ASoC: atmel_ssc_dai: distinguish the different SSC
[cascardo/linux.git] / arch / s390 / kvm / kvm-s390.c
1 /*
2  * hosting zSeries kernel virtual machines
3  *
4  * Copyright IBM Corp. 2008, 2009
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License (version 2 only)
8  * as published by the Free Software Foundation.
9  *
10  *    Author(s): Carsten Otte <cotte@de.ibm.com>
11  *               Christian Borntraeger <borntraeger@de.ibm.com>
12  *               Heiko Carstens <heiko.carstens@de.ibm.com>
13  *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14  *               Jason J. Herne <jjherne@us.ibm.com>
15  */
16
17 #include <linux/compiler.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/vmalloc.h>
29 #include <asm/asm-offsets.h>
30 #include <asm/lowcore.h>
31 #include <asm/etr.h>
32 #include <asm/pgtable.h>
33 #include <asm/nmi.h>
34 #include <asm/switch_to.h>
35 #include <asm/isc.h>
36 #include <asm/sclp.h>
37 #include "kvm-s390.h"
38 #include "gaccess.h"
39
40 #define KMSG_COMPONENT "kvm-s390"
41 #undef pr_fmt
42 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
43
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46 #include "trace-s390.h"
47
48 #define MEM_OP_MAX_SIZE 65536   /* Maximum transfer size for KVM_S390_MEM_OP */
49 #define LOCAL_IRQS 32
50 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
51                            (KVM_MAX_VCPUS + LOCAL_IRQS))
52
53 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
54
55 struct kvm_stats_debugfs_item debugfs_entries[] = {
56         { "userspace_handled", VCPU_STAT(exit_userspace) },
57         { "exit_null", VCPU_STAT(exit_null) },
58         { "exit_validity", VCPU_STAT(exit_validity) },
59         { "exit_stop_request", VCPU_STAT(exit_stop_request) },
60         { "exit_external_request", VCPU_STAT(exit_external_request) },
61         { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62         { "exit_instruction", VCPU_STAT(exit_instruction) },
63         { "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
64         { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
68         { "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69         { "instruction_lctl", VCPU_STAT(instruction_lctl) },
70         { "instruction_stctl", VCPU_STAT(instruction_stctl) },
71         { "instruction_stctg", VCPU_STAT(instruction_stctg) },
72         { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73         { "deliver_external_call", VCPU_STAT(deliver_external_call) },
74         { "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
75         { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
76         { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
77         { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
78         { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
79         { "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
80         { "exit_wait_state", VCPU_STAT(exit_wait_state) },
81         { "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82         { "instruction_stidp", VCPU_STAT(instruction_stidp) },
83         { "instruction_spx", VCPU_STAT(instruction_spx) },
84         { "instruction_stpx", VCPU_STAT(instruction_stpx) },
85         { "instruction_stap", VCPU_STAT(instruction_stap) },
86         { "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87         { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88         { "instruction_stsch", VCPU_STAT(instruction_stsch) },
89         { "instruction_chsc", VCPU_STAT(instruction_chsc) },
90         { "instruction_essa", VCPU_STAT(instruction_essa) },
91         { "instruction_stsi", VCPU_STAT(instruction_stsi) },
92         { "instruction_stfl", VCPU_STAT(instruction_stfl) },
93         { "instruction_tprot", VCPU_STAT(instruction_tprot) },
94         { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95         { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96         { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97         { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98         { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
99         { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100         { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101         { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
102         { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103         { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104         { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
105         { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
106         { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107         { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
108         { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
109         { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110         { "diagnose_10", VCPU_STAT(diagnose_10) },
111         { "diagnose_44", VCPU_STAT(diagnose_44) },
112         { "diagnose_9c", VCPU_STAT(diagnose_9c) },
113         { "diagnose_258", VCPU_STAT(diagnose_258) },
114         { "diagnose_308", VCPU_STAT(diagnose_308) },
115         { "diagnose_500", VCPU_STAT(diagnose_500) },
116         { NULL }
117 };
118
119 /* upper facilities limit for kvm */
120 unsigned long kvm_s390_fac_list_mask[] = {
121         0xffe6fffbfcfdfc40UL,
122         0x005e800000000000UL,
123 };
124
125 unsigned long kvm_s390_fac_list_mask_size(void)
126 {
127         BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
128         return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 }
130
131 static struct gmap_notifier gmap_notifier;
132 debug_info_t *kvm_s390_dbf;
133
134 /* Section: not file related */
135 int kvm_arch_hardware_enable(void)
136 {
137         /* every s390 is virtualization enabled ;-) */
138         return 0;
139 }
140
141 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);
142
143 /*
144  * This callback is executed during stop_machine(). All CPUs are therefore
145  * temporarily stopped. In order not to change guest behavior, we have to
146  * disable preemption whenever we touch the epoch of kvm and the VCPUs,
147  * so a CPU won't be stopped while calculating with the epoch.
148  */
149 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
150                           void *v)
151 {
152         struct kvm *kvm;
153         struct kvm_vcpu *vcpu;
154         int i;
155         unsigned long long *delta = v;
156
157         list_for_each_entry(kvm, &vm_list, vm_list) {
158                 kvm->arch.epoch -= *delta;
159                 kvm_for_each_vcpu(i, vcpu, kvm) {
160                         vcpu->arch.sie_block->epoch -= *delta;
161                 }
162         }
163         return NOTIFY_OK;
164 }
165
166 static struct notifier_block kvm_clock_notifier = {
167         .notifier_call = kvm_clock_sync,
168 };
169
170 int kvm_arch_hardware_setup(void)
171 {
172         gmap_notifier.notifier_call = kvm_gmap_notifier;
173         gmap_register_ipte_notifier(&gmap_notifier);
174         atomic_notifier_chain_register(&s390_epoch_delta_notifier,
175                                        &kvm_clock_notifier);
176         return 0;
177 }
178
179 void kvm_arch_hardware_unsetup(void)
180 {
181         gmap_unregister_ipte_notifier(&gmap_notifier);
182         atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
183                                          &kvm_clock_notifier);
184 }
185
186 int kvm_arch_init(void *opaque)
187 {
188         kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
189         if (!kvm_s390_dbf)
190                 return -ENOMEM;
191
192         if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
193                 debug_unregister(kvm_s390_dbf);
194                 return -ENOMEM;
195         }
196
197         /* Register floating interrupt controller interface. */
198         return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
199 }
200
201 void kvm_arch_exit(void)
202 {
203         debug_unregister(kvm_s390_dbf);
204 }
205
206 /* Section: device related */
207 long kvm_arch_dev_ioctl(struct file *filp,
208                         unsigned int ioctl, unsigned long arg)
209 {
210         if (ioctl == KVM_S390_ENABLE_SIE)
211                 return s390_enable_sie();
212         return -EINVAL;
213 }
214
215 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216 {
217         int r;
218
219         switch (ext) {
220         case KVM_CAP_S390_PSW:
221         case KVM_CAP_S390_GMAP:
222         case KVM_CAP_SYNC_MMU:
223 #ifdef CONFIG_KVM_S390_UCONTROL
224         case KVM_CAP_S390_UCONTROL:
225 #endif
226         case KVM_CAP_ASYNC_PF:
227         case KVM_CAP_SYNC_REGS:
228         case KVM_CAP_ONE_REG:
229         case KVM_CAP_ENABLE_CAP:
230         case KVM_CAP_S390_CSS_SUPPORT:
231         case KVM_CAP_IOEVENTFD:
232         case KVM_CAP_DEVICE_CTRL:
233         case KVM_CAP_ENABLE_CAP_VM:
234         case KVM_CAP_S390_IRQCHIP:
235         case KVM_CAP_VM_ATTRIBUTES:
236         case KVM_CAP_MP_STATE:
237         case KVM_CAP_S390_INJECT_IRQ:
238         case KVM_CAP_S390_USER_SIGP:
239         case KVM_CAP_S390_USER_STSI:
240         case KVM_CAP_S390_SKEYS:
241         case KVM_CAP_S390_IRQ_STATE:
242                 r = 1;
243                 break;
244         case KVM_CAP_S390_MEM_OP:
245                 r = MEM_OP_MAX_SIZE;
246                 break;
247         case KVM_CAP_NR_VCPUS:
248         case KVM_CAP_MAX_VCPUS:
249                 r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
250                                   : KVM_S390_BSCA_CPU_SLOTS;
251                 break;
252         case KVM_CAP_NR_MEMSLOTS:
253                 r = KVM_USER_MEM_SLOTS;
254                 break;
255         case KVM_CAP_S390_COW:
256                 r = MACHINE_HAS_ESOP;
257                 break;
258         case KVM_CAP_S390_VECTOR_REGISTERS:
259                 r = MACHINE_HAS_VX;
260                 break;
261         case KVM_CAP_S390_RI:
262                 r = test_facility(64);
263                 break;
264         default:
265                 r = 0;
266         }
267         return r;
268 }
269
270 static void kvm_s390_sync_dirty_log(struct kvm *kvm,
271                                         struct kvm_memory_slot *memslot)
272 {
273         gfn_t cur_gfn, last_gfn;
274         unsigned long address;
275         struct gmap *gmap = kvm->arch.gmap;
276
277         down_read(&gmap->mm->mmap_sem);
278         /* Loop over all guest pages */
279         last_gfn = memslot->base_gfn + memslot->npages;
280         for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
281                 address = gfn_to_hva_memslot(memslot, cur_gfn);
282
283                 if (gmap_test_and_clear_dirty(address, gmap))
284                         mark_page_dirty(kvm, cur_gfn);
285         }
286         up_read(&gmap->mm->mmap_sem);
287 }
288
289 /* Section: vm related */
290 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
291
292 /*
293  * Get (and clear) the dirty memory log for a memory slot.
