ARM: pxa: fix typo 'CONFIG_SPI_PXA2XX_MASTER'
[cascardo/linux.git] / arch / sparc / kernel / time_32.c
1 /* linux/arch/sparc/kernel/time.c
2  *
3  * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
5  *
6  * Chris Davis (cdavis@cois.on.ca) 03/27/1998
7  * Added support for the intersil on the sun4/4200
8  *
9  * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
10  * Support for MicroSPARC-IIep, PCI CPU.
11  *
12  * This file handles the Sparc specific time handling details.
13  *
14  * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
15  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
16  */
17 #include <linux/errno.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/rtc.h>
27 #include <linux/rtc/m48t59.h>
28 #include <linux/timex.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/ioport.h>
34 #include <linux/profile.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38
39 #include <asm/oplib.h>
40 #include <asm/timex.h>
41 #include <asm/timer.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/idprom.h>
45 #include <asm/page.h>
46 #include <asm/pcic.h>
47 #include <asm/irq_regs.h>
48 #include <asm/setup.h>
49
50 #include "irq.h"
51
52 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
53 static __volatile__ u64 timer_cs_internal_counter = 0;
54 static char timer_cs_enabled = 0;
55
56 static struct clock_event_device timer_ce;
57 static char timer_ce_enabled = 0;
58
59 #ifdef CONFIG_SMP
60 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
61 #endif
62
63 DEFINE_SPINLOCK(rtc_lock);
64 EXPORT_SYMBOL(rtc_lock);
65
66 static int set_rtc_mmss(unsigned long);
67
68 unsigned long profile_pc(struct pt_regs *regs)
69 {
70         extern char __copy_user_begin[], __copy_user_end[];
71         extern char __bzero_begin[], __bzero_end[];
72
73         unsigned long pc = regs->pc;
74
75         if (in_lock_functions(pc) ||
76             (pc >= (unsigned long) __copy_user_begin &&
77              pc < (unsigned long) __copy_user_end) ||
78             (pc >= (unsigned long) __bzero_begin &&
79              pc < (unsigned long) __bzero_end))
80                 pc = regs->u_regs[UREG_RETPC];
81         return pc;
82 }
83
84 EXPORT_SYMBOL(profile_pc);
85
86 __volatile__ unsigned int *master_l10_counter;
87
88 int update_persistent_clock(struct timespec now)
89 {
90         return set_rtc_mmss(now.tv_sec);
91 }
92
93 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
94 {
95         if (timer_cs_enabled) {
96                 write_seqlock(&timer_cs_lock);
97                 timer_cs_internal_counter++;
98                 sparc_config.clear_clock_irq();
99                 write_sequnlock(&timer_cs_lock);
100         } else {
101                 sparc_config.clear_clock_irq();
102         }
103
104         if (timer_ce_enabled)
105                 timer_ce.event_handler(&timer_ce);
106
107         return IRQ_HANDLED;
108 }
109
110 static void timer_ce_set_mode(enum clock_event_mode mode,
111                               struct clock_event_device *evt)
112 {
113         switch (mode) {
114                 case CLOCK_EVT_MODE_PERIODIC:
115                 case CLOCK_EVT_MODE_RESUME:
116                         timer_ce_enabled = 1;
117                         break;
118                 case CLOCK_EVT_MODE_SHUTDOWN:
119                         timer_ce_enabled = 0;
120                         break;
121                 default:
122                         break;
123         }
124         smp_mb();
125 }
126
127 static __init void setup_timer_ce(void)
128 {
129         struct clock_event_device *ce = &timer_ce;
130
131         BUG_ON(smp_processor_id() != boot_cpu_id);
132
133         ce->name     = "timer_ce";
134         ce->rating   = 100;
135         ce->features = CLOCK_EVT_FEAT_PERIODIC;
136         ce->set_mode = timer_ce_set_mode;
137         ce->cpumask  = cpu_possible_mask;
138         ce->shift    = 32;
139         ce->mult     = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
140                               ce->shift);
141         clockevents_register_device(ce);
142 }
143
144 static unsigned int sbus_cycles_offset(void)
145 {
146         unsigned int val, offset;
147
148         val = *master_l10_counter;
149         offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
150
151         /* Limit hit? */
152         if (val & TIMER_LIMIT_BIT)
153                 offset += sparc_config.cs_period;
154
155         return offset;
156 }
157
158 static cycle_t timer_cs_read(struct clocksource *cs)
159 {
160         unsigned int seq, offset;
161         u64 cycles;
162
163         do {
164                 seq = read_seqbegin(&timer_cs_lock);
165
166                 cycles = timer_cs_internal_counter;
167                 offset = sparc_config.get_cycles_offset();
168         } while (read_seqretry(&timer_cs_lock, seq));
169
170         /* Count absolute cycles */
171         cycles *= sparc_config.cs_period;
172         cycles += offset;
173
174         return cycles;
175 }
176
177 static struct clocksource timer_cs = {
178         .name   = "timer_cs",
179         .rating = 100,
180         .read   = timer_cs_read,
181         .mask   = CLOCKSOURCE_MASK(64),
182         .shift  = 2,
183         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
184 };
185
186 static __init int setup_timer_cs(void)
187 {
188         timer_cs_enabled = 1;
189         timer_cs.mult = clocksource_hz2mult(sparc_config.clock_rate,
190                                             timer_cs.shift);
191
192         return clocksource_register(&timer_cs);
193 }
194
195 #ifdef CONFIG_SMP
196 static void percpu_ce_setup(enum clock_event_mode mode,
197                         struct clock_event_device *evt)
198 {
199         int cpu = __first_cpu(evt->cpumask);
200
201         switch (mode) {
202                 case CLOCK_EVT_MODE_PERIODIC:
203                         sparc_config.load_profile_irq(cpu,
