
1783
1784         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1785                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1786
1787         return ret;
1788 }
1789
1790 #ifdef CONFIG_IOMMU_API
1791 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1792                 unsigned long *hpa, enum dma_data_direction *direction)
1793 {
1794         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1795
1796         if (!ret && (tbl->it_type &
1797                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1798                 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1799
1800         return ret;
1801 }
1802 #endif
1803
1804 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1805                 long npages)
1806 {
1807         pnv_tce_free(tbl, index, npages);
1808
1809         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1810                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1811 }
1812
1813 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1814         .set = pnv_ioda1_tce_build,
1815 #ifdef CONFIG_IOMMU_API
1816         .exchange = pnv_ioda1_tce_xchg,
1817 #endif
1818         .clear = pnv_ioda1_tce_free,
1819         .get = pnv_tce_get,
1820 };
1821
1822 #define TCE_KILL_INVAL_ALL  PPC_BIT(0)
1823 #define TCE_KILL_INVAL_PE   PPC_BIT(1)
1824 #define TCE_KILL_INVAL_TCE  PPC_BIT(2)
1825
1826 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1827 {
1828         const unsigned long val = TCE_KILL_INVAL_ALL;
1829
1830         mb(); /* Ensure previous TCE table stores are visible */
1831         if (rm)
1832                 __raw_rm_writeq(cpu_to_be64(val),
1833                                 (__be64 __iomem *)
1834                                 phb->ioda.tce_inval_reg_phys);
1835         else
1836                 __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1837 }
1838
1839 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1840 {
1841         /* 01xb - invalidate TCEs that match the specified PE# */
1842         unsigned long val = TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1843         struct pnv_phb *phb = pe->phb;
1844
1845         if (!phb->ioda.tce_inval_reg)
1846                 return;
1847
1848         mb(); /* Ensure above stores are visible */
1849         __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1850 }
1851
1852 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1853                 __be64 __iomem *invalidate, unsigned shift,
1854                 unsigned long index, unsigned long npages)
1855 {
1856         unsigned long start, end, inc;
1857
1858         /* We'll invalidate DMA address in PE scope */
1859         start = TCE_KILL_INVAL_TCE;
1860         start |= (pe_number & 0xFF);
1861         end = start;
1862
1863         /* Figure out the start, end and step */
1864         start |= (index << shift);
1865         end |= ((index + npages - 1) << shift);
1866         inc = (0x1ull << shift);
1867         mb();
1868
1869         while (start <= end) {
1870                 if (rm)
1871                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1872                 else
1873                         __raw_writeq(cpu_to_be64(start), invalidate);
1874                 start += inc;
1875         }
1876 }
1877
1878 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1879                 unsigned long index, unsigned long npages, bool rm)
1880 {
1881         struct iommu_table_group_link *tgl;
1882
1883         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1884                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1885                                 struct pnv_ioda_pe, table_group);
1886                 __be64 __iomem *invalidate = rm ?
1887                         (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1888                         pe->phb->ioda.tce_inval_reg;
1889
1890                 if (pe->phb->type == PNV_PHB_NPU) {
1891                         /*
1892                          * The NVLink hardware does not support TCE kill
1893                          * per TCE entry so we have to invalidate
1894                          * the entire cache for it.
1895                          */
1896                         pnv_pci_ioda2_tce_invalidate_entire(pe->phb, rm);
1897                         continue;
1898                 }
1899                 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1900                         invalidate, tbl->it_page_shift,
1901                         index, npages);
1902         }
1903 }
1904
1905 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1906                 long npages, unsigned long uaddr,
1907                 enum dma_data_direction direction,
1908                 struct dma_attrs *attrs)
1909 {
1910         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1911                         attrs);
1912
1913         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1914                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1915
1916         return ret;
1917 }
1918
1919 #ifdef CONFIG_IOMMU_API
1920 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1921                 unsigned long *hpa, enum dma_data_direction *direction)
1922 {
1923         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1924
1925         if (!ret && (tbl->it_type &
1926                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1927                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1928
1929         return ret;
1930 }
1931 #endif
1932
1933 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1934                 long npages)
1935 {
1936         pnv_tce_free(tbl, index, npages);
1937
1938         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1939                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1940 }
1941
1942 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1943 {
1944         pnv_pci_ioda2_table_free_pages(tbl);
1945         iommu_free_table(tbl, "pnv");
1946 }
1947
1948 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1949         .set = pnv_ioda2_tce_build,
1950 #ifdef CONFIG_IOMMU_API
1951         .exchange = pnv_ioda2_tce_xchg,
1952 #endif
1953         .clear = pnv_ioda2_tce_free,
1954         .get = pnv_tce_get,
1955         .free = pnv_ioda2_table_free,
1956 };
1957
1958 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1959 {
1960         unsigned int *weight = (unsigned int *)data;
1961
1962         /* This is quite simplistic. The "base" weight of a device
1963          * is 10. 0 means no DMA is to be accounted for it.
1964          */
1965         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1966                 return 0;
1967
1968         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1969             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1970             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1971                 *weight += 3;
1972         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1973                 *weight += 15;
1974         else
1975                 *weight += 10;
1976
1977         return 0;
1978 }
1979
1980 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1981 {
1982         unsigned int weight = 0;
1983
1984         /* SRIOV VF has same DMA32 weight as its PF */
1985 #ifdef CONFIG_PCI_IOV
1986         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1987                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1988                 return weight;
1989         }
1990 #endif
1991
1992         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1993                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1994         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1995                 struct pci_dev *pdev;
1996
1997                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1998                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1999         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2000                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2001         }
2002
2003         return weight;
2004 }
2005
2006 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2007                                        struct pnv_ioda_pe *pe)
2008 {
2009
2010         struct page *tce_mem = NULL;
2011         struct iommu_table *tbl;
2012         unsigned int weight, total_weight = 0;
2013         unsigned int tce32_segsz, base, segs, avail, i;
2014         int64_t rc;
2015         void *addr;
2016
2017         /* XXX FIXME: Handle 64-bit only DMA devices */
2018         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2019         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2020         weight = pnv_pci_ioda_pe_dma_weight(pe);
2021         if (!weight)
2022                 return;
2023
2024         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2025                      &total_weight);
2026         segs = (weight * phb->ioda.dma32_count) / total_weight;
2027         if (!segs)
2028                 segs = 1;
2029
2030         /*
2031          * Allocate contiguous DMA32 segments. We begin with the expected
2032          * number of segments. With one more attempt, the number of DMA32
2033          * segments to be allocated is decreased by one until one segment
2034          * is allocated successfully.