294  */
295 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
296                                struct kvm_dirty_log *log)
297 {
298         int r;
299         unsigned long n;
300         struct kvm_memslots *slots;
301         struct kvm_memory_slot *memslot;
302         int is_dirty = 0;
303
304         mutex_lock(&kvm->slots_lock);
305
306         r = -EINVAL;
307         if (log->slot >= KVM_USER_MEM_SLOTS)
308                 goto out;
309
310         slots = kvm_memslots(kvm);
311         memslot = id_to_memslot(slots, log->slot);
312         r = -ENOENT;
313         if (!memslot->dirty_bitmap)
314                 goto out;
315
316         kvm_s390_sync_dirty_log(kvm, memslot);
317         r = kvm_get_dirty_log(kvm, log, &is_dirty);
318         if (r)
319                 goto out;
320
321         /* Clear the dirty log */
322         if (is_dirty) {
323                 n = kvm_dirty_bitmap_bytes(memslot);
324                 memset(memslot->dirty_bitmap, 0, n);
325         }
326         r = 0;
327 out:
328         mutex_unlock(&kvm->slots_lock);
329         return r;
330 }
331
332 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
333 {
334         int r;
335
336         if (cap->flags)
337                 return -EINVAL;
338
339         switch (cap->cap) {
340         case KVM_CAP_S390_IRQCHIP:
341                 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
342                 kvm->arch.use_irqchip = 1;
343                 r = 0;
344                 break;
345         case KVM_CAP_S390_USER_SIGP:
346                 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
347                 kvm->arch.user_sigp = 1;
348                 r = 0;
349                 break;
350         case KVM_CAP_S390_VECTOR_REGISTERS:
351                 mutex_lock(&kvm->lock);
352                 if (atomic_read(&kvm->online_vcpus)) {
353                         r = -EBUSY;
354                 } else if (MACHINE_HAS_VX) {
355                         set_kvm_facility(kvm->arch.model.fac->mask, 129);
356                         set_kvm_facility(kvm->arch.model.fac->list, 129);
357                         r = 0;
358                 } else
359                         r = -EINVAL;
360                 mutex_unlock(&kvm->lock);
361                 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
362                          r ? "(not available)" : "(success)");
363                 break;
364         case KVM_CAP_S390_RI:
365                 r = -EINVAL;
366                 mutex_lock(&kvm->lock);
367                 if (atomic_read(&kvm->online_vcpus)) {
368                         r = -EBUSY;
369                 } else if (test_facility(64)) {
370                         set_kvm_facility(kvm->arch.model.fac->mask, 64);
371                         set_kvm_facility(kvm->arch.model.fac->list, 64);
372                         r = 0;
373                 }
374                 mutex_unlock(&kvm->lock);
375                 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
376                          r ? "(not available)" : "(success)");
377                 break;
378         case KVM_CAP_S390_USER_STSI:
379                 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
380                 kvm->arch.user_stsi = 1;
381                 r = 0;
382                 break;
383         default:
384                 r = -EINVAL;
385                 break;
386         }
387         return r;
388 }
389
390 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
391 {
392         int ret;
393
394         switch (attr->attr) {
395         case KVM_S390_VM_MEM_LIMIT_SIZE:
396                 ret = 0;
397                 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
398                          kvm->arch.mem_limit);
399                 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
400                         ret = -EFAULT;
401                 break;
402         default:
403                 ret = -ENXIO;
404                 break;
405         }
406         return ret;
407 }
408
409 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
410 {
411         int ret;
412         unsigned int idx;
413         switch (attr->attr) {
414         case KVM_S390_VM_MEM_ENABLE_CMMA:
415                 /* enable CMMA only for z10 and later (EDAT_1) */
416                 ret = -EINVAL;
417                 if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
418                         break;
419
420                 ret = -EBUSY;
421                 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
422                 mutex_lock(&kvm->lock);
423                 if (atomic_read(&kvm->online_vcpus) == 0) {
424                         kvm->arch.use_cmma = 1;
425                         ret = 0;
426                 }
427                 mutex_unlock(&kvm->lock);
428                 break;
429         case KVM_S390_VM_MEM_CLR_CMMA:
430                 ret = -EINVAL;
431                 if (!kvm->arch.use_cmma)
432                         break;
433
434                 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
435                 mutex_lock(&kvm->lock);
436                 idx = srcu_read_lock(&kvm->srcu);
437                 s390_reset_cmma(kvm->arch.gmap->mm);
438                 srcu_read_unlock(&kvm->srcu, idx);
439                 mutex_unlock(&kvm->lock);
440                 ret = 0;
441                 break;
442         case KVM_S390_VM_MEM_LIMIT_SIZE: {
443                 unsigned long new_limit;
444
445                 if (kvm_is_ucontrol(kvm))
446                         return -EINVAL;
447
448                 if (get_user(new_limit, (u64 __user *)attr->addr))
449                         return -EFAULT;
450
451                 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
452                     new_limit > kvm->arch.mem_limit)
453                         return -E2BIG;
454
455                 if (!new_limit)
456                         return -EINVAL;
457
458                 /* gmap_alloc takes last usable address */
459                 if (new_limit != KVM_S390_NO_MEM_LIMIT)
460                         new_limit -= 1;
461
462                 ret = -EBUSY;
463                 mutex_lock(&kvm->lock);
464                 if (atomic_read(&kvm->online_vcpus) == 0) {
465                         /* gmap_alloc will round the limit up */
466                         struct gmap *new = gmap_alloc(current->mm, new_limit);
467
468                         if (!new) {
469                                 ret = -ENOMEM;
470                         } else {
471                                 gmap_free(kvm->arch.gmap);
472                                 new->private = kvm;
473                                 kvm->arch.gmap = new;
474                                 ret = 0;
475                         }
476                 }
477                 mutex_unlock(&kvm->lock);
478                 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
479                 VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
480                          (void *) kvm->arch.gmap->asce);
481                 break;
482         }
483         default:
484                 ret = -ENXIO;
485                 break;
486         }
487         return ret;
488 }
489
490 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
491
492 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
493 {
494         struct kvm_vcpu *vcpu;
495         int i;
496
497         if (!test_kvm_facility(kvm, 76))
498                 return -EINVAL;
499
500         mutex_lock(&kvm->lock);
501         switch (attr->attr) {
502         case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
503                 get_random_bytes(
504                         kvm->arch.crypto.crycb->aes_wrapping_key_mask,
505                         sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
506                 kvm->arch.crypto.aes_kw = 1;
507                 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
508                 break;
509         case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
510                 get_random_bytes(
511                         kvm->arch.crypto.crycb->dea_wrapping_key_mask,
512                         sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
513                 kvm->arch.crypto.dea_kw = 1;
514                 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
515                 break;
516         case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
517                 kvm->arch.crypto.aes_kw = 0;
518                 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
519                         sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
520                 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
521                 break;
522         case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
523                 kvm->arch.crypto.dea_kw = 0;
524                 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
525                         sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
526                 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
527                 break;
528         default:
529                 mutex_unlock(&kvm->lock);
530                 return -ENXIO;
531         }
532
533         kvm_for_each_vcpu(i, vcpu, kvm) {
534                 kvm_s390_vcpu_crypto_setup(vcpu);
535                 exit_sie(vcpu);
536         }
537         mutex_unlock(&kvm->lock);
538         return 0;
539 }
540
541 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
542 {
543         u8 gtod_high;
544
545         if (copy_from_user(&gtod_high, (void __user *)attr->addr,
546                                            sizeof(gtod_high)))
547                 return -EFAULT;
548
549         if (gtod_high != 0)
550                 return -EINVAL;
551         VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
552
553         return 0;
554 }
555
556 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
557 {
558         u64 gtod;
559
560         if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
561                 return -EFAULT;
562
563         kvm_s390_set_tod_clock(kvm, gtod);
564         VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
565         return 0;
566 }
567
568 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
569 {
570         int ret;
571
572         if (attr->flags)
573                 return -EINVAL;
574
575         switch (attr->attr) {
576         case KVM_S390_VM_TOD_HIGH:
577                 ret = kvm_s390_set_tod_high(kvm, attr);
578                 break;
579         case KVM_S390_VM_TOD_LOW:
580                 ret = kvm_s390_set_tod_low(kvm, attr);
581                 break;
582         default:
583                 ret = -ENXIO;
584                 break;
585         }
586         return ret;
587 }
588
589 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
590 {
591         u8 gtod_high = 0;
592
593         if (copy_to_user((void __user *)attr->addr, &gtod_high,
594                                          sizeof(gtod_high)))
595                 return -EFAULT;
596         VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
597
598         return 0;
599 }
600
601 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
602 {
603         u64 gtod;
604
605         gtod = kvm_s390_get_tod_clock_fast(kvm);
606         if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
607                 return -EFAULT;
608         VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
609
610         return 0;
611 }
612
613 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
614 {
615         int ret;
616
617         if (attr->flags)
618                 return -EINVAL;
619
620         switch (attr->attr) {
621         case KVM_S390_VM_TOD_HIGH:
622                 ret = kvm_s390_get_tod_high(kvm, attr);
623                 break;
624         case KVM_S390_VM_TOD_LOW:
625                 ret = kvm_s390_get_tod_low(kvm, attr);
626                 break;
627         default:
628                 ret = -ENXIO;
629                 break;
630         }
631         return ret;
632 }
633
634 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
635 {
636         struct kvm_s390_vm_cpu_processor *proc;
637         int ret = 0;
638
639         mutex_lock(&kvm->lock);
640         if (atomic_read(&kvm->online_vcpus)) {
641                 ret = -EBUSY;
642                 goto out;
643         }
644         proc = kzalloc(sizeof(*proc), GFP_KERNEL);
645         if (!proc) {
646                 ret = -ENOMEM;
647                 goto out;
648         }
649         if (!copy_from_user(proc, (void __user *)attr->addr,
650                             sizeof(*proc))) {
651                 memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
652                        sizeof(struct cpuid));
653                 kvm->arch.model.ibc = proc->ibc;
654                 memcpy(kvm->arch.model.fac->list, proc->fac_list,
655                        S390_ARCH_FAC_LIST_SIZE_BYTE);
656         } else
657                 ret = -EFAULT;
658         kfree(proc);
659 out:
660         mutex_unlock(&kvm->lock);
661         return ret;
662 }
663
664 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
665 {
666         int ret = -ENXIO;
667
668         switch (attr->attr) {
669         case KVM_S390_VM_CPU_PROCESSOR:
670                 ret = kvm_s390_set_processor(kvm, attr);
671                 break;
672         }
673         return ret;
674 }
675
676 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
677 {
678         struct kvm_s390_vm_cpu_processor *proc;
679         int ret = 0;
680
681         proc = kzalloc(sizeof(*proc), GFP_KERNEL);
682         if (!proc) {
683                 ret = -ENOMEM;
684                 goto out;
685         }
686         memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
687         proc->ibc = kvm->arch.model.ibc;
688         memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
689         if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
690                 ret = -EFAULT;
691         kfree(proc);
692 out:
693         return ret;
694 }
695
696 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
697 {
698         struct kvm_s390_vm_cpu_machine *mach;
699         int ret = 0;
700
701         mach = kzalloc(sizeof(*mach), GFP_KERNEL);
702         if (!mach) {
703                 ret = -ENOMEM;
704                 goto out;
705         }
706         get_cpu_id((struct cpuid *) &mach->cpuid);
707         mach->ibc = sclp.ibc;
708         memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
709                S390_ARCH_FAC_LIST_SIZE_BYTE);
710         memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
711                S390_ARCH_FAC_LIST_SIZE_BYTE);
712         if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
713                 ret = -EFAULT;
714         kfree(mach);
715 out:
716         return ret;
717 }
718
719 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
720 {
721         int ret = -ENXIO;
