Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / s390 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/hardirq.h>
32 #include <linux/ftrace.h>
33 #include <asm/cacheflush.h>
34 #include <asm/sections.h>
35 #include <asm/dis.h>
36
37 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
38 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
39
40 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
41
42 DEFINE_INSN_CACHE_OPS(dmainsn);
43
44 static void *alloc_dmainsn_page(void)
45 {
46         return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
47 }
48
49 static void free_dmainsn_page(void *page)
50 {
51         free_page((unsigned long)page);
52 }
53
54 struct kprobe_insn_cache kprobe_dmainsn_slots = {
55         .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
56         .alloc = alloc_dmainsn_page,
57         .free = free_dmainsn_page,
58         .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
59         .insn_size = MAX_INSN_SIZE,
60 };
61
62 static void copy_instruction(struct kprobe *p)
63 {
64         unsigned long ip = (unsigned long) p->addr;
65         s64 disp, new_disp;
66         u64 addr, new_addr;
67
68         if (ftrace_location(ip) == ip) {
69                 /*
70                  * If kprobes patches the instruction that is morphed by
71                  * ftrace make sure that kprobes always sees the branch
72                  * "jg .+24" that skips the mcount block
73                  */
74                 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
75                 p->ainsn.is_ftrace_insn = 1;
76         } else
77                 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
78         p->opcode = p->ainsn.insn[0];
79         if (!probe_is_insn_relative_long(p->ainsn.insn))
80                 return;
81         /*
82          * For pc-relative instructions in RIL-b or RIL-c format patch the
83          * RI2 displacement field. We have already made sure that the insn
84          * slot for the patched instruction is within the same 2GB area
85          * as the original instruction (either kernel image or module area).
86          * Therefore the new displacement will always fit.
87          */
88         disp = *(s32 *)&p->ainsn.insn[1];
89         addr = (u64)(unsigned long)p->addr;
90         new_addr = (u64)(unsigned long)p->ainsn.insn;
91         new_disp = ((addr + (disp * 2)) - new_addr) / 2;
92         *(s32 *)&p->ainsn.insn[1] = new_disp;
93 }
94 NOKPROBE_SYMBOL(copy_instruction);
95
96 static inline int is_kernel_addr(void *addr)
97 {
98         return addr < (void *)_end;
99 }
100
101 static int s390_get_insn_slot(struct kprobe *p)
102 {
103         /*
104          * Get an insn slot that is within the same 2GB area like the original
105          * instruction. That way instructions with a 32bit signed displacement
106          * field can be patched and executed within the insn slot.
107          */
108         p->ainsn.insn = NULL;
109         if (is_kernel_addr(p->addr))
110                 p->ainsn.insn = get_dmainsn_slot();
111         else if (is_module_addr(p->addr))
112                 p->ainsn.insn = get_insn_slot();
113         return p->ainsn.insn ? 0 : -ENOMEM;
114 }
115 NOKPROBE_SYMBOL(s390_get_insn_slot);
116
117 static void s390_free_insn_slot(struct kprobe *p)
118 {
119         if (!p->ainsn.insn)
120                 return;
121         if (is_kernel_addr(p->addr))
122                 free_dmainsn_slot(p->ainsn.insn, 0);
123         else
124                 free_insn_slot(p->ainsn.insn, 0);
125         p->ainsn.insn = NULL;
126 }
127 NOKPROBE_SYMBOL(s390_free_insn_slot);
128
129 int arch_prepare_kprobe(struct kprobe *p)
130 {
131         if ((unsigned long) p->addr & 0x01)
132                 return -EINVAL;
133         /* Make sure the probe isn't going on a difficult instruction */
134         if (probe_is_prohibited_opcode(p->addr))
135                 return -EINVAL;
136         if (s390_get_insn_slot(p))
137                 return -ENOMEM;
138         copy_instruction(p);
139         return 0;
140 }
141 NOKPROBE_SYMBOL(arch_prepare_kprobe);
142
143 int arch_check_ftrace_location(struct kprobe *p)
144 {
145         return 0;
146 }
147
148 struct swap_insn_args {
149         struct kprobe *p;
150         unsigned int arm_kprobe : 1;
151 };
152
153 static int swap_instruction(void *data)
154 {
155         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
156         unsigned long status = kcb->kprobe_status;
157         struct swap_insn_args *args = data;
158         struct ftrace_insn new_insn, *insn;
159         struct kprobe *p = args->p;
160         size_t len;
161
162         new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
163         len = sizeof(new_insn.opc);
164         if (!p->ainsn.is_ftrace_insn)