2035          */
2036         do {
2037                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2038                         for (avail = 0, i = base; i < base + segs; i++) {
2039                                 if (phb->ioda.dma32_segmap[i] ==
2040                                     IODA_INVALID_PE)
2041                                         avail++;
2042                         }
2043
2044                         if (avail == segs)
2045                                 goto found;
2046                 }
2047         } while (--segs);
2048
2049         if (!segs) {
2050                 pe_warn(pe, "No available DMA32 segments\n");
2051                 return;
2052         }
2053
2054 found:
2055         tbl = pnv_pci_table_alloc(phb->hose->node);
2056         iommu_register_group(&pe->table_group, phb->hose->global_number,
2057                         pe->pe_number);
2058         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2059
2060         /* Grab a 32-bit TCE table */
2061         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2062                 weight, total_weight, base, segs);
2063         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2064                 base * PNV_IODA1_DMA32_SEGSIZE,
2065                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2066
2067         /* XXX Currently, we allocate one big contiguous table for the
2068          * TCEs. We only really need one chunk per 256M of TCE space
2069          * (ie per segment) but that's an optimization for later, it
2070          * requires some added smarts with our get/put_tce implementation
2071          *
2072          * Each TCE page is 4KB in size and each TCE entry occupies 8
2073          * bytes
2074          */
2075         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2076         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2077                                    get_order(tce32_segsz * segs));
2078         if (!tce_mem) {
2079                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2080                 goto fail;
2081         }
2082         addr = page_address(tce_mem);
2083         memset(addr, 0, tce32_segsz * segs);
2084
2085         /* Configure HW */
2086         for (i = 0; i < segs; i++) {
2087                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2088                                               pe->pe_number,
2089                                               base + i, 1,
2090                                               __pa(addr) + tce32_segsz * i,
2091                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2092                 if (rc) {
2093                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2094                                " err %ld\n", rc);
2095                         goto fail;
2096                 }
2097         }
2098
2099         /* Setup DMA32 segment mapping */
2100         for (i = base; i < base + segs; i++)
2101                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2102
2103         /* Setup linux iommu table */
2104         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2105                                   base * PNV_IODA1_DMA32_SEGSIZE,
2106                                   IOMMU_PAGE_SHIFT_4K);
2107
2108         /* OPAL variant of P7IOC SW invalidated TCEs */
2109         if (phb->ioda.tce_inval_reg)
2110                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2111                                  TCE_PCI_SWINV_FREE   |
2112                                  TCE_PCI_SWINV_PAIR);
2113
2114         tbl->it_ops = &pnv_ioda1_iommu_ops;
2115         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2116         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2117         iommu_init_table(tbl, phb->hose->node);
2118
2119         if (pe->flags & PNV_IODA_PE_DEV) {
2120                 /*
2121                  * Setting table base here only for carrying iommu_group
2122                  * further down to let iommu_add_device() do the job.
2123                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2124                  */
2125                 set_iommu_table_base(&pe->pdev->dev, tbl);
2126                 iommu_add_device(&pe->pdev->dev);
2127         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2128                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2129
2130         return;
2131  fail:
2132         /* XXX Failure: Try to fallback to 64-bit only ? */
2133         if (tce_mem)
2134                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2135         if (tbl) {
2136                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2137                 iommu_free_table(tbl, "pnv");
2138         }
2139 }
2140
2141 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2142                 int num, struct iommu_table *tbl)
2143 {
2144         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2145                         table_group);
2146         struct pnv_phb *phb = pe->phb;
2147         int64_t rc;
2148         const unsigned long size = tbl->it_indirect_levels ?
2149                         tbl->it_level_size : tbl->it_size;
2150         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2151         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2152
2153         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2154                         start_addr, start_addr + win_size - 1,
2155                         IOMMU_PAGE_SIZE(tbl));
2156
2157         /*
2158          * Map TCE table through TVT. The TVE index is the PE number
2159          * shifted by 1 bit for 32-bits DMA space.
2160          */
2161         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2162                         pe->pe_number,
2163                         (pe->pe_number << 1) + num,
2164                         tbl->it_indirect_levels + 1,
2165                         __pa(tbl->it_base),
2166                         size << 3,
2167                         IOMMU_PAGE_SIZE(tbl));
2168         if (rc) {
2169                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2170                 return rc;
2171         }
2172
2173         pnv_pci_link_table_and_group(phb->hose->node, num,
2174                         tbl, &pe->table_group);
2175         pnv_pci_ioda2_tce_invalidate_pe(pe);
2176
2177         return 0;
2178 }
2179
2180 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2181 {
2182         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2183         int64_t rc;
2184
2185         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2186         if (enable) {
2187                 phys_addr_t top = memblock_end_of_DRAM();
2188
2189                 top = roundup_pow_of_two(top);
2190                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2191                                                      pe->pe_number,
2192                                                      window_id,
2193                                                      pe->tce_bypass_base,
2194                                                      top);
2195         } else {
2196                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2197                                                      pe->pe_number,
2198                                                      window_id,
2199                                                      pe->tce_bypass_base,
2200                                                      0);
2201         }
2202         if (rc)
2203                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2204         else
2205                 pe->tce_bypass_enabled = enable;
2206 }
2207
2208 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2209                 __u32 page_shift, __u64 window_size, __u32 levels,
2210                 struct iommu_table *tbl);
2211
2212 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2213                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2214                 struct iommu_table **ptbl)
2215 {
2216         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2217                         table_group);
2218         int nid = pe->phb->hose->node;
2219         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2220         long ret;
2221         struct iommu_table *tbl;
2222
2223         tbl = pnv_pci_table_alloc(nid);
2224         if (!tbl)
2225                 return -ENOMEM;
2226
2227         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2228                         bus_offset, page_shift, window_size,
2229                         levels, tbl);
2230         if (ret) {
2231                 iommu_free_table(tbl, "pnv");
2232                 return ret;
2233         }
2234
2235         tbl->it_ops = &pnv_ioda2_iommu_ops;
2236         if (pe->phb->ioda.tce_inval_reg)
2237                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2238
2239         *ptbl = tbl;
2240
2241         return 0;
2242 }
2243
2244 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2245 {
2246         struct iommu_table *tbl = NULL;
2247         long rc;
2248
2249         /*
2250          * crashkernel= specifies the kdump kernel's maximum memory at
2251          * some offset and there is no guaranteed the result is a power
2252          * of 2, which will cause errors later.
2253          */
2254         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2255
2256         /*
2257          * In memory constrained environments, e.g. kdump kernel, the
2258          * DMA window can be larger than available memory, which will
2259          * cause errors later.
2260          */
2261         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2262
2263         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2264                         IOMMU_PAGE_SHIFT_4K,
2265                         window_size,
2266                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2267         if (rc) {
2268                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2269                                 rc);
2270                 return rc;
2271         }
2272
2273         iommu_init_table(tbl, pe->phb->hose->node);
2274
2275         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2276         if (rc) {
2277                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2278                                 rc);
2279                 pnv_ioda2_table_free(tbl);
2280                 return rc;
2281         }
2282
2283         if (!pnv_iommu_bypass_disabled)
2284                 pnv_pci_ioda2_set_bypass(pe, true);
2285
2286         /* OPAL variant of PHB3 invalidated TCEs */
2287         if (pe->phb->ioda.tce_inval_reg)
2288                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2289
2290         /*
2291          * Setting table base here only for carrying iommu_group
2292          * further down to let iommu_add_device() do the job.
