Merge tag 'renesas-dt-cleanups-for-v3.19' of git://git.kernel.org/pub/scm/linux/kerne...
[cascardo/linux.git] / arch / s390 / mm / pgtable.c
1 /*
2  *    Copyright IBM Corp. 2007, 2011
3  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4  */
5
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 #include <linux/swapops.h>
21
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include <asm/mmu_context.h>
27
28 #ifndef CONFIG_64BIT
29 #define ALLOC_ORDER     1
30 #define FRAG_MASK       0x0f
31 #else
32 #define ALLOC_ORDER     2
33 #define FRAG_MASK       0x03
34 #endif
35
36
37 unsigned long *crst_table_alloc(struct mm_struct *mm)
38 {
39         struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
40
41         if (!page)
42                 return NULL;
43         return (unsigned long *) page_to_phys(page);
44 }
45
46 void crst_table_free(struct mm_struct *mm, unsigned long *table)
47 {
48         free_pages((unsigned long) table, ALLOC_ORDER);
49 }
50
51 #ifdef CONFIG_64BIT
52 static void __crst_table_upgrade(void *arg)
53 {
54         struct mm_struct *mm = arg;
55
56         if (current->active_mm == mm) {
57                 clear_user_asce();
58                 set_user_asce(mm);
59         }
60         __tlb_flush_local();
61 }
62
63 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
64 {
65         unsigned long *table, *pgd;
66         unsigned long entry;
67         int flush;
68
69         BUG_ON(limit > (1UL << 53));
70         flush = 0;
71 repeat:
72         table = crst_table_alloc(mm);
73         if (!table)
74                 return -ENOMEM;
75         spin_lock_bh(&mm->page_table_lock);
76         if (mm->context.asce_limit < limit) {
77                 pgd = (unsigned long *) mm->pgd;
78                 if (mm->context.asce_limit <= (1UL << 31)) {
79                         entry = _REGION3_ENTRY_EMPTY;
80                         mm->context.asce_limit = 1UL << 42;
81                         mm->context.asce_bits = _ASCE_TABLE_LENGTH |
82                                                 _ASCE_USER_BITS |
83                                                 _ASCE_TYPE_REGION3;
84                 } else {
85                         entry = _REGION2_ENTRY_EMPTY;
86                         mm->context.asce_limit = 1UL << 53;
87                         mm->context.asce_bits = _ASCE_TABLE_LENGTH |
88                                                 _ASCE_USER_BITS |
89                                                 _ASCE_TYPE_REGION2;
90                 }
91                 crst_table_init(table, entry);
92                 pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
93                 mm->pgd = (pgd_t *) table;
94                 mm->task_size = mm->context.asce_limit;
95                 table = NULL;
96                 flush = 1;
97         }
98         spin_unlock_bh(&mm->page_table_lock);
99         if (table)
100                 crst_table_free(mm, table);
101         if (mm->context.asce_limit < limit)
102                 goto repeat;
103         if (flush)
104                 on_each_cpu(__crst_table_upgrade, mm, 0);
105         return 0;
106 }
107
108 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
109 {
110         pgd_t *pgd;
111
112         if (current->active_mm == mm) {
113                 clear_user_asce();
114                 __tlb_flush_mm(mm);
115         }
116         while (mm->context.asce_limit > limit) {
117                 pgd = mm->pgd;
118                 switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
119                 case _REGION_ENTRY_TYPE_R2:
120                         mm->context.asce_limit = 1UL << 42;
121                         mm->context.asce_bits = _ASCE_TABLE_LENGTH |
122                                                 _ASCE_USER_BITS |
123                                                 _ASCE_TYPE_REGION3;
124                         break;
125                 case _REGION_ENTRY_TYPE_R3:
126                         mm->context.asce_limit = 1UL << 31;
127                         mm->context.asce_bits = _ASCE_TABLE_LENGTH |
128                                                 _ASCE_USER_BITS |
129                                                 _ASCE_TYPE_SEGMENT;
130                         break;
131                 default:
132                         BUG();
133                 }
134                 mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
135                 mm->task_size = mm->context.asce_limit;
136                 crst_table_free(mm, (unsigned long *) pgd);
137         }
138         if (current->active_mm == mm)
139                 set_user_asce(mm);
140 }
141 #endif
142
143 #ifdef CONFIG_PGSTE
144
145 /**
146  * gmap_alloc - allocate a guest address space
147  * @mm: pointer to the parent mm_struct
148  * @limit: maximum size of the gmap address space
149  *
150  * Returns a guest address space structure.
