mac80211: replace restart_complete() with reconfig_complete()
[cascardo/linux.git] / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 enum s390_regset {
42         REGSET_GENERAL,
43         REGSET_FP,
44         REGSET_LAST_BREAK,
45         REGSET_TDB,
46         REGSET_SYSTEM_CALL,
47         REGSET_GENERAL_EXTENDED,
48 };
49
50 void update_cr_regs(struct task_struct *task)
51 {
52         struct pt_regs *regs = task_pt_regs(task);
53         struct thread_struct *thread = &task->thread;
54         struct per_regs old, new;
55
56 #ifdef CONFIG_64BIT
57         /* Take care of the enable/disable of transactional execution. */
58         if (MACHINE_HAS_TE) {
59                 unsigned long cr, cr_new;
60
61                 __ctl_store(cr, 0, 0);
62                 /* Set or clear transaction execution TXC bit 8. */
63                 cr_new = cr | (1UL << 55);
64                 if (task->thread.per_flags & PER_FLAG_NO_TE)
65                         cr_new &= ~(1UL << 55);
66                 if (cr_new != cr)
67                         __ctl_load(cr_new, 0, 0);
68                 /* Set or clear transaction execution TDC bits 62 and 63. */
69                 __ctl_store(cr, 2, 2);
70                 cr_new = cr & ~3UL;
71                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
72                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
73                                 cr_new |= 1UL;
74                         else
75                                 cr_new |= 2UL;
76                 }
77                 if (cr_new != cr)
78                         __ctl_load(cr_new, 2, 2);
79         }
80 #endif
81         /* Copy user specified PER registers */
82         new.control = thread->per_user.control;
83         new.start = thread->per_user.start;
84         new.end = thread->per_user.end;
85
86         /* merge TIF_SINGLE_STEP into user specified PER registers. */
87         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
88                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
89                         new.control |= PER_EVENT_BRANCH;
90                 else
91                         new.control |= PER_EVENT_IFETCH;
92 #ifdef CONFIG_64BIT
93                 new.control |= PER_CONTROL_SUSPENSION;
94                 new.control |= PER_EVENT_TRANSACTION_END;
95 #endif
96                 new.start = 0;
97                 new.end = PSW_ADDR_INSN;
98         }
99
100         /* Take care of the PER enablement bit in the PSW. */
101         if (!(new.control & PER_EVENT_MASK)) {
102                 regs->psw.mask &= ~PSW_MASK_PER;
103                 return;
104         }
105         regs->psw.mask |= PSW_MASK_PER;
106         __ctl_store(old, 9, 11);
107         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
108                 __ctl_load(new, 9, 11);
109 }
110
111 void user_enable_single_step(struct task_struct *task)
112 {
113         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
114         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
115 }
116
117 void user_disable_single_step(struct task_struct *task)
118 {
119         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
121 }
122
123 void user_enable_block_step(struct task_struct *task)
124 {
125         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
126         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
127 }
128
129 /*
130  * Called by kernel/ptrace.c when detaching..
131  *
132  * Clear all debugging related fields.
133  */
134 void ptrace_disable(struct task_struct *task)
135 {
136         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
137         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
138         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
139         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
140         task->thread.per_flags = 0;
141 }
142
143 #ifndef CONFIG_64BIT
144 # define __ADDR_MASK 3
145 #else
146 # define __ADDR_MASK 7
147 #endif
148
149 static inline unsigned long __peek_user_per(struct task_struct *child,
150                                             addr_t addr)
151 {
152         struct per_struct_kernel *dummy = NULL;
153
154         if (addr == (addr_t) &dummy->cr9)
155                 /* Control bits of the active per set. */
156                 return test_thread_flag(TIF_SINGLE_STEP) ?
157                         PER_EVENT_IFETCH : child->thread.per_user.control;
158         else if (addr == (addr_t) &dummy->cr10)
159                 /* Start address of the active per set. */
160                 return test_thread_flag(TIF_SINGLE_STEP) ?
161                         0 : child->thread.per_user.start;
162         else if (addr == (addr_t) &dummy->cr11)
163                 /* End address of the active per set. */
164                 return test_thread_flag(TIF_SINGLE_STEP) ?
165                         PSW_ADDR_INSN : child->thread.per_user.end;
166         else if (addr == (addr_t) &dummy->bits)
167                 /* Single-step bit. */
168                 return test_thread_flag(TIF_SINGLE_STEP) ?
169                         (1UL << (BITS_PER_LONG - 1)) : 0;
170         else if (addr == (addr_t) &dummy->starting_addr)
171                 /* Start address of the user specified per set. */
172                 return child->thread.per_user.start;
173         else if (addr == (addr_t) &dummy->ending_addr)
174                 /* End address of the user specified per set. */
175                 return child->thread.per_user.end;
176         else if (addr == (addr_t) &dummy->perc_atmid)
177                 /* PER code, ATMID and AI of the last PER trap */
178                 return (unsigned long)
179                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
180         else if (addr == (addr_t) &dummy->address)
181                 /* Address of the last PER trap */
182                 return child->thread.per_event.address;
183         else if (addr == (addr_t) &dummy->access_id)
184                 /* Access id of the last PER trap */
185                 return (unsigned long)
186                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
187         return 0;
188 }
189
190 /*
191  * Read the word at offset addr from the user area of a process. The
192  * trouble here is that the information is littered over different
193  * locations. The process registers are found on the kernel stack,
194  * the floating point stuff and the trace settings are stored in
195  * the task structure. In addition the different structures in
196  * struct user contain pad bytes that should be read as zeroes.