722
723         switch (attr->attr) {
724         case KVM_S390_VM_CPU_PROCESSOR:
725                 ret = kvm_s390_get_processor(kvm, attr);
726                 break;
727         case KVM_S390_VM_CPU_MACHINE:
728                 ret = kvm_s390_get_machine(kvm, attr);
729                 break;
730         }
731         return ret;
732 }
733
734 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
735 {
736         int ret;
737
738         switch (attr->group) {
739         case KVM_S390_VM_MEM_CTRL:
740                 ret = kvm_s390_set_mem_control(kvm, attr);
741                 break;
742         case KVM_S390_VM_TOD:
743                 ret = kvm_s390_set_tod(kvm, attr);
744                 break;
745         case KVM_S390_VM_CPU_MODEL:
746                 ret = kvm_s390_set_cpu_model(kvm, attr);
747                 break;
748         case KVM_S390_VM_CRYPTO:
749                 ret = kvm_s390_vm_set_crypto(kvm, attr);
750                 break;
751         default:
752                 ret = -ENXIO;
753                 break;
754         }
755
756         return ret;
757 }
758
759 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
760 {
761         int ret;
762
763         switch (attr->group) {
764         case KVM_S390_VM_MEM_CTRL:
765                 ret = kvm_s390_get_mem_control(kvm, attr);
766                 break;
767         case KVM_S390_VM_TOD:
768                 ret = kvm_s390_get_tod(kvm, attr);
769                 break;
770         case KVM_S390_VM_CPU_MODEL:
771                 ret = kvm_s390_get_cpu_model(kvm, attr);
772                 break;
773         default:
774                 ret = -ENXIO;
775                 break;
776         }
777
778         return ret;
779 }
780
781 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
782 {
783         int ret;
784
785         switch (attr->group) {
786         case KVM_S390_VM_MEM_CTRL:
787                 switch (attr->attr) {
788                 case KVM_S390_VM_MEM_ENABLE_CMMA:
789                 case KVM_S390_VM_MEM_CLR_CMMA:
790                 case KVM_S390_VM_MEM_LIMIT_SIZE:
791                         ret = 0;
792                         break;
793                 default:
794                         ret = -ENXIO;
795                         break;
796                 }
797                 break;
798         case KVM_S390_VM_TOD:
799                 switch (attr->attr) {
800                 case KVM_S390_VM_TOD_LOW:
801                 case KVM_S390_VM_TOD_HIGH:
802                         ret = 0;
803                         break;
804                 default:
805                         ret = -ENXIO;
806                         break;
807                 }
808                 break;
809         case KVM_S390_VM_CPU_MODEL:
810                 switch (attr->attr) {
811                 case KVM_S390_VM_CPU_PROCESSOR:
812                 case KVM_S390_VM_CPU_MACHINE:
813                         ret = 0;
814                         break;
815                 default:
816                         ret = -ENXIO;
817                         break;
818                 }
819                 break;
820         case KVM_S390_VM_CRYPTO:
821                 switch (attr->attr) {
822                 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
823                 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
824                 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
825                 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
826                         ret = 0;
827                         break;
828                 default:
829                         ret = -ENXIO;
830                         break;
831                 }
832                 break;
833         default:
834                 ret = -ENXIO;
835                 break;
836         }
837
838         return ret;
839 }
840
841 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
842 {
843         uint8_t *keys;
844         uint64_t hva;
845         unsigned long curkey;
846         int i, r = 0;
847
848         if (args->flags != 0)
849                 return -EINVAL;
850
851         /* Is this guest using storage keys? */
852         if (!mm_use_skey(current->mm))
853                 return KVM_S390_GET_SKEYS_NONE;
854
855         /* Enforce sane limit on memory allocation */
856         if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
857                 return -EINVAL;
858
859         keys = kmalloc_array(args->count, sizeof(uint8_t),
860                              GFP_KERNEL | __GFP_NOWARN);
861         if (!keys)
862                 keys = vmalloc(sizeof(uint8_t) * args->count);
863         if (!keys)
864                 return -ENOMEM;
865
866         for (i = 0; i < args->count; i++) {
867                 hva = gfn_to_hva(kvm, args->start_gfn + i);
868                 if (kvm_is_error_hva(hva)) {
869                         r = -EFAULT;
870                         goto out;
871                 }
872
873                 curkey = get_guest_storage_key(current->mm, hva);
874                 if (IS_ERR_VALUE(curkey)) {
875                         r = curkey;
876                         goto out;
877                 }
878                 keys[i] = curkey;
879         }
880
881         r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
882                          sizeof(uint8_t) * args->count);
883         if (r)
884                 r = -EFAULT;
885 out:
886         kvfree(keys);
887         return r;
888 }
889
890 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
891 {
892         uint8_t *keys;
893         uint64_t hva;
894         int i, r = 0;
895
896         if (args->flags != 0)
897                 return -EINVAL;
898
899         /* Enforce sane limit on memory allocation */
900         if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
901                 return -EINVAL;
902
903         keys = kmalloc_array(args->count, sizeof(uint8_t),
904                              GFP_KERNEL | __GFP_NOWARN);
905         if (!keys)
906                 keys = vmalloc(sizeof(uint8_t) * args->count);
907         if (!keys)
908                 return -ENOMEM;
909
910         r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
911                            sizeof(uint8_t) * args->count);
912         if (r) {
913                 r = -EFAULT;
914                 goto out;
915         }
916
917         /* Enable storage key handling for the guest */
918         r = s390_enable_skey();
919         if (r)
920                 goto out;
921
922         for (i = 0; i < args->count; i++) {
923                 hva = gfn_to_hva(kvm, args->start_gfn + i);
924                 if (kvm_is_error_hva(hva)) {
925                         r = -EFAULT;
926                         goto out;
927                 }
928
929                 /* Lowest order bit is reserved */
930                 if (keys[i] & 0x01) {
931                         r = -EINVAL;
932                         goto out;
933                 }
934
935                 r = set_guest_storage_key(current->mm, hva,
936                                           (unsigned long)keys[i], 0);
937                 if (r)
938                         goto out;
939         }
940 out:
941         kvfree(keys);
942         return r;
943 }
944
945 long kvm_arch_vm_ioctl(struct file *filp,
946                        unsigned int ioctl, unsigned long arg)
947 {
948         struct kvm *kvm = filp->private_data;
949         void __user *argp = (void __user *)arg;
950         struct kvm_device_attr attr;
951         int r;
952
953         switch (ioctl) {
954         case KVM_S390_INTERRUPT: {
955                 struct kvm_s390_interrupt s390int;
956
957                 r = -EFAULT;
958                 if (copy_from_user(&s390int, argp, sizeof(s390int)))
959                         break;
960                 r = kvm_s390_inject_vm(kvm, &s390int);
961                 break;
962         }
963         case KVM_ENABLE_CAP: {
964                 struct kvm_enable_cap cap;
965                 r = -EFAULT;
966                 if (copy_from_user(&cap, argp, sizeof(cap)))
967                         break;
968                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
969                 break;
970         }
971         case KVM_CREATE_IRQCHIP: {
972                 struct kvm_irq_routing_entry routing;
973
974                 r = -EINVAL;
975                 if (kvm->arch.use_irqchip) {
976                         /* Set up dummy routing. */
977                         memset(&routing, 0, sizeof(routing));
978                         r = kvm_set_irq_routing(kvm, &routing, 0, 0);
979                 }
980                 break;
981         }
982         case KVM_SET_DEVICE_ATTR: {
983                 r = -EFAULT;
984                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
985                         break;
986                 r = kvm_s390_vm_set_attr(kvm, &attr);
987                 break;
988         }
989         case KVM_GET_DEVICE_ATTR: {
990                 r = -EFAULT;
991                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
992                         break;
993                 r = kvm_s390_vm_get_attr(kvm, &attr);
994                 break;
995         }
996         case KVM_HAS_DEVICE_ATTR: {
997                 r = -EFAULT;
998                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
999                         break;
1000                 r = kvm_s390_vm_has_attr(kvm, &attr);
1001                 break;
1002         }
1003         case KVM_S390_GET_SKEYS: {
1004                 struct kvm_s390_skeys args;
1005
1006                 r = -EFAULT;
1007                 if (copy_from_user(&args, argp,
1008                                    sizeof(struct kvm_s390_skeys)))
1009                         break;
1010                 r = kvm_s390_get_skeys(kvm, &args);
1011                 break;
1012         }
1013         case KVM_S390_SET_SKEYS: {
1014                 struct kvm_s390_skeys args;
1015
1016                 r = -EFAULT;
1017                 if (copy_from_user(&args, argp,
1018                                    sizeof(struct kvm_s390_skeys)))
1019                         break;
1020                 r = kvm_s390_set_skeys(kvm, &args);
1021                 break;
1022         }
1023         default:
1024                 r = -ENOTTY;
1025         }
1026
1027         return r;
1028 }
1029
1030 static int kvm_s390_query_ap_config(u8 *config)
1031 {
1032         u32 fcn_code = 0x04000000UL;
1033         u32 cc = 0;
1034
1035         memset(config, 0, 128);
1036         asm volatile(
1037                 "lgr 0,%1\n"
1038                 "lgr 2,%2\n"
1039                 ".long 0xb2af0000\n"            /* PQAP(QCI) */
1040                 "0: ipm %0\n"
1041                 "srl %0,28\n"
1042                 "1:\n"
1043                 EX_TABLE(0b, 1b)
1044                 : "+r" (cc)
1045                 : "r" (fcn_code), "r" (config)
1046                 : "cc", "0", "2", "memory"
1047         );
1048
1049         return cc;
1050 }
1051
1052 static int kvm_s390_apxa_installed(void)
1053 {
1054         u8 config[128];
1055         int cc;
1056
1057         if (test_facility(12)) {
1058                 cc = kvm_s390_query_ap_config(config);
1059
1060                 if (cc)
1061                         pr_err("PQAP(QCI) failed with cc=%d", cc);
1062                 else
1063                         return config[0] & 0x40;
1064         }
1065
1066         return 0;
1067 }
1068
1069 static void kvm_s390_set_crycb_format(struct kvm *kvm)
1070 {
1071         kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
1072
1073         if (kvm_s390_apxa_installed())
1074                 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
1075         else
1076                 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
1077 }
1078
1079 static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
1080 {
1081         get_cpu_id(cpu_id);
1082         cpu_id->version = 0xff;
1083 }
1084
1085 static int kvm_s390_crypto_init(struct kvm *kvm)
1086 {
1087         if (!test_kvm_facility(kvm, 76))
1088                 return 0;
1089
1090         kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
1091                                          GFP_KERNEL | GFP_DMA);
1092         if (!kvm->arch.crypto.crycb)
1093                 return -ENOMEM;
1094
1095         kvm_s390_set_crycb_format(kvm);
1096
1097         /* Enable AES/DEA protected key functions by default */
1098         kvm->arch.crypto.aes_kw = 1;
1099         kvm->arch.crypto.dea_kw = 1;
1100         get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1101                          sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1102         get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1103                          sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1104
1105         return 0;
1106 }
1107
1108 static void sca_dispose(struct kvm *kvm)
1109 {
1110         if (kvm->arch.use_esca)
1111                 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1112         else
1113                 free_page((unsigned long)(kvm->arch.sca));
1114         kvm->arch.sca = NULL;
1115 }
1116
1117 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1118 {
1119         int i, rc;
1120         char debug_name[16];
1121         static unsigned long sca_offset;
1122
1123         rc = -EINVAL;
1124 #ifdef CONFIG_KVM_S390_UCONTROL
1125         if (type & ~KVM_VM_S390_UCONTROL)
1126                 goto out_err;
1127         if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
1128                 goto out_err;
1129 #else
1130         if (type)
1131                 goto out_err;
1132 #endif
1133
1134         rc = s390_enable_sie();
1135         if (rc)
1136                 goto out_err;
1137
1138         rc = -ENOMEM;
1139
1140         kvm->arch.use_esca = 0; /* start with basic SCA */
1141         rwlock_init(&kvm->arch.sca_lock);
1142         kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1143         if (!kvm->arch.sca)
1144                 goto out_err;
1145         spin_lock(&kvm_lock);
1146         sca_offset += 16;
1147         if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1148                 sca_offset = 0;
1149         kvm->arch.sca = (struct bsca_block *)
1150                         ((char *) kvm->arch.sca + sca_offset);
1151         spin_unlock(&kvm_lock);
1152
1153         sprintf(debug_name, "kvm-%u", current->pid);
1154
1155         kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1156         if (!kvm->arch.dbf)
1157                 goto out_err;
1158
1159         /*
1160          * The architectural maximum amount of facilities is 16 kbit. To store
1161          * this amount, 2 kbyte of memory is required. Thus we need a full
1162          * page to hold the guest facility list (arch.model.fac->list) and the
1163          * facility mask (arch.model.fac->mask). Its address size has to be
1164          * 31 bits and word aligned.