165                 goto skip_ftrace;
166         len = sizeof(new_insn);
167         insn = (struct ftrace_insn *) p->addr;
168         if (args->arm_kprobe) {
169                 if (is_ftrace_nop(insn))
170                         new_insn.disp = KPROBE_ON_FTRACE_NOP;
171                 else
172                         new_insn.disp = KPROBE_ON_FTRACE_CALL;
173         } else {
174                 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
175                 if (insn->disp == KPROBE_ON_FTRACE_NOP)
176                         ftrace_generate_nop_insn(&new_insn);
177         }
178 skip_ftrace:
179         kcb->kprobe_status = KPROBE_SWAP_INST;
180         probe_kernel_write(p->addr, &new_insn, len);
181         kcb->kprobe_status = status;
182         return 0;
183 }
184 NOKPROBE_SYMBOL(swap_instruction);
185
186 void arch_arm_kprobe(struct kprobe *p)
187 {
188         struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
189
190         stop_machine(swap_instruction, &args, NULL);
191 }
192 NOKPROBE_SYMBOL(arch_arm_kprobe);
193
194 void arch_disarm_kprobe(struct kprobe *p)
195 {
196         struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
197
198         stop_machine(swap_instruction, &args, NULL);
199 }
200 NOKPROBE_SYMBOL(arch_disarm_kprobe);
201
202 void arch_remove_kprobe(struct kprobe *p)
203 {
204         s390_free_insn_slot(p);
205 }
206 NOKPROBE_SYMBOL(arch_remove_kprobe);
207
208 static void enable_singlestep(struct kprobe_ctlblk *kcb,
209                               struct pt_regs *regs,
210                               unsigned long ip)
211 {
212         struct per_regs per_kprobe;
213
214         /* Set up the PER control registers %cr9-%cr11 */
215         per_kprobe.control = PER_EVENT_IFETCH;
216         per_kprobe.start = ip;
217         per_kprobe.end = ip;
218
219         /* Save control regs and psw mask */
220         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
221         kcb->kprobe_saved_imask = regs->psw.mask &
222                 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
223
224         /* Set PER control regs, turns on single step for the given address */
225         __ctl_load(per_kprobe, 9, 11);
226         regs->psw.mask |= PSW_MASK_PER;
227         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
228         regs->psw.addr = ip | PSW_ADDR_AMODE;
229 }
230 NOKPROBE_SYMBOL(enable_singlestep);
231
232 static void disable_singlestep(struct kprobe_ctlblk *kcb,
233                                struct pt_regs *regs,
234                                unsigned long ip)
235 {
236         /* Restore control regs and psw mask, set new psw address */
237         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
238         regs->psw.mask &= ~PSW_MASK_PER;
239         regs->psw.mask |= kcb->kprobe_saved_imask;
240         regs->psw.addr = ip | PSW_ADDR_AMODE;
241 }
242 NOKPROBE_SYMBOL(disable_singlestep);
243
244 /*
245  * Activate a kprobe by storing its pointer to current_kprobe. The
246  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
247  * two kprobes can be active, see KPROBE_REENTER.
248  */
249 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
250 {
251         kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
252         kcb->prev_kprobe.status = kcb->kprobe_status;
253         __this_cpu_write(current_kprobe, p);
254 }
255 NOKPROBE_SYMBOL(push_kprobe);
256
257 /*
258  * Deactivate a kprobe by backing up to the previous state. If the
259  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
260  * for any other state prev_kprobe.kp will be NULL.
261  */
262 static void pop_kprobe(struct kprobe_ctlblk *kcb)
263 {
264         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
265         kcb->kprobe_status = kcb->prev_kprobe.status;
266 }
267 NOKPROBE_SYMBOL(pop_kprobe);
268
269 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
270 {
271         ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
272
273         /* Replace the return addr with trampoline addr */
274         regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
275 }
276 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
277
278 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
279 {
280         switch (kcb->kprobe_status) {
281         case KPROBE_HIT_SSDONE:
282         case KPROBE_HIT_ACTIVE:
283                 kprobes_inc_nmissed_count(p);
284                 break;
285         case KPROBE_HIT_SS:
286         case KPROBE_REENTER:
287         default:
288                 /*
289                  * A kprobe on the code path to single step an instruction
290                  * is a BUG. The code path resides in the .kprobes.text
291                  * section and is executed with interrupts disabled.