151  */
152 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
153 {
154         struct gmap *gmap;
155         struct page *page;
156         unsigned long *table;
157         unsigned long etype, atype;
158
159         if (limit < (1UL << 31)) {
160                 limit = (1UL << 31) - 1;
161                 atype = _ASCE_TYPE_SEGMENT;
162                 etype = _SEGMENT_ENTRY_EMPTY;
163         } else if (limit < (1UL << 42)) {
164                 limit = (1UL << 42) - 1;
165                 atype = _ASCE_TYPE_REGION3;
166                 etype = _REGION3_ENTRY_EMPTY;
167         } else if (limit < (1UL << 53)) {
168                 limit = (1UL << 53) - 1;
169                 atype = _ASCE_TYPE_REGION2;
170                 etype = _REGION2_ENTRY_EMPTY;
171         } else {
172                 limit = -1UL;
173                 atype = _ASCE_TYPE_REGION1;
174                 etype = _REGION1_ENTRY_EMPTY;
175         }
176         gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
177         if (!gmap)
178                 goto out;
179         INIT_LIST_HEAD(&gmap->crst_list);
180         INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
181         INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
182         spin_lock_init(&gmap->guest_table_lock);
183         gmap->mm = mm;
184         page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
185         if (!page)
186                 goto out_free;
187         page->index = 0;
188         list_add(&page->lru, &gmap->crst_list);
189         table = (unsigned long *) page_to_phys(page);
190         crst_table_init(table, etype);
191         gmap->table = table;
192         gmap->asce = atype | _ASCE_TABLE_LENGTH |
193                 _ASCE_USER_BITS | __pa(table);
194         gmap->asce_end = limit;
195         down_write(&mm->mmap_sem);
196         list_add(&gmap->list, &mm->context.gmap_list);
197         up_write(&mm->mmap_sem);
198         return gmap;
199
200 out_free:
201         kfree(gmap);
202 out:
203         return NULL;
204 }
205 EXPORT_SYMBOL_GPL(gmap_alloc);
206
207 static void gmap_flush_tlb(struct gmap *gmap)
208 {
209         if (MACHINE_HAS_IDTE)
210                 __tlb_flush_asce(gmap->mm, gmap->asce);
211         else
212                 __tlb_flush_global();
213 }
214
215 static void gmap_radix_tree_free(struct radix_tree_root *root)
216 {
217         struct radix_tree_iter iter;
218         unsigned long indices[16];
219         unsigned long index;
220         void **slot;
221         int i, nr;
222
223         /* A radix tree is freed by deleting all of its entries */
224         index = 0;
225         do {
226                 nr = 0;
227                 radix_tree_for_each_slot(slot, root, &iter, index) {
228                         indices[nr] = iter.index;
229                         if (++nr == 16)
230                                 break;
231                 }
232                 for (i = 0; i < nr; i++) {
233                         index = indices[i];
234                         radix_tree_delete(root, index);
235                 }
236         } while (nr > 0);
237 }
238
239 /**
240  * gmap_free - free a guest address space
241  * @gmap: pointer to the guest address space structure
242  */
243 void gmap_free(struct gmap *gmap)
244 {
245         struct page *page, *next;
246
247         /* Flush tlb. */
248         if (MACHINE_HAS_IDTE)
249                 __tlb_flush_asce(gmap->mm, gmap->asce);
250         else
251                 __tlb_flush_global();
252
253         /* Free all segment & region tables. */
254         list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
255                 __free_pages(page, ALLOC_ORDER);
256         gmap_radix_tree_free(&gmap->guest_to_host);
257         gmap_radix_tree_free(&gmap->host_to_guest);
258         down_write(&gmap->mm->mmap_sem);
259         list_del(&gmap->list);
260         up_write(&gmap->mm->mmap_sem);
261         kfree(gmap);
262 }
263 EXPORT_SYMBOL_GPL(gmap_free);
264
265 /**
266  * gmap_enable - switch primary space to the guest address space
267  * @gmap: pointer to the guest address space structure
268  */
269 void gmap_enable(struct gmap *gmap)
270 {
271         S390_lowcore.gmap = (unsigned long) gmap;
272 }
273 EXPORT_SYMBOL_GPL(gmap_enable);
274
275 /**
276  * gmap_disable - switch back to the standard primary address space
277  * @gmap: pointer to the guest address space structure
278  */
279 void gmap_disable(struct gmap *gmap)
280 {
281         S390_lowcore.gmap = 0UL;
282 }
283 EXPORT_SYMBOL_GPL(gmap_disable);
284
285 /*
286  * gmap_alloc_table is assumed to be called with mmap_sem held
287  */
288 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
289                             unsigned long init, unsigned long gaddr)
290 {
291         struct page *page;
292         unsigned long *new;
293
294         /* since we dont free the gmap table until gmap_free we can unlock */
295         page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
296         if (!page)
297                 return -ENOMEM;
298         new = (unsigned long *) page_to_phys(page);
299         crst_table_init(new, init);
300         spin_lock(&gmap->mm->page_table_lock);
301         if (*table & _REGION_ENTRY_INVALID) {
302                 list_add(&page->lru, &gmap->crst_list);
303                 *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
304                         (*table & _REGION_ENTRY_TYPE_MASK);
305                 page->index = gaddr;
306                 page = NULL;
307         }
308         spin_unlock(&gmap->mm->page_table_lock);
309         if (page)
310                 __free_pages(page, ALLOC_ORDER);
311         return 0;
312 }
313
314 /**
315  * __gmap_segment_gaddr - find virtual address from segment pointer
316  * @entry: pointer to a segment table entry in the guest address space
317  *
318  * Returns the virtual address in the guest address space for the segment
319  */
320 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
321 {
322         struct page *page;
323         unsigned long offset;
324
325         offset = (unsigned long) entry / sizeof(unsigned long);
326         offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
327         page = pmd_to_page((pmd_t *) entry);
328         return page->index + offset;
329 }
330
331 /**
332  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
333  * @gmap: pointer to the guest address space structure
334  * @vmaddr: address in the host process address space
335  *
336  * Returns 1 if a TLB flush is required
337  */
338 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
339 {
340         unsigned long *entry;
341         int flush = 0;
342
343         spin_lock(&gmap->guest_table_lock);
344         entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
345         if (entry) {
346                 flush = (*entry != _SEGMENT_ENTRY_INVALID);
347                 *entry = _SEGMENT_ENTRY_INVALID;
348         }
349         spin_unlock(&gmap->guest_table_lock);
350         return flush;
351 }
352
353 /**
354  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
355  * @gmap: pointer to the guest address space structure
356  * @gaddr: address in the guest address space
357  *
358  * Returns 1 if a TLB flush is required
359  */
360 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
361 {
362         unsigned long vmaddr;
363
364         vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
365                                                    gaddr >> PMD_SHIFT);
366         return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
367 }
368
369 /**
370  * gmap_unmap_segment - unmap segment from the guest address space
371  * @gmap: pointer to the guest address space structure
372  * @to: address in the guest address space
373  * @len: length of the memory area to unmap
374  *
375  * Returns 0 if the unmap succeeded, -EINVAL if not.