2293          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2294          */
2295         if (pe->flags & PNV_IODA_PE_DEV)
2296                 set_iommu_table_base(&pe->pdev->dev, tbl);
2297
2298         return 0;
2299 }
2300
2301 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2302 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2303                 int num)
2304 {
2305         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2306                         table_group);
2307         struct pnv_phb *phb = pe->phb;
2308         long ret;
2309
2310         pe_info(pe, "Removing DMA window #%d\n", num);
2311
2312         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2313                         (pe->pe_number << 1) + num,
2314                         0/* levels */, 0/* table address */,
2315                         0/* table size */, 0/* page size */);
2316         if (ret)
2317                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2318         else
2319                 pnv_pci_ioda2_tce_invalidate_pe(pe);
2320
2321         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2322
2323         return ret;
2324 }
2325 #endif
2326
2327 #ifdef CONFIG_IOMMU_API
2328 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2329                 __u64 window_size, __u32 levels)
2330 {
2331         unsigned long bytes = 0;
2332         const unsigned window_shift = ilog2(window_size);
2333         unsigned entries_shift = window_shift - page_shift;
2334         unsigned table_shift = entries_shift + 3;
2335         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2336         unsigned long direct_table_size;
2337
2338         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2339                         (window_size > memory_hotplug_max()) ||
2340                         !is_power_of_2(window_size))
2341                 return 0;
2342
2343         /* Calculate a direct table size from window_size and levels */
2344         entries_shift = (entries_shift + levels - 1) / levels;
2345         table_shift = entries_shift + 3;
2346         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2347         direct_table_size =  1UL << table_shift;
2348
2349         for ( ; levels; --levels) {
2350                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2351
2352                 tce_table_size /= direct_table_size;
2353                 tce_table_size <<= 3;
2354                 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2355         }
2356
2357         return bytes;
2358 }
2359
2360 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2361 {
2362         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2363                                                 table_group);
2364         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2365         struct iommu_table *tbl = pe->table_group.tables[0];
2366
2367         pnv_pci_ioda2_set_bypass(pe, false);
2368         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2369         pnv_ioda2_table_free(tbl);
2370 }
2371
2372 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2373 {
2374         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2375                                                 table_group);
2376
2377         pnv_pci_ioda2_setup_default_config(pe);
2378 }
2379
2380 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2381         .get_table_size = pnv_pci_ioda2_get_table_size,
2382         .create_table = pnv_pci_ioda2_create_table,
2383         .set_window = pnv_pci_ioda2_set_window,
2384         .unset_window = pnv_pci_ioda2_unset_window,
2385         .take_ownership = pnv_ioda2_take_ownership,
2386         .release_ownership = pnv_ioda2_release_ownership,
2387 };
2388
2389 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2390 {
2391         struct pci_controller *hose;
2392         struct pnv_phb *phb;
2393         struct pnv_ioda_pe **ptmppe = opaque;
2394         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2395         struct pci_dn *pdn = pci_get_pdn(pdev);
2396
2397         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2398                 return 0;
2399
2400         hose = pci_bus_to_host(pdev->bus);
2401         phb = hose->private_data;
2402         if (phb->type != PNV_PHB_NPU)
2403                 return 0;
2404
2405         *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2406
2407         return 1;
2408 }
2409
2410 /*
2411  * This returns PE of associated NPU.
2412  * This assumes that NPU is in the same IOMMU group with GPU and there is
2413  * no other PEs.
2414  */
2415 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2416                 struct iommu_table_group *table_group)
2417 {
2418         struct pnv_ioda_pe *npe = NULL;
2419         int ret = iommu_group_for_each_dev(table_group->group, &npe,
2420                         gpe_table_group_to_npe_cb);
2421
2422         BUG_ON(!ret || !npe);
2423
2424         return npe;
2425 }
2426
2427 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2428                 int num, struct iommu_table *tbl)
2429 {
2430         long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2431
2432         if (ret)
2433                 return ret;
2434
2435         ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2436         if (ret)
2437                 pnv_pci_ioda2_unset_window(table_group, num);
2438
2439         return ret;
2440 }
2441
2442 static long pnv_pci_ioda2_npu_unset_window(
2443                 struct iommu_table_group *table_group,
2444                 int num)
2445 {
2446         long ret = pnv_pci_ioda2_unset_window(table_group, num);
2447
2448         if (ret)
2449                 return ret;
2450
2451         return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2452 }
2453
2454 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2455 {
2456         /*
2457          * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2458          * the iommu_table if 32bit DMA is enabled.
2459          */
2460         pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2461         pnv_ioda2_take_ownership(table_group);
2462 }
2463
2464 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2465         .get_table_size = pnv_pci_ioda2_get_table_size,
2466         .create_table = pnv_pci_ioda2_create_table,
2467         .set_window = pnv_pci_ioda2_npu_set_window,
2468         .unset_window = pnv_pci_ioda2_npu_unset_window,
2469         .take_ownership = pnv_ioda2_npu_take_ownership,
2470         .release_ownership = pnv_ioda2_release_ownership,
2471 };
2472
2473 static void pnv_pci_ioda_setup_iommu_api(void)
2474 {
2475         struct pci_controller *hose, *tmp;
2476         struct pnv_phb *phb;
2477         struct pnv_ioda_pe *pe, *gpe;
2478
2479         /*
2480          * Now we have all PHBs discovered, time to add NPU devices to
2481          * the corresponding IOMMU groups.
2482          */
2483         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2484                 phb = hose->private_data;
2485
2486                 if (phb->type != PNV_PHB_NPU)
2487                         continue;
2488
2489                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2490                         gpe = pnv_pci_npu_setup_iommu(pe);
2491                         if (gpe)
2492                                 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2493                 }
2494         }
2495 }
2496 #else /* !CONFIG_IOMMU_API */
2497 static void pnv_pci_ioda_setup_iommu_api(void) { };
2498 #endif
2499
2500 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2501 {
2502         const __be64 *swinvp;
2503
2504         /* OPAL variant of PHB3 invalidated TCEs */
2505         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2506         if (!swinvp)
2507                 return;
2508
2509         phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2510         phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2511 }
2512
2513 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2514                 unsigned levels, unsigned long limit,
2515                 unsigned long *current_offset, unsigned long *total_allocated)
2516 {
2517         struct page *tce_mem = NULL;
2518         __be64 *addr, *tmp;
2519         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2520         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2521         unsigned entries = 1UL << (shift - 3);
2522         long i;
2523
2524         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2525         if (!tce_mem) {
2526                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2527                 return NULL;
2528         }
2529         addr = page_address(tce_mem);
2530         memset(addr, 0, allocated);
2531         *total_allocated += allocated;
2532
2533         --levels;
2534         if (!levels) {
2535                 *current_offset += allocated;
2536                 return addr;
2537         }
2538
2539         for (i = 0; i < entries; ++i) {
2540                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2541                                 levels, limit, current_offset, total_allocated);
2542                 if (!tmp)
2543                         break;
2544
2545                 addr[i] = cpu_to_be64(__pa(tmp) |
2546                                 TCE_PCI_READ | TCE_PCI_WRITE);
2547
2548                 if (*current_offset >= limit)
2549                         break;
2550         }
2551
2552         return addr;
2553 }
2554
2555 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2556                 unsigned long size, unsigned level);
2557
2558 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2559                 __u32 page_shift, __u64 window_size, __u32 levels,
2560                 struct iommu_table *tbl)
2561 {
2562         void *addr;
2563         unsigned long offset = 0, level_shift, total_allocated = 0;
2564         const unsigned window_shift = ilog2(window_size);
2565         unsigned entries_shift = window_shift - page_shift;
2566         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2567         const unsigned long tce_table_size = 1UL << table_shift;
2568
2569         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2570                 return -EINVAL;
2571
2572         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2573                 return -EINVAL;
2574
2575         /* Adjust direct table size from window_size and levels */
2576         entries_shift = (entries_shift + levels - 1) / levels;
2577         level_shift = entries_shift + 3;
2578         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2579
2580         /* Allocate TCE table */
2581         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2582                         levels, tce_table_size, &offset, &total_allocated);
2583
2584         /* addr==NULL means that the first level allocation failed */
2585         if (!addr)
2586                 return -ENOMEM;
2587
2588         /*
2589          * First level was allocated but some lower level failed as
2590          * we did not allocate as much as we wanted,
2591          * release partially allocated table.
