mac80211: minstrel_ht: fix a crash in rate sorting
[cascardo/linux.git] / arch / s390 / mm / vmem.c
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19
20 static DEFINE_MUTEX(vmem_mutex);
21
22 struct memory_segment {
23         struct list_head list;
24         unsigned long start;
25         unsigned long size;
26 };
27
28 static LIST_HEAD(mem_segs);
29
30 static void __ref *vmem_alloc_pages(unsigned int order)
31 {
32         if (slab_is_available())
33                 return (void *)__get_free_pages(GFP_KERNEL, order);
34         return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
35 }
36
37 static inline pud_t *vmem_pud_alloc(void)
38 {
39         pud_t *pud = NULL;
40
41 #ifdef CONFIG_64BIT
42         pud = vmem_alloc_pages(2);
43         if (!pud)
44                 return NULL;
45         clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
46 #endif
47         return pud;
48 }
49
50 static inline pmd_t *vmem_pmd_alloc(void)
51 {
52         pmd_t *pmd = NULL;
53
54 #ifdef CONFIG_64BIT
55         pmd = vmem_alloc_pages(2);
56         if (!pmd)
57                 return NULL;
58         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
59 #endif
60         return pmd;
61 }
62
63 static pte_t __ref *vmem_pte_alloc(unsigned long address)
64 {
65         pte_t *pte;
66
67         if (slab_is_available())
68                 pte = (pte_t *) page_table_alloc(&init_mm);
69         else
70                 pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
71                                           PTRS_PER_PTE * sizeof(pte_t));
72         if (!pte)
73                 return NULL;
74         clear_table((unsigned long *) pte, _PAGE_INVALID,
75                     PTRS_PER_PTE * sizeof(pte_t));
76         return pte;
77 }
78
79 /*
80  * Add a physical memory range to the 1:1 mapping.
81  */
82 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
83 {
84         unsigned long end = start + size;
85         unsigned long address = start;
86         pgd_t *pg_dir;
87         pud_t *pu_dir;
88         pmd_t *pm_dir;
89         pte_t *pt_dir;
90         int ret = -ENOMEM;
91
92         while (address < end) {
93                 pg_dir = pgd_offset_k(address);
94                 if (pgd_none(*pg_dir)) {
95                         pu_dir = vmem_pud_alloc();
96                         if (!pu_dir)
97                                 goto out;
98                         pgd_populate(&init_mm, pg_dir, pu_dir);
99                 }
100                 pu_dir = pud_offset(pg_dir, address);
101 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
102                 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
103                     !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
104                         pud_val(*pu_dir) = __pa(address) |
105                                 _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
106                                 (ro ? _REGION_ENTRY_PROTECT : 0);
107                         address += PUD_SIZE;
108                         continue;
109                 }
110 #endif
111                 if (pud_none(*pu_dir)) {
112                         pm_dir = vmem_pmd_alloc();
113                         if (!pm_dir)
114                                 goto out;
115                         pud_populate(&init_mm, pu_dir, pm_dir);
116                 }
117                 pm_dir = pmd_offset(pu_dir, address);
118 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
119                 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
120                     !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
121                         pmd_val(*pm_dir) = __pa(address) |
122                                 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
123                                 _SEGMENT_ENTRY_YOUNG |
124                                 (ro ? _SEGMENT_ENTRY_PROTECT : 0);
125                         address += PMD_SIZE;
126                         continue;
127                 }
128 #endif
129                 if (pmd_none(*pm_dir)) {
130                         pt_dir = vmem_pte_alloc(address);
131                         if (!pt_dir)
132                                 goto out;
133                         pmd_populate(&init_mm, pm_dir, pt_dir);
134                 }
135
136                 pt_dir = pte_offset_kernel(pm_dir, address);
137                 pte_val(*pt_dir) = __pa(address) |
138                         pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
139                 address += PAGE_SIZE;
140         }
141         ret = 0;
142 out:
143         return ret;
144 }
145
146 /*
147  * Remove a physical memory range from the 1:1 mapping.
148  * Currently only invalidates page table entries.