197  * Lovely...
198  */
199 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
200 {
201         struct user *dummy = NULL;
202         addr_t offset, tmp;
203
204         if (addr < (addr_t) &dummy->regs.acrs) {
205                 /*
206                  * psw and gprs are stored on the stack
207                  */
208                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
209                 if (addr == (addr_t) &dummy->regs.psw.mask) {
210                         /* Return a clean psw mask. */
211                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
212                         tmp |= PSW_USER_BITS;
213                 }
214
215         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
216                 /*
217                  * access registers are stored in the thread structure
218                  */
219                 offset = addr - (addr_t) &dummy->regs.acrs;
220 #ifdef CONFIG_64BIT
221                 /*
222                  * Very special case: old & broken 64 bit gdb reading
223                  * from acrs[15]. Result is a 64 bit value. Read the
224                  * 32 bit acrs[15] value and shift it by 32. Sick...
225                  */
226                 if (addr == (addr_t) &dummy->regs.acrs[15])
227                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
228                 else
229 #endif
230                 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
233                 /*
234                  * orig_gpr2 is stored on the kernel stack
235                  */
236                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
239                 /*
240                  * prevent reads of padding hole between
241                  * orig_gpr2 and fp_regs on s390.
242                  */
243                 tmp = 0;
244
245         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
246                 /* 
247                  * floating point regs. are stored in the thread structure
248                  */
249                 offset = addr - (addr_t) &dummy->regs.fp_regs;
250                 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
251                 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
252                         tmp <<= BITS_PER_LONG - 32;
253
254         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
255                 /*
256                  * Handle access to the per_info structure.
257                  */
258                 addr -= (addr_t) &dummy->regs.per_info;
259                 tmp = __peek_user_per(child, addr);
260
261         } else
262                 tmp = 0;
263
264         return tmp;
265 }
266
267 static int
268 peek_user(struct task_struct *child, addr_t addr, addr_t data)
269 {
270         addr_t tmp, mask;
271
272         /*
273          * Stupid gdb peeks/pokes the access registers in 64 bit with
274          * an alignment of 4. Programmers from hell...
275          */
276         mask = __ADDR_MASK;
277 #ifdef CONFIG_64BIT
278         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
279             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
280                 mask = 3;
281 #endif
282         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
283                 return -EIO;
284
285         tmp = __peek_user(child, addr);
286         return put_user(tmp, (addr_t __user *) data);
287 }
288
289 static inline void __poke_user_per(struct task_struct *child,
290                                    addr_t addr, addr_t data)
291 {
292         struct per_struct_kernel *dummy = NULL;
293
294         /*
295          * There are only three fields in the per_info struct that the
296          * debugger user can write to.
297          * 1) cr9: the debugger wants to set a new PER event mask
298          * 2) starting_addr: the debugger wants to set a new starting
299          *    address to use with the PER event mask.
300          * 3) ending_addr: the debugger wants to set a new ending
301          *    address to use with the PER event mask.
302          * The user specified PER event mask and the start and end
303          * addresses are used only if single stepping is not in effect.
304          * Writes to any other field in per_info are ignored.
305          */
306         if (addr == (addr_t) &dummy->cr9)
307                 /* PER event mask of the user specified per set. */
308                 child->thread.per_user.control =
309                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
310         else if (addr == (addr_t) &dummy->starting_addr)
311                 /* Starting address of the user specified per set. */
312                 child->thread.per_user.start = data;
313         else if (addr == (addr_t) &dummy->ending_addr)
314                 /* Ending address of the user specified per set. */
315                 child->thread.per_user.end = data;
316 }
317
318 /*
319  * Write a word to the user area of a process at location addr. This
320  * operation does have an additional problem compared to peek_user.
321  * Stores to the program status word and on the floating point
322  * control register needs to get checked for validity.
323  */
324 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
325 {
326         struct user *dummy = NULL;
327         addr_t offset;
328
329         if (addr < (addr_t) &dummy->regs.acrs) {
330                 /*
331                  * psw and gprs are stored on the stack
332                  */
333                 if (addr == (addr_t) &dummy->regs.psw.mask) {
334                         unsigned long mask = PSW_MASK_USER;
335
336                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
337                         if ((data ^ PSW_USER_BITS) & ~mask)
338                                 /* Invalid psw mask. */
339                                 return -EINVAL;
340                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
341                                 /* Invalid address-space-control bits */
342                                 return -EINVAL;
343                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
344                                 /* Invalid addressing mode bits */
345                                 return -EINVAL;
346                 }
347                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
348
349         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
350                 /*
351                  * access registers are stored in the thread structure
352                  */
353                 offset = addr - (addr_t) &dummy->regs.acrs;
354 #ifdef CONFIG_64BIT
355                 /*
356                  * Very special case: old & broken 64 bit gdb writing
357                  * to acrs[15] with a 64 bit value. Ignore the lower
358                  * half of the value and write the upper 32 bit to
359                  * acrs[15]. Sick...