2592          */
2593         if (offset < tce_table_size) {
2594                 pnv_pci_ioda2_table_do_free_pages(addr,
2595                                 1ULL << (level_shift - 3), levels - 1);
2596                 return -ENOMEM;
2597         }
2598
2599         /* Setup linux iommu table */
2600         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2601                         page_shift);
2602         tbl->it_level_size = 1ULL << (level_shift - 3);
2603         tbl->it_indirect_levels = levels - 1;
2604         tbl->it_allocated_size = total_allocated;
2605
2606         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2607                         window_size, tce_table_size, bus_offset);
2608
2609         return 0;
2610 }
2611
2612 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2613                 unsigned long size, unsigned level)
2614 {
2615         const unsigned long addr_ul = (unsigned long) addr &
2616                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2617
2618         if (level) {
2619                 long i;
2620                 u64 *tmp = (u64 *) addr_ul;
2621
2622                 for (i = 0; i < size; ++i) {
2623                         unsigned long hpa = be64_to_cpu(tmp[i]);
2624
2625                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2626                                 continue;
2627
2628                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2629                                         level - 1);
2630                 }
2631         }
2632
2633         free_pages(addr_ul, get_order(size << 3));
2634 }
2635
2636 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2637 {
2638         const unsigned long size = tbl->it_indirect_levels ?
2639                         tbl->it_level_size : tbl->it_size;
2640
2641         if (!tbl->it_size)
2642                 return;
2643
2644         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2645                         tbl->it_indirect_levels);
2646 }
2647
2648 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2649                                        struct pnv_ioda_pe *pe)
2650 {
2651         int64_t rc;
2652
2653         if (!pnv_pci_ioda_pe_dma_weight(pe))
2654                 return;
2655
2656         /* TVE #1 is selected by PCI address bit 59 */
2657         pe->tce_bypass_base = 1ull << 59;
2658
2659         iommu_register_group(&pe->table_group, phb->hose->global_number,
2660                         pe->pe_number);
2661
2662         /* The PE will reserve all possible 32-bits space */
2663         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2664                 phb->ioda.m32_pci_base);
2665
2666         /* Setup linux iommu table */
2667         pe->table_group.tce32_start = 0;
2668         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2669         pe->table_group.max_dynamic_windows_supported =
2670                         IOMMU_TABLE_GROUP_MAX_TABLES;
2671         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2672         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2673 #ifdef CONFIG_IOMMU_API
2674         pe->table_group.ops = &pnv_pci_ioda2_ops;
2675 #endif
2676
2677         rc = pnv_pci_ioda2_setup_default_config(pe);
2678         if (rc)
2679                 return;
2680
2681         if (pe->flags & PNV_IODA_PE_DEV)
2682                 iommu_add_device(&pe->pdev->dev);
2683         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2684                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2685 }
2686
2687 #ifdef CONFIG_PCI_MSI
2688 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2689 {
2690         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2691         struct irq_chip *chip = irq_data_get_irq_chip(d);
2692         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2693                                            ioda.irq_chip);
2694         int64_t rc;
2695
2696         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2697         WARN_ON_ONCE(rc);
2698
2699         icp_native_eoi(d);
2700 }
2701
2702
2703 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2704 {
2705         struct irq_data *idata;
2706         struct irq_chip *ichip;
2707
2708         if (phb->type != PNV_PHB_IODA2)
2709                 return;
2710
2711         if (!phb->ioda.irq_chip_init) {
2712                 /*
2713                  * First time we setup an MSI IRQ, we need to setup the
2714                  * corresponding IRQ chip to route correctly.
2715                  */
2716                 idata = irq_get_irq_data(virq);
2717                 ichip = irq_data_get_irq_chip(idata);
2718                 phb->ioda.irq_chip_init = 1;
2719                 phb->ioda.irq_chip = *ichip;
2720                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2721         }
2722         irq_set_chip(virq, &phb->ioda.irq_chip);
2723 }
2724
2725 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2726                                   unsigned int hwirq, unsigned int virq,
2727                                   unsigned int is_64, struct msi_msg *msg)
2728 {
2729         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2730         unsigned int xive_num = hwirq - phb->msi_base;
2731         __be32 data;
2732         int rc;
2733
2734         /* No PE assigned ? bail out ... no MSI for you ! */
2735         if (pe == NULL)
2736                 return -ENXIO;
2737
2738         /* Check if we have an MVE */
2739         if (pe->mve_number < 0)
2740                 return -ENXIO;
2741
2742         /* Force 32-bit MSI on some broken devices */
2743         if (dev->no_64bit_msi)
2744                 is_64 = 0;
2745
2746         /* Assign XIVE to PE */
2747         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2748         if (rc) {
2749                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2750                         pci_name(dev), rc, xive_num);
2751                 return -EIO;
2752         }
2753
2754         if (is_64) {
2755                 __be64 addr64;
2756
2757                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2758                                      &addr64, &data);
2759                 if (rc) {
2760                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2761                                 pci_name(dev), rc);
2762                         return -EIO;
2763                 }
2764                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2765                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2766         } else {
2767                 __be32 addr32;
2768
2769                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2770                                      &addr32, &data);
2771                 if (rc) {
2772                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2773                                 pci_name(dev), rc);
2774                         return -EIO;
2775                 }
2776                 msg->address_hi = 0;
2777                 msg->address_lo = be32_to_cpu(addr32);
2778         }
2779         msg->data = be32_to_cpu(data);
2780
2781         pnv_set_msi_irq_chip(phb, virq);
2782
2783         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2784                  " address=%x_%08x data=%x PE# %d\n",
2785                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2786                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2787
2788         return 0;
2789 }
2790
2791 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2792 {
2793         unsigned int count;
2794         const __be32 *prop = of_get_property(phb->hose->dn,
2795                                              "ibm,opal-msi-ranges", NULL);
2796         if (!prop) {
2797                 /* BML Fallback */
2798                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2799         }
2800         if (!prop)
2801                 return;
2802
2803         phb->msi_base = be32_to_cpup(prop);
2804         count = be32_to_cpup(prop + 1);
2805         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2806                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2807                        phb->hose->global_number);
2808                 return;
2809         }
2810
2811         phb->msi_setup = pnv_pci_ioda_msi_setup;
2812         phb->msi32_support = 1;
2813         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2814                 count, phb->msi_base);
2815 }
2816 #else
2817 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2818 #endif /* CONFIG_PCI_MSI */
2819
2820 #ifdef CONFIG_PCI_IOV
2821 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2822 {
2823         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2824         struct pnv_phb *phb = hose->private_data;
2825         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2826         struct resource *res;
2827         int i;
2828         resource_size_t size, total_vf_bar_sz;
2829         struct pci_dn *pdn;
2830         int mul, total_vfs;
2831
2832         if (!pdev->is_physfn || pdev->is_added)
2833                 return;
2834
2835         pdn = pci_get_pdn(pdev);
2836         pdn->vfs_expanded = 0;
2837         pdn->m64_single_mode = false;
2838
2839         total_vfs = pci_sriov_get_totalvfs(pdev);
2840         mul = phb->ioda.total_pe_num;
2841         total_vf_bar_sz = 0;
2842
2843         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2844                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2845                 if (!res->flags || res->parent)
2846                         continue;
2847                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2848                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
2849                                         " non M64 VF BAR%d: %pR. \n",
2850                                  i, res);
2851                         goto truncate_iov;
2852                 }
2853
2854                 total_vf_bar_sz += pci_iov_resource_size(pdev,
2855                                 i + PCI_IOV_RESOURCES);
2856
2857                 /*
2858                  * If bigger than quarter of M64 segment size, just round up
2859                  * power of two.