292                  */
293                 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
294                 dump_kprobe(p);
295                 BUG();
296         }
297 }
298 NOKPROBE_SYMBOL(kprobe_reenter_check);
299
300 static int kprobe_handler(struct pt_regs *regs)
301 {
302         struct kprobe_ctlblk *kcb;
303         struct kprobe *p;
304
305         /*
306          * We want to disable preemption for the entire duration of kprobe
307          * processing. That includes the calls to the pre/post handlers
308          * and single stepping the kprobe instruction.
309          */
310         preempt_disable();
311         kcb = get_kprobe_ctlblk();
312         p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
313
314         if (p) {
315                 if (kprobe_running()) {
316                         /*
317                          * We have hit a kprobe while another is still
318                          * active. This can happen in the pre and post
319                          * handler. Single step the instruction of the
320                          * new probe but do not call any handler function
321                          * of this secondary kprobe.
322                          * push_kprobe and pop_kprobe saves and restores
323                          * the currently active kprobe.
324                          */
325                         kprobe_reenter_check(kcb, p);
326                         push_kprobe(kcb, p);
327                         kcb->kprobe_status = KPROBE_REENTER;
328                 } else {
329                         /*
330                          * If we have no pre-handler or it returned 0, we
331                          * continue with single stepping. If we have a
332                          * pre-handler and it returned non-zero, it prepped
333                          * for calling the break_handler below on re-entry
334                          * for jprobe processing, so get out doing nothing
335                          * more here.
336                          */
337                         push_kprobe(kcb, p);
338                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
339                         if (p->pre_handler && p->pre_handler(p, regs))
340                                 return 1;
341                         kcb->kprobe_status = KPROBE_HIT_SS;
342                 }
343                 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
344                 return 1;
345         } else if (kprobe_running()) {
346                 p = __this_cpu_read(current_kprobe);
347                 if (p->break_handler && p->break_handler(p, regs)) {
348                         /*
349                          * Continuation after the jprobe completed and
350                          * caused the jprobe_return trap. The jprobe
351                          * break_handler "returns" to the original
352                          * function that still has the kprobe breakpoint
353                          * installed. We continue with single stepping.
354                          */
355                         kcb->kprobe_status = KPROBE_HIT_SS;
356                         enable_singlestep(kcb, regs,
357                                           (unsigned long) p->ainsn.insn);
358                         return 1;
359                 } /* else:
360                    * No kprobe at this address and the current kprobe
361                    * has no break handler (no jprobe!). The kernel just
362                    * exploded, let the standard trap handler pick up the
363                    * pieces.
364                    */
365         } /* else:
366            * No kprobe at this address and no active kprobe. The trap has
367            * not been caused by a kprobe breakpoint. The race of breakpoint
368            * vs. kprobe remove does not exist because on s390 as we use
369            * stop_machine to arm/disarm the breakpoints.
370            */
371         preempt_enable_no_resched();
372         return 0;
373 }
374 NOKPROBE_SYMBOL(kprobe_handler);
375
376 /*
377  * Function return probe trampoline:
378  *      - init_kprobes() establishes a probepoint here
379  *      - When the probed function returns, this probe
380  *              causes the handlers to fire
381  */
382 static void __used kretprobe_trampoline_holder(void)
383 {
384         asm volatile(".global kretprobe_trampoline\n"
385                      "kretprobe_trampoline: bcr 0,0\n");
386 }
387
388 /*
389  * Called when the probe at kretprobe trampoline is hit
390  */
391 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
392 {
393         struct kretprobe_instance *ri;
394         struct hlist_head *head, empty_rp;
395         struct hlist_node *tmp;
396         unsigned long flags, orig_ret_address;
397         unsigned long trampoline_address;
398         kprobe_opcode_t *correct_ret_addr;
399
400         INIT_HLIST_HEAD(&empty_rp);
401         kretprobe_hash_lock(current, &head, &flags);
402
403         /*
404          * It is possible to have multiple instances associated with a given
405          * task either because an multiple functions in the call path
406          * have a return probe installed on them, and/or more than one return
407          * return probe was registered for a target function.