1165          */
1166         kvm->arch.model.fac =
1167                 (struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1168         if (!kvm->arch.model.fac)
1169                 goto out_err;
1170
1171         /* Populate the facility mask initially. */
1172         memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1173                S390_ARCH_FAC_LIST_SIZE_BYTE);
1174         for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
1175                 if (i < kvm_s390_fac_list_mask_size())
1176                         kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1177                 else
1178                         kvm->arch.model.fac->mask[i] = 0UL;
1179         }
1180
1181         /* Populate the facility list initially. */
1182         memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
1183                S390_ARCH_FAC_LIST_SIZE_BYTE);
1184
1185         kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1186         kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1187
1188         if (kvm_s390_crypto_init(kvm) < 0)
1189                 goto out_err;
1190
1191         spin_lock_init(&kvm->arch.float_int.lock);
1192         for (i = 0; i < FIRQ_LIST_COUNT; i++)
1193                 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1194         init_waitqueue_head(&kvm->arch.ipte_wq);
1195         mutex_init(&kvm->arch.ipte_mutex);
1196
1197         debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1198         VM_EVENT(kvm, 3, "vm created with type %lu", type);
1199
1200         if (type & KVM_VM_S390_UCONTROL) {
1201                 kvm->arch.gmap = NULL;
1202                 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1203         } else {
1204                 if (sclp.hamax == U64_MAX)
1205                         kvm->arch.mem_limit = TASK_MAX_SIZE;
1206                 else
1207                         kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
1208                                                     sclp.hamax + 1);
1209                 kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1210                 if (!kvm->arch.gmap)
1211                         goto out_err;
1212                 kvm->arch.gmap->private = kvm;
1213                 kvm->arch.gmap->pfault_enabled = 0;
1214         }
1215
1216         kvm->arch.css_support = 0;
1217         kvm->arch.use_irqchip = 0;
1218         kvm->arch.epoch = 0;
1219
1220         spin_lock_init(&kvm->arch.start_stop_lock);
1221         KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1222
1223         return 0;
1224 out_err:
1225         kfree(kvm->arch.crypto.crycb);
1226         free_page((unsigned long)kvm->arch.model.fac);
1227         debug_unregister(kvm->arch.dbf);
1228         sca_dispose(kvm);
1229         KVM_EVENT(3, "creation of vm failed: %d", rc);
1230         return rc;
1231 }
1232
1233 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1234 {
1235         VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1236         trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1237         kvm_s390_clear_local_irqs(vcpu);
1238         kvm_clear_async_pf_completion_queue(vcpu);
1239         if (!kvm_is_ucontrol(vcpu->kvm))
1240                 sca_del_vcpu(vcpu);
1241
1242         if (kvm_is_ucontrol(vcpu->kvm))
1243                 gmap_free(vcpu->arch.gmap);
1244
1245         if (vcpu->kvm->arch.use_cmma)
1246                 kvm_s390_vcpu_unsetup_cmma(vcpu);
1247         free_page((unsigned long)(vcpu->arch.sie_block));
1248
1249         kvm_vcpu_uninit(vcpu);
1250         kmem_cache_free(kvm_vcpu_cache, vcpu);
1251 }
1252
1253 static void kvm_free_vcpus(struct kvm *kvm)
1254 {
1255         unsigned int i;
1256         struct kvm_vcpu *vcpu;
1257
1258         kvm_for_each_vcpu(i, vcpu, kvm)
1259                 kvm_arch_vcpu_destroy(vcpu);
1260
1261         mutex_lock(&kvm->lock);
1262         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
1263                 kvm->vcpus[i] = NULL;
1264
1265         atomic_set(&kvm->online_vcpus, 0);
1266         mutex_unlock(&kvm->lock);
1267 }
1268
1269 void kvm_arch_destroy_vm(struct kvm *kvm)
1270 {
1271         kvm_free_vcpus(kvm);
1272         free_page((unsigned long)kvm->arch.model.fac);
1273         sca_dispose(kvm);
1274         debug_unregister(kvm->arch.dbf);
1275         kfree(kvm->arch.crypto.crycb);
1276         if (!kvm_is_ucontrol(kvm))
1277                 gmap_free(kvm->arch.gmap);
1278         kvm_s390_destroy_adapters(kvm);
1279         kvm_s390_clear_float_irqs(kvm);
1280         KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1281 }
1282
1283 /* Section: vcpu related */
1284 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
1285 {
1286         vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
1287         if (!vcpu->arch.gmap)
1288                 return -ENOMEM;
1289         vcpu->arch.gmap->private = vcpu->kvm;
1290
1291         return 0;
1292 }
1293
1294 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
1295 {
1296         read_lock(&vcpu->kvm->arch.sca_lock);
1297         if (vcpu->kvm->arch.use_esca) {
1298                 struct esca_block *sca = vcpu->kvm->arch.sca;
1299
1300                 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1301                 sca->cpu[vcpu->vcpu_id].sda = 0;
1302         } else {
1303                 struct bsca_block *sca = vcpu->kvm->arch.sca;
1304
1305                 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1306                 sca->cpu[vcpu->vcpu_id].sda = 0;
1307         }
1308         read_unlock(&vcpu->kvm->arch.sca_lock);
1309 }
1310
1311 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1312 {
1313         read_lock(&vcpu->kvm->arch.sca_lock);
1314         if (vcpu->kvm->arch.use_esca) {
1315                 struct esca_block *sca = vcpu->kvm->arch.sca;
1316
1317                 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1318                 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1319                 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1320                 vcpu->arch.sie_block->ecb2 |= 0x04U;
1321                 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1322         } else {
1323                 struct bsca_block *sca = vcpu->kvm->arch.sca;
1324
1325                 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1326                 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1327                 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1328                 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1329         }
1330         read_unlock(&vcpu->kvm->arch.sca_lock);
1331 }
1332
1333 /* Basic SCA to Extended SCA data copy routines */
1334 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
1335 {
1336         d->sda = s->sda;
1337         d->sigp_ctrl.c = s->sigp_ctrl.c;
1338         d->sigp_ctrl.scn = s->sigp_ctrl.scn;
1339 }
1340
1341 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
1342 {
1343         int i;
1344
1345         d->ipte_control = s->ipte_control;
1346         d->mcn[0] = s->mcn;
1347         for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
1348                 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
1349 }
1350
1351 static int sca_switch_to_extended(struct kvm *kvm)
1352 {
1353         struct bsca_block *old_sca = kvm->arch.sca;
1354         struct esca_block *new_sca;
1355         struct kvm_vcpu *vcpu;
1356         unsigned int vcpu_idx;
1357         u32 scaol, scaoh;
1358
1359         new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
1360         if (!new_sca)
1361                 return -ENOMEM;
1362
1363         scaoh = (u32)((u64)(new_sca) >> 32);
1364         scaol = (u32)(u64)(new_sca) & ~0x3fU;
1365
1366         kvm_s390_vcpu_block_all(kvm);
1367         write_lock(&kvm->arch.sca_lock);
1368
1369         sca_copy_b_to_e(new_sca, old_sca);
1370
1371         kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
1372                 vcpu->arch.sie_block->scaoh = scaoh;
1373                 vcpu->arch.sie_block->scaol = scaol;
1374                 vcpu->arch.sie_block->ecb2 |= 0x04U;
1375         }
1376         kvm->arch.sca = new_sca;
1377         kvm->arch.use_esca = 1;
1378
1379         write_unlock(&kvm->arch.sca_lock);
1380         kvm_s390_vcpu_unblock_all(kvm);
1381
1382         free_page((unsigned long)old_sca);
1383
1384         VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
1385                  old_sca, kvm->arch.sca);
1386         return 0;
1387 }
1388
1389 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
1390 {
1391         int rc;
1392
1393         if (id < KVM_S390_BSCA_CPU_SLOTS)
1394                 return true;
1395         if (!sclp.has_esca)
1396                 return false;
1397
1398         mutex_lock(&kvm->lock);
1399         rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
1400         mutex_unlock(&kvm->lock);
1401
1402         return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1403 }
1404
1405 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1406 {
1407         vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1408         kvm_clear_async_pf_completion_queue(vcpu);
1409         vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
1410                                     KVM_SYNC_GPRS |
1411                                     KVM_SYNC_ACRS |
1412                                     KVM_SYNC_CRS |
1413                                     KVM_SYNC_ARCH0 |
1414                                     KVM_SYNC_PFAULT;
1415         if (test_kvm_facility(vcpu->kvm, 64))
1416                 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1417         if (test_kvm_facility(vcpu->kvm, 129))
1418                 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1419
1420         if (kvm_is_ucontrol(vcpu->kvm))
1421                 return __kvm_ucontrol_vcpu_init(vcpu);
1422
1423         return 0;
1424 }
1425
1426 /*
1427  * Backs up the current FP/VX register save area on a particular
1428  * destination.  Used to switch between different register save
1429  * areas.
1430  */
1431 static inline void save_fpu_to(struct fpu *dst)
1432 {
1433         dst->fpc = current->thread.fpu.fpc;
1434         dst->regs = current->thread.fpu.regs;
1435 }
1436
1437 /*
1438  * Switches the FP/VX register save area from which to lazy
1439  * restore register contents.