360                  */
361                 if (addr == (addr_t) &dummy->regs.acrs[15])
362                         child->thread.acrs[15] = (unsigned int) (data >> 32);
363                 else
364 #endif
365                 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
366
367         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
368                 /*
369                  * orig_gpr2 is stored on the kernel stack
370                  */
371                 task_pt_regs(child)->orig_gpr2 = data;
372
373         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
374                 /*
375                  * prevent writes of padding hole between
376                  * orig_gpr2 and fp_regs on s390.
377                  */
378                 return 0;
379
380         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
381                 /*
382                  * floating point regs. are stored in the thread structure
383                  */
384                 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
385                         if ((unsigned int) data != 0 ||
386                             test_fp_ctl(data >> (BITS_PER_LONG - 32)))
387                                 return -EINVAL;
388                 offset = addr - (addr_t) &dummy->regs.fp_regs;
389                 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
390
391         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
392                 /*
393                  * Handle access to the per_info structure.
394                  */
395                 addr -= (addr_t) &dummy->regs.per_info;
396                 __poke_user_per(child, addr, data);
397
398         }
399
400         return 0;
401 }
402
403 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
404 {
405         addr_t mask;
406
407         /*
408          * Stupid gdb peeks/pokes the access registers in 64 bit with
409          * an alignment of 4. Programmers from hell indeed...
410          */
411         mask = __ADDR_MASK;
412 #ifdef CONFIG_64BIT
413         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
414             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
415                 mask = 3;
416 #endif
417         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
418                 return -EIO;
419
420         return __poke_user(child, addr, data);
421 }
422
423 long arch_ptrace(struct task_struct *child, long request,
424                  unsigned long addr, unsigned long data)
425 {
426         ptrace_area parea; 
427         int copied, ret;
428
429         switch (request) {
430         case PTRACE_PEEKUSR:
431                 /* read the word at location addr in the USER area. */
432                 return peek_user(child, addr, data);
433
434         case PTRACE_POKEUSR:
435                 /* write the word at location addr in the USER area */
436                 return poke_user(child, addr, data);
437
438         case PTRACE_PEEKUSR_AREA:
439         case PTRACE_POKEUSR_AREA:
440                 if (copy_from_user(&parea, (void __force __user *) addr,
441                                                         sizeof(parea)))
442                         return -EFAULT;
443                 addr = parea.kernel_addr;
444                 data = parea.process_addr;
445                 copied = 0;
446                 while (copied < parea.len) {
447                         if (request == PTRACE_PEEKUSR_AREA)
448                                 ret = peek_user(child, addr, data);
449                         else {
450                                 addr_t utmp;
451                                 if (get_user(utmp,
452                                              (addr_t __force __user *) data))
453                                         return -EFAULT;
454                                 ret = poke_user(child, addr, utmp);
455                         }
456                         if (ret)
457                                 return ret;
458                         addr += sizeof(unsigned long);
459                         data += sizeof(unsigned long);
460                         copied += sizeof(unsigned long);
461                 }
462                 return 0;
463         case PTRACE_GET_LAST_BREAK:
464                 put_user(task_thread_info(child)->last_break,
465                          (unsigned long __user *) data);
466                 return 0;
467         case PTRACE_ENABLE_TE:
468                 if (!MACHINE_HAS_TE)
469                         return -EIO;
470                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
471                 return 0;
472         case PTRACE_DISABLE_TE:
473                 if (!MACHINE_HAS_TE)
474                         return -EIO;
475                 child->thread.per_flags |= PER_FLAG_NO_TE;
476                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
477                 return 0;
478         case PTRACE_TE_ABORT_RAND:
479                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
480                         return -EIO;
481                 switch (data) {
482                 case 0UL:
483                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
484                         break;
485                 case 1UL:
486                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
487                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
488                         break;
489                 case 2UL:
490                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
491                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
492                         break;
493                 default:
494                         return -EINVAL;
495                 }
496                 return 0;
497         default:
498                 /* Removing high order bit from addr (only for 31 bit). */
499                 addr &= PSW_ADDR_INSN;
500                 return ptrace_request(child, request, addr, data);
501         }
502 }
503
504 #ifdef CONFIG_COMPAT
505 /*
506  * Now the fun part starts... a 31 bit program running in the
507  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
508  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
509  * to handle, the difference to the 64 bit versions of the requests
510  * is that the access is done in multiples of 4 byte instead of
511  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
512  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
513  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
514  * is a 31 bit program too, the content of struct user can be
515  * emulated. A 31 bit program peeking into the struct user of
516  * a 64 bit program is a no-no.
517  */
518
519 /*
520  * Same as peek_user_per but for a 31 bit program.
521  */
522 static inline __u32 __peek_user_per_compat(struct task_struct *child,
523                                            addr_t addr)
524 {
525         struct compat_per_struct_kernel *dummy32 = NULL;
526
527         if (addr == (addr_t) &dummy32->cr9)
528                 /* Control bits of the active per set. */
529                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
530                         PER_EVENT_IFETCH : child->thread.per_user.control;
531         else if (addr == (addr_t) &dummy32->cr10)
532                 /* Start address of the active per set. */
533                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
534                         0 : child->thread.per_user.start;
535         else if (addr == (addr_t) &dummy32->cr11)
536                 /* End address of the active per set. */
537                 return test_thread_flag(TIF_SINGLE_STEP) ?