204                                                       SBUS_CLOCK_RATE / HZ);
205                         break;
206                 case CLOCK_EVT_MODE_ONESHOT:
207                 case CLOCK_EVT_MODE_SHUTDOWN:
208                 case CLOCK_EVT_MODE_UNUSED:
209                         sparc_config.load_profile_irq(cpu, 0);
210                         break;
211                 default:
212                         break;
213         }
214 }
215
216 static int percpu_ce_set_next_event(unsigned long delta,
217                                     struct clock_event_device *evt)
218 {
219         int cpu = __first_cpu(evt->cpumask);
220         unsigned int next = (unsigned int)delta;
221
222         sparc_config.load_profile_irq(cpu, next);
223         return 0;
224 }
225
226 void register_percpu_ce(int cpu)
227 {
228         struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
229         unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
230
231         if (sparc_config.features & FEAT_L14_ONESHOT)
232                 features |= CLOCK_EVT_FEAT_ONESHOT;
233
234         ce->name           = "percpu_ce";
235         ce->rating         = 200;
236         ce->features       = features;
237         ce->set_mode       = percpu_ce_setup;
238         ce->set_next_event = percpu_ce_set_next_event;
239         ce->cpumask        = cpumask_of(cpu);
240         ce->shift          = 32;
241         ce->mult           = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
242                                     ce->shift);
243         ce->max_delta_ns   = clockevent_delta2ns(sparc_config.clock_rate, ce);
244         ce->min_delta_ns   = clockevent_delta2ns(100, ce);
245
246         clockevents_register_device(ce);
247 }
248 #endif
249
250 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
251 {
252         struct platform_device *pdev = to_platform_device(dev);
253         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
254
255         return readb(pdata->ioaddr + ofs);
256 }
257
258 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
259 {
260         struct platform_device *pdev = to_platform_device(dev);
261         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
262
263         writeb(val, pdata->ioaddr + ofs);
264 }
265
266 static struct m48t59_plat_data m48t59_data = {
267         .read_byte = mostek_read_byte,
268         .write_byte = mostek_write_byte,
269 };
270
271 /* resource is set at runtime */
272 static struct platform_device m48t59_rtc = {
273         .name           = "rtc-m48t59",
274         .id             = 0,
275         .num_resources  = 1,
276         .dev    = {
277                 .platform_data = &m48t59_data,
278         },
279 };
280
281 static int clock_probe(struct platform_device *op)
282 {
283         struct device_node *dp = op->dev.of_node;
284         const char *model = of_get_property(dp, "model", NULL);
285
286         if (!model)
287                 return -ENODEV;
288
289         /* Only the primary RTC has an address property */
290         if (!of_find_property(dp, "address", NULL))
291                 return -ENODEV;
292
293         m48t59_rtc.resource = &op->resource[0];
294         if (!strcmp(model, "mk48t02")) {
295                 /* Map the clock register io area read-only */
296                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
297                                                 2048, "rtc-m48t59");
298                 m48t59_data.type = M48T59RTC_TYPE_M48T02;
299         } else if (!strcmp(model, "mk48t08")) {
300                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
301                                                 8192, "rtc-m48t59");
302                 m48t59_data.type = M48T59RTC_TYPE_M48T08;
303         } else
304                 return -ENODEV;
305
306         if (platform_device_register(&m48t59_rtc) < 0)
307                 printk(KERN_ERR "Registering RTC device failed\n");
308
309         return 0;
310 }
311
312 static struct of_device_id clock_match[] = {
313         {
314                 .name = "eeprom",
315         },
316         {},
317 };
318
319 static struct platform_driver clock_driver = {
320         .probe          = clock_probe,
321         .driver = {
322                 .name = "rtc",
323                 .owner = THIS_MODULE,
324                 .of_match_table = clock_match,
325         },
326 };
327
328
329 /* Probe for the mostek real time clock chip. */
330 static int __init clock_init(void)
331 {
332         return platform_driver_register(&clock_driver);
333 }
334 /* Must be after subsys_initcall() so that busses are probed.  Must
335  * be before device_initcall() because things like the RTC driver
336  * need to see the clock registers.
337  */
338 fs_initcall(clock_init);
339
340 static void __init sparc32_late_time_init(void)
341 {
342         if (sparc_config.features & FEAT_L10_CLOCKEVENT)
343                 setup_timer_ce();
344         if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
345                 setup_timer_cs();
346 #ifdef CONFIG_SMP
347         register_percpu_ce(smp_processor_id());
348 #endif
349 }
350
351 static void __init sbus_time_init(void)
352 {
353         sparc_config.get_cycles_offset = sbus_cycles_offset;
354         sparc_config.init_timers();
355 }
356
357 void __init time_init(void)
358 {
359         sparc_config.features = 0;
360         late_time_init = sparc32_late_time_init;
361
362         if (pcic_present())
363                 pci_time_init();
364         else
365                 sbus_time_init();
366 }
367
368
369 static int set_rtc_mmss(unsigned long secs)
370 {
371         struct rtc_device *rtc = rtc_class_open("rtc0");
372         int err = -1;
373
374         if (rtc) {
375                 err = rtc_set_mmss(rtc, secs);
376                 rtc_class_close(rtc);
377         }
378
379         return err;
380 }