1440  */
1441 static inline void load_fpu_from(struct fpu *from)
1442 {
1443         current->thread.fpu.fpc = from->fpc;
1444         current->thread.fpu.regs = from->regs;
1445 }
1446
1447 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1448 {
1449         /* Save host register state */
1450         save_fpu_regs();
1451         save_fpu_to(&vcpu->arch.host_fpregs);
1452
1453         if (test_kvm_facility(vcpu->kvm, 129)) {
1454                 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1455                 /*
1456                  * Use the register save area in the SIE-control block
1457                  * for register restore and save in kvm_arch_vcpu_put()
1458                  */
1459                 current->thread.fpu.vxrs =
1460                         (__vector128 *)&vcpu->run->s.regs.vrs;
1461         } else
1462                 load_fpu_from(&vcpu->arch.guest_fpregs);
1463
1464         if (test_fp_ctl(current->thread.fpu.fpc))
1465                 /* User space provided an invalid FPC, let's clear it */
1466                 current->thread.fpu.fpc = 0;
1467
1468         save_access_regs(vcpu->arch.host_acrs);
1469         restore_access_regs(vcpu->run->s.regs.acrs);
1470         gmap_enable(vcpu->arch.gmap);
1471         atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1472 }
1473
1474 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1475 {
1476         atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1477         gmap_disable(vcpu->arch.gmap);
1478
1479         save_fpu_regs();
1480
1481         if (test_kvm_facility(vcpu->kvm, 129))
1482                 /*
1483                  * kvm_arch_vcpu_load() set up the register save area to
1484                  * the &vcpu->run->s.regs.vrs and, thus, the vector registers
1485                  * are already saved.  Only the floating-point control must be
1486                  * copied.
1487                  */
1488                 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1489         else
1490                 save_fpu_to(&vcpu->arch.guest_fpregs);
1491         load_fpu_from(&vcpu->arch.host_fpregs);
1492
1493         save_access_regs(vcpu->run->s.regs.acrs);
1494         restore_access_regs(vcpu->arch.host_acrs);
1495 }
1496
1497 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
1498 {
1499         /* this equals initial cpu reset in pop, but we don't switch to ESA */
1500         vcpu->arch.sie_block->gpsw.mask = 0UL;
1501         vcpu->arch.sie_block->gpsw.addr = 0UL;
1502         kvm_s390_set_prefix(vcpu, 0);
1503         vcpu->arch.sie_block->cputm     = 0UL;
1504         vcpu->arch.sie_block->ckc       = 0UL;
1505         vcpu->arch.sie_block->todpr     = 0;
1506         memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
1507         vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
1508         vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1509         vcpu->arch.guest_fpregs.fpc = 0;
1510         asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
1511         vcpu->arch.sie_block->gbea = 1;
1512         vcpu->arch.sie_block->pp = 0;
1513         vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1514         kvm_clear_async_pf_completion_queue(vcpu);
1515         if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
1516                 kvm_s390_vcpu_stop(vcpu);
1517         kvm_s390_clear_local_irqs(vcpu);
1518 }
1519
1520 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1521 {
1522         mutex_lock(&vcpu->kvm->lock);
1523         preempt_disable();
1524         vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1525         preempt_enable();
1526         mutex_unlock(&vcpu->kvm->lock);
1527         if (!kvm_is_ucontrol(vcpu->kvm)) {
1528                 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1529                 sca_add_vcpu(vcpu);
1530         }
1531
1532 }
1533
1534 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
1535 {
1536         if (!test_kvm_facility(vcpu->kvm, 76))
1537                 return;
1538
1539         vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
1540
1541         if (vcpu->kvm->arch.crypto.aes_kw)
1542                 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
1543         if (vcpu->kvm->arch.crypto.dea_kw)
1544                 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
1545
1546         vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
1547 }
1548
1549 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
1550 {
1551         free_page(vcpu->arch.sie_block->cbrlo);
1552         vcpu->arch.sie_block->cbrlo = 0;
1553 }
1554
1555 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
1556 {
1557         vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
1558         if (!vcpu->arch.sie_block->cbrlo)
1559                 return -ENOMEM;
1560
1561         vcpu->arch.sie_block->ecb2 |= 0x80;
1562         vcpu->arch.sie_block->ecb2 &= ~0x08;
1563         return 0;
1564 }
1565
1566 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
1567 {
1568         struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
1569
1570         vcpu->arch.cpu_id = model->cpu_id;
1571         vcpu->arch.sie_block->ibc = model->ibc;
1572         vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
1573 }
1574
1575 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1576 {
1577         int rc = 0;
1578
1579         atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
1580                                                     CPUSTAT_SM |
1581                                                     CPUSTAT_STOPPED);
1582
1583         if (test_kvm_facility(vcpu->kvm, 78))
1584                 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1585         else if (test_kvm_facility(vcpu->kvm, 8))
1586                 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1587
1588         kvm_s390_vcpu_setup_model(vcpu);
1589
1590         vcpu->arch.sie_block->ecb   = 6;
1591         if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1592                 vcpu->arch.sie_block->ecb |= 0x10;
1593
1594         vcpu->arch.sie_block->ecb2  = 8;
1595         vcpu->arch.sie_block->eca   = 0xC1002000U;
1596         if (sclp.has_siif)
1597                 vcpu->arch.sie_block->eca |= 1;
1598         if (sclp.has_sigpif)
1599                 vcpu->arch.sie_block->eca |= 0x10000000U;
1600         if (test_kvm_facility(vcpu->kvm, 64))
1601                 vcpu->arch.sie_block->ecb3 |= 0x01;
1602         if (test_kvm_facility(vcpu->kvm, 129)) {
1603                 vcpu->arch.sie_block->eca |= 0x00020000;
1604                 vcpu->arch.sie_block->ecd |= 0x20000000;
1605         }
1606         vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1607         vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1608
1609         if (vcpu->kvm->arch.use_cmma) {
1610                 rc = kvm_s390_vcpu_setup_cmma(vcpu);
1611                 if (rc)
1612                         return rc;
1613         }
1614         hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1615         vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1616
1617         kvm_s390_vcpu_crypto_setup(vcpu);
1618
1619         return rc;
1620 }
1621
1622 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1623                                       unsigned int id)
1624 {
1625         struct kvm_vcpu *vcpu;
1626         struct sie_page *sie_page;
1627         int rc = -EINVAL;
1628
1629         if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1630                 goto out;
1631
1632         rc = -ENOMEM;
1633
1634         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1635         if (!vcpu)
1636                 goto out;
1637
1638         sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
1639         if (!sie_page)
1640                 goto out_free_cpu;
1641
1642         vcpu->arch.sie_block = &sie_page->sie_block;
1643         vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1644
1645         vcpu->arch.sie_block->icpua = id;
1646         spin_lock_init(&vcpu->arch.local_int.lock);
1647         vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1648         vcpu->arch.local_int.wq = &vcpu->wq;
1649         vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1650
1651         /*
1652          * Allocate a save area for floating-point registers.  If the vector
1653          * extension is available, register contents are saved in the SIE
1654          * control block.  The allocated save area is still required in
1655          * particular places, for example, in kvm_s390_vcpu_store_status().
1656          */
1657         vcpu->arch.guest_fpregs.fprs = kzalloc(sizeof(freg_t) * __NUM_FPRS,
1658                                                GFP_KERNEL);
1659         if (!vcpu->arch.guest_fpregs.fprs)
1660                 goto out_free_sie_block;
1661
1662         rc = kvm_vcpu_init(vcpu, kvm, id);
1663         if (rc)
1664                 goto out_free_sie_block;
1665         VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1666                  vcpu->arch.sie_block);
1667         trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1668
1669         return vcpu;
1670 out_free_sie_block:
1671         free_page((unsigned long)(vcpu->arch.sie_block));
1672 out_free_cpu:
1673         kmem_cache_free(kvm_vcpu_cache, vcpu);
1674 out:
1675         return ERR_PTR(rc);
1676 }
1677
1678 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1679 {
1680         return kvm_s390_vcpu_has_irq(vcpu, 0);
1681 }
1682
1683 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1684 {
1685         atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1686         exit_sie(vcpu);
1687 }
1688
1689 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1690 {
1691         atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1692 }
1693
1694 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
1695 {
1696         atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1697         exit_sie(vcpu);
1698 }
1699
1700 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
1701 {
1702         atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1703 }
1704
1705 /*
1706  * Kick a guest cpu out of SIE and wait until SIE is not running.