2860                  *
2861                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2862                  * with other devices, IOV BAR size is expanded to be
2863                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2864                  * segment size , the expanded size would equal to half of the
2865                  * whole M64 space size, which will exhaust the M64 Space and
2866                  * limit the system flexibility.  This is a design decision to
2867                  * set the boundary to quarter of the M64 segment size.
2868                  */
2869                 if (total_vf_bar_sz > gate) {
2870                         mul = roundup_pow_of_two(total_vfs);
2871                         dev_info(&pdev->dev,
2872                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2873                                 total_vf_bar_sz, gate, mul);
2874                         pdn->m64_single_mode = true;
2875                         break;
2876                 }
2877         }
2878
2879         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2880                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2881                 if (!res->flags || res->parent)
2882                         continue;
2883
2884                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2885                 /*
2886                  * On PHB3, the minimum size alignment of M64 BAR in single
2887                  * mode is 32MB.
2888                  */
2889                 if (pdn->m64_single_mode && (size < SZ_32M))
2890                         goto truncate_iov;
2891                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2892                 res->end = res->start + size * mul - 1;
2893                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2894                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2895                          i, res, mul);
2896         }
2897         pdn->vfs_expanded = mul;
2898
2899         return;
2900
2901 truncate_iov:
2902         /* To save MMIO space, IOV BAR is truncated. */
2903         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2904                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2905                 res->flags = 0;
2906                 res->end = res->start - 1;
2907         }
2908 }
2909 #endif /* CONFIG_PCI_IOV */
2910
2911 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2912                                   struct resource *res)
2913 {
2914         struct pnv_phb *phb = pe->phb;
2915         struct pci_bus_region region;
2916         int index;
2917         int64_t rc;
2918
2919         if (!res || !res->flags || res->start > res->end)
2920                 return;
2921
2922         if (res->flags & IORESOURCE_IO) {
2923                 region.start = res->start - phb->ioda.io_pci_base;
2924                 region.end   = res->end - phb->ioda.io_pci_base;
2925                 index = region.start / phb->ioda.io_segsize;
2926
2927                 while (index < phb->ioda.total_pe_num &&
2928                        region.start <= region.end) {
2929                         phb->ioda.io_segmap[index] = pe->pe_number;
2930                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2931                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2932                         if (rc != OPAL_SUCCESS) {
2933                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
2934                                        __func__, rc, index, pe->pe_number);
2935                                 break;
2936                         }
2937
2938                         region.start += phb->ioda.io_segsize;
2939                         index++;
2940                 }
2941         } else if ((res->flags & IORESOURCE_MEM) &&
2942                    !pnv_pci_is_mem_pref_64(res->flags)) {
2943                 region.start = res->start -
2944                                phb->hose->mem_offset[0] -
2945                                phb->ioda.m32_pci_base;
2946                 region.end   = res->end -
2947                                phb->hose->mem_offset[0] -
2948                                phb->ioda.m32_pci_base;
2949                 index = region.start / phb->ioda.m32_segsize;
2950
2951                 while (index < phb->ioda.total_pe_num &&
2952                        region.start <= region.end) {
2953                         phb->ioda.m32_segmap[index] = pe->pe_number;
2954                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2955                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2956                         if (rc != OPAL_SUCCESS) {
2957                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
2958                                        __func__, rc, index, pe->pe_number);
2959                                 break;
2960                         }
2961
2962                         region.start += phb->ioda.m32_segsize;
2963                         index++;
2964                 }
2965         }
2966 }
2967
2968 /*
2969  * This function is supposed to be called on basis of PE from top
2970  * to bottom style. So the the I/O or MMIO segment assigned to
2971  * parent PE could be overrided by its child PEs if necessary.
2972  */
2973 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2974 {
2975         struct pci_dev *pdev;
2976         int i;
2977
2978         /*
2979          * NOTE: We only care PCI bus based PE for now. For PCI
2980          * device based PE, for example SRIOV sensitive VF should
2981          * be figured out later.
2982          */
2983         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2984
2985         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2986                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2987                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2988
2989                 /*
2990                  * If the PE contains all subordinate PCI buses, the
2991                  * windows of the child bridges should be mapped to
2992                  * the PE as well.
2993                  */
2994                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2995                         continue;
2996                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2997                         pnv_ioda_setup_pe_res(pe,
2998                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2999         }
3000 }
3001
3002 static void pnv_pci_ioda_create_dbgfs(void)
3003 {
3004 #ifdef CONFIG_DEBUG_FS
3005         struct pci_controller *hose, *tmp;
3006         struct pnv_phb *phb;
3007         char name[16];
3008
3009         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3010                 phb = hose->private_data;
3011
3012                 /* Notify initialization of PHB done */
3013                 phb->initialized = 1;
3014
3015                 sprintf(name, "PCI%04x", hose->global_number);
3016                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3017                 if (!phb->dbgfs)
3018                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3019                                 __func__, hose->global_number);
3020         }
3021 #endif /* CONFIG_DEBUG_FS */
3022 }
3023
3024 static void pnv_pci_ioda_fixup(void)
3025 {
3026         pnv_pci_ioda_setup_PEs();
3027         pnv_pci_ioda_setup_iommu_api();
3028         pnv_pci_ioda_create_dbgfs();
3029
3030 #ifdef CONFIG_EEH
3031         eeh_init();
3032         eeh_addr_cache_build();
3033 #endif
3034 }
3035
3036 /*
3037  * Returns the alignment for I/O or memory windows for P2P
3038  * bridges. That actually depends on how PEs are segmented.
3039  * For now, we return I/O or M32 segment size for PE sensitive
3040  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3041  * 1MiB for memory) will be returned.