538                         PSW32_ADDR_INSN : child->thread.per_user.end;
539         else if (addr == (addr_t) &dummy32->bits)
540                 /* Single-step bit. */
541                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
542                         0x80000000 : 0;
543         else if (addr == (addr_t) &dummy32->starting_addr)
544                 /* Start address of the user specified per set. */
545                 return (__u32) child->thread.per_user.start;
546         else if (addr == (addr_t) &dummy32->ending_addr)
547                 /* End address of the user specified per set. */
548                 return (__u32) child->thread.per_user.end;
549         else if (addr == (addr_t) &dummy32->perc_atmid)
550                 /* PER code, ATMID and AI of the last PER trap */
551                 return (__u32) child->thread.per_event.cause << 16;
552         else if (addr == (addr_t) &dummy32->address)
553                 /* Address of the last PER trap */
554                 return (__u32) child->thread.per_event.address;
555         else if (addr == (addr_t) &dummy32->access_id)
556                 /* Access id of the last PER trap */
557                 return (__u32) child->thread.per_event.paid << 24;
558         return 0;
559 }
560
561 /*
562  * Same as peek_user but for a 31 bit program.
563  */
564 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
565 {
566         struct compat_user *dummy32 = NULL;
567         addr_t offset;
568         __u32 tmp;
569
570         if (addr < (addr_t) &dummy32->regs.acrs) {
571                 struct pt_regs *regs = task_pt_regs(child);
572                 /*
573                  * psw and gprs are stored on the stack
574                  */
575                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
576                         /* Fake a 31 bit psw mask. */
577                         tmp = (__u32)(regs->psw.mask >> 32);
578                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
579                         tmp |= PSW32_USER_BITS;
580                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
581                         /* Fake a 31 bit psw address. */
582                         tmp = (__u32) regs->psw.addr |
583                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
584                 } else {
585                         /* gpr 0-15 */
586                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
587                 }
588         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
589                 /*
590                  * access registers are stored in the thread structure
591                  */
592                 offset = addr - (addr_t) &dummy32->regs.acrs;
593                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
594
595         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
596                 /*
597                  * orig_gpr2 is stored on the kernel stack
598                  */
599                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
600
601         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
602                 /*
603                  * prevent reads of padding hole between
604                  * orig_gpr2 and fp_regs on s390.
605                  */
606                 tmp = 0;
607
608         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
609                 /*
610                  * floating point regs. are stored in the thread structure 
611                  */
612                 offset = addr - (addr_t) &dummy32->regs.fp_regs;
613                 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
614
615         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
616                 /*
617                  * Handle access to the per_info structure.
618                  */
619                 addr -= (addr_t) &dummy32->regs.per_info;
620                 tmp = __peek_user_per_compat(child, addr);
621
622         } else
623                 tmp = 0;
624
625         return tmp;
626 }
627
628 static int peek_user_compat(struct task_struct *child,
629                             addr_t addr, addr_t data)
630 {
631         __u32 tmp;
632
633         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
634                 return -EIO;
635
636         tmp = __peek_user_compat(child, addr);
637         return put_user(tmp, (__u32 __user *) data);
638 }
639
640 /*
641  * Same as poke_user_per but for a 31 bit program.
642  */
643 static inline void __poke_user_per_compat(struct task_struct *child,
644                                           addr_t addr, __u32 data)
645 {
646         struct compat_per_struct_kernel *dummy32 = NULL;
647
648         if (addr == (addr_t) &dummy32->cr9)
649                 /* PER event mask of the user specified per set. */
650                 child->thread.per_user.control =
651                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
652         else if (addr == (addr_t) &dummy32->starting_addr)
653                 /* Starting address of the user specified per set. */
654                 child->thread.per_user.start = data;
655         else if (addr == (addr_t) &dummy32->ending_addr)
656                 /* Ending address of the user specified per set. */
657                 child->thread.per_user.end = data;
658 }
659
660 /*
661  * Same as poke_user but for a 31 bit program.
662  */
663 static int __poke_user_compat(struct task_struct *child,
664                               addr_t addr, addr_t data)
665 {
666         struct compat_user *dummy32 = NULL;
667         __u32 tmp = (__u32) data;
668         addr_t offset;
669
670         if (addr < (addr_t) &dummy32->regs.acrs) {
671                 struct pt_regs *regs = task_pt_regs(child);
672                 /*
673                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
674                  */
675                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
676                         __u32 mask = PSW32_MASK_USER;
677
678                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
679                         /* Build a 64 bit psw mask from 31 bit mask. */
680                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
681                                 /* Invalid psw mask. */
682                                 return -EINVAL;
683                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
684                                 /* Invalid address-space-control bits */
685                                 return -EINVAL;
686                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
687                                 (regs->psw.mask & PSW_MASK_BA) |
688                                 (__u64)(tmp & mask) << 32;
689                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
690                         /* Build a 64 bit psw address from 31 bit address. */
691                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
692                         /* Transfer 31 bit amode bit to psw mask. */
693                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
694                                 (__u64)(tmp & PSW32_ADDR_AMODE);
695                 } else {
696                         /* gpr 0-15 */
697                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
698                 }
699         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
700                 /*
701                  * access registers are stored in the thread structure
702                  */
703                 offset = addr - (addr_t) &dummy32->regs.acrs;
704                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
705
706         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
707                 /*
708                  * orig_gpr2 is stored on the kernel stack
709                  */
710                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
711
712         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
713                 /*
714                  * prevent writess of padding hole between
715                  * orig_gpr2 and fp_regs on s390.