408          *
409          * We can handle this because:
410          *     - instances are always inserted at the head of the list
411          *     - when multiple return probes are registered for the same
412          *       function, the first instance's ret_addr will point to the
413          *       real return address, and all the rest will point to
414          *       kretprobe_trampoline
415          */
416         ri = NULL;
417         orig_ret_address = 0;
418         correct_ret_addr = NULL;
419         trampoline_address = (unsigned long) &kretprobe_trampoline;
420         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
421                 if (ri->task != current)
422                         /* another task is sharing our hash bucket */
423                         continue;
424
425                 orig_ret_address = (unsigned long) ri->ret_addr;
426
427                 if (orig_ret_address != trampoline_address)
428                         /*
429                          * This is the real return address. Any other
430                          * instances associated with this task are for
431                          * other calls deeper on the call stack
432                          */
433                         break;
434         }
435
436         kretprobe_assert(ri, orig_ret_address, trampoline_address);
437
438         correct_ret_addr = ri->ret_addr;
439         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
440                 if (ri->task != current)
441                         /* another task is sharing our hash bucket */
442                         continue;
443
444                 orig_ret_address = (unsigned long) ri->ret_addr;
445
446                 if (ri->rp && ri->rp->handler) {
447                         ri->ret_addr = correct_ret_addr;
448                         ri->rp->handler(ri, regs);
449                 }
450
451                 recycle_rp_inst(ri, &empty_rp);
452
453                 if (orig_ret_address != trampoline_address)
454                         /*
455                          * This is the real return address. Any other
456                          * instances associated with this task are for
457                          * other calls deeper on the call stack
458                          */
459                         break;
460         }
461
462         regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
463
464         pop_kprobe(get_kprobe_ctlblk());
465         kretprobe_hash_unlock(current, &flags);
466         preempt_enable_no_resched();
467
468         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
469                 hlist_del(&ri->hlist);
470                 kfree(ri);
471         }
472         /*
473          * By returning a non-zero value, we are telling
474          * kprobe_handler() that we don't want the post_handler
475          * to run (and have re-enabled preemption)
476          */
477         return 1;
478 }
479 NOKPROBE_SYMBOL(trampoline_probe_handler);
480
481 /*
482  * Called after single-stepping.  p->addr is the address of the
483  * instruction whose first byte has been replaced by the "breakpoint"
484  * instruction.  To avoid the SMP problems that can occur when we
485  * temporarily put back the original opcode to single-step, we
486  * single-stepped a copy of the instruction.  The address of this
487  * copy is p->ainsn.insn.
488  */
489 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
490 {
491         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
492         unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
493         int fixup = probe_get_fixup_type(p->ainsn.insn);
494
495         /* Check if the kprobes location is an enabled ftrace caller */
496         if (p->ainsn.is_ftrace_insn) {
497                 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
498                 struct ftrace_insn call_insn;
499
500                 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
501                 /*
502                  * A kprobe on an enabled ftrace call site actually single
503                  * stepped an unconditional branch (ftrace nop equivalent).
504                  * Now we need to fixup things and pretend that a brasl r0,...
505                  * was executed instead.
506                  */
507                 if (insn->disp == KPROBE_ON_FTRACE_CALL) {
508                         ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
509                         regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
510                 }
511         }
512
513         if (fixup & FIXUP_PSW_NORMAL)
514                 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
515
516         if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
517                 int ilen = insn_length(p->ainsn.insn[0] >> 8);
518                 if (ip - (unsigned long) p->ainsn.insn == ilen)
519                         ip = (unsigned long) p->addr + ilen;
520         }
521
522         if (fixup & FIXUP_RETURN_REGISTER) {
523                 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
524                 regs->gprs[reg] += (unsigned long) p->addr -
525                                    (unsigned long) p->ainsn.insn;
526         }
527
528         disable_singlestep(kcb, regs, ip);
529 }
530 NOKPROBE_SYMBOL(resume_execution);
531
532 static int post_kprobe_handler(struct pt_regs *regs)
533 {
534         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
535         struct kprobe *p = kprobe_running();
536
537         if (!p)
538                 return 0;
539
540         if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
541                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
542                 p->post_handler(p, regs, 0);
543         }
544
545         resume_execution(p, regs);
546         pop_kprobe(kcb);
547         preempt_enable_no_resched();
548
549         /*
550          * if somebody else is singlestepping across a probe point, psw mask
551          * will have PER set, in which case, continue the remaining processing
552          * of do_single_step, as if this is not a probe hit.