3042  *
3043  * The current PCI bus might be put into one PE, which was
3044  * create against the parent PCI bridge. For that case, we
3045  * needn't enlarge the alignment so that we can save some
3046  * resources.
3047  */
3048 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3049                                                 unsigned long type)
3050 {
3051         struct pci_dev *bridge;
3052         struct pci_controller *hose = pci_bus_to_host(bus);
3053         struct pnv_phb *phb = hose->private_data;
3054         int num_pci_bridges = 0;
3055
3056         bridge = bus->self;
3057         while (bridge) {
3058                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3059                         num_pci_bridges++;
3060                         if (num_pci_bridges >= 2)
3061                                 return 1;
3062                 }
3063
3064                 bridge = bridge->bus->self;
3065         }
3066
3067         /* We fail back to M32 if M64 isn't supported */
3068         if (phb->ioda.m64_segsize &&
3069             pnv_pci_is_mem_pref_64(type))
3070                 return phb->ioda.m64_segsize;
3071         if (type & IORESOURCE_MEM)
3072                 return phb->ioda.m32_segsize;
3073
3074         return phb->ioda.io_segsize;
3075 }
3076
3077 /*
3078  * We are updating root port or the upstream port of the
3079  * bridge behind the root port with PHB's windows in order
3080  * to accommodate the changes on required resources during
3081  * PCI (slot) hotplug, which is connected to either root
3082  * port or the downstream ports of PCIe switch behind the
3083  * root port.
3084  */
3085 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3086                                            unsigned long type)
3087 {
3088         struct pci_controller *hose = pci_bus_to_host(bus);
3089         struct pnv_phb *phb = hose->private_data;
3090         struct pci_dev *bridge = bus->self;
3091         struct resource *r, *w;
3092         bool msi_region = false;
3093         int i;
3094
3095         /* Check if we need apply fixup to the bridge's windows */
3096         if (!pci_is_root_bus(bridge->bus) &&
3097             !pci_is_root_bus(bridge->bus->self->bus))
3098                 return;
3099
3100         /* Fixup the resources */
3101         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3102                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3103                 if (!r->flags || !r->parent)
3104                         continue;
3105
3106                 w = NULL;
3107                 if (r->flags & type & IORESOURCE_IO)
3108                         w = &hose->io_resource;
3109                 else if (pnv_pci_is_mem_pref_64(r->flags) &&
3110                          (type & IORESOURCE_PREFETCH) &&
3111                          phb->ioda.m64_segsize)
3112                         w = &hose->mem_resources[1];
3113                 else if (r->flags & type & IORESOURCE_MEM) {
3114                         w = &hose->mem_resources[0];
3115                         msi_region = true;
3116                 }
3117
3118                 r->start = w->start;
3119                 r->end = w->end;
3120
3121                 /* The 64KB 32-bits MSI region shouldn't be included in
3122                  * the 32-bits bridge window. Otherwise, we can see strange
3123                  * issues. One of them is EEH error observed on Garrison.
3124                  *
3125                  * Exclude top 1MB region which is the minimal alignment of
3126                  * 32-bits bridge window.
3127                  */
3128                 if (msi_region) {
3129                         r->end += 0x10000;
3130                         r->end -= 0x100000;
3131                 }
3132         }
3133 }
3134
3135 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3136 {
3137         struct pci_controller *hose = pci_bus_to_host(bus);
3138         struct pnv_phb *phb = hose->private_data;
3139         struct pci_dev *bridge = bus->self;
3140         struct pnv_ioda_pe *pe;
3141         bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3142
3143         /* Extend bridge's windows if necessary */
3144         pnv_pci_fixup_bridge_resources(bus, type);
3145
3146         /* The PE for root bus should be realized before any one else */
3147         if (!phb->ioda.root_pe_populated) {
3148                 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3149                 if (pe) {
3150                         phb->ioda.root_pe_idx = pe->pe_number;
3151                         phb->ioda.root_pe_populated = true;
3152                 }
3153         }
3154
3155         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3156         if (list_empty(&bus->devices))
3157                 return;
3158
3159         /* Reserve PEs according to used M64 resources */
3160         if (phb->reserve_m64_pe)
3161                 phb->reserve_m64_pe(bus, NULL, all);
3162
3163         /*
3164          * Assign PE. We might run here because of partial hotplug.
3165          * For the case, we just pick up the existing PE and should
3166          * not allocate resources again.
3167          */
3168         pe = pnv_ioda_setup_bus_PE(bus, all);
3169         if (!pe)
3170                 return;
3171
3172         pnv_ioda_setup_pe_seg(pe);
3173         switch (phb->type) {
3174         case PNV_PHB_IODA1:
3175                 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3176                 break;
3177         case PNV_PHB_IODA2:
3178                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3179                 break;
3180         default:
3181                 pr_warn("%s: No DMA for PHB#%d (type %d)\n",
3182                         __func__, phb->hose->global_number, phb->type);
3183         }
3184 }
3185
3186 #ifdef CONFIG_PCI_IOV
3187 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3188                                                       int resno)
3189 {
3190         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3191         struct pnv_phb *phb = hose->private_data;
3192         struct pci_dn *pdn = pci_get_pdn(pdev);
3193         resource_size_t align;
3194
3195         /*
3196          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3197          * SR-IOV. While from hardware perspective, the range mapped by M64
3198          * BAR should be size aligned.
3199          *
3200          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3201          * powernv-specific hardware restriction is gone. But if just use the
3202          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3203          * in one segment of M64 #15, which introduces the PE conflict between
3204          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3205          * m64_segsize.
3206          *
3207          * This function returns the total IOV BAR size if M64 BAR is in
3208          * Shared PE mode or just VF BAR size if not.
3209          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3210          * M64 segment size if IOV BAR size is less.
3211          */
3212         align = pci_iov_resource_size(pdev, resno);
3213         if (!pdn->vfs_expanded)
3214                 return align;
3215         if (pdn->m64_single_mode)
3216                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3217
3218         return pdn->vfs_expanded * align;
3219 }
3220 #endif /* CONFIG_PCI_IOV */
3221
3222 /* Prevent enabling devices for which we couldn't properly
3223  * assign a PE
3224  */
3225 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3226 {
3227         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3228         struct pnv_phb *phb = hose->private_data;
3229         struct pci_dn *pdn;
3230
3231         /* The function is probably called while the PEs have
3232          * not be created yet. For example, resource reassignment
3233          * during PCI probe period. We just skip the check if
3234          * PEs isn't ready.