716                  */
717                 return 0;
718
719         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
720                 /*
721                  * floating point regs. are stored in the thread structure 
722                  */
723                 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
724                     test_fp_ctl(tmp))
725                         return -EINVAL;
726                 offset = addr - (addr_t) &dummy32->regs.fp_regs;
727                 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
728
729         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
730                 /*
731                  * Handle access to the per_info structure.
732                  */
733                 addr -= (addr_t) &dummy32->regs.per_info;
734                 __poke_user_per_compat(child, addr, data);
735         }
736
737         return 0;
738 }
739
740 static int poke_user_compat(struct task_struct *child,
741                             addr_t addr, addr_t data)
742 {
743         if (!is_compat_task() || (addr & 3) ||
744             addr > sizeof(struct compat_user) - 3)
745                 return -EIO;
746
747         return __poke_user_compat(child, addr, data);
748 }
749
750 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
751                         compat_ulong_t caddr, compat_ulong_t cdata)
752 {
753         unsigned long addr = caddr;
754         unsigned long data = cdata;
755         compat_ptrace_area parea;
756         int copied, ret;
757
758         switch (request) {
759         case PTRACE_PEEKUSR:
760                 /* read the word at location addr in the USER area. */
761                 return peek_user_compat(child, addr, data);
762
763         case PTRACE_POKEUSR:
764                 /* write the word at location addr in the USER area */
765                 return poke_user_compat(child, addr, data);
766
767         case PTRACE_PEEKUSR_AREA:
768         case PTRACE_POKEUSR_AREA:
769                 if (copy_from_user(&parea, (void __force __user *) addr,
770                                                         sizeof(parea)))
771                         return -EFAULT;
772                 addr = parea.kernel_addr;
773                 data = parea.process_addr;
774                 copied = 0;
775                 while (copied < parea.len) {
776                         if (request == PTRACE_PEEKUSR_AREA)
777                                 ret = peek_user_compat(child, addr, data);
778                         else {
779                                 __u32 utmp;
780                                 if (get_user(utmp,
781                                              (__u32 __force __user *) data))
782                                         return -EFAULT;
783                                 ret = poke_user_compat(child, addr, utmp);
784                         }
785                         if (ret)
786                                 return ret;
787                         addr += sizeof(unsigned int);
788                         data += sizeof(unsigned int);
789                         copied += sizeof(unsigned int);
790                 }
791                 return 0;
792         case PTRACE_GET_LAST_BREAK:
793                 put_user(task_thread_info(child)->last_break,
794                          (unsigned int __user *) data);
795                 return 0;
796         }
797         return compat_ptrace_request(child, request, addr, data);
798 }
799 #endif
800
801 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
802 {
803         long ret = 0;
804
805         /* Do the secure computing check first. */
806         if (secure_computing(regs->gprs[2])) {
807                 /* seccomp failures shouldn't expose any additional code. */
808                 ret = -1;
809                 goto out;
810         }
811
812         /*
813          * The sysc_tracesys code in entry.S stored the system
814          * call number to gprs[2].
815          */
816         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
817             (tracehook_report_syscall_entry(regs) ||
818              regs->gprs[2] >= NR_syscalls)) {
819                 /*
820                  * Tracing decided this syscall should not happen or the
821                  * debugger stored an invalid system call number. Skip
822                  * the system call and the system call restart handling.
823                  */
824                 clear_pt_regs_flag(regs, PIF_SYSCALL);
825                 ret = -1;
826         }
827
828         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
829                 trace_sys_enter(regs, regs->gprs[2]);
830
831         audit_syscall_entry(is_compat_task() ?
832                                 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
833                             regs->gprs[2], regs->orig_gpr2,
834                             regs->gprs[3], regs->gprs[4],
835                             regs->gprs[5]);
836 out:
837         return ret ?: regs->gprs[2];
838 }
839
840 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
841 {
842         audit_syscall_exit(regs);
843
844         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
845                 trace_sys_exit(regs, regs->gprs[2]);
846
847         if (test_thread_flag(TIF_SYSCALL_TRACE))
848                 tracehook_report_syscall_exit(regs, 0);
849 }
850
851 /*
852  * user_regset definitions.