553          */
554         if (regs->psw.mask & PSW_MASK_PER)
555                 return 0;
556
557         return 1;
558 }
559 NOKPROBE_SYMBOL(post_kprobe_handler);
560
561 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
562 {
563         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
564         struct kprobe *p = kprobe_running();
565         const struct exception_table_entry *entry;
566
567         switch(kcb->kprobe_status) {
568         case KPROBE_SWAP_INST:
569                 /* We are here because the instruction replacement failed */
570                 return 0;
571         case KPROBE_HIT_SS:
572         case KPROBE_REENTER:
573                 /*
574                  * We are here because the instruction being single
575                  * stepped caused a page fault. We reset the current
576                  * kprobe and the nip points back to the probe address
577                  * and allow the page fault handler to continue as a
578                  * normal page fault.
579                  */
580                 disable_singlestep(kcb, regs, (unsigned long) p->addr);
581                 pop_kprobe(kcb);
582                 preempt_enable_no_resched();
583                 break;
584         case KPROBE_HIT_ACTIVE:
585         case KPROBE_HIT_SSDONE:
586                 /*
587                  * We increment the nmissed count for accounting,
588                  * we can also use npre/npostfault count for accounting
589                  * these specific fault cases.
590                  */
591                 kprobes_inc_nmissed_count(p);
592
593                 /*
594                  * We come here because instructions in the pre/post
595                  * handler caused the page_fault, this could happen
596                  * if handler tries to access user space by
597                  * copy_from_user(), get_user() etc. Let the
598                  * user-specified handler try to fix it first.
599                  */
600                 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
601                         return 1;
602
603                 /*
604                  * In case the user-specified fault handler returned
605                  * zero, try to fix up.
606                  */
607                 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
608                 if (entry) {
609                         regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
610                         return 1;
611                 }
612
613                 /*
614                  * fixup_exception() could not handle it,
615                  * Let do_page_fault() fix it.
616                  */
617                 break;
618         default:
619                 break;
620         }
621         return 0;
622 }
623 NOKPROBE_SYMBOL(kprobe_trap_handler);
624
625 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
626 {
627         int ret;
628
629         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
630                 local_irq_disable();
631         ret = kprobe_trap_handler(regs, trapnr);
632         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
633                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
634         return ret;
635 }
636 NOKPROBE_SYMBOL(kprobe_fault_handler);
637
638 /*
639  * Wrapper routine to for handling exceptions.
640  */
641 int kprobe_exceptions_notify(struct notifier_block *self,
642                              unsigned long val, void *data)
643 {
644         struct die_args *args = (struct die_args *) data;
645         struct pt_regs *regs = args->regs;
646         int ret = NOTIFY_DONE;
647
648         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
649                 local_irq_disable();
650
651         switch (val) {
652         case DIE_BPT:
653                 if (kprobe_handler(regs))
654                         ret = NOTIFY_STOP;
655                 break;
656         case DIE_SSTEP:
657                 if (post_kprobe_handler(regs))
658                         ret = NOTIFY_STOP;
659                 break;
660         case DIE_TRAP:
661                 if (!preemptible() && kprobe_running() &&
662                     kprobe_trap_handler(regs, args->trapnr))
663                         ret = NOTIFY_STOP;
664                 break;
665         default:
666                 break;
667         }
668
669         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
670                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
671
672         return ret;
673 }
674 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
675
676 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
677 {
678         struct jprobe *jp = container_of(p, struct jprobe, kp);
679         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
680         unsigned long stack;
681
682         memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
683
684         /* setup return addr to the jprobe handler routine */
685         regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
686         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
687
688         /* r15 is the stack pointer */
689         stack = (unsigned long) regs->gprs[15];
690
691         memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
692         return 1;
693 }
694 NOKPROBE_SYMBOL(setjmp_pre_handler);
695
696 void jprobe_return(void)
697 {
698         asm volatile(".word 0x0002");
699 }
700 NOKPROBE_SYMBOL(jprobe_return);
701
702 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
703 {
704         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
705         unsigned long stack;
706
707         stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
708
709         /* Put the regs back */
710         memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
711         /* put the stack back */
712         memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
713         preempt_enable_no_resched();
714         return 1;
715 }
716 NOKPROBE_SYMBOL(longjmp_break_handler);
717
718 static struct kprobe trampoline = {
719         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
720         .pre_handler = trampoline_probe_handler
721 };
722
723 int __init arch_init_kprobes(void)
724 {
725         return register_kprobe(&trampoline);
726 }
727
728 int arch_trampoline_kprobe(struct kprobe *p)
729 {
730         return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
731 }
732 NOKPROBE_SYMBOL(arch_trampoline_kprobe);