1707  * If the CPU is not running (e.g. waiting as idle) the function will
1708  * return immediately. */
1709 void exit_sie(struct kvm_vcpu *vcpu)
1710 {
1711         atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1712         while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
1713                 cpu_relax();
1714 }
1715
1716 /* Kick a guest cpu out of SIE to process a request synchronously */
1717 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1718 {
1719         kvm_make_request(req, vcpu);
1720         kvm_s390_vcpu_request(vcpu);
1721 }
1722
1723 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
1724 {
1725         int i;
1726         struct kvm *kvm = gmap->private;
1727         struct kvm_vcpu *vcpu;
1728
1729         kvm_for_each_vcpu(i, vcpu, kvm) {
1730                 /* match against both prefix pages */
1731                 if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1732                         VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1733                         kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1734                 }
1735         }
1736 }
1737
1738 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
1739 {
1740         /* kvm common code refers to this, but never calls it */
1741         BUG();
1742         return 0;
1743 }
1744
1745 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
1746                                            struct kvm_one_reg *reg)
1747 {
1748         int r = -EINVAL;
1749
1750         switch (reg->id) {
1751         case KVM_REG_S390_TODPR:
1752                 r = put_user(vcpu->arch.sie_block->todpr,
1753                              (u32 __user *)reg->addr);
1754                 break;
1755         case KVM_REG_S390_EPOCHDIFF:
1756                 r = put_user(vcpu->arch.sie_block->epoch,
1757                              (u64 __user *)reg->addr);
1758                 break;
1759         case KVM_REG_S390_CPU_TIMER:
1760                 r = put_user(vcpu->arch.sie_block->cputm,
1761                              (u64 __user *)reg->addr);
1762                 break;
1763         case KVM_REG_S390_CLOCK_COMP:
1764                 r = put_user(vcpu->arch.sie_block->ckc,
1765                              (u64 __user *)reg->addr);
1766                 break;
1767         case KVM_REG_S390_PFTOKEN:
1768                 r = put_user(vcpu->arch.pfault_token,
1769                              (u64 __user *)reg->addr);
1770                 break;
1771         case KVM_REG_S390_PFCOMPARE:
1772                 r = put_user(vcpu->arch.pfault_compare,
1773                              (u64 __user *)reg->addr);
1774                 break;
1775         case KVM_REG_S390_PFSELECT:
1776                 r = put_user(vcpu->arch.pfault_select,
1777                              (u64 __user *)reg->addr);
1778                 break;
1779         case KVM_REG_S390_PP:
1780                 r = put_user(vcpu->arch.sie_block->pp,
1781                              (u64 __user *)reg->addr);
1782                 break;
1783         case KVM_REG_S390_GBEA:
1784                 r = put_user(vcpu->arch.sie_block->gbea,
1785                              (u64 __user *)reg->addr);
1786                 break;
1787         default:
1788                 break;
1789         }
1790
1791         return r;
1792 }
1793
1794 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
1795                                            struct kvm_one_reg *reg)
1796 {
1797         int r = -EINVAL;
1798
1799         switch (reg->id) {
1800         case KVM_REG_S390_TODPR:
1801                 r = get_user(vcpu->arch.sie_block->todpr,
1802                              (u32 __user *)reg->addr);
1803                 break;
1804         case KVM_REG_S390_EPOCHDIFF:
1805                 r = get_user(vcpu->arch.sie_block->epoch,
1806                              (u64 __user *)reg->addr);
1807                 break;
1808         case KVM_REG_S390_CPU_TIMER:
1809                 r = get_user(vcpu->arch.sie_block->cputm,
1810                              (u64 __user *)reg->addr);
1811                 break;
1812         case KVM_REG_S390_CLOCK_COMP:
1813                 r = get_user(vcpu->arch.sie_block->ckc,
1814                              (u64 __user *)reg->addr);
1815                 break;
1816         case KVM_REG_S390_PFTOKEN:
1817                 r = get_user(vcpu->arch.pfault_token,
1818                              (u64 __user *)reg->addr);
1819                 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
1820                         kvm_clear_async_pf_completion_queue(vcpu);
1821                 break;
1822         case KVM_REG_S390_PFCOMPARE:
1823                 r = get_user(vcpu->arch.pfault_compare,
1824                              (u64 __user *)reg->addr);
1825                 break;
1826         case KVM_REG_S390_PFSELECT:
1827                 r = get_user(vcpu->arch.pfault_select,
1828                              (u64 __user *)reg->addr);
1829                 break;
1830         case KVM_REG_S390_PP:
1831                 r = get_user(vcpu->arch.sie_block->pp,
1832                              (u64 __user *)reg->addr);
1833                 break;
1834         case KVM_REG_S390_GBEA:
1835                 r = get_user(vcpu->arch.sie_block->gbea,
1836                              (u64 __user *)reg->addr);
1837                 break;
1838         default:
1839                 break;
1840         }
1841
1842         return r;
1843 }
1844
1845 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
1846 {
1847         kvm_s390_vcpu_initial_reset(vcpu);
1848         return 0;
1849 }
1850
1851 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1852 {
1853         memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1854         return 0;
1855 }
1856
1857 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1858 {
1859         memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1860         return 0;
1861 }
1862
1863 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1864                                   struct kvm_sregs *sregs)
1865 {
1866         memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1867         memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1868         restore_access_regs(vcpu->run->s.regs.acrs);
1869         return 0;
1870 }
1871
1872 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1873                                   struct kvm_sregs *sregs)
1874 {
1875         memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1876         memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
1877         return 0;
1878 }
1879
1880 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1881 {
1882         if (test_fp_ctl(fpu->fpc))
1883                 return -EINVAL;
1884         memcpy(vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1885         vcpu->arch.guest_fpregs.fpc = fpu->fpc;
1886         save_fpu_regs();
1887         load_fpu_from(&vcpu->arch.guest_fpregs);
1888         return 0;
1889 }
1890
1891 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1892 {
1893         memcpy(&fpu->fprs, vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
1894         fpu->fpc = vcpu->arch.guest_fpregs.fpc;
1895         return 0;
1896 }
1897
1898 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
1899 {
1900         int rc = 0;
1901
1902         if (!is_vcpu_stopped(vcpu))
1903                 rc = -EBUSY;
1904         else {
1905                 vcpu->run->psw_mask = psw.mask;
1906                 vcpu->run->psw_addr = psw.addr;
1907         }
1908         return rc;
1909 }
1910
1911 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1912                                   struct kvm_translation *tr)
1913 {
1914         return -EINVAL; /* not implemented yet */
1915 }
1916
1917 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
1918                               KVM_GUESTDBG_USE_HW_BP | \
1919                               KVM_GUESTDBG_ENABLE)
1920
1921 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1922                                         struct kvm_guest_debug *dbg)
1923 {
1924         int rc = 0;
1925
1926         vcpu->guest_debug = 0;
1927         kvm_s390_clear_bp_data(vcpu);
1928
1929         if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1930                 return -EINVAL;
1931
1932         if (dbg->control & KVM_GUESTDBG_ENABLE) {
1933                 vcpu->guest_debug = dbg->control;
1934                 /* enforce guest PER */
1935                 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1936
1937                 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
1938                         rc = kvm_s390_import_bp_data(vcpu, dbg);
1939         } else {
1940                 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1941                 vcpu->arch.guestdbg.last_bp = 0;
1942         }
1943
1944         if (rc) {
1945                 vcpu->guest_debug = 0;
1946                 kvm_s390_clear_bp_data(vcpu);
1947                 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1948         }
1949
1950         return rc;
1951 }
1952
1953 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1954                                     struct kvm_mp_state *mp_state)
1955 {
1956         /* CHECK_STOP and LOAD are not supported yet */
1957         return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
1958                                        KVM_MP_STATE_OPERATING;
1959 }
1960
1961 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1962                                     struct kvm_mp_state *mp_state)
1963 {
1964         int rc = 0;
1965
1966         /* user space knows about this interface - let it control the state */
1967         vcpu->kvm->arch.user_cpu_state_ctrl = 1;
1968
1969         switch (mp_state->mp_state) {
1970         case KVM_MP_STATE_STOPPED:
1971                 kvm_s390_vcpu_stop(vcpu);
1972                 break;
1973         case KVM_MP_STATE_OPERATING:
1974                 kvm_s390_vcpu_start(vcpu);
1975                 break;
1976         case KVM_MP_STATE_LOAD:
1977         case KVM_MP_STATE_CHECK_STOP:
1978                 /* fall through - CHECK_STOP and LOAD are not supported yet */
1979         default:
1980                 rc = -ENXIO;
1981         }
1982
1983         return rc;
1984 }
1985
1986 static bool ibs_enabled(struct kvm_vcpu *vcpu)
1987 {
1988         return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
1989 }
1990
1991 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
1992 {
1993 retry:
1994         kvm_s390_vcpu_request_handled(vcpu);
1995         if (!vcpu->requests)
1996                 return 0;
1997         /*
1998          * We use MMU_RELOAD just to re-arm the ipte notifier for the
1999          * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
2000          * This ensures that the ipte instruction for this request has
2001          * already finished. We might race against a second unmapper that
2002          * wants to set the blocking bit. Lets just retry the request loop.
2003          */
2004         if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2005                 int rc;
2006                 rc = gmap_ipte_notify(vcpu->arch.gmap,
2007                                       kvm_s390_get_prefix(vcpu),
2008                                       PAGE_SIZE * 2);
2009                 if (rc)
2010                         return rc;
2011                 goto retry;
2012         }
2013
2014         if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2015                 vcpu->arch.sie_block->ihcpu = 0xffff;
2016                 goto retry;
2017         }
2018
2019         if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
2020                 if (!ibs_enabled(vcpu)) {
2021                         trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2022                         atomic_or(CPUSTAT_IBS,
2023                                         &vcpu->arch.sie_block->cpuflags);
2024                 }
2025                 goto retry;
2026         }
2027
2028         if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
2029                 if (ibs_enabled(vcpu)) {
2030                         trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2031                         atomic_andnot(CPUSTAT_IBS,
2032                                           &vcpu->arch.sie_block->cpuflags);
2033                 }
2034                 goto retry;
2035         }
2036
2037         /* nothing to do, just clear the request */
2038         clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
2039
2040         return 0;
2041 }
2042
2043 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
2044 {
2045         struct kvm_vcpu *vcpu;
2046         int i;
2047
2048         mutex_lock(&kvm->lock);
2049         preempt_disable();
2050         kvm->arch.epoch = tod - get_tod_clock();
2051         kvm_s390_vcpu_block_all(kvm);
2052         kvm_for_each_vcpu(i, vcpu, kvm)
2053                 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
2054         kvm_s390_vcpu_unblock_all(kvm);
2055         preempt_enable();
2056         mutex_unlock(&kvm->lock);
2057 }
2058
2059 /**
2060  * kvm_arch_fault_in_page - fault-in guest page if necessary
2061  * @vcpu: The corresponding virtual cpu
2062  * @gpa: Guest physical address
2063  * @writable: Whether the page should be writable or not
2064  *
2065  * Make sure that a guest page has been faulted-in on the host.
2066  *
2067  * Return: Zero on success, negative error code otherwise.
2068  */
2069 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2070 {
2071         return gmap_fault(vcpu->arch.gmap, gpa,
2072                           writable ? FAULT_FLAG_WRITE : 0);
2073 }
2074
2075 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
2076                                       unsigned long token)
2077 {
2078         struct kvm_s390_interrupt inti;
2079         struct kvm_s390_irq irq;
2080
2081         if (start_token) {
2082                 irq.u.ext.ext_params2 = token;
2083                 irq.type = KVM_S390_INT_PFAULT_INIT;
2084                 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2085         } else {
2086                 inti.type = KVM_S390_INT_PFAULT_DONE;
2087                 inti.parm64 = token;
2088                 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
2089         }
2090 }
2091
2092 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2093                                      struct kvm_async_pf *work)
2094 {
2095         trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
2096         __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
2097 }
2098
2099 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2100                                  struct kvm_async_pf *work)
2101 {
2102         trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
2103         __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
2104 }
2105
2106 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2107                                struct kvm_async_pf *work)
2108 {
2109         /* s390 will always inject the page directly */
2110 }
2111
2112 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
2113 {
2114         /*
2115          * s390 will always inject the page directly,
2116          * but we still want check_async_completion to cleanup
2117          */
2118         return true;
2119 }
2120
2121 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
2122 {
2123         hva_t hva;
2124         struct kvm_arch_async_pf arch;
2125         int rc;
2126
2127         if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2128                 return 0;
2129         if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
2130             vcpu->arch.pfault_compare)
2131                 return 0;
2132         if (psw_extint_disabled(vcpu))
2133                 return 0;
2134         if (kvm_s390_vcpu_has_irq(vcpu, 0))
2135                 return 0;
2136         if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
2137                 return 0;
2138         if (!vcpu->arch.gmap->pfault_enabled)
2139                 return 0;
2140
2141         hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
2142         hva += current->thread.gmap_addr & ~PAGE_MASK;
2143         if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2144                 return 0;
2145
2146         rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
2147         return rc;
2148 }
2149
2150 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2151 {
2152         int rc, cpuflags;
2153
2154         /*
2155          * On s390 notifications for arriving pages will be delivered directly
2156          * to the guest but the house keeping for completed pfaults is
2157          * handled outside the worker.