3235          */
3236         if (!phb->initialized)
3237                 return true;
3238
3239         pdn = pci_get_pdn(dev);
3240         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3241                 return false;
3242
3243         return true;
3244 }
3245
3246 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3247                                        int num)
3248 {
3249         struct pnv_ioda_pe *pe = container_of(table_group,
3250                                               struct pnv_ioda_pe, table_group);
3251         struct pnv_phb *phb = pe->phb;
3252         unsigned int idx;
3253         long rc;
3254
3255         pe_info(pe, "Removing DMA window #%d\n", num);
3256         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3257                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3258                         continue;
3259
3260                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3261                                                 idx, 0, 0ul, 0ul, 0ul);
3262                 if (rc != OPAL_SUCCESS) {
3263                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3264                                 rc, idx);
3265                         return rc;
3266                 }
3267
3268                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3269         }
3270
3271         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3272         return OPAL_SUCCESS;
3273 }
3274
3275 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3276 {
3277         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3278         struct iommu_table *tbl = pe->table_group.tables[0];
3279         int64_t rc;
3280
3281         if (!weight)
3282                 return;
3283
3284         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3285         if (rc != OPAL_SUCCESS)
3286                 return;
3287
3288         pnv_pci_ioda1_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3289         if (pe->table_group.group) {
3290                 iommu_group_put(pe->table_group.group);
3291                 WARN_ON(pe->table_group.group);
3292         }
3293
3294         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3295         iommu_free_table(tbl, "pnv");
3296 }
3297
3298 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3299 {
3300         struct iommu_table *tbl = pe->table_group.tables[0];
3301         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3302 #ifdef CONFIG_IOMMU_API
3303         int64_t rc;
3304 #endif
3305
3306         if (!weight)
3307                 return;
3308
3309 #ifdef CONFIG_IOMMU_API
3310         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3311         if (rc)
3312                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3313 #endif
3314
3315         pnv_pci_ioda2_set_bypass(pe, false);
3316         if (pe->table_group.group) {
3317                 iommu_group_put(pe->table_group.group);
3318                 WARN_ON(pe->table_group.group);
3319         }
3320
3321         pnv_pci_ioda2_table_free_pages(tbl);
3322         iommu_free_table(tbl, "pnv");
3323 }
3324
3325 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3326                                  unsigned short win,
3327                                  unsigned int *map)
3328 {
3329         struct pnv_phb *phb = pe->phb;
3330         int idx;
3331         int64_t rc;
3332
3333         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3334                 if (map[idx] != pe->pe_number)
3335                         continue;
3336
3337                 if (win == OPAL_M64_WINDOW_TYPE)
3338                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3339                                         phb->ioda.reserved_pe_idx, win,
3340                                         idx / PNV_IODA1_M64_SEGS,
3341                                         idx % PNV_IODA1_M64_SEGS);
3342                 else
3343                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3344                                         phb->ioda.reserved_pe_idx, win, 0, idx);
3345
3346                 if (rc != OPAL_SUCCESS)
3347                         pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3348                                 rc, win, idx);
3349
3350                 map[idx] = IODA_INVALID_PE;
3351         }
3352 }
3353
3354 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3355 {
3356         struct pnv_phb *phb = pe->phb;
3357
3358         if (phb->type == PNV_PHB_IODA1) {
3359                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3360                                      phb->ioda.io_segmap);
3361                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3362                                      phb->ioda.m32_segmap);
3363                 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3364                                      phb->ioda.m64_segmap);
3365         } else if (phb->type == PNV_PHB_IODA2) {
3366                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3367                                      phb->ioda.m32_segmap);
3368         }
3369 }
3370
3371 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3372 {
3373         struct pnv_phb *phb = pe->phb;
3374         struct pnv_ioda_pe *slave, *tmp;
3375
3376         /* Release slave PEs in compound PE */
3377         if (pe->flags & PNV_IODA_PE_MASTER) {
3378                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list)
3379                         pnv_ioda_release_pe(slave);
3380         }
3381
3382         list_del(&pe->list);
3383         switch (phb->type) {
3384         case PNV_PHB_IODA1:
3385                 pnv_pci_ioda1_release_pe_dma(pe);
3386                 break;
3387         case PNV_PHB_IODA2:
3388                 pnv_pci_ioda2_release_pe_dma(pe);
3389                 break;
3390         default:
3391                 WARN_ON(1);
3392         }
3393
3394         pnv_ioda_release_pe_seg(pe);
3395         pnv_ioda_deconfigure_pe(pe->phb, pe);
3396         pnv_ioda_free_pe(pe);
3397 }
3398
3399 static void pnv_pci_release_device(struct pci_dev *pdev)
3400 {
3401         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3402         struct pnv_phb *phb = hose->private_data;
3403         struct pci_dn *pdn = pci_get_pdn(pdev);
3404         struct pnv_ioda_pe *pe;
3405
3406         if (pdev->is_virtfn)
3407                 return;
3408
3409         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3410                 return;
3411
3412         pe = &phb->ioda.pe_array[pdn->pe_number];
3413         WARN_ON(--pe->device_count < 0);
3414         if (pe->device_count == 0)
3415                 pnv_ioda_release_pe(pe);
3416 }
3417
3418 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3419 {
3420         struct pnv_phb *phb = hose->private_data;
3421
3422         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3423                        OPAL_ASSERT_RESET);
3424 }
3425
3426 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3427         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3428         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3429 #ifdef CONFIG_PCI_MSI
3430         .setup_msi_irqs         = pnv_setup_msi_irqs,
3431         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3432 #endif
3433         .enable_device_hook     = pnv_pci_enable_device_hook,
3434         .release_device         = pnv_pci_release_device,
3435         .window_alignment       = pnv_pci_window_alignment,
3436         .setup_bridge           = pnv_pci_setup_bridge,
3437         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3438         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3439         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3440         .shutdown               = pnv_pci_ioda_shutdown,
3441 };
3442
3443 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3444 {
3445         dev_err_once(&npdev->dev,
3446                         "%s operation unsupported for NVLink devices\n",
3447                         __func__);
3448         return -EPERM;
3449 }
3450
3451 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3452         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3453 #ifdef CONFIG_PCI_MSI
3454         .setup_msi_irqs         = pnv_setup_msi_irqs,
3455         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3456 #endif
3457         .enable_device_hook     = pnv_pci_enable_device_hook,
3458         .window_alignment       = pnv_pci_window_alignment,
3459         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3460         .dma_set_mask           = pnv_npu_dma_set_mask,
3461         .shutdown               = pnv_pci_ioda_shutdown,
3462 };
3463
3464 #ifdef CONFIG_CXL_BASE
3465 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3466         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3467         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3468 #ifdef CONFIG_PCI_MSI
3469         .setup_msi_irqs         = pnv_cxl_cx4_setup_msi_irqs,
3470         .teardown_msi_irqs      = pnv_cxl_cx4_teardown_msi_irqs,
3471 #endif
3472         .enable_device_hook     = pnv_cxl_enable_device_hook,
3473         .disable_device         = pnv_cxl_disable_device,
3474         .release_device         = pnv_pci_release_device,
3475         .window_alignment       = pnv_pci_window_alignment,
3476         .setup_bridge           = pnv_pci_setup_bridge,
3477         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3478         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3479         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3480         .shutdown               = pnv_pci_ioda_shutdown,
3481 };
3482 #endif
3483
3484 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3485                                          u64 hub_id, int ioda_type)
3486 {
3487         struct pci_controller *hose;
3488         struct pnv_phb *phb;
3489         unsigned long size, m64map_off, m32map_off, pemap_off;
3490         unsigned long iomap_off = 0, dma32map_off = 0;
3491         const __be64 *prop64;
3492         const __be32 *prop32;
3493         int len;
3494         unsigned int segno;
3495         u64 phb_id;
3496         void *aux;
3497         long rc;
3498
3499         pr_info("Initializing %s PHB (%s)\n",
3500                 pnv_phb_names[ioda_type], of_node_full_name(np));
3501
3502         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3503         if (!prop64) {
3504                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3505                 return;
3506         }
3507         phb_id = be64_to_cpup(prop64);
3508         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3509