853  */
854
855 static int s390_regs_get(struct task_struct *target,
856                          const struct user_regset *regset,
857                          unsigned int pos, unsigned int count,
858                          void *kbuf, void __user *ubuf)
859 {
860         if (target == current)
861                 save_access_regs(target->thread.acrs);
862
863         if (kbuf) {
864                 unsigned long *k = kbuf;
865                 while (count > 0) {
866                         *k++ = __peek_user(target, pos);
867                         count -= sizeof(*k);
868                         pos += sizeof(*k);
869                 }
870         } else {
871                 unsigned long __user *u = ubuf;
872                 while (count > 0) {
873                         if (__put_user(__peek_user(target, pos), u++))
874                                 return -EFAULT;
875                         count -= sizeof(*u);
876                         pos += sizeof(*u);
877                 }
878         }
879         return 0;
880 }
881
882 static int s390_regs_set(struct task_struct *target,
883                          const struct user_regset *regset,
884                          unsigned int pos, unsigned int count,
885                          const void *kbuf, const void __user *ubuf)
886 {
887         int rc = 0;
888
889         if (target == current)
890                 save_access_regs(target->thread.acrs);
891
892         if (kbuf) {
893                 const unsigned long *k = kbuf;
894                 while (count > 0 && !rc) {
895                         rc = __poke_user(target, pos, *k++);
896                         count -= sizeof(*k);
897                         pos += sizeof(*k);
898                 }
899         } else {
900                 const unsigned long  __user *u = ubuf;
901                 while (count > 0 && !rc) {
902                         unsigned long word;
903                         rc = __get_user(word, u++);
904                         if (rc)
905                                 break;
906                         rc = __poke_user(target, pos, word);
907                         count -= sizeof(*u);
908                         pos += sizeof(*u);
909                 }
910         }
911
912         if (rc == 0 && target == current)
913                 restore_access_regs(target->thread.acrs);
914
915         return rc;
916 }
917
918 static int s390_fpregs_get(struct task_struct *target,
919                            const struct user_regset *regset, unsigned int pos,
920                            unsigned int count, void *kbuf, void __user *ubuf)
921 {
922         if (target == current) {
923                 save_fp_ctl(&target->thread.fp_regs.fpc);
924                 save_fp_regs(target->thread.fp_regs.fprs);
925         }
926
927         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
928                                    &target->thread.fp_regs, 0, -1);
929 }
930
931 static int s390_fpregs_set(struct task_struct *target,
932                            const struct user_regset *regset, unsigned int pos,
933                            unsigned int count, const void *kbuf,
934                            const void __user *ubuf)
935 {
936         int rc = 0;
937
938         if (target == current) {
939                 save_fp_ctl(&target->thread.fp_regs.fpc);
940                 save_fp_regs(target->thread.fp_regs.fprs);
941         }
942
943         /* If setting FPC, must validate it first. */
944         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
945                 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
946                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
947                                         0, offsetof(s390_fp_regs, fprs));
948                 if (rc)
949                         return rc;
950                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
951                         return -EINVAL;
952                 target->thread.fp_regs.fpc = ufpc[0];
953         }
954
955         if (rc == 0 && count > 0)
956                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
957                                         target->thread.fp_regs.fprs,
958                                         offsetof(s390_fp_regs, fprs), -1);
959
960         if (rc == 0 && target == current) {
961                 restore_fp_ctl(&target->thread.fp_regs.fpc);
962                 restore_fp_regs(target->thread.fp_regs.fprs);
963         }
964
965         return rc;
966 }
967
968 #ifdef CONFIG_64BIT
969
970 static int s390_last_break_get(struct task_struct *target,
971                                const struct user_regset *regset,
972                                unsigned int pos, unsigned int count,
973                                void *kbuf, void __user *ubuf)
974 {
975         if (count > 0) {
976                 if (kbuf) {
977                         unsigned long *k = kbuf;
978                         *k = task_thread_info(target)->last_break;
979                 } else {
980                         unsigned long  __user *u = ubuf;
981                         if (__put_user(task_thread_info(target)->last_break, u))
982                                 return -EFAULT;
983                 }
984         }
985         return 0;
986 }
987
988 static int s390_last_break_set(struct task_struct *target,
989                                const struct user_regset *regset,
990                                unsigned int pos, unsigned int count,
991                                const void *kbuf, const void __user *ubuf)
992 {
993         return 0;
994 }
995
996 static int s390_tdb_get(struct task_struct *target,
997                         const struct user_regset *regset,
998                         unsigned int pos, unsigned int count,
999                         void *kbuf, void __user *ubuf)
1000 {
1001         struct pt_regs *regs = task_pt_regs(target);
1002         unsigned char *data;
1003
1004         if (!(regs->int_code & 0x200))
1005                 return -ENODATA;
1006         data = target->thread.trap_tdb;
1007         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1008 }
1009
1010 static int s390_tdb_set(struct task_struct *target,
1011                         const struct user_regset *regset,
1012                         unsigned int pos, unsigned int count,
1013                         const void *kbuf, const void __user *ubuf)
1014 {
1015         return 0;
1016 }
1017
1018 #endif
1019
1020 static int s390_system_call_get(struct task_struct *target,
1021                                 const struct user_regset *regset,
1022                                 unsigned int pos, unsigned int count,