2158          */
2159         kvm_check_async_pf_completion(vcpu);
2160
2161         vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
2162         vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2163
2164         if (need_resched())
2165                 schedule();
2166
2167         if (test_cpu_flag(CIF_MCCK_PENDING))
2168                 s390_handle_mcck();
2169
2170         if (!kvm_is_ucontrol(vcpu->kvm)) {
2171                 rc = kvm_s390_deliver_pending_interrupts(vcpu);
2172                 if (rc)
2173                         return rc;
2174         }
2175
2176         rc = kvm_s390_handle_requests(vcpu);
2177         if (rc)
2178                 return rc;
2179
2180         if (guestdbg_enabled(vcpu)) {
2181                 kvm_s390_backup_guest_per_regs(vcpu);
2182                 kvm_s390_patch_guest_per_regs(vcpu);
2183         }
2184
2185         vcpu->arch.sie_block->icptcode = 0;
2186         cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
2187         VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
2188         trace_kvm_s390_sie_enter(vcpu, cpuflags);
2189
2190         return 0;
2191 }
2192
2193 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
2194 {
2195         psw_t *psw = &vcpu->arch.sie_block->gpsw;
2196         u8 opcode;
2197         int rc;
2198
2199         VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
2200         trace_kvm_s390_sie_fault(vcpu);
2201
2202         /*
2203          * We want to inject an addressing exception, which is defined as a
2204          * suppressing or terminating exception. However, since we came here
2205          * by a DAT access exception, the PSW still points to the faulting
2206          * instruction since DAT exceptions are nullifying. So we've got
2207          * to look up the current opcode to get the length of the instruction
2208          * to be able to forward the PSW.
2209          */
2210         rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
2211         if (rc)
2212                 return kvm_s390_inject_prog_cond(vcpu, rc);
2213         psw->addr = __rewind_psw(*psw, -insn_length(opcode));
2214
2215         return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
2216 }
2217
2218 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
2219 {
2220         VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
2221                    vcpu->arch.sie_block->icptcode);
2222         trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
2223
2224         if (guestdbg_enabled(vcpu))
2225                 kvm_s390_restore_guest_per_regs(vcpu);
2226
2227         vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
2228         vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2229
2230         if (vcpu->arch.sie_block->icptcode > 0) {
2231                 int rc = kvm_handle_sie_intercept(vcpu);
2232
2233                 if (rc != -EOPNOTSUPP)
2234                         return rc;
2235                 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
2236                 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
2237                 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
2238                 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
2239                 return -EREMOTE;
2240         } else if (exit_reason != -EFAULT) {
2241                 vcpu->stat.exit_null++;
2242                 return 0;
2243         } else if (kvm_is_ucontrol(vcpu->kvm)) {
2244                 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
2245                 vcpu->run->s390_ucontrol.trans_exc_code =
2246                                                 current->thread.gmap_addr;
2247                 vcpu->run->s390_ucontrol.pgm_code = 0x10;
2248                 return -EREMOTE;
2249         } else if (current->thread.gmap_pfault) {
2250                 trace_kvm_s390_major_guest_pfault(vcpu);
2251                 current->thread.gmap_pfault = 0;
2252                 if (kvm_arch_setup_async_pf(vcpu))
2253                         return 0;
2254                 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2255         }
2256         return vcpu_post_run_fault_in_sie(vcpu);
2257 }
2258
2259 static int __vcpu_run(struct kvm_vcpu *vcpu)
2260 {
2261         int rc, exit_reason;
2262
2263         /*
2264          * We try to hold kvm->srcu during most of vcpu_run (except when run-
2265          * ning the guest), so that memslots (and other stuff) are protected
2266          */
2267         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2268
2269         do {
2270                 rc = vcpu_pre_run(vcpu);
2271                 if (rc)
2272                         break;
2273
2274                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2275                 /*
2276                  * As PF_VCPU will be used in fault handler, between
2277                  * guest_enter and guest_exit should be no uaccess.
2278                  */
2279                 local_irq_disable();
2280                 __kvm_guest_enter();
2281                 local_irq_enable();
2282                 exit_reason = sie64a(vcpu->arch.sie_block,
2283                                      vcpu->run->s.regs.gprs);
2284                 local_irq_disable();
2285                 __kvm_guest_exit();
2286                 local_irq_enable();
2287                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2288
2289                 rc = vcpu_post_run(vcpu, exit_reason);
2290         } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2291
2292         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2293         return rc;
2294 }
2295
2296 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2297 {
2298         vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
2299         vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
2300         if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
2301                 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
2302         if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
2303                 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2304                 /* some control register changes require a tlb flush */
2305                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2306         }
2307         if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2308                 vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
2309                 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
2310                 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
2311                 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
2312                 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
2313         }
2314         if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
2315                 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
2316                 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
2317                 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2318                 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2319                         kvm_clear_async_pf_completion_queue(vcpu);
2320         }
2321         kvm_run->kvm_dirty_regs = 0;
2322 }
2323
2324 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2325 {
2326         kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
2327         kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
2328         kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
2329         memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2330         kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
2331         kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
2332         kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
2333         kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
2334         kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
2335         kvm_run->s.regs.pft = vcpu->arch.pfault_token;
2336         kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
2337         kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2338 }
2339
2340 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2341 {
2342         int rc;
2343         sigset_t sigsaved;
2344
2345         if (guestdbg_exit_pending(vcpu)) {
2346                 kvm_s390_prepare_debug_exit(vcpu);
2347                 return 0;
2348         }
2349
2350         if (vcpu->sigset_active)
2351                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2352
2353         if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
2354                 kvm_s390_vcpu_start(vcpu);
2355         } else if (is_vcpu_stopped(vcpu)) {
2356                 pr_err_ratelimited("can't run stopped vcpu %d\n",
2357                                    vcpu->vcpu_id);
2358                 return -EINVAL;
2359         }
2360
2361         sync_regs(vcpu, kvm_run);
2362
2363         might_fault();
2364         rc = __vcpu_run(vcpu);
2365
2366         if (signal_pending(current) && !rc) {
2367                 kvm_run->exit_reason = KVM_EXIT_INTR;
2368                 rc = -EINTR;
2369         }
2370
2371         if (guestdbg_exit_pending(vcpu) && !rc)  {
2372                 kvm_s390_prepare_debug_exit(vcpu);
2373                 rc = 0;
2374         }
2375
2376         if (rc == -EREMOTE) {
2377                 /* userspace support is needed, kvm_run has been prepared */
2378                 rc = 0;
2379         }
2380
2381         store_regs(vcpu, kvm_run);
2382
2383         if (vcpu->sigset_active)
2384                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2385
2386         vcpu->stat.exit_userspace++;
2387         return rc;
2388 }
2389
2390 /*
2391  * store status at address
2392  * we use have two special cases:
2393  * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
2394  * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
2395  */
2396 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2397 {
2398         unsigned char archmode = 1;
2399         unsigned int px;
2400         u64 clkcomp;
2401         int rc;
2402
2403         px = kvm_s390_get_prefix(vcpu);
2404         if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
2405                 if (write_guest_abs(vcpu, 163, &archmode, 1))
2406                         return -EFAULT;
2407                 gpa = 0;
2408         } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
2409                 if (write_guest_real(vcpu, 163, &archmode, 1))
2410                         return -EFAULT;
2411                 gpa = px;
2412         } else
2413                 gpa -= __LC_FPREGS_SAVE_AREA;
2414         rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2415                              vcpu->arch.guest_fpregs.fprs, 128);
2416         rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2417                               vcpu->run->s.regs.gprs, 128);
2418         rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2419                               &vcpu->arch.sie_block->gpsw, 16);
2420         rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2421                               &px, 4);
2422         rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2423                               &vcpu->arch.guest_fpregs.fpc, 4);
2424         rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2425                               &vcpu->arch.sie_block->todpr, 4);
2426         rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2427                               &vcpu->arch.sie_block->cputm, 8);
2428         clkcomp = vcpu->arch.sie_block->ckc >> 8;
2429         rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2430                               &clkcomp, 8);
2431         rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2432                               &vcpu->run->s.regs.acrs, 64);
2433         rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2434                               &vcpu->arch.sie_block->gcr, 128);
2435         return rc ? -EFAULT : 0;
2436 }
2437
2438 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
2439 {
2440         /*
2441          * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2442          * copying in vcpu load/put. Lets update our copies before we save
2443          * it into the save area
2444          */
2445         save_fpu_regs();
2446         if (test_kvm_facility(vcpu->kvm, 129)) {
2447                 /*
2448                  * If the vector extension is available, the vector registers
2449                  * which overlaps with floating-point registers are saved in
2450                  * the SIE-control block.  Hence, extract the floating-point
2451                  * registers and the FPC value and store them in the
2452                  * guest_fpregs structure.
2453                  */
2454                 vcpu->arch.guest_fpregs.fpc = current->thread.fpu.fpc;
2455                 convert_vx_to_fp(vcpu->arch.guest_fpregs.fprs,
2456                                  current->thread.fpu.vxrs);
2457         } else
2458                 save_fpu_to(&vcpu->arch.guest_fpregs);
2459         save_access_regs(vcpu->run->s.regs.acrs);
2460
2461         return kvm_s390_store_status_unloaded(vcpu, addr);
2462 }
2463
2464 /*
2465  * store additional status at address
2466  */
2467 int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
2468                                         unsigned long gpa)
2469 {
2470         /* Only bits 0-53 are used for address formation */
2471         if (!(gpa & ~0x3ff))
2472                 return 0;
2473
2474         return write_guest_abs(vcpu, gpa & ~0x3ff,
2475                                (void *)&vcpu->run->s.regs.vrs, 512);
2476 }
2477
2478 int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
2479 {
2480         if (!test_kvm_facility(vcpu->kvm, 129))
2481                 return 0;
2482
2483         /*
2484          * The guest VXRS are in the host VXRs due to the lazy
2485          * copying in vcpu load/put. We can simply call save_fpu_regs()
2486          * to save the current register state because we are in the
2487          * middle of a load/put cycle.
2488          *
2489          * Let's update our copies before we save it into the save area.
2490          */
2491         save_fpu_regs();
2492
2493         return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
2494 }
2495
2496 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2497 {
2498         kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2499         kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2500 }
2501
2502 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
2503 {
2504         unsigned int i;
2505         struct kvm_vcpu *vcpu;
2506
2507         kvm_for_each_vcpu(i, vcpu, kvm) {
2508                 __disable_ibs_on_vcpu(vcpu);
2509         }
2510 }
2511
2512 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2513 {
2514         kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2515         kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2516 }
2517
2518 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
2519 {
2520         int i, online_vcpus, started_vcpus = 0;
2521
2522         if (!is_vcpu_stopped(vcpu))
2523                 return;
2524
2525         trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2526         /* Only one cpu at a time may enter/leave the STOPPED state. */
2527         spin_lock(&vcpu->kvm->arch.start_stop_lock);
2528         online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2529
2530         for (i = 0; i < online_vcpus; i++) {
2531                 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
2532                         started_vcpus++;
2533         }
2534
2535         if (started_vcpus == 0) {
2536                 /* we're the only active VCPU -> speed it up */
2537                 __enable_ibs_on_vcpu(vcpu);
2538         } else if (started_vcpus == 1) {
2539                 /*
2540                  * As we are starting a second VCPU, we have to disable
2541                  * the IBS facility on all VCPUs to remove potentially
2542                  * oustanding ENABLE requests.
2543                  */
2544                 __disable_ibs_on_all_vcpus(vcpu->kvm);
2545         }
2546
2547         atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2548         /*
2549          * Another VCPU might have used IBS while we were offline.
2550          * Let's play safe and flush the VCPU at startup.