376  */
377 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
378 {
379         unsigned long off;
380         int flush;
381
382         if ((to | len) & (PMD_SIZE - 1))
383                 return -EINVAL;
384         if (len == 0 || to + len < to)
385                 return -EINVAL;
386
387         flush = 0;
388         down_write(&gmap->mm->mmap_sem);
389         for (off = 0; off < len; off += PMD_SIZE)
390                 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
391         up_write(&gmap->mm->mmap_sem);
392         if (flush)
393                 gmap_flush_tlb(gmap);
394         return 0;
395 }
396 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
397
398 /**
399  * gmap_mmap_segment - map a segment to the guest address space
400  * @gmap: pointer to the guest address space structure
401  * @from: source address in the parent address space
402  * @to: target address in the guest address space
403  * @len: length of the memory area to map
404  *
405  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
406  */
407 int gmap_map_segment(struct gmap *gmap, unsigned long from,
408                      unsigned long to, unsigned long len)
409 {
410         unsigned long off;
411         int flush;
412
413         if ((from | to | len) & (PMD_SIZE - 1))
414                 return -EINVAL;
415         if (len == 0 || from + len < from || to + len < to ||
416             from + len > TASK_MAX_SIZE || to + len > gmap->asce_end)
417                 return -EINVAL;
418
419         flush = 0;
420         down_write(&gmap->mm->mmap_sem);
421         for (off = 0; off < len; off += PMD_SIZE) {
422                 /* Remove old translation */
423                 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
424                 /* Store new translation */
425                 if (radix_tree_insert(&gmap->guest_to_host,
426                                       (to + off) >> PMD_SHIFT,
427                                       (void *) from + off))
428                         break;
429         }
430         up_write(&gmap->mm->mmap_sem);
431         if (flush)
432                 gmap_flush_tlb(gmap);
433         if (off >= len)
434                 return 0;
435         gmap_unmap_segment(gmap, to, len);
436         return -ENOMEM;
437 }
438 EXPORT_SYMBOL_GPL(gmap_map_segment);
439
440 /**
441  * __gmap_translate - translate a guest address to a user space address
442  * @gmap: pointer to guest mapping meta data structure
443  * @gaddr: guest address
444  *
445  * Returns user space address which corresponds to the guest address or
446  * -EFAULT if no such mapping exists.
447  * This function does not establish potentially missing page table entries.
448  * The mmap_sem of the mm that belongs to the address space must be held
449  * when this function gets called.
450  */
451 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
452 {
453         unsigned long vmaddr;
454
455         vmaddr = (unsigned long)
456                 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
457         return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
458 }
459 EXPORT_SYMBOL_GPL(__gmap_translate);
460
461 /**
462  * gmap_translate - translate a guest address to a user space address
463  * @gmap: pointer to guest mapping meta data structure
464  * @gaddr: guest address
465  *
466  * Returns user space address which corresponds to the guest address or
467  * -EFAULT if no such mapping exists.
468  * This function does not establish potentially missing page table entries.
469  */
470 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
471 {
472         unsigned long rc;
473
474         down_read(&gmap->mm->mmap_sem);
475         rc = __gmap_translate(gmap, gaddr);
476         up_read(&gmap->mm->mmap_sem);
477         return rc;
478 }
479 EXPORT_SYMBOL_GPL(gmap_translate);
480
481 /**
482  * gmap_unlink - disconnect a page table from the gmap shadow tables
483  * @gmap: pointer to guest mapping meta data structure
484  * @table: pointer to the host page table
485  * @vmaddr: vm address associated with the host page table
486  */
487 static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
488                         unsigned long vmaddr)
489 {
490         struct gmap *gmap;
491         int flush;
492
493         list_for_each_entry(gmap, &mm->context.gmap_list, list) {
494                 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
495                 if (flush)
496                         gmap_flush_tlb(gmap);
497         }
498 }
499
500 /**
501  * gmap_link - set up shadow page tables to connect a host to a guest address
502  * @gmap: pointer to guest mapping meta data structure
503  * @gaddr: guest address
504  * @vmaddr: vm address
505  *
506  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
507  * if the vm address is already mapped to a different guest segment.
508  * The mmap_sem of the mm that belongs to the address space must be held
509  * when this function gets called.
510  */
511 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
512 {
513         struct mm_struct *mm;
514         unsigned long *table;
515         spinlock_t *ptl;
516         pgd_t *pgd;
517         pud_t *pud;
518         pmd_t *pmd;
519         int rc;
520
521         /* Create higher level tables in the gmap page table */
522         table = gmap->table;
523         if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
524                 table += (gaddr >> 53) & 0x7ff;
525                 if ((*table & _REGION_ENTRY_INVALID) &&
526                     gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
527                                      gaddr & 0xffe0000000000000))
528                         return -ENOMEM;
529                 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
530         }
531         if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
532                 table += (gaddr >> 42) & 0x7ff;
533                 if ((*table & _REGION_ENTRY_INVALID) &&
534                     gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
535                                      gaddr & 0xfffffc0000000000))
536                         return -ENOMEM;
537                 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
538         }
539         if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
540                 table += (gaddr >> 31) & 0x7ff;
541                 if ((*table & _REGION_ENTRY_INVALID) &&
542                     gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
543                                      gaddr & 0xffffffff80000000))
544                         return -ENOMEM;
545                 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
546         }
547         table += (gaddr >> 20) & 0x7ff;
548         /* Walk the parent mm page table */
549         mm = gmap->mm;
550         pgd = pgd_offset(mm, vmaddr);
551         VM_BUG_ON(pgd_none(*pgd));
552         pud = pud_offset(pgd, vmaddr);
553         VM_BUG_ON(pud_none(*pud));
554         pmd = pmd_offset(pud, vmaddr);
555         VM_BUG_ON(pmd_none(*pmd));
556         /* large pmds cannot yet be handled */
557         if (pmd_large(*pmd))
558                 return -EFAULT;
559         /* Link gmap segment table entry location to page table. */
560         rc = radix_tree_preload(GFP_KERNEL);
561         if (rc)
562                 return rc;
563         ptl = pmd_lock(mm, pmd);
564         spin_lock(&gmap->guest_table_lock);
565         if (*table == _SEGMENT_ENTRY_INVALID) {
566                 rc = radix_tree_insert(&gmap->host_to_guest,
567                                        vmaddr >> PMD_SHIFT, table);
568                 if (!rc)
569                         *table = pmd_val(*pmd);
570         } else
571                 rc = 0;
572         spin_unlock(&gmap->guest_table_lock);
573         spin_unlock(ptl);
574         radix_tree_preload_end();
575         return rc;
576 }
577
578 /**
579  * gmap_fault - resolve a fault on a guest address
580  * @gmap: pointer to guest mapping meta data structure
581  * @gaddr: guest address
582  * @fault_flags: flags to pass down to handle_mm_fault()
583  *
584  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
585  * if the vm address is already mapped to a different guest segment.