3510         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3511
3512         /* Allocate PCI controller */
3513         phb->hose = hose = pcibios_alloc_controller(np);
3514         if (!phb->hose) {
3515                 pr_err("  Can't allocate PCI controller for %s\n",
3516                        np->full_name);
3517                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3518                 return;
3519         }
3520
3521         spin_lock_init(&phb->lock);
3522         prop32 = of_get_property(np, "bus-range", &len);
3523         if (prop32 && len == 8) {
3524                 hose->first_busno = be32_to_cpu(prop32[0]);
3525                 hose->last_busno = be32_to_cpu(prop32[1]);
3526         } else {
3527                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3528                 hose->first_busno = 0;
3529                 hose->last_busno = 0xff;
3530         }
3531         hose->private_data = phb;
3532         phb->hub_id = hub_id;
3533         phb->opal_id = phb_id;
3534         phb->type = ioda_type;
3535         mutex_init(&phb->ioda.pe_alloc_mutex);
3536
3537         /* Detect specific models for error handling */
3538         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3539                 phb->model = PNV_PHB_MODEL_P7IOC;
3540         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3541                 phb->model = PNV_PHB_MODEL_PHB3;
3542         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3543                 phb->model = PNV_PHB_MODEL_NPU;
3544         else
3545                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3546
3547         /* Parse 32-bit and IO ranges (if any) */
3548         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3549
3550         /* Get registers */
3551         phb->regs = of_iomap(np, 0);
3552         if (phb->regs == NULL)
3553                 pr_err("  Failed to map registers !\n");
3554
3555         /* Initialize TCE kill register */
3556         pnv_pci_ioda_setup_opal_tce_kill(phb);
3557
3558         /* Initialize more IODA stuff */
3559         phb->ioda.total_pe_num = 1;
3560         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3561         if (prop32)
3562                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3563         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3564         if (prop32)
3565                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3566
3567         /* Invalidate RID to PE# mapping */
3568         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3569                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3570
3571         /* Parse 64-bit MMIO range */
3572         pnv_ioda_parse_m64_window(phb);
3573
3574         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3575         /* FW Has already off top 64k of M32 space (MSI space) */
3576         phb->ioda.m32_size += 0x10000;
3577
3578         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3579         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3580         phb->ioda.io_size = hose->pci_io_size;
3581         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3582         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3583
3584         /* Calculate how many 32-bit TCE segments we have */
3585         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3586                                 PNV_IODA1_DMA32_SEGSIZE;
3587
3588         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3589         size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3590                         sizeof(unsigned long));
3591         m64map_off = size;
3592         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3593         m32map_off = size;
3594         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3595         if (phb->type == PNV_PHB_IODA1) {
3596                 iomap_off = size;
3597                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3598                 dma32map_off = size;
3599                 size += phb->ioda.dma32_count *
3600                         sizeof(phb->ioda.dma32_segmap[0]);
3601         }
3602         pemap_off = size;
3603         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3604         aux = memblock_virt_alloc(size, 0);
3605         phb->ioda.pe_alloc = aux;
3606         phb->ioda.m64_segmap = aux + m64map_off;
3607         phb->ioda.m32_segmap = aux + m32map_off;
3608         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3609                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3610                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3611         }
3612         if (phb->type == PNV_PHB_IODA1) {
3613                 phb->ioda.io_segmap = aux + iomap_off;
3614                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3615                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3616
3617                 phb->ioda.dma32_segmap = aux + dma32map_off;
3618                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3619                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3620         }
3621         phb->ioda.pe_array = aux + pemap_off;
3622
3623         /*
3624          * Choose PE number for root bus, which shouldn't have
3625          * M64 resources consumed by its child devices. To pick
3626          * the PE number adjacent to the reserved one if possible.
3627          */
3628         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3629         if (phb->ioda.reserved_pe_idx == 0) {
3630                 phb->ioda.root_pe_idx = 1;
3631                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3632         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3633                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3634                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3635         } else {
3636                 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3637         }
3638
3639         INIT_LIST_HEAD(&phb->ioda.pe_list);
3640         mutex_init(&phb->ioda.pe_list_mutex);
3641
3642         /* Calculate how many 32-bit TCE segments we have */
3643         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3644                                 PNV_IODA1_DMA32_SEGSIZE;
3645
3646 #if 0 /* We should really do that ... */
3647         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3648                                          window_type,
3649                                          window_num,
3650                                          starting_real_address,
3651                                          starting_pci_address,
3652                                          segment_size);
3653 #endif
3654
3655         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3656                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3657                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3658         if (phb->ioda.m64_size)
3659                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3660                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3661         if (phb->ioda.io_size)
3662                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3663                         phb->ioda.io_size, phb->ioda.io_segsize);
3664
3665
3666         phb->hose->ops = &pnv_pci_ops;
3667         phb->get_pe_state = pnv_ioda_get_pe_state;
3668         phb->freeze_pe = pnv_ioda_freeze_pe;
3669         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3670
3671         /* Setup MSI support */
3672         pnv_pci_init_ioda_msis(phb);
3673
3674         /*
3675          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3676          * to let the PCI core do resource assignment. It's supposed
3677          * that the PCI core will do correct I/O and MMIO alignment
3678          * for the P2P bridge bars so that each PCI bus (excluding
3679          * the child P2P bridges) can form individual PE.
3680          */
3681         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3682
3683         if (phb->type == PNV_PHB_NPU) {
3684                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3685         } else {
3686                 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3687                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3688         }
3689
3690 #ifdef CONFIG_PCI_IOV
3691         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3692         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3693 #endif
3694
3695         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3696
3697         /* Reset IODA tables to a clean state */
3698         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3699         if (rc)
3700                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3701
3702         /* If we're running in kdump kerenl, the previous kerenl never
3703          * shutdown PCI devices correctly. We already got IODA table
3704          * cleaned out. So we have to issue PHB reset to stop all PCI
3705          * transactions from previous kerenl.
3706          */
3707         if (is_kdump_kernel()) {
3708                 pr_info("  Issue PHB reset ...\n");
3709                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3710                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3711         }
3712
3713         /* Remove M64 resource if we can't configure it successfully */
3714         if (!phb->init_m64 || phb->init_m64(phb))
3715                 hose->mem_resources[1].flags = 0;
3716 }
3717
3718 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3719 {
3720         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3721 }
3722
3723 void __init pnv_pci_init_npu_phb(struct device_node *np)
3724 {
3725         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3726 }
3727
3728 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3729 {
3730         struct device_node *phbn;
3731         const __be64 *prop64;
3732         u64 hub_id;
3733
3734         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3735
3736         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3737         if (!prop64) {
3738                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3739                 return;
3740         }
3741         hub_id = be64_to_cpup(prop64);
3742         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3743
3744         /* Count child PHBs */
3745         for_each_child_of_node(np, phbn) {
3746                 /* Look for IODA1 PHBs */
3747                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3748                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3749         }
3750 }