2551          */
2552         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2553         spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2554         return;
2555 }
2556
2557 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
2558 {
2559         int i, online_vcpus, started_vcpus = 0;
2560         struct kvm_vcpu *started_vcpu = NULL;
2561
2562         if (is_vcpu_stopped(vcpu))
2563                 return;
2564
2565         trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2566         /* Only one cpu at a time may enter/leave the STOPPED state. */
2567         spin_lock(&vcpu->kvm->arch.start_stop_lock);
2568         online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2569
2570         /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2571         kvm_s390_clear_stop_irq(vcpu);
2572
2573         atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2574         __disable_ibs_on_vcpu(vcpu);
2575
2576         for (i = 0; i < online_vcpus; i++) {
2577                 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
2578                         started_vcpus++;
2579                         started_vcpu = vcpu->kvm->vcpus[i];
2580                 }
2581         }
2582
2583         if (started_vcpus == 1) {
2584                 /*
2585                  * As we only have one VCPU left, we want to enable the
2586                  * IBS facility for that VCPU to speed it up.
2587                  */
2588                 __enable_ibs_on_vcpu(started_vcpu);
2589         }
2590
2591         spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2592         return;
2593 }
2594
2595 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
2596                                      struct kvm_enable_cap *cap)
2597 {
2598         int r;
2599
2600         if (cap->flags)
2601                 return -EINVAL;
2602
2603         switch (cap->cap) {
2604         case KVM_CAP_S390_CSS_SUPPORT:
2605                 if (!vcpu->kvm->arch.css_support) {
2606                         vcpu->kvm->arch.css_support = 1;
2607                         VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2608                         trace_kvm_s390_enable_css(vcpu->kvm);
2609                 }
2610                 r = 0;
2611                 break;
2612         default:
2613                 r = -EINVAL;
2614                 break;
2615         }
2616         return r;
2617 }
2618
2619 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
2620                                   struct kvm_s390_mem_op *mop)
2621 {
2622         void __user *uaddr = (void __user *)mop->buf;
2623         void *tmpbuf = NULL;
2624         int r, srcu_idx;
2625         const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
2626                                     | KVM_S390_MEMOP_F_CHECK_ONLY;
2627
2628         if (mop->flags & ~supported_flags)
2629                 return -EINVAL;
2630
2631         if (mop->size > MEM_OP_MAX_SIZE)
2632                 return -E2BIG;
2633
2634         if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2635                 tmpbuf = vmalloc(mop->size);
2636                 if (!tmpbuf)
2637                         return -ENOMEM;
2638         }
2639
2640         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2641
2642         switch (mop->op) {
2643         case KVM_S390_MEMOP_LOGICAL_READ:
2644                 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2645                         r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
2646                         break;
2647                 }
2648                 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
2649                 if (r == 0) {
2650                         if (copy_to_user(uaddr, tmpbuf, mop->size))
2651                                 r = -EFAULT;
2652                 }
2653                 break;
2654         case KVM_S390_MEMOP_LOGICAL_WRITE:
2655                 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2656                         r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
2657                         break;
2658                 }
2659                 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2660                         r = -EFAULT;
2661                         break;
2662                 }
2663                 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
2664                 break;
2665         default:
2666                 r = -EINVAL;
2667         }
2668
2669         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2670
2671         if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
2672                 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
2673
2674         vfree(tmpbuf);
2675         return r;
2676 }
2677
2678 long kvm_arch_vcpu_ioctl(struct file *filp,
2679                          unsigned int ioctl, unsigned long arg)
2680 {
2681         struct kvm_vcpu *vcpu = filp->private_data;
2682         void __user *argp = (void __user *)arg;
2683         int idx;
2684         long r;
2685
2686         switch (ioctl) {
2687         case KVM_S390_IRQ: {
2688                 struct kvm_s390_irq s390irq;
2689
2690                 r = -EFAULT;
2691                 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
2692                         break;
2693                 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2694                 break;
2695         }
2696         case KVM_S390_INTERRUPT: {
2697                 struct kvm_s390_interrupt s390int;
2698                 struct kvm_s390_irq s390irq;
2699
2700                 r = -EFAULT;
2701                 if (copy_from_user(&s390int, argp, sizeof(s390int)))
2702                         break;
2703                 if (s390int_to_s390irq(&s390int, &s390irq))
2704                         return -EINVAL;
2705                 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2706                 break;
2707         }
2708         case KVM_S390_STORE_STATUS:
2709                 idx = srcu_read_lock(&vcpu->kvm->srcu);
2710                 r = kvm_s390_vcpu_store_status(vcpu, arg);
2711                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2712                 break;
2713         case KVM_S390_SET_INITIAL_PSW: {
2714                 psw_t psw;
2715
2716                 r = -EFAULT;
2717                 if (copy_from_user(&psw, argp, sizeof(psw)))
2718                         break;
2719                 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
2720                 break;
2721         }
2722         case KVM_S390_INITIAL_RESET:
2723                 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
2724                 break;
2725         case KVM_SET_ONE_REG:
2726         case KVM_GET_ONE_REG: {
2727                 struct kvm_one_reg reg;
2728                 r = -EFAULT;
2729                 if (copy_from_user(&reg, argp, sizeof(reg)))
2730                         break;
2731                 if (ioctl == KVM_SET_ONE_REG)
2732                         r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
2733                 else
2734                         r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
2735                 break;
2736         }
2737 #ifdef CONFIG_KVM_S390_UCONTROL
2738         case KVM_S390_UCAS_MAP: {
2739                 struct kvm_s390_ucas_mapping ucasmap;
2740
2741                 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
2742                         r = -EFAULT;
2743                         break;
2744                 }
2745
2746                 if (!kvm_is_ucontrol(vcpu->kvm)) {
2747                         r = -EINVAL;
2748                         break;
2749                 }
2750
2751                 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
2752                                      ucasmap.vcpu_addr, ucasmap.length);
2753                 break;
2754         }
2755         case KVM_S390_UCAS_UNMAP: {
2756                 struct kvm_s390_ucas_mapping ucasmap;
2757
2758                 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
2759                         r = -EFAULT;
2760                         break;
2761                 }
2762
2763                 if (!kvm_is_ucontrol(vcpu->kvm)) {
2764                         r = -EINVAL;
2765                         break;
2766                 }
2767
2768                 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
2769                         ucasmap.length);
2770                 break;
2771         }
2772 #endif
2773         case KVM_S390_VCPU_FAULT: {
2774                 r = gmap_fault(vcpu->arch.gmap, arg, 0);
2775                 break;
2776         }
2777         case KVM_ENABLE_CAP:
2778         {
2779                 struct kvm_enable_cap cap;
2780                 r = -EFAULT;
2781                 if (copy_from_user(&cap, argp, sizeof(cap)))
2782                         break;
2783                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2784                 break;
2785         }
2786         case KVM_S390_MEM_OP: {
2787                 struct kvm_s390_mem_op mem_op;
2788
2789                 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
2790                         r = kvm_s390_guest_mem_op(vcpu, &mem_op);
2791                 else
2792                         r = -EFAULT;
2793                 break;
2794         }
2795         case KVM_S390_SET_IRQ_STATE: {
2796                 struct kvm_s390_irq_state irq_state;
2797
2798                 r = -EFAULT;
2799                 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
2800                         break;
2801                 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
2802                     irq_state.len == 0 ||
2803                     irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
2804                         r = -EINVAL;
2805                         break;
2806                 }
2807                 r = kvm_s390_set_irq_state(vcpu,
2808                                            (void __user *) irq_state.buf,
2809                                            irq_state.len);
2810                 break;
2811         }
2812         case KVM_S390_GET_IRQ_STATE: {
2813                 struct kvm_s390_irq_state irq_state;
2814
2815                 r = -EFAULT;
2816                 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
2817                         break;
2818                 if (irq_state.len == 0) {
2819                         r = -EINVAL;
2820                         break;
2821                 }
2822                 r = kvm_s390_get_irq_state(vcpu,
2823                                            (__u8 __user *)  irq_state.buf,
2824                                            irq_state.len);
2825                 break;
2826         }
2827         default:
2828                 r = -ENOTTY;
2829         }
2830         return r;
2831 }
2832
2833 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2834 {
2835 #ifdef CONFIG_KVM_S390_UCONTROL
2836         if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
2837                  && (kvm_is_ucontrol(vcpu->kvm))) {
2838                 vmf->page = virt_to_page(vcpu->arch.sie_block);
2839                 get_page(vmf->page);
2840                 return 0;
2841         }
2842 #endif
2843         return VM_FAULT_SIGBUS;
2844 }
2845
2846 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2847                             unsigned long npages)
2848 {
2849         return 0;
2850 }
2851
2852 /* Section: memory related */
2853 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2854                                    struct kvm_memory_slot *memslot,
2855                                    const struct kvm_userspace_memory_region *mem,
2856                                    enum kvm_mr_change change)
2857 {
2858         /* A few sanity checks. We can have memory slots which have to be
2859            located/ended at a segment boundary (1MB). The memory in userland is
2860            ok to be fragmented into various different vmas. It is okay to mmap()
2861            and munmap() stuff in this slot after doing this call at any time */
2862
2863         if (mem->userspace_addr & 0xffffful)
2864                 return -EINVAL;
2865
2866         if (mem->memory_size & 0xffffful)
2867                 return -EINVAL;
2868
2869         if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
2870                 return -EINVAL;
2871
2872         return 0;
2873 }
2874
2875 void kvm_arch_commit_memory_region(struct kvm *kvm,
2876                                 const struct kvm_userspace_memory_region *mem,
2877                                 const struct kvm_memory_slot *old,
2878                                 const struct kvm_memory_slot *new,
2879                                 enum kvm_mr_change change)
2880 {
2881         int rc;
2882
2883         /* If the basics of the memslot do not change, we do not want
2884          * to update the gmap. Every update causes several unnecessary
2885          * segment translation exceptions. This is usually handled just
2886          * fine by the normal fault handler + gmap, but it will also
2887          * cause faults on the prefix page of running guest CPUs.
2888          */
2889         if (old->userspace_addr == mem->userspace_addr &&
2890             old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
2891             old->npages * PAGE_SIZE == mem->memory_size)
2892                 return;
2893
2894         rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
2895                 mem->guest_phys_addr, mem->memory_size);
2896         if (rc)
2897                 pr_warn("failed to commit memory region\n");
2898         return;
2899 }
2900
2901 static int __init kvm_s390_init(void)
2902 {
2903         if (!sclp.has_sief2) {
2904                 pr_info("SIE not available\n");
2905                 return -ENODEV;
2906         }
2907
2908         return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2909 }
2910
2911 static void __exit kvm_s390_exit(void)
2912 {
2913         kvm_exit();
2914 }
2915
2916 module_init(kvm_s390_init);
2917 module_exit(kvm_s390_exit);
2918
2919 /*
2920  * Enable autoloading of the kvm module.
2921  * Note that we add the module alias here instead of virt/kvm/kvm_main.c
2922  * since x86 takes a different approach.
2923  */
2924 #include <linux/miscdevice.h>
2925 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2926 MODULE_ALIAS("devname:kvm");