586  */
587 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
588                unsigned int fault_flags)
589 {
590         unsigned long vmaddr;
591         int rc;
592
593         down_read(&gmap->mm->mmap_sem);
594         vmaddr = __gmap_translate(gmap, gaddr);
595         if (IS_ERR_VALUE(vmaddr)) {
596                 rc = vmaddr;
597                 goto out_up;
598         }
599         if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) {
600                 rc = -EFAULT;
601                 goto out_up;
602         }
603         rc = __gmap_link(gmap, gaddr, vmaddr);
604 out_up:
605         up_read(&gmap->mm->mmap_sem);
606         return rc;
607 }
608 EXPORT_SYMBOL_GPL(gmap_fault);
609
610 static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
611 {
612         if (!non_swap_entry(entry))
613                 dec_mm_counter(mm, MM_SWAPENTS);
614         else if (is_migration_entry(entry)) {
615                 struct page *page = migration_entry_to_page(entry);
616
617                 if (PageAnon(page))
618                         dec_mm_counter(mm, MM_ANONPAGES);
619                 else
620                         dec_mm_counter(mm, MM_FILEPAGES);
621         }
622         free_swap_and_cache(entry);
623 }
624
625 /*
626  * this function is assumed to be called with mmap_sem held
627  */
628 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
629 {
630         unsigned long vmaddr, ptev, pgstev;
631         pte_t *ptep, pte;
632         spinlock_t *ptl;
633         pgste_t pgste;
634
635         /* Find the vm address for the guest address */
636         vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
637                                                    gaddr >> PMD_SHIFT);
638         if (!vmaddr)
639                 return;
640         vmaddr |= gaddr & ~PMD_MASK;
641         /* Get pointer to the page table entry */
642         ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
643         if (unlikely(!ptep))
644                 return;
645         pte = *ptep;
646         if (!pte_swap(pte))
647                 goto out_pte;
648         /* Zap unused and logically-zero pages */
649         pgste = pgste_get_lock(ptep);
650         pgstev = pgste_val(pgste);
651         ptev = pte_val(pte);
652         if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
653             ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
654                 gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
655                 pte_clear(gmap->mm, vmaddr, ptep);
656         }
657         pgste_set_unlock(ptep, pgste);
658 out_pte:
659         pte_unmap_unlock(ptep, ptl);
660 }
661 EXPORT_SYMBOL_GPL(__gmap_zap);
662
663 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
664 {
665         unsigned long gaddr, vmaddr, size;
666         struct vm_area_struct *vma;
667
668         down_read(&gmap->mm->mmap_sem);
669         for (gaddr = from; gaddr < to;
670              gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
671                 /* Find the vm address for the guest address */
672                 vmaddr = (unsigned long)
673                         radix_tree_lookup(&gmap->guest_to_host,
674                                           gaddr >> PMD_SHIFT);
675                 if (!vmaddr)
676                         continue;
677                 vmaddr |= gaddr & ~PMD_MASK;
678                 /* Find vma in the parent mm */
679                 vma = find_vma(gmap->mm, vmaddr);
680                 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
681                 zap_page_range(vma, vmaddr, size, NULL);
682         }
683         up_read(&gmap->mm->mmap_sem);
684 }
685 EXPORT_SYMBOL_GPL(gmap_discard);
686
687 static LIST_HEAD(gmap_notifier_list);
688 static DEFINE_SPINLOCK(gmap_notifier_lock);
689
690 /**
691  * gmap_register_ipte_notifier - register a pte invalidation callback
692  * @nb: pointer to the gmap notifier block
693  */
694 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
695 {
696         spin_lock(&gmap_notifier_lock);
697         list_add(&nb->list, &gmap_notifier_list);
698         spin_unlock(&gmap_notifier_lock);
699 }
700 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
701
702 /**
703  * gmap_unregister_ipte_notifier - remove a pte invalidation callback
704  * @nb: pointer to the gmap notifier block
705  */
706 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
707 {
708         spin_lock(&gmap_notifier_lock);
709         list_del_init(&nb->list);
710         spin_unlock(&gmap_notifier_lock);
711 }
712 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
713
714 /**
715  * gmap_ipte_notify - mark a range of ptes for invalidation notification
716  * @gmap: pointer to guest mapping meta data structure
717  * @gaddr: virtual address in the guest address space
718  * @len: size of area
719  *
720  * Returns 0 if for each page in the given range a gmap mapping exists and
721  * the invalidation notification could be set. If the gmap mapping is missing
722  * for one or more pages -EFAULT is returned. If no memory could be allocated
723  * -ENOMEM is returned. This function establishes missing page table entries.