1023                                 void *kbuf, void __user *ubuf)
1024 {
1025         unsigned int *data = &task_thread_info(target)->system_call;
1026         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1027                                    data, 0, sizeof(unsigned int));
1028 }
1029
1030 static int s390_system_call_set(struct task_struct *target,
1031                                 const struct user_regset *regset,
1032                                 unsigned int pos, unsigned int count,
1033                                 const void *kbuf, const void __user *ubuf)
1034 {
1035         unsigned int *data = &task_thread_info(target)->system_call;
1036         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1037                                   data, 0, sizeof(unsigned int));
1038 }
1039
1040 static const struct user_regset s390_regsets[] = {
1041         [REGSET_GENERAL] = {
1042                 .core_note_type = NT_PRSTATUS,
1043                 .n = sizeof(s390_regs) / sizeof(long),
1044                 .size = sizeof(long),
1045                 .align = sizeof(long),
1046                 .get = s390_regs_get,
1047                 .set = s390_regs_set,
1048         },
1049         [REGSET_FP] = {
1050                 .core_note_type = NT_PRFPREG,
1051                 .n = sizeof(s390_fp_regs) / sizeof(long),
1052                 .size = sizeof(long),
1053                 .align = sizeof(long),
1054                 .get = s390_fpregs_get,
1055                 .set = s390_fpregs_set,
1056         },
1057 #ifdef CONFIG_64BIT
1058         [REGSET_LAST_BREAK] = {
1059                 .core_note_type = NT_S390_LAST_BREAK,
1060                 .n = 1,
1061                 .size = sizeof(long),
1062                 .align = sizeof(long),
1063                 .get = s390_last_break_get,
1064                 .set = s390_last_break_set,
1065         },
1066         [REGSET_TDB] = {
1067                 .core_note_type = NT_S390_TDB,
1068                 .n = 1,
1069                 .size = 256,
1070                 .align = 1,
1071                 .get = s390_tdb_get,
1072                 .set = s390_tdb_set,
1073         },
1074 #endif
1075         [REGSET_SYSTEM_CALL] = {
1076                 .core_note_type = NT_S390_SYSTEM_CALL,
1077                 .n = 1,
1078                 .size = sizeof(unsigned int),
1079                 .align = sizeof(unsigned int),
1080                 .get = s390_system_call_get,
1081                 .set = s390_system_call_set,
1082         },
1083 };
1084
1085 static const struct user_regset_view user_s390_view = {
1086         .name = UTS_MACHINE,
1087         .e_machine = EM_S390,
1088         .regsets = s390_regsets,
1089         .n = ARRAY_SIZE(s390_regsets)
1090 };
1091
1092 #ifdef CONFIG_COMPAT
1093 static int s390_compat_regs_get(struct task_struct *target,
1094                                 const struct user_regset *regset,
1095                                 unsigned int pos, unsigned int count,
1096                                 void *kbuf, void __user *ubuf)
1097 {
1098         if (target == current)
1099                 save_access_regs(target->thread.acrs);
1100
1101         if (kbuf) {
1102                 compat_ulong_t *k = kbuf;
1103                 while (count > 0) {
1104                         *k++ = __peek_user_compat(target, pos);
1105                         count -= sizeof(*k);
1106                         pos += sizeof(*k);
1107                 }
1108         } else {
1109                 compat_ulong_t __user *u = ubuf;
1110                 while (count > 0) {
1111                         if (__put_user(__peek_user_compat(target, pos), u++))
1112                                 return -EFAULT;
1113                         count -= sizeof(*u);
1114                         pos += sizeof(*u);
1115                 }
1116         }
1117         return 0;
1118 }
1119
1120 static int s390_compat_regs_set(struct task_struct *target,
1121                                 const struct user_regset *regset,
1122                                 unsigned int pos, unsigned int count,
1123                                 const void *kbuf, const void __user *ubuf)
1124 {
1125         int rc = 0;
1126
1127         if (target == current)
1128                 save_access_regs(target->thread.acrs);
1129
1130         if (kbuf) {
1131                 const compat_ulong_t *k = kbuf;
1132                 while (count > 0 && !rc) {
1133                         rc = __poke_user_compat(target, pos, *k++);
1134                         count -= sizeof(*k);
1135                         pos += sizeof(*k);
1136                 }
1137         } else {
1138                 const compat_ulong_t  __user *u = ubuf;
1139                 while (count > 0 && !rc) {
1140                         compat_ulong_t word;
1141                         rc = __get_user(word, u++);
1142                         if (rc)
1143                                 break;
1144                         rc = __poke_user_compat(target, pos, word);
1145                         count -= sizeof(*u);
1146                         pos += sizeof(*u);
1147                 }
1148         }
1149
1150         if (rc == 0 && target == current)
1151                 restore_access_regs(target->thread.acrs);
1152
1153         return rc;
1154 }
1155
1156 static int s390_compat_regs_high_get(struct task_struct *target,
1157                                      const struct user_regset *regset,
1158                                      unsigned int pos, unsigned int count,
1159                                      void *kbuf, void __user *ubuf)
1160 {
1161         compat_ulong_t *gprs_high;
1162
1163         gprs_high = (compat_ulong_t *)
1164                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1165         if (kbuf) {
1166                 compat_ulong_t *k = kbuf;
1167                 while (count > 0) {
1168                         *k++ = *gprs_high;
1169                         gprs_high += 2;
1170                         count -= sizeof(*k);
1171                 }
1172         } else {
1173                 compat_ulong_t __user *u = ubuf;
1174                 while (count > 0) {
1175                         if (__put_user(*gprs_high, u++))
1176                                 return -EFAULT;
1177                         gprs_high += 2;
1178                         count -= sizeof(*u);
1179                 }
1180         }
1181         return 0;
1182 }
1183
1184 static int s390_compat_regs_high_set(struct task_struct *target,
1185                                      const struct user_regset *regset,
1186                                      unsigned int pos, unsigned int count,
1187                                      const void *kbuf, const void __user *ubuf)