149  */
150 static void vmem_remove_range(unsigned long start, unsigned long size)
151 {
152         unsigned long end = start + size;
153         unsigned long address = start;
154         pgd_t *pg_dir;
155         pud_t *pu_dir;
156         pmd_t *pm_dir;
157         pte_t *pt_dir;
158         pte_t  pte;
159
160         pte_val(pte) = _PAGE_INVALID;
161         while (address < end) {
162                 pg_dir = pgd_offset_k(address);
163                 if (pgd_none(*pg_dir)) {
164                         address += PGDIR_SIZE;
165                         continue;
166                 }
167                 pu_dir = pud_offset(pg_dir, address);
168                 if (pud_none(*pu_dir)) {
169                         address += PUD_SIZE;
170                         continue;
171                 }
172                 if (pud_large(*pu_dir)) {
173                         pud_clear(pu_dir);
174                         address += PUD_SIZE;
175                         continue;
176                 }
177                 pm_dir = pmd_offset(pu_dir, address);
178                 if (pmd_none(*pm_dir)) {
179                         address += PMD_SIZE;
180                         continue;
181                 }
182                 if (pmd_large(*pm_dir)) {
183                         pmd_clear(pm_dir);
184                         address += PMD_SIZE;
185                         continue;
186                 }
187                 pt_dir = pte_offset_kernel(pm_dir, address);
188                 *pt_dir = pte;
189                 address += PAGE_SIZE;
190         }
191         flush_tlb_kernel_range(start, end);
192 }
193
194 /*
195  * Add a backed mem_map array to the virtual mem_map array.
196  */
197 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
198 {
199         unsigned long address = start;
200         pgd_t *pg_dir;
201         pud_t *pu_dir;
202         pmd_t *pm_dir;
203         pte_t *pt_dir;
204         int ret = -ENOMEM;
205
206         for (address = start; address < end;) {
207                 pg_dir = pgd_offset_k(address);
208                 if (pgd_none(*pg_dir)) {
209                         pu_dir = vmem_pud_alloc();
210                         if (!pu_dir)
211                                 goto out;
212                         pgd_populate(&init_mm, pg_dir, pu_dir);
213                 }
214
215                 pu_dir = pud_offset(pg_dir, address);
216                 if (pud_none(*pu_dir)) {
217                         pm_dir = vmem_pmd_alloc();
218                         if (!pm_dir)
219                                 goto out;
220                         pud_populate(&init_mm, pu_dir, pm_dir);
221                 }
222
223                 pm_dir = pmd_offset(pu_dir, address);
224                 if (pmd_none(*pm_dir)) {
225 #ifdef CONFIG_64BIT
226                         /* Use 1MB frames for vmemmap if available. We always
227                          * use large frames even if they are only partially
228                          * used.
229                          * Otherwise we would have also page tables since
230                          * vmemmap_populate gets called for each section
231                          * separately. */
232                         if (MACHINE_HAS_EDAT1) {
233                                 void *new_page;
234
235                                 new_page = vmemmap_alloc_block(PMD_SIZE, node);
236                                 if (!new_page)
237                                         goto out;
238                                 pmd_val(*pm_dir) = __pa(new_page) |
239                                         _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
240                                         _SEGMENT_ENTRY_CO;
241                                 address = (address + PMD_SIZE) & PMD_MASK;
242                                 continue;
243                         }
244 #endif
245                         pt_dir = vmem_pte_alloc(address);
246                         if (!pt_dir)
247                                 goto out;
248                         pmd_populate(&init_mm, pm_dir, pt_dir);
249                 } else if (pmd_large(*pm_dir)) {
250                         address = (address + PMD_SIZE) & PMD_MASK;
251                         continue;
252                 }
253
254                 pt_dir = pte_offset_kernel(pm_dir, address);
255                 if (pte_none(*pt_dir)) {
256                         unsigned long new_page;
257
258                         new_page =__pa(vmem_alloc_pages(0));
259                         if (!new_page)
260                                 goto out;
261                         pte_val(*pt_dir) =
262                                 __pa(new_page) | pgprot_val(PAGE_KERNEL);
263                 }
264                 address += PAGE_SIZE;
265         }
266         memset((void *)start, 0, end - start);
267         ret = 0;
268 out:
269         return ret;
270 }
271
272 void vmemmap_free(unsigned long start, unsigned long end)
273 {
274 }
275
276 /*
277  * Add memory segment to the segment list if it doesn't overlap with
278  * an already present segment.