724  */
725 int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
726 {
727         unsigned long addr;
728         spinlock_t *ptl;
729         pte_t *ptep, entry;
730         pgste_t pgste;
731         int rc = 0;
732
733         if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
734                 return -EINVAL;
735         down_read(&gmap->mm->mmap_sem);
736         while (len) {
737                 /* Convert gmap address and connect the page tables */
738                 addr = __gmap_translate(gmap, gaddr);
739                 if (IS_ERR_VALUE(addr)) {
740                         rc = addr;
741                         break;
742                 }
743                 /* Get the page mapped */
744                 if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
745                         rc = -EFAULT;
746                         break;
747                 }
748                 rc = __gmap_link(gmap, gaddr, addr);
749                 if (rc)
750                         break;
751                 /* Walk the process page table, lock and get pte pointer */
752                 ptep = get_locked_pte(gmap->mm, addr, &ptl);
753                 if (unlikely(!ptep))
754                         continue;
755                 /* Set notification bit in the pgste of the pte */
756                 entry = *ptep;
757                 if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
758                         pgste = pgste_get_lock(ptep);
759                         pgste_val(pgste) |= PGSTE_IN_BIT;
760                         pgste_set_unlock(ptep, pgste);
761                         gaddr += PAGE_SIZE;
762                         len -= PAGE_SIZE;
763                 }
764                 spin_unlock(ptl);
765         }
766         up_read(&gmap->mm->mmap_sem);
767         return rc;
768 }
769 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
770
771 /**
772  * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
773  * @mm: pointer to the process mm_struct
774  * @addr: virtual address in the process address space
775  * @pte: pointer to the page table entry
776  *
777  * This function is assumed to be called with the page table lock held
778  * for the pte to notify.
779  */
780 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
781 {
782         unsigned long offset, gaddr;
783         unsigned long *table;
784         struct gmap_notifier *nb;
785         struct gmap *gmap;
786
787         offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
788         offset = offset * (4096 / sizeof(pte_t));
789         spin_lock(&gmap_notifier_lock);
790         list_for_each_entry(gmap, &mm->context.gmap_list, list) {
791                 table = radix_tree_lookup(&gmap->host_to_guest,
792                                           vmaddr >> PMD_SHIFT);
793                 if (!table)
794                         continue;
795                 gaddr = __gmap_segment_gaddr(table) + offset;
796                 list_for_each_entry(nb, &gmap_notifier_list, list)
797                         nb->notifier_call(gmap, gaddr);
798         }
799         spin_unlock(&gmap_notifier_lock);
800 }
801 EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
802
803 static inline int page_table_with_pgste(struct page *page)
804 {
805         return atomic_read(&page->_mapcount) == 0;
806 }
807
808 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
809 {
810         struct page *page;
811         unsigned long *table;
812
813         page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
814         if (!page)
815                 return NULL;
816         if (!pgtable_page_ctor(page)) {
817                 __free_page(page);
818                 return NULL;
819         }
820         atomic_set(&page->_mapcount, 0);
821         table = (unsigned long *) page_to_phys(page);
822         clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
823         clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
824         return table;
825 }
826
827 static inline void page_table_free_pgste(unsigned long *table)
828 {
829         struct page *page;
830
831         page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
832         pgtable_page_dtor(page);
833         atomic_set(&page->_mapcount, -1);
834         __free_page(page);
835 }
836
837 static inline unsigned long page_table_reset_pte(struct mm_struct *mm, pmd_t *pmd,
838                         unsigned long addr, unsigned long end, bool init_skey)
839 {
840         pte_t *start_pte, *pte;
841         spinlock_t *ptl;
842         pgste_t pgste;
843
844         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
845         pte = start_pte;
846         do {
847                 pgste = pgste_get_lock(pte);
848                 pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
849                 if (init_skey) {
850                         unsigned long address;
851
852                         pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
853                                               PGSTE_GR_BIT | PGSTE_GC_BIT);
854
855                         /* skip invalid and not writable pages */
856                         if (pte_val(*pte) & _PAGE_INVALID ||
857                             !(pte_val(*pte) & _PAGE_WRITE)) {
858                                 pgste_set_unlock(pte, pgste);
859                                 continue;
860                         }
861
862                         address = pte_val(*pte) & PAGE_MASK;
863                         page_set_storage_key(address, PAGE_DEFAULT_KEY, 1);
864                 }
865                 pgste_set_unlock(pte, pgste);
866         } while (pte++, addr += PAGE_SIZE, addr != end);
867         pte_unmap_unlock(start_pte, ptl);
868
869         return addr;
870 }
871
872 static inline unsigned long page_table_reset_pmd(struct mm_struct *mm, pud_t *pud,
873                         unsigned long addr, unsigned long end, bool init_skey)
874 {
875         unsigned long next;
876         pmd_t *pmd;
877
878         pmd = pmd_offset(pud, addr);
879         do {
880                 next = pmd_addr_end(addr, end);
881                 if (pmd_none_or_clear_bad(pmd))
882                         continue;
883                 next = page_table_reset_pte(mm, pmd, addr, next, init_skey);
884         } while (pmd++, addr = next, addr != end);
885
886         return addr;
887 }
888
889 static inline unsigned long page_table_reset_pud(struct mm_struct *mm, pgd_t *pgd,
890                         unsigned long addr, unsigned long end, bool init_skey)
891 {
892         unsigned long next;
893         pud_t *pud;
894
895         pud = pud_offset(pgd, addr);
896         do {
897                 next = pud_addr_end(addr, end);
898                 if (pud_none_or_clear_bad(pud))
899                         continue;
900                 next = page_table_reset_pmd(mm, pud, addr, next, init_skey);
901         } while (pud++, addr = next, addr != end);
902
903         return addr;
904 }
905
906 void page_table_reset_pgste(struct mm_struct *mm, unsigned long start,
907                             unsigned long end, bool init_skey)
908 {
909         unsigned long addr, next;
910         pgd_t *pgd;
911
912         down_write(&mm->mmap_sem);
913         if (init_skey && mm_use_skey(mm))
914                 goto out_up;
915         addr = start;
916         pgd = pgd_offset(mm, addr);
917         do {
918                 next = pgd_addr_end(addr, end);
919                 if (pgd_none_or_clear_bad(pgd))
920                         continue;
921                 next = page_table_reset_pud(mm, pgd, addr, next, init_skey);
922         } while (pgd++, addr = next, addr != end);
923         if (init_skey)
924                 current->mm->context.use_skey = 1;
925 out_up:
926         up_write(&mm->mmap_sem);
927 }
928 EXPORT_SYMBOL(page_table_reset_pgste);
929
930 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
931                           unsigned long key, bool nq)
932 {
933         spinlock_t *ptl;
934         pgste_t old, new;
935         pte_t *ptep;
936
937         down_read(&mm->mmap_sem);
938 retry:
939         ptep = get_locked_pte(current->mm, addr, &ptl);
940         if (unlikely(!ptep)) {
941                 up_read(&mm->mmap_sem);
942                 return -EFAULT;
943         }