1188 {
1189         compat_ulong_t *gprs_high;
1190         int rc = 0;
1191
1192         gprs_high = (compat_ulong_t *)
1193                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1194         if (kbuf) {
1195                 const compat_ulong_t *k = kbuf;
1196                 while (count > 0) {
1197                         *gprs_high = *k++;
1198                         *gprs_high += 2;
1199                         count -= sizeof(*k);
1200                 }
1201         } else {
1202                 const compat_ulong_t  __user *u = ubuf;
1203                 while (count > 0 && !rc) {
1204                         unsigned long word;
1205                         rc = __get_user(word, u++);
1206                         if (rc)
1207                                 break;
1208                         *gprs_high = word;
1209                         *gprs_high += 2;
1210                         count -= sizeof(*u);
1211                 }
1212         }
1213
1214         return rc;
1215 }
1216
1217 static int s390_compat_last_break_get(struct task_struct *target,
1218                                       const struct user_regset *regset,
1219                                       unsigned int pos, unsigned int count,
1220                                       void *kbuf, void __user *ubuf)
1221 {
1222         compat_ulong_t last_break;
1223
1224         if (count > 0) {
1225                 last_break = task_thread_info(target)->last_break;
1226                 if (kbuf) {
1227                         unsigned long *k = kbuf;
1228                         *k = last_break;
1229                 } else {
1230                         unsigned long  __user *u = ubuf;
1231                         if (__put_user(last_break, u))
1232                                 return -EFAULT;
1233                 }
1234         }
1235         return 0;
1236 }
1237
1238 static int s390_compat_last_break_set(struct task_struct *target,
1239                                       const struct user_regset *regset,
1240                                       unsigned int pos, unsigned int count,
1241                                       const void *kbuf, const void __user *ubuf)
1242 {
1243         return 0;
1244 }
1245
1246 static const struct user_regset s390_compat_regsets[] = {
1247         [REGSET_GENERAL] = {
1248                 .core_note_type = NT_PRSTATUS,
1249                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1250                 .size = sizeof(compat_long_t),
1251                 .align = sizeof(compat_long_t),
1252                 .get = s390_compat_regs_get,
1253                 .set = s390_compat_regs_set,
1254         },
1255         [REGSET_FP] = {
1256                 .core_note_type = NT_PRFPREG,
1257                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1258                 .size = sizeof(compat_long_t),
1259                 .align = sizeof(compat_long_t),
1260                 .get = s390_fpregs_get,
1261                 .set = s390_fpregs_set,
1262         },
1263         [REGSET_LAST_BREAK] = {
1264                 .core_note_type = NT_S390_LAST_BREAK,
1265                 .n = 1,
1266                 .size = sizeof(long),
1267                 .align = sizeof(long),
1268                 .get = s390_compat_last_break_get,
1269                 .set = s390_compat_last_break_set,
1270         },
1271         [REGSET_TDB] = {
1272                 .core_note_type = NT_S390_TDB,
1273                 .n = 1,
1274                 .size = 256,
1275                 .align = 1,
1276                 .get = s390_tdb_get,
1277                 .set = s390_tdb_set,
1278         },
1279         [REGSET_SYSTEM_CALL] = {
1280                 .core_note_type = NT_S390_SYSTEM_CALL,
1281                 .n = 1,
1282                 .size = sizeof(compat_uint_t),
1283                 .align = sizeof(compat_uint_t),
1284                 .get = s390_system_call_get,
1285                 .set = s390_system_call_set,
1286         },
1287         [REGSET_GENERAL_EXTENDED] = {
1288                 .core_note_type = NT_S390_HIGH_GPRS,
1289                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1290                 .size = sizeof(compat_long_t),
1291                 .align = sizeof(compat_long_t),
1292                 .get = s390_compat_regs_high_get,
1293                 .set = s390_compat_regs_high_set,
1294         },
1295 };
1296
1297 static const struct user_regset_view user_s390_compat_view = {
1298         .name = "s390",
1299         .e_machine = EM_S390,
1300         .regsets = s390_compat_regsets,
1301         .n = ARRAY_SIZE(s390_compat_regsets)
1302 };
1303 #endif
1304
1305 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1306 {
1307 #ifdef CONFIG_COMPAT
1308         if (test_tsk_thread_flag(task, TIF_31BIT))
1309                 return &user_s390_compat_view;
1310 #endif
1311         return &user_s390_view;
1312 }
1313
1314 static const char *gpr_names[NUM_GPRS] = {
1315         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1316         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1317 };
1318
1319 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1320 {
1321         if (offset >= NUM_GPRS)
1322                 return 0;
1323         return regs->gprs[offset];
1324 }
1325
1326 int regs_query_register_offset(const char *name)
1327 {
1328         unsigned long offset;
1329
1330         if (!name || *name != 'r')
1331                 return -EINVAL;
1332         if (kstrtoul(name + 1, 10, &offset))
1333                 return -EINVAL;
1334         if (offset >= NUM_GPRS)
1335                 return -EINVAL;
1336         return offset;
1337 }
1338
1339 const char *regs_query_register_name(unsigned int offset)
1340 {
1341         if (offset >= NUM_GPRS)
1342                 return NULL;
1343         return gpr_names[offset];
1344 }
1345
1346 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1347 {
1348         unsigned long ksp = kernel_stack_pointer(regs);
1349
1350         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1351 }
1352
1353 /**
1354  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1355  * @regs:pt_regs which contains kernel stack pointer.
1356  * @n:stack entry number.
1357  *
1358  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1359  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1360  * this returns 0.
1361  */
1362 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1363 {
1364         unsigned long addr;
1365
1366         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1367         if (!regs_within_kernel_stack(regs, addr))
1368                 return 0;
1369         return *(unsigned long *)addr;
1370 }