279  */
280 static int insert_memory_segment(struct memory_segment *seg)
281 {
282         struct memory_segment *tmp;
283
284         if (seg->start + seg->size > VMEM_MAX_PHYS ||
285             seg->start + seg->size < seg->start)
286                 return -ERANGE;
287
288         list_for_each_entry(tmp, &mem_segs, list) {
289                 if (seg->start >= tmp->start + tmp->size)
290                         continue;
291                 if (seg->start + seg->size <= tmp->start)
292                         continue;
293                 return -ENOSPC;
294         }
295         list_add(&seg->list, &mem_segs);
296         return 0;
297 }
298
299 /*
300  * Remove memory segment from the segment list.
301  */
302 static void remove_memory_segment(struct memory_segment *seg)
303 {
304         list_del(&seg->list);
305 }
306
307 static void __remove_shared_memory(struct memory_segment *seg)
308 {
309         remove_memory_segment(seg);
310         vmem_remove_range(seg->start, seg->size);
311 }
312
313 int vmem_remove_mapping(unsigned long start, unsigned long size)
314 {
315         struct memory_segment *seg;
316         int ret;
317
318         mutex_lock(&vmem_mutex);
319
320         ret = -ENOENT;
321         list_for_each_entry(seg, &mem_segs, list) {
322                 if (seg->start == start && seg->size == size)
323                         break;
324         }
325
326         if (seg->start != start || seg->size != size)
327                 goto out;
328
329         ret = 0;
330         __remove_shared_memory(seg);
331         kfree(seg);
332 out:
333         mutex_unlock(&vmem_mutex);
334         return ret;
335 }
336
337 int vmem_add_mapping(unsigned long start, unsigned long size)
338 {
339         struct memory_segment *seg;
340         int ret;
341
342         mutex_lock(&vmem_mutex);
343         ret = -ENOMEM;
344         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
345         if (!seg)
346                 goto out;
347         seg->start = start;
348         seg->size = size;
349
350         ret = insert_memory_segment(seg);
351         if (ret)
352                 goto out_free;
353
354         ret = vmem_add_mem(start, size, 0);
355         if (ret)
356                 goto out_remove;
357         goto out;
358
359 out_remove:
360         __remove_shared_memory(seg);
361 out_free:
362         kfree(seg);
363 out:
364         mutex_unlock(&vmem_mutex);
365         return ret;
366 }
367
368 /*
369  * map whole physical memory to virtual memory (identity mapping)
370  * we reserve enough space in the vmalloc area for vmemmap to hotplug
371  * additional memory segments.
372  */
373 void __init vmem_map_init(void)
374 {
375         unsigned long ro_start, ro_end;
376         struct memblock_region *reg;
377         phys_addr_t start, end;
378
379         ro_start = PFN_ALIGN((unsigned long)&_stext);
380         ro_end = (unsigned long)&_eshared & PAGE_MASK;
381         for_each_memblock(memory, reg) {
382                 start = reg->base;
383                 end = reg->base + reg->size - 1;
384                 if (start >= ro_end || end <= ro_start)
385                         vmem_add_mem(start, end - start, 0);
386                 else if (start >= ro_start && end <= ro_end)
387                         vmem_add_mem(start, end - start, 1);
388                 else if (start >= ro_start) {
389                         vmem_add_mem(start, ro_end - start, 1);
390                         vmem_add_mem(ro_end, end - ro_end, 0);
391                 } else if (end < ro_end) {
392                         vmem_add_mem(start, ro_start - start, 0);
393                         vmem_add_mem(ro_start, end - ro_start, 1);
394                 } else {
395                         vmem_add_mem(start, ro_start - start, 0);
396                         vmem_add_mem(ro_start, ro_end - ro_start, 1);
397                         vmem_add_mem(ro_end, end - ro_end, 0);
398                 }
399         }
400 }
401
402 /*
403  * Convert memblock.memory  to a memory segment list so there is a single
404  * list that contains all memory segments.
405  */
406 static int __init vmem_convert_memory_chunk(void)
407 {
408         struct memblock_region *reg;
409         struct memory_segment *seg;
410
411         mutex_lock(&vmem_mutex);
412         for_each_memblock(memory, reg) {
413                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
414                 if (!seg)
415                         panic("Out of memory...\n");
416                 seg->start = reg->base;
417                 seg->size = reg->size;
418                 insert_memory_segment(seg);
419         }
420         mutex_unlock(&vmem_mutex);
421         return 0;
422 }
423
424 core_initcall(vmem_convert_memory_chunk);