944         if (!(pte_val(*ptep) & _PAGE_INVALID) &&
945              (pte_val(*ptep) & _PAGE_PROTECT)) {
946                 pte_unmap_unlock(ptep, ptl);
947                 if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) {
948                         up_read(&mm->mmap_sem);
949                         return -EFAULT;
950                 }
951                 goto retry;
952         }
953
954         new = old = pgste_get_lock(ptep);
955         pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
956                             PGSTE_ACC_BITS | PGSTE_FP_BIT);
957         pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
958         pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
959         if (!(pte_val(*ptep) & _PAGE_INVALID)) {
960                 unsigned long address, bits, skey;
961
962                 address = pte_val(*ptep) & PAGE_MASK;
963                 skey = (unsigned long) page_get_storage_key(address);
964                 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
965                 skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
966                 /* Set storage key ACC and FP */
967                 page_set_storage_key(address, skey, !nq);
968                 /* Merge host changed & referenced into pgste  */
969                 pgste_val(new) |= bits << 52;
970         }
971         /* changing the guest storage key is considered a change of the page */
972         if ((pgste_val(new) ^ pgste_val(old)) &
973             (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
974                 pgste_val(new) |= PGSTE_UC_BIT;
975
976         pgste_set_unlock(ptep, new);
977         pte_unmap_unlock(ptep, ptl);
978         up_read(&mm->mmap_sem);
979         return 0;
980 }
981 EXPORT_SYMBOL(set_guest_storage_key);
982
983 #else /* CONFIG_PGSTE */
984
985 static inline int page_table_with_pgste(struct page *page)
986 {
987         return 0;
988 }
989
990 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
991 {
992         return NULL;
993 }
994
995 void page_table_reset_pgste(struct mm_struct *mm, unsigned long start,
996                             unsigned long end, bool init_skey)
997 {
998 }
999
1000 static inline void page_table_free_pgste(unsigned long *table)
1001 {
1002 }
1003
1004 static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
1005                         unsigned long vmaddr)
1006 {
1007 }
1008
1009 #endif /* CONFIG_PGSTE */
1010
1011 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
1012 {
1013         unsigned int old, new;
1014
1015         do {
1016                 old = atomic_read(v);
1017                 new = old ^ bits;
1018         } while (atomic_cmpxchg(v, old, new) != old);
1019         return new;
1020 }
1021
1022 /*
1023  * page table entry allocation/free routines.
1024  */
1025 unsigned long *page_table_alloc(struct mm_struct *mm)
1026 {
1027         unsigned long *uninitialized_var(table);
1028         struct page *uninitialized_var(page);
1029         unsigned int mask, bit;
1030
1031         if (mm_has_pgste(mm))
1032                 return page_table_alloc_pgste(mm);
1033         /* Allocate fragments of a 4K page as 1K/2K page table */
1034         spin_lock_bh(&mm->context.list_lock);
1035         mask = FRAG_MASK;
1036         if (!list_empty(&mm->context.pgtable_list)) {
1037                 page = list_first_entry(&mm->context.pgtable_list,
1038                                         struct page, lru);
1039                 table = (unsigned long *) page_to_phys(page);
1040                 mask = atomic_read(&page->_mapcount);
1041                 mask = mask | (mask >> 4);
1042         }
1043         if ((mask & FRAG_MASK) == FRAG_MASK) {
1044                 spin_unlock_bh(&mm->context.list_lock);
1045                 page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
1046                 if (!page)
1047                         return NULL;
1048                 if (!pgtable_page_ctor(page)) {
1049                         __free_page(page);
1050                         return NULL;
1051                 }
1052                 atomic_set(&page->_mapcount, 1);
1053                 table = (unsigned long *) page_to_phys(page);
1054                 clear_table(table, _PAGE_INVALID, PAGE_SIZE);
1055                 spin_lock_bh(&mm->context.list_lock);
1056                 list_add(&page->lru, &mm->context.pgtable_list);
1057         } else {
1058                 for (bit = 1; mask & bit; bit <<= 1)
1059                         table += PTRS_PER_PTE;
1060                 mask = atomic_xor_bits(&page->_mapcount, bit);
1061                 if ((mask & FRAG_MASK) == FRAG_MASK)
1062                         list_del(&page->lru);
1063         }
1064         spin_unlock_bh(&mm->context.list_lock);
1065         return table;
1066 }
1067
1068 void page_table_free(struct mm_struct *mm, unsigned long *table)
1069 {
1070         struct page *page;
1071         unsigned int bit, mask;
1072
1073         page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1074         if (page_table_with_pgste(page))
1075                 return page_table_free_pgste(table);
1076         /* Free 1K/2K page table fragment of a 4K page */
1077         bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
1078         spin_lock_bh(&mm->context.list_lock);
1079         if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1080                 list_del(&page->lru);
1081         mask = atomic_xor_bits(&page->_mapcount, bit);
1082         if (mask & FRAG_MASK)
1083                 list_add(&page->lru, &mm->context.pgtable_list);
1084         spin_unlock_bh(&mm->context.list_lock);
1085         if (mask == 0) {
1086                 pgtable_page_dtor(page);
1087                 atomic_set(&page->_mapcount, -1);
1088                 __free_page(page);
1089         }
1090 }
1091
1092 static void __page_table_free_rcu(void *table, unsigned bit)
1093 {
1094         struct page *page;
1095
1096         if (bit == FRAG_MASK)
1097                 return page_table_free_pgste(table);
1098         /* Free 1K/2K page table fragment of a 4K page */
1099         page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1100         if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
1101                 pgtable_page_dtor(page);
1102                 atomic_set(&page->_mapcount, -1);
1103                 __free_page(page);
1104         }
1105 }
1106
1107 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1108                          unsigned long vmaddr)
1109 {
1110         struct mm_struct *mm;
1111         struct page *page;
1112         unsigned int bit, mask;
1113
1114         mm = tlb->mm;
1115         page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1116         if (page_table_with_pgste(page)) {
1117                 gmap_unlink(mm, table, vmaddr);
1118                 table = (unsigned long *) (__pa(table) | FRAG_MASK);
1119                 tlb_remove_table(tlb, table);
1120                 return;
1121         }
1122         bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
1123         spin_lock_bh(&mm->context.list_lock);
1124         if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1125                 list_del(&page->lru);
1126         mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
1127         if (mask & FRAG_MASK)
1128                 list_add_tail(&page->lru, &mm->context.pgtable_list);
1129         spin_unlock_bh(&mm->context.list_lock);
1130         table = (unsigned long *) (__pa(table) | (bit << 4));
1131         tlb_remove_table(tlb, table);
1132 }
1133
1134 static void __tlb_remove_table(void *_table)
1135 {
1136         const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
1137         void *table = (void *)((unsigned long) _table & ~mask);
1138         unsigned type = (unsigned long) _table & mask;
1139
1140         if (type)
1141                 __page_table_free_rcu(table, type);
1142         else
1143                 free_pages((unsigned long) table, ALLOC_ORDER);
1144 }
1145
1146 static void tlb_remove_table_smp_sync(void *arg)
1147 {
1148         /* Simply deliver the interrupt */
1149 }
1150
1151 static void tlb_remove_table_one(void *table)
1152 {
1153         /*
1154          * This isn't an RCU grace period and hence the page-tables cannot be
1155          * assumed to be actually RCU-freed.
1156          *
1157          * It is however sufficient for software page-table walkers that rely
1158          * on IRQ disabling. See the comment near struct mmu_table_batch.
1159          */
1160         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1161         __tlb_remove_table(table);
1162 }
1163
1164 static void tlb_remove_table_rcu(struct rcu_head *head)
1165 {
1166         struct mmu_table_batch *batch;
1167         int i;
1168
1169         batch = container_of(head, struct mmu_table_batch, rcu);
1170
1171         for (i = 0; i < batch->nr; i++)
1172                 __tlb_remove_table(batch->tables[i]);
1173
1174         free_page((unsigned long)batch);
1175 }
1176
1177 void tlb_table_flush(struct mmu_gather *tlb)
1178 {
1179         struct mmu_table_batch **batch = &tlb->batch;
1180
1181         if (*batch) {
1182                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1183                 *batch = NULL;
1184         }
1185 }
1186
1187 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1188 {
1189         struct mmu_table_batch **batch = &tlb->batch;
1190
1191         tlb->mm->context.flush_mm = 1;
1192         if (*batch == NULL) {
1193                 *batch = (struct mmu_table_batch *)
1194                         __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1195                 if (*batch == NULL) {
1196                         __tlb_flush_mm_lazy(tlb->mm);
1197                         tlb_remove_table_one(table);
1198                         return;
1199                 }
1200                 (*batch)->nr = 0;
1201         }
1202         (*batch)->tables[(*batch)->nr++] = table;
1203         if ((*batch)->nr == MAX_TABLE_BATCH)
1204                 tlb_flush_mmu(tlb);
1205 }
1206
1207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1208 static inline void thp_split_vma(struct vm_area_struct *vma)
1209 {
1210         unsigned long addr;
1211
1212         for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1213                 follow_page(vma, addr, FOLL_SPLIT);
1214 }
1215
1216 static inline void thp_split_mm(struct mm_struct *mm)
1217 {
1218         struct vm_area_struct *vma;
1219
1220         for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1221                 thp_split_vma(vma);
1222                 vma->vm_flags &= ~VM_HUGEPAGE;
1223                 vma->vm_flags |= VM_NOHUGEPAGE;
1224         }
1225         mm->def_flags |= VM_NOHUGEPAGE;
1226 }
1227 #else
1228 static inline void thp_split_mm(struct mm_struct *mm)
1229 {
1230 }
1231 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1232
1233 static unsigned long page_table_realloc_pmd(struct mmu_gather *tlb,
1234                                 struct mm_struct *mm, pud_t *pud,
1235                                 unsigned long addr, unsigned long end)
1236 {
1237         unsigned long next, *table, *new;
1238         struct page *page;
1239         spinlock_t *ptl;
1240         pmd_t *pmd;
1241
1242         pmd = pmd_offset(pud, addr);
1243         do {
1244                 next = pmd_addr_end(addr, end);
1245 again:
1246                 if (pmd_none_or_clear_bad(pmd))
1247                         continue;
1248                 table = (unsigned long *) pmd_deref(*pmd);
1249                 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1250                 if (page_table_with_pgste(page))
1251                         continue;
1252                 /* Allocate new page table with pgstes */
1253                 new = page_table_alloc_pgste(mm);
1254                 if (!new)
1255                         return -ENOMEM;
1256
1257                 ptl = pmd_lock(mm, pmd);
1258                 if (likely((unsigned long *) pmd_deref(*pmd) == table)) {
1259                         /* Nuke pmd entry pointing to the "short" page table */
1260                         pmdp_flush_lazy(mm, addr, pmd);
1261                         pmd_clear(pmd);
1262                         /* Copy ptes from old table to new table */
1263                         memcpy(new, table, PAGE_SIZE/2);
1264                         clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
1265                         /* Establish new table */
1266                         pmd_populate(mm, pmd, (pte_t *) new);
1267                         /* Free old table with rcu, there might be a walker! */
1268                         page_table_free_rcu(tlb, table, addr);
1269                         new = NULL;
1270                 }
1271                 spin_unlock(ptl);
1272                 if (new) {
1273                         page_table_free_pgste(new);
1274                         goto again;
1275                 }
1276         } while (pmd++, addr = next, addr != end);
1277
1278         return addr;
1279 }
1280
1281 static unsigned long page_table_realloc_pud(struct mmu_gather *tlb,
1282                                    struct mm_struct *mm, pgd_t *pgd,
1283                                    unsigned long addr, unsigned long end)
1284 {
1285         unsigned long next;
1286         pud_t *pud;
1287
1288         pud = pud_offset(pgd, addr);
1289         do {
1290                 next = pud_addr_end(addr, end);
1291                 if (pud_none_or_clear_bad(pud))
1292                         continue;
1293                 next = page_table_realloc_pmd(tlb, mm, pud, addr, next);
1294                 if (unlikely(IS_ERR_VALUE(next)))
1295                         return next;
1296         } while (pud++, addr = next, addr != end);
1297
1298         return addr;
1299 }
1300
1301 static unsigned long page_table_realloc(struct mmu_gather *tlb, struct mm_struct *mm,
1302                                         unsigned long addr, unsigned long end)
1303 {
1304         unsigned long next;
1305         pgd_t *pgd;
1306
1307         pgd = pgd_offset(mm, addr);
1308         do {
1309                 next = pgd_addr_end(addr, end);
1310                 if (pgd_none_or_clear_bad(pgd))
1311                         continue;
1312                 next = page_table_realloc_pud(tlb, mm, pgd, addr, next);
1313                 if (unlikely(IS_ERR_VALUE(next)))
1314                         return next;
1315         } while (pgd++, addr = next, addr != end);
1316
1317         return 0;
1318 }
1319
1320 /*
1321  * switch on pgstes for its userspace process (for kvm)
1322  */
1323 int s390_enable_sie(void)
1324 {
1325         struct task_struct *tsk = current;
1326         struct mm_struct *mm = tsk->mm;
1327         struct mmu_gather tlb;
1328
1329         /* Do we have pgstes? if yes, we are done */
1330         if (mm_has_pgste(tsk->mm))
1331                 return 0;
1332
1333         down_write(&mm->mmap_sem);
1334         /* split thp mappings and disable thp for future mappings */
1335         thp_split_mm(mm);
1336         /* Reallocate the page tables with pgstes */
1337         tlb_gather_mmu(&tlb, mm, 0, TASK_SIZE);
1338         if (!page_table_realloc(&tlb, mm, 0, TASK_SIZE))
1339                 mm->context.has_pgste = 1;
1340         tlb_finish_mmu(&tlb, 0, TASK_SIZE);
1341         up_write(&mm->mmap_sem);
1342         return mm->context.has_pgste ? 0 : -ENOMEM;
1343 }
1344 EXPORT_SYMBOL_GPL(s390_enable_sie);
1345
1346 /*
1347  * Enable storage key handling from now on and initialize the storage
1348  * keys with the default key.
1349  */
1350 void s390_enable_skey(void)
1351 {
1352         page_table_reset_pgste(current->mm, 0, TASK_SIZE, true);
1353 }
1354 EXPORT_SYMBOL_GPL(s390_enable_skey);
1355
1356 /*
1357  * Test and reset if a guest page is dirty
1358  */
1359 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1360 {
1361         pte_t *pte;
1362         spinlock_t *ptl;
1363         bool dirty = false;
1364
1365         pte = get_locked_pte(gmap->mm, address, &ptl);
1366         if (unlikely(!pte))
1367                 return false;
1368
1369         if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1370                 dirty = true;
1371
1372         spin_unlock(ptl);
1373         return dirty;
1374 }
1375 EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1376
1377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1378 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1379                            pmd_t *pmdp)
1380 {
1381         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1382         /* No need to flush TLB
1383          * On s390 reference bits are in storage key and never in TLB */
1384         return pmdp_test_and_clear_young(vma, address, pmdp);
1385 }
1386
1387 int pmdp_set_access_flags(struct vm_area_struct *vma,
1388                           unsigned long address, pmd_t *pmdp,
1389                           pmd_t entry, int dirty)
1390 {
1391         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1392
1393         entry = pmd_mkyoung(entry);
1394         if (dirty)
1395                 entry = pmd_mkdirty(entry);
1396         if (pmd_same(*pmdp, entry))
1397                 return 0;
1398         pmdp_invalidate(vma, address, pmdp);
1399         set_pmd_at(vma->vm_mm, address, pmdp, entry);
1400         return 1;
1401 }
1402
1403 static void pmdp_splitting_flush_sync(void *arg)
1404 {
1405         /* Simply deliver the interrupt */
1406 }
1407
1408 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1409                           pmd_t *pmdp)
1410 {
1411         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1412         if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1413                               (unsigned long *) pmdp)) {
1414                 /* need to serialize against gup-fast (IRQ disabled) */
1415                 smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1416         }
1417 }
1418
1419 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1420                                 pgtable_t pgtable)
1421 {
1422         struct list_head *lh = (struct list_head *) pgtable;
1423
1424         assert_spin_locked(pmd_lockptr(mm, pmdp));
1425
1426         /* FIFO */
1427         if (!pmd_huge_pte(mm, pmdp))
1428                 INIT_LIST_HEAD(lh);
1429         else
1430                 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1431         pmd_huge_pte(mm, pmdp) = pgtable;
1432 }
1433
1434 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1435 {
1436         struct list_head *lh;
1437         pgtable_t pgtable;
1438         pte_t *ptep;
1439
1440         assert_spin_locked(pmd_lockptr(mm, pmdp));
1441
1442         /* FIFO */
1443         pgtable = pmd_huge_pte(mm, pmdp);
1444         lh = (struct list_head *) pgtable;
1445         if (list_empty(lh))
1446                 pmd_huge_pte(mm, pmdp) = NULL;
1447         else {
1448                 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1449                 list_del(lh);
1450         }
1451         ptep = (pte_t *) pgtable;
1452         pte_val(*ptep) = _PAGE_INVALID;
1453         ptep++;
1454         pte_val(*ptep) = _PAGE_INVALID;
1455         return pgtable;
1456 }
1457 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */