sparc: migrate exception table users off module.h and onto extable.h
[cascardo/linux.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *      0       ==>     4MB
66  *      1       ==>     256MB
67  *      2       ==>     2GB
68  *      3       ==>     16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS       1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100         const struct linux_prom64_registers *x = a, *y = b;
101
102         if (x->phys_addr > y->phys_addr)
103                 return 1;
104         if (x->phys_addr < y->phys_addr)
105                 return -1;
106         return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110                                    struct linux_prom64_registers *regs,
111                                    int *num_ents)
112 {
113         phandle node = prom_finddevice("/memory");
114         int prop_size = prom_getproplen(node, property);
115         int ents, ret, i;
116
117         ents = prop_size / sizeof(struct linux_prom64_registers);
118         if (ents > MAX_BANKS) {
119                 prom_printf("The machine has more %s property entries than "
120                             "this kernel can support (%d).\n",
121                             property, MAX_BANKS);
122                 prom_halt();
123         }
124
125         ret = prom_getproperty(node, property, (char *) regs, prop_size);
126         if (ret == -1) {
127                 prom_printf("Couldn't get %s property from /memory.\n",
128                                 property);
129                 prom_halt();
130         }
131
132         /* Sanitize what we got from the firmware, by page aligning
133          * everything.
134          */
135         for (i = 0; i < ents; i++) {
136                 unsigned long base, size;
137
138                 base = regs[i].phys_addr;
139                 size = regs[i].reg_size;
140
141                 size &= PAGE_MASK;
142                 if (base & ~PAGE_MASK) {
143                         unsigned long new_base = PAGE_ALIGN(base);
144
145                         size -= new_base - base;
146                         if ((long) size < 0L)
147                                 size = 0UL;
148                         base = new_base;
149                 }
150                 if (size == 0UL) {
151                         /* If it is empty, simply get rid of it.
152                          * This simplifies the logic of the other
153                          * functions that process these arrays.
154                          */
155                         memmove(&regs[i], &regs[i + 1],
156                                 (ents - i - 1) * sizeof(regs[0]));
157                         i--;
158                         ents--;
159                         continue;
160                 }
161                 regs[i].phys_addr = base;
162                 regs[i].reg_size = size;
163         }
164
165         *num_ents = ents;
166
167         sort(regs, ents, sizeof(struct linux_prom64_registers),
168              cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping(page) != NULL));
209 #else
210         if (page_mapping(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     32UL
218 #define PG_dcache_cpu_mask      \
219         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226         unsigned long mask = this_cpu;
227         unsigned long non_cpu_bits;
228
229         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "and       %%g7, %1, %%g1\n\t"
235                              "or        %%g1, %0, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop"
240                              : /* no outputs */
241                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242                              : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247         unsigned long mask = (1UL << PG_dcache_dirty);
248
249         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250                              "1:\n\t"
251                              "ldx       [%2], %%g7\n\t"
252                              "srlx      %%g7, %4, %%g1\n\t"
253                              "and       %%g1, %3, %%g1\n\t"
254                              "cmp       %%g1, %0\n\t"
255                              "bne,pn    %%icc, 2f\n\t"
256                              " andn     %%g7, %1, %%g1\n\t"
257                              "casx      [%2], %%g7, %%g1\n\t"
258                              "cmp       %%g7, %%g1\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283         struct page *page;
284
285         page = pfn_to_page(pfn);
286         if (page) {
287                 unsigned long pg_flags;
288
289                 pg_flags = page->flags;
290                 if (pg_flags & (1UL << PG_dcache_dirty)) {
291                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292                                    PG_dcache_cpu_mask);
293                         int this_cpu = get_cpu();
294
295                         /* This is just to optimize away some function calls
296                          * in the SMP case.
297                          */
298                         if (cpu == this_cpu)
299                                 flush_dcache_page_impl(page);
300                         else
301                                 smp_flush_dcache_page_impl(page, cpu);
302
303                         clear_dcache_dirty_cpu(page, cpu);
304
305                         put_cpu();
306                 }
307         }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312                                     unsigned long tsb_hash_shift, unsigned long address,
313                                     unsigned long tte)
314 {
315         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316         unsigned long tag;
317
318         if (unlikely(!tsb))
319                 return;
320
321         tsb += ((address >> tsb_hash_shift) &
322                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323         tag = (address >> 22UL);
324         tsb_insert(tsb, tag, tte);
325 }
326
327 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
328 {
329         struct mm_struct *mm;
330         unsigned long flags;
331         pte_t pte = *ptep;
332
333         if (tlb_type != hypervisor) {
334                 unsigned long pfn = pte_pfn(pte);
335
336                 if (pfn_valid(pfn))
337                         flush_dcache(pfn);
338         }
339
340         mm = vma->vm_mm;
341
342         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
343         if (!pte_accessible(mm, pte))
344                 return;
345
346         spin_lock_irqsave(&mm->context.lock, flags);
347
348 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
349         if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
350             is_hugetlb_pte(pte)) {
351                 /* We are fabricating 8MB pages using 4MB real hw pages.  */
352                 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
353                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
354                                         address, pte_val(pte));
355         } else
356 #endif
357                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
358                                         address, pte_val(pte));
359
360         spin_unlock_irqrestore(&mm->context.lock, flags);
361 }
362
363 void flush_dcache_page(struct page *page)
364 {
365         struct address_space *mapping;
366         int this_cpu;
367
368         if (tlb_type == hypervisor)
369                 return;
370
371         /* Do not bother with the expensive D-cache flush if it
372          * is merely the zero page.  The 'bigcore' testcase in GDB
373          * causes this case to run millions of times.
374          */
375         if (page == ZERO_PAGE(0))
376                 return;
377
378         this_cpu = get_cpu();
379
380         mapping = page_mapping(page);
381         if (mapping && !mapping_mapped(mapping)) {
382                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
383                 if (dirty) {
384                         int dirty_cpu = dcache_dirty_cpu(page);
385
386                         if (dirty_cpu == this_cpu)
387                                 goto out;
388                         smp_flush_dcache_page_impl(page, dirty_cpu);
389                 }
390                 set_dcache_dirty(page, this_cpu);
391         } else {
392                 /* We could delay the flush for the !page_mapping
393                  * case too.  But that case is for exec env/arg
394                  * pages and those are %99 certainly going to get
395                  * faulted into the tlb (and thus flushed) anyways.
396                  */
397                 flush_dcache_page_impl(page);
398         }
399
400 out:
401         put_cpu();
402 }
403 EXPORT_SYMBOL(flush_dcache_page);
404
405 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
406 {
407         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
408         if (tlb_type == spitfire) {
409                 unsigned long kaddr;
410
411                 /* This code only runs on Spitfire cpus so this is
412                  * why we can assume _PAGE_PADDR_4U.
413                  */
414                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
415                         unsigned long paddr, mask = _PAGE_PADDR_4U;
416
417                         if (kaddr >= PAGE_OFFSET)
418                                 paddr = kaddr & mask;
419                         else {
420                                 pgd_t *pgdp = pgd_offset_k(kaddr);
421                                 pud_t *pudp = pud_offset(pgdp, kaddr);
422                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
423                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
424
425                                 paddr = pte_val(*ptep) & mask;
426                         }
427                         __flush_icache_page(paddr);
428                 }
429         }
430 }
431 EXPORT_SYMBOL(flush_icache_range);
432
433 void mmu_info(struct seq_file *m)
434 {
435         static const char *pgsz_strings[] = {
436                 "8K", "64K", "512K", "4MB", "32MB",
437                 "256MB", "2GB", "16GB",
438         };
439         int i, printed;
440
441         if (tlb_type == cheetah)
442                 seq_printf(m, "MMU Type\t: Cheetah\n");
443         else if (tlb_type == cheetah_plus)
444                 seq_printf(m, "MMU Type\t: Cheetah+\n");
445         else if (tlb_type == spitfire)
446                 seq_printf(m, "MMU Type\t: Spitfire\n");
447         else if (tlb_type == hypervisor)
448                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
449         else
450                 seq_printf(m, "MMU Type\t: ???\n");
451
452         seq_printf(m, "MMU PGSZs\t: ");
453         printed = 0;
454         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
455                 if (cpu_pgsz_mask & (1UL << i)) {
456                         seq_printf(m, "%s%s",
457                                    printed ? "," : "", pgsz_strings[i]);
458                         printed++;
459                 }
460         }
461         seq_putc(m, '\n');
462
463 #ifdef CONFIG_DEBUG_DCFLUSH
464         seq_printf(m, "DCPageFlushes\t: %d\n",
465                    atomic_read(&dcpage_flushes));
466 #ifdef CONFIG_SMP
467         seq_printf(m, "DCPageFlushesXC\t: %d\n",
468                    atomic_read(&dcpage_flushes_xcall));
469 #endif /* CONFIG_SMP */
470 #endif /* CONFIG_DEBUG_DCFLUSH */
471 }
472
473 struct linux_prom_translation prom_trans[512] __read_mostly;
474 unsigned int prom_trans_ents __read_mostly;
475
476 unsigned long kern_locked_tte_data;
477
478 /* The obp translations are saved based on 8k pagesize, since obp can
479  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
480  * HI_OBP_ADDRESS range are handled in ktlb.S.
481  */
482 static inline int in_obp_range(unsigned long vaddr)
483 {
484         return (vaddr >= LOW_OBP_ADDRESS &&
485                 vaddr < HI_OBP_ADDRESS);
486 }
487
488 static int cmp_ptrans(const void *a, const void *b)
489 {
490         const struct linux_prom_translation *x = a, *y = b;
491
492         if (x->virt > y->virt)
493                 return 1;
494         if (x->virt < y->virt)
495                 return -1;
496         return 0;
497 }
498
499 /* Read OBP translations property into 'prom_trans[]'.  */
500 static void __init read_obp_translations(void)
501 {
502         int n, node, ents, first, last, i;
503
504         node = prom_finddevice("/virtual-memory");
505         n = prom_getproplen(node, "translations");
506         if (unlikely(n == 0 || n == -1)) {
507                 prom_printf("prom_mappings: Couldn't get size.\n");
508                 prom_halt();
509         }
510         if (unlikely(n > sizeof(prom_trans))) {
511                 prom_printf("prom_mappings: Size %d is too big.\n", n);
512                 prom_halt();
513         }
514
515         if ((n = prom_getproperty(node, "translations",
516                                   (char *)&prom_trans[0],
517                                   sizeof(prom_trans))) == -1) {
518                 prom_printf("prom_mappings: Couldn't get property.\n");
519                 prom_halt();
520         }
521
522         n = n / sizeof(struct linux_prom_translation);
523
524         ents = n;
525
526         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
527              cmp_ptrans, NULL);
528
529         /* Now kick out all the non-OBP entries.  */
530         for (i = 0; i < ents; i++) {
531                 if (in_obp_range(prom_trans[i].virt))
532                         break;
533         }
534         first = i;
535         for (; i < ents; i++) {
536                 if (!in_obp_range(prom_trans[i].virt))
537                         break;
538         }
539         last = i;
540
541         for (i = 0; i < (last - first); i++) {
542                 struct linux_prom_translation *src = &prom_trans[i + first];
543                 struct linux_prom_translation *dest = &prom_trans[i];
544
545                 *dest = *src;
546         }
547         for (; i < ents; i++) {
548                 struct linux_prom_translation *dest = &prom_trans[i];
549                 dest->virt = dest->size = dest->data = 0x0UL;
550         }
551
552         prom_trans_ents = last - first;
553
554         if (tlb_type == spitfire) {
555                 /* Clear diag TTE bits. */
556                 for (i = 0; i < prom_trans_ents; i++)
557                         prom_trans[i].data &= ~0x0003fe0000000000UL;
558         }
559
560         /* Force execute bit on.  */
561         for (i = 0; i < prom_trans_ents; i++)
562                 prom_trans[i].data |= (tlb_type == hypervisor ?
563                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
564 }
565
566 static void __init hypervisor_tlb_lock(unsigned long vaddr,
567                                        unsigned long pte,
568                                        unsigned long mmu)
569 {
570         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
571
572         if (ret != 0) {
573                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
574                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
575                 prom_halt();
576         }
577 }
578
579 static unsigned long kern_large_tte(unsigned long paddr);
580
581 static void __init remap_kernel(void)
582 {
583         unsigned long phys_page, tte_vaddr, tte_data;
584         int i, tlb_ent = sparc64_highest_locked_tlbent();
585
586         tte_vaddr = (unsigned long) KERNBASE;
587         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
588         tte_data = kern_large_tte(phys_page);
589
590         kern_locked_tte_data = tte_data;
591
592         /* Now lock us into the TLBs via Hypervisor or OBP. */
593         if (tlb_type == hypervisor) {
594                 for (i = 0; i < num_kernel_image_mappings; i++) {
595                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
596                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
597                         tte_vaddr += 0x400000;
598                         tte_data += 0x400000;
599                 }
600         } else {
601                 for (i = 0; i < num_kernel_image_mappings; i++) {
602                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
603                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
604                         tte_vaddr += 0x400000;
605                         tte_data += 0x400000;
606                 }
607                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
608         }
609         if (tlb_type == cheetah_plus) {
610                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
611                                             CTX_CHEETAH_PLUS_NUC);
612                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
613                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
614         }
615 }
616
617
618 static void __init inherit_prom_mappings(void)
619 {
620         /* Now fixup OBP's idea about where we really are mapped. */
621         printk("Remapping the kernel... ");
622         remap_kernel();
623         printk("done.\n");
624 }
625
626 void prom_world(int enter)
627 {
628         if (!enter)
629                 set_fs(get_fs());
630
631         __asm__ __volatile__("flushw");
632 }
633
634 void __flush_dcache_range(unsigned long start, unsigned long end)
635 {
636         unsigned long va;
637
638         if (tlb_type == spitfire) {
639                 int n = 0;
640
641                 for (va = start; va < end; va += 32) {
642                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
643                         if (++n >= 512)
644                                 break;
645                 }
646         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
647                 start = __pa(start);
648                 end = __pa(end);
649                 for (va = start; va < end; va += 32)
650                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
651                                              "membar #Sync"
652                                              : /* no outputs */
653                                              : "r" (va),
654                                                "i" (ASI_DCACHE_INVALIDATE));
655         }
656 }
657 EXPORT_SYMBOL(__flush_dcache_range);
658
659 /* get_new_mmu_context() uses "cache + 1".  */
660 DEFINE_SPINLOCK(ctx_alloc_lock);
661 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
662 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
663 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
664 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
665
666 /* Caller does TLB context flushing on local CPU if necessary.
667  * The caller also ensures that CTX_VALID(mm->context) is false.
668  *
669  * We must be careful about boundary cases so that we never
670  * let the user have CTX 0 (nucleus) or we ever use a CTX
671  * version of zero (and thus NO_CONTEXT would not be caught
672  * by version mis-match tests in mmu_context.h).
673  *
674  * Always invoked with interrupts disabled.
675  */
676 void get_new_mmu_context(struct mm_struct *mm)
677 {
678         unsigned long ctx, new_ctx;
679         unsigned long orig_pgsz_bits;
680         int new_version;
681
682         spin_lock(&ctx_alloc_lock);
683         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
684         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
685         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
686         new_version = 0;
687         if (new_ctx >= (1 << CTX_NR_BITS)) {
688                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
689                 if (new_ctx >= ctx) {
690                         int i;
691                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
692                                 CTX_FIRST_VERSION;
693                         if (new_ctx == 1)
694                                 new_ctx = CTX_FIRST_VERSION;
695
696                         /* Don't call memset, for 16 entries that's just
697                          * plain silly...
698                          */
699                         mmu_context_bmap[0] = 3;
700                         mmu_context_bmap[1] = 0;
701                         mmu_context_bmap[2] = 0;
702                         mmu_context_bmap[3] = 0;
703                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
704                                 mmu_context_bmap[i + 0] = 0;
705                                 mmu_context_bmap[i + 1] = 0;
706                                 mmu_context_bmap[i + 2] = 0;
707                                 mmu_context_bmap[i + 3] = 0;
708                         }
709                         new_version = 1;
710                         goto out;
711                 }
712         }
713         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
714         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
715 out:
716         tlb_context_cache = new_ctx;
717         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
718         spin_unlock(&ctx_alloc_lock);
719
720         if (unlikely(new_version))
721                 smp_new_mmu_context_version();
722 }
723
724 static int numa_enabled = 1;
725 static int numa_debug;
726
727 static int __init early_numa(char *p)
728 {
729         if (!p)
730                 return 0;
731
732         if (strstr(p, "off"))
733                 numa_enabled = 0;
734
735         if (strstr(p, "debug"))
736                 numa_debug = 1;
737
738         return 0;
739 }
740 early_param("numa", early_numa);
741
742 #define numadbg(f, a...) \
743 do {    if (numa_debug) \
744                 printk(KERN_INFO f, ## a); \
745 } while (0)
746
747 static void __init find_ramdisk(unsigned long phys_base)
748 {
749 #ifdef CONFIG_BLK_DEV_INITRD
750         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
751                 unsigned long ramdisk_image;
752
753                 /* Older versions of the bootloader only supported a
754                  * 32-bit physical address for the ramdisk image
755                  * location, stored at sparc_ramdisk_image.  Newer
756                  * SILO versions set sparc_ramdisk_image to zero and
757                  * provide a full 64-bit physical address at
758                  * sparc_ramdisk_image64.
759                  */
760                 ramdisk_image = sparc_ramdisk_image;
761                 if (!ramdisk_image)
762                         ramdisk_image = sparc_ramdisk_image64;
763
764                 /* Another bootloader quirk.  The bootloader normalizes
765                  * the physical address to KERNBASE, so we have to
766                  * factor that back out and add in the lowest valid
767                  * physical page address to get the true physical address.
768                  */
769                 ramdisk_image -= KERNBASE;
770                 ramdisk_image += phys_base;
771
772                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
773                         ramdisk_image, sparc_ramdisk_size);
774
775                 initrd_start = ramdisk_image;
776                 initrd_end = ramdisk_image + sparc_ramdisk_size;
777
778                 memblock_reserve(initrd_start, sparc_ramdisk_size);
779
780                 initrd_start += PAGE_OFFSET;
781                 initrd_end += PAGE_OFFSET;
782         }
783 #endif
784 }
785
786 struct node_mem_mask {
787         unsigned long mask;
788         unsigned long val;
789 };
790 static struct node_mem_mask node_masks[MAX_NUMNODES];
791 static int num_node_masks;
792
793 #ifdef CONFIG_NEED_MULTIPLE_NODES
794
795 int numa_cpu_lookup_table[NR_CPUS];
796 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
797
798 struct mdesc_mblock {
799         u64     base;
800         u64     size;
801         u64     offset; /* RA-to-PA */
802 };
803 static struct mdesc_mblock *mblocks;
804 static int num_mblocks;
805
806 static unsigned long ra_to_pa(unsigned long addr)
807 {
808         int i;
809
810         for (i = 0; i < num_mblocks; i++) {
811                 struct mdesc_mblock *m = &mblocks[i];
812
813                 if (addr >= m->base &&
814                     addr < (m->base + m->size)) {
815                         addr += m->offset;
816                         break;
817                 }
818         }
819         return addr;
820 }
821
822 static int find_node(unsigned long addr)
823 {
824         int i;
825
826         addr = ra_to_pa(addr);
827         for (i = 0; i < num_node_masks; i++) {
828                 struct node_mem_mask *p = &node_masks[i];
829
830                 if ((addr & p->mask) == p->val)
831                         return i;
832         }
833         /* The following condition has been observed on LDOM guests.*/
834         WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
835                 " rule. Some physical memory will be owned by node 0.");
836         return 0;
837 }
838
839 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
840 {
841         *nid = find_node(start);
842         start += PAGE_SIZE;
843         while (start < end) {
844                 int n = find_node(start);
845
846                 if (n != *nid)
847                         break;
848                 start += PAGE_SIZE;
849         }
850
851         if (start > end)
852                 start = end;
853
854         return start;
855 }
856 #endif
857
858 /* This must be invoked after performing all of the necessary
859  * memblock_set_node() calls for 'nid'.  We need to be able to get
860  * correct data from get_pfn_range_for_nid().
861  */
862 static void __init allocate_node_data(int nid)
863 {
864         struct pglist_data *p;
865         unsigned long start_pfn, end_pfn;
866 #ifdef CONFIG_NEED_MULTIPLE_NODES
867         unsigned long paddr;
868
869         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
870         if (!paddr) {
871                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
872                 prom_halt();
873         }
874         NODE_DATA(nid) = __va(paddr);
875         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
876
877         NODE_DATA(nid)->node_id = nid;
878 #endif
879
880         p = NODE_DATA(nid);
881
882         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
883         p->node_start_pfn = start_pfn;
884         p->node_spanned_pages = end_pfn - start_pfn;
885 }
886
887 static void init_node_masks_nonnuma(void)
888 {
889 #ifdef CONFIG_NEED_MULTIPLE_NODES
890         int i;
891 #endif
892
893         numadbg("Initializing tables for non-numa.\n");
894
895         node_masks[0].mask = node_masks[0].val = 0;
896         num_node_masks = 1;
897
898 #ifdef CONFIG_NEED_MULTIPLE_NODES
899         for (i = 0; i < NR_CPUS; i++)
900                 numa_cpu_lookup_table[i] = 0;
901
902         cpumask_setall(&numa_cpumask_lookup_table[0]);
903 #endif
904 }
905
906 #ifdef CONFIG_NEED_MULTIPLE_NODES
907 struct pglist_data *node_data[MAX_NUMNODES];
908
909 EXPORT_SYMBOL(numa_cpu_lookup_table);
910 EXPORT_SYMBOL(numa_cpumask_lookup_table);
911 EXPORT_SYMBOL(node_data);
912
913 struct mdesc_mlgroup {
914         u64     node;
915         u64     latency;
916         u64     match;
917         u64     mask;
918 };
919 static struct mdesc_mlgroup *mlgroups;
920 static int num_mlgroups;
921
922 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
923                                    u32 cfg_handle)
924 {
925         u64 arc;
926
927         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
928                 u64 target = mdesc_arc_target(md, arc);
929                 const u64 *val;
930
931                 val = mdesc_get_property(md, target,
932                                          "cfg-handle", NULL);
933                 if (val && *val == cfg_handle)
934                         return 0;
935         }
936         return -ENODEV;
937 }
938
939 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
940                                     u32 cfg_handle)
941 {
942         u64 arc, candidate, best_latency = ~(u64)0;
943
944         candidate = MDESC_NODE_NULL;
945         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
946                 u64 target = mdesc_arc_target(md, arc);
947                 const char *name = mdesc_node_name(md, target);
948                 const u64 *val;
949
950                 if (strcmp(name, "pio-latency-group"))
951                         continue;
952
953                 val = mdesc_get_property(md, target, "latency", NULL);
954                 if (!val)
955                         continue;
956
957                 if (*val < best_latency) {
958                         candidate = target;
959                         best_latency = *val;
960                 }
961         }
962
963         if (candidate == MDESC_NODE_NULL)
964                 return -ENODEV;
965
966         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
967 }
968
969 int of_node_to_nid(struct device_node *dp)
970 {
971         const struct linux_prom64_registers *regs;
972         struct mdesc_handle *md;
973         u32 cfg_handle;
974         int count, nid;
975         u64 grp;
976
977         /* This is the right thing to do on currently supported
978          * SUN4U NUMA platforms as well, as the PCI controller does
979          * not sit behind any particular memory controller.
980          */
981         if (!mlgroups)
982                 return -1;
983
984         regs = of_get_property(dp, "reg", NULL);
985         if (!regs)
986                 return -1;
987
988         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
989
990         md = mdesc_grab();
991
992         count = 0;
993         nid = -1;
994         mdesc_for_each_node_by_name(md, grp, "group") {
995                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
996                         nid = count;
997                         break;
998                 }
999                 count++;
1000         }
1001
1002         mdesc_release(md);
1003
1004         return nid;
1005 }
1006
1007 static void __init add_node_ranges(void)
1008 {
1009         struct memblock_region *reg;
1010
1011         for_each_memblock(memory, reg) {
1012                 unsigned long size = reg->size;
1013                 unsigned long start, end;
1014
1015                 start = reg->base;
1016                 end = start + size;
1017                 while (start < end) {
1018                         unsigned long this_end;
1019                         int nid;
1020
1021                         this_end = memblock_nid_range(start, end, &nid);
1022
1023                         numadbg("Setting memblock NUMA node nid[%d] "
1024                                 "start[%lx] end[%lx]\n",
1025                                 nid, start, this_end);
1026
1027                         memblock_set_node(start, this_end - start,
1028                                           &memblock.memory, nid);
1029                         start = this_end;
1030                 }
1031         }
1032 }
1033
1034 static int __init grab_mlgroups(struct mdesc_handle *md)
1035 {
1036         unsigned long paddr;
1037         int count = 0;
1038         u64 node;
1039
1040         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1041                 count++;
1042         if (!count)
1043                 return -ENOENT;
1044
1045         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1046                           SMP_CACHE_BYTES);
1047         if (!paddr)
1048                 return -ENOMEM;
1049
1050         mlgroups = __va(paddr);
1051         num_mlgroups = count;
1052
1053         count = 0;
1054         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1055                 struct mdesc_mlgroup *m = &mlgroups[count++];
1056                 const u64 *val;
1057
1058                 m->node = node;
1059
1060                 val = mdesc_get_property(md, node, "latency", NULL);
1061                 m->latency = *val;
1062                 val = mdesc_get_property(md, node, "address-match", NULL);
1063                 m->match = *val;
1064                 val = mdesc_get_property(md, node, "address-mask", NULL);
1065                 m->mask = *val;
1066
1067                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1068                         "match[%llx] mask[%llx]\n",
1069                         count - 1, m->node, m->latency, m->match, m->mask);
1070         }
1071
1072         return 0;
1073 }
1074
1075 static int __init grab_mblocks(struct mdesc_handle *md)
1076 {
1077         unsigned long paddr;
1078         int count = 0;
1079         u64 node;
1080
1081         mdesc_for_each_node_by_name(md, node, "mblock")
1082                 count++;
1083         if (!count)
1084                 return -ENOENT;
1085
1086         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1087                           SMP_CACHE_BYTES);
1088         if (!paddr)
1089                 return -ENOMEM;
1090
1091         mblocks = __va(paddr);
1092         num_mblocks = count;
1093
1094         count = 0;
1095         mdesc_for_each_node_by_name(md, node, "mblock") {
1096                 struct mdesc_mblock *m = &mblocks[count++];
1097                 const u64 *val;
1098
1099                 val = mdesc_get_property(md, node, "base", NULL);
1100                 m->base = *val;
1101                 val = mdesc_get_property(md, node, "size", NULL);
1102                 m->size = *val;
1103                 val = mdesc_get_property(md, node,
1104                                          "address-congruence-offset", NULL);
1105
1106                 /* The address-congruence-offset property is optional.
1107                  * Explicity zero it be identifty this.
1108                  */
1109                 if (val)
1110                         m->offset = *val;
1111                 else
1112                         m->offset = 0UL;
1113
1114                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1115                         count - 1, m->base, m->size, m->offset);
1116         }
1117
1118         return 0;
1119 }
1120
1121 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1122                                                u64 grp, cpumask_t *mask)
1123 {
1124         u64 arc;
1125
1126         cpumask_clear(mask);
1127
1128         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1129                 u64 target = mdesc_arc_target(md, arc);
1130                 const char *name = mdesc_node_name(md, target);
1131                 const u64 *id;
1132
1133                 if (strcmp(name, "cpu"))
1134                         continue;
1135                 id = mdesc_get_property(md, target, "id", NULL);
1136                 if (*id < nr_cpu_ids)
1137                         cpumask_set_cpu(*id, mask);
1138         }
1139 }
1140
1141 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1142 {
1143         int i;
1144
1145         for (i = 0; i < num_mlgroups; i++) {
1146                 struct mdesc_mlgroup *m = &mlgroups[i];
1147                 if (m->node == node)
1148                         return m;
1149         }
1150         return NULL;
1151 }
1152
1153 int __node_distance(int from, int to)
1154 {
1155         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1156                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1157                         from, to);
1158                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1159         }
1160         return numa_latency[from][to];
1161 }
1162
1163 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1164 {
1165         int i;
1166
1167         for (i = 0; i < MAX_NUMNODES; i++) {
1168                 struct node_mem_mask *n = &node_masks[i];
1169
1170                 if ((grp->mask == n->mask) && (grp->match == n->val))
1171                         break;
1172         }
1173         return i;
1174 }
1175
1176 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1177                                                  u64 grp, int index)
1178 {
1179         u64 arc;
1180
1181         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1182                 int tnode;
1183                 u64 target = mdesc_arc_target(md, arc);
1184                 struct mdesc_mlgroup *m = find_mlgroup(target);
1185
1186                 if (!m)
1187                         continue;
1188                 tnode = find_best_numa_node_for_mlgroup(m);
1189                 if (tnode == MAX_NUMNODES)
1190                         continue;
1191                 numa_latency[index][tnode] = m->latency;
1192         }
1193 }
1194
1195 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1196                                       int index)
1197 {
1198         struct mdesc_mlgroup *candidate = NULL;
1199         u64 arc, best_latency = ~(u64)0;
1200         struct node_mem_mask *n;
1201
1202         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1203                 u64 target = mdesc_arc_target(md, arc);
1204                 struct mdesc_mlgroup *m = find_mlgroup(target);
1205                 if (!m)
1206                         continue;
1207                 if (m->latency < best_latency) {
1208                         candidate = m;
1209                         best_latency = m->latency;
1210                 }
1211         }
1212         if (!candidate)
1213                 return -ENOENT;
1214
1215         if (num_node_masks != index) {
1216                 printk(KERN_ERR "Inconsistent NUMA state, "
1217                        "index[%d] != num_node_masks[%d]\n",
1218                        index, num_node_masks);
1219                 return -EINVAL;
1220         }
1221
1222         n = &node_masks[num_node_masks++];
1223
1224         n->mask = candidate->mask;
1225         n->val = candidate->match;
1226
1227         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1228                 index, n->mask, n->val, candidate->latency);
1229
1230         return 0;
1231 }
1232
1233 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1234                                          int index)
1235 {
1236         cpumask_t mask;
1237         int cpu;
1238
1239         numa_parse_mdesc_group_cpus(md, grp, &mask);
1240
1241         for_each_cpu(cpu, &mask)
1242                 numa_cpu_lookup_table[cpu] = index;
1243         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1244
1245         if (numa_debug) {
1246                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1247                 for_each_cpu(cpu, &mask)
1248                         printk("%d ", cpu);
1249                 printk("]\n");
1250         }
1251
1252         return numa_attach_mlgroup(md, grp, index);
1253 }
1254
1255 static int __init numa_parse_mdesc(void)
1256 {
1257         struct mdesc_handle *md = mdesc_grab();
1258         int i, j, err, count;
1259         u64 node;
1260
1261         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1262         if (node == MDESC_NODE_NULL) {
1263                 mdesc_release(md);
1264                 return -ENOENT;
1265         }
1266
1267         err = grab_mblocks(md);
1268         if (err < 0)
1269                 goto out;
1270
1271         err = grab_mlgroups(md);
1272         if (err < 0)
1273                 goto out;
1274
1275         count = 0;
1276         mdesc_for_each_node_by_name(md, node, "group") {
1277                 err = numa_parse_mdesc_group(md, node, count);
1278                 if (err < 0)
1279                         break;
1280                 count++;
1281         }
1282
1283         count = 0;
1284         mdesc_for_each_node_by_name(md, node, "group") {
1285                 find_numa_latencies_for_group(md, node, count);
1286                 count++;
1287         }
1288
1289         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1290         for (i = 0; i < MAX_NUMNODES; i++) {
1291                 u64 self_latency = numa_latency[i][i];
1292
1293                 for (j = 0; j < MAX_NUMNODES; j++) {
1294                         numa_latency[i][j] =
1295                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1296                                 self_latency;
1297                 }
1298         }
1299
1300         add_node_ranges();
1301
1302         for (i = 0; i < num_node_masks; i++) {
1303                 allocate_node_data(i);
1304                 node_set_online(i);
1305         }
1306
1307         err = 0;
1308 out:
1309         mdesc_release(md);
1310         return err;
1311 }
1312
1313 static int __init numa_parse_jbus(void)
1314 {
1315         unsigned long cpu, index;
1316
1317         /* NUMA node id is encoded in bits 36 and higher, and there is
1318          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1319          */
1320         index = 0;
1321         for_each_present_cpu(cpu) {
1322                 numa_cpu_lookup_table[cpu] = index;
1323                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1324                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1325                 node_masks[index].val = cpu << 36UL;
1326
1327                 index++;
1328         }
1329         num_node_masks = index;
1330
1331         add_node_ranges();
1332
1333         for (index = 0; index < num_node_masks; index++) {
1334                 allocate_node_data(index);
1335                 node_set_online(index);
1336         }
1337
1338         return 0;
1339 }
1340
1341 static int __init numa_parse_sun4u(void)
1342 {
1343         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1344                 unsigned long ver;
1345
1346                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1347                 if ((ver >> 32UL) == __JALAPENO_ID ||
1348                     (ver >> 32UL) == __SERRANO_ID)
1349                         return numa_parse_jbus();
1350         }
1351         return -1;
1352 }
1353
1354 static int __init bootmem_init_numa(void)
1355 {
1356         int i, j;
1357         int err = -1;
1358
1359         numadbg("bootmem_init_numa()\n");
1360
1361         /* Some sane defaults for numa latency values */
1362         for (i = 0; i < MAX_NUMNODES; i++) {
1363                 for (j = 0; j < MAX_NUMNODES; j++)
1364                         numa_latency[i][j] = (i == j) ?
1365                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1366         }
1367
1368         if (numa_enabled) {
1369                 if (tlb_type == hypervisor)
1370                         err = numa_parse_mdesc();
1371                 else
1372                         err = numa_parse_sun4u();
1373         }
1374         return err;
1375 }
1376
1377 #else
1378
1379 static int bootmem_init_numa(void)
1380 {
1381         return -1;
1382 }
1383
1384 #endif
1385
1386 static void __init bootmem_init_nonnuma(void)
1387 {
1388         unsigned long top_of_ram = memblock_end_of_DRAM();
1389         unsigned long total_ram = memblock_phys_mem_size();
1390
1391         numadbg("bootmem_init_nonnuma()\n");
1392
1393         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1394                top_of_ram, total_ram);
1395         printk(KERN_INFO "Memory hole size: %ldMB\n",
1396                (top_of_ram - total_ram) >> 20);
1397
1398         init_node_masks_nonnuma();
1399         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1400         allocate_node_data(0);
1401         node_set_online(0);
1402 }
1403
1404 static unsigned long __init bootmem_init(unsigned long phys_base)
1405 {
1406         unsigned long end_pfn;
1407
1408         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1409         max_pfn = max_low_pfn = end_pfn;
1410         min_low_pfn = (phys_base >> PAGE_SHIFT);
1411
1412         if (bootmem_init_numa() < 0)
1413                 bootmem_init_nonnuma();
1414
1415         /* Dump memblock with node info. */
1416         memblock_dump_all();
1417
1418         /* XXX cpu notifier XXX */
1419
1420         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1421         sparse_init();
1422
1423         return end_pfn;
1424 }
1425
1426 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1427 static int pall_ents __initdata;
1428
1429 static unsigned long max_phys_bits = 40;
1430
1431 bool kern_addr_valid(unsigned long addr)
1432 {
1433         pgd_t *pgd;
1434         pud_t *pud;
1435         pmd_t *pmd;
1436         pte_t *pte;
1437
1438         if ((long)addr < 0L) {
1439                 unsigned long pa = __pa(addr);
1440
1441                 if ((addr >> max_phys_bits) != 0UL)
1442                         return false;
1443
1444                 return pfn_valid(pa >> PAGE_SHIFT);
1445         }
1446
1447         if (addr >= (unsigned long) KERNBASE &&
1448             addr < (unsigned long)&_end)
1449                 return true;
1450
1451         pgd = pgd_offset_k(addr);
1452         if (pgd_none(*pgd))
1453                 return 0;
1454
1455         pud = pud_offset(pgd, addr);
1456         if (pud_none(*pud))
1457                 return 0;
1458
1459         if (pud_large(*pud))
1460                 return pfn_valid(pud_pfn(*pud));
1461
1462         pmd = pmd_offset(pud, addr);
1463         if (pmd_none(*pmd))
1464                 return 0;
1465
1466         if (pmd_large(*pmd))
1467                 return pfn_valid(pmd_pfn(*pmd));
1468
1469         pte = pte_offset_kernel(pmd, addr);
1470         if (pte_none(*pte))
1471                 return 0;
1472
1473         return pfn_valid(pte_pfn(*pte));
1474 }
1475 EXPORT_SYMBOL(kern_addr_valid);
1476
1477 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1478                                               unsigned long vend,
1479                                               pud_t *pud)
1480 {
1481         const unsigned long mask16gb = (1UL << 34) - 1UL;
1482         u64 pte_val = vstart;
1483
1484         /* Each PUD is 8GB */
1485         if ((vstart & mask16gb) ||
1486             (vend - vstart <= mask16gb)) {
1487                 pte_val ^= kern_linear_pte_xor[2];
1488                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1489
1490                 return vstart + PUD_SIZE;
1491         }
1492
1493         pte_val ^= kern_linear_pte_xor[3];
1494         pte_val |= _PAGE_PUD_HUGE;
1495
1496         vend = vstart + mask16gb + 1UL;
1497         while (vstart < vend) {
1498                 pud_val(*pud) = pte_val;
1499
1500                 pte_val += PUD_SIZE;
1501                 vstart += PUD_SIZE;
1502                 pud++;
1503         }
1504         return vstart;
1505 }
1506
1507 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1508                                    bool guard)
1509 {
1510         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1511                 return true;
1512
1513         return false;
1514 }
1515
1516 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1517                                               unsigned long vend,
1518                                               pmd_t *pmd)
1519 {
1520         const unsigned long mask256mb = (1UL << 28) - 1UL;
1521         const unsigned long mask2gb = (1UL << 31) - 1UL;
1522         u64 pte_val = vstart;
1523
1524         /* Each PMD is 8MB */
1525         if ((vstart & mask256mb) ||
1526             (vend - vstart <= mask256mb)) {
1527                 pte_val ^= kern_linear_pte_xor[0];
1528                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1529
1530                 return vstart + PMD_SIZE;
1531         }
1532
1533         if ((vstart & mask2gb) ||
1534             (vend - vstart <= mask2gb)) {
1535                 pte_val ^= kern_linear_pte_xor[1];
1536                 pte_val |= _PAGE_PMD_HUGE;
1537                 vend = vstart + mask256mb + 1UL;
1538         } else {
1539                 pte_val ^= kern_linear_pte_xor[2];
1540                 pte_val |= _PAGE_PMD_HUGE;
1541                 vend = vstart + mask2gb + 1UL;
1542         }
1543
1544         while (vstart < vend) {
1545                 pmd_val(*pmd) = pte_val;
1546
1547                 pte_val += PMD_SIZE;
1548                 vstart += PMD_SIZE;
1549                 pmd++;
1550         }
1551
1552         return vstart;
1553 }
1554
1555 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1556                                    bool guard)
1557 {
1558         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1559                 return true;
1560
1561         return false;
1562 }
1563
1564 static unsigned long __ref kernel_map_range(unsigned long pstart,
1565                                             unsigned long pend, pgprot_t prot,
1566                                             bool use_huge)
1567 {
1568         unsigned long vstart = PAGE_OFFSET + pstart;
1569         unsigned long vend = PAGE_OFFSET + pend;
1570         unsigned long alloc_bytes = 0UL;
1571
1572         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1573                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1574                             vstart, vend);
1575                 prom_halt();
1576         }
1577
1578         while (vstart < vend) {
1579                 unsigned long this_end, paddr = __pa(vstart);
1580                 pgd_t *pgd = pgd_offset_k(vstart);
1581                 pud_t *pud;
1582                 pmd_t *pmd;
1583                 pte_t *pte;
1584
1585                 if (pgd_none(*pgd)) {
1586                         pud_t *new;
1587
1588                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1589                         alloc_bytes += PAGE_SIZE;
1590                         pgd_populate(&init_mm, pgd, new);
1591                 }
1592                 pud = pud_offset(pgd, vstart);
1593                 if (pud_none(*pud)) {
1594                         pmd_t *new;
1595
1596                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1597                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1598                                 continue;
1599                         }
1600                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1601                         alloc_bytes += PAGE_SIZE;
1602                         pud_populate(&init_mm, pud, new);
1603                 }
1604
1605                 pmd = pmd_offset(pud, vstart);
1606                 if (pmd_none(*pmd)) {
1607                         pte_t *new;
1608
1609                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1610                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1611                                 continue;
1612                         }
1613                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1614                         alloc_bytes += PAGE_SIZE;
1615                         pmd_populate_kernel(&init_mm, pmd, new);
1616                 }
1617
1618                 pte = pte_offset_kernel(pmd, vstart);
1619                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1620                 if (this_end > vend)
1621                         this_end = vend;
1622
1623                 while (vstart < this_end) {
1624                         pte_val(*pte) = (paddr | pgprot_val(prot));
1625
1626                         vstart += PAGE_SIZE;
1627                         paddr += PAGE_SIZE;
1628                         pte++;
1629                 }
1630         }
1631
1632         return alloc_bytes;
1633 }
1634
1635 static void __init flush_all_kernel_tsbs(void)
1636 {
1637         int i;
1638
1639         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1640                 struct tsb *ent = &swapper_tsb[i];
1641
1642                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1643         }
1644 #ifndef CONFIG_DEBUG_PAGEALLOC
1645         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1646                 struct tsb *ent = &swapper_4m_tsb[i];
1647
1648                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1649         }
1650 #endif
1651 }
1652
1653 extern unsigned int kvmap_linear_patch[1];
1654
1655 static void __init kernel_physical_mapping_init(void)
1656 {
1657         unsigned long i, mem_alloced = 0UL;
1658         bool use_huge = true;
1659
1660 #ifdef CONFIG_DEBUG_PAGEALLOC
1661         use_huge = false;
1662 #endif
1663         for (i = 0; i < pall_ents; i++) {
1664                 unsigned long phys_start, phys_end;
1665
1666                 phys_start = pall[i].phys_addr;
1667                 phys_end = phys_start + pall[i].reg_size;
1668
1669                 mem_alloced += kernel_map_range(phys_start, phys_end,
1670                                                 PAGE_KERNEL, use_huge);
1671         }
1672
1673         printk("Allocated %ld bytes for kernel page tables.\n",
1674                mem_alloced);
1675
1676         kvmap_linear_patch[0] = 0x01000000; /* nop */
1677         flushi(&kvmap_linear_patch[0]);
1678
1679         flush_all_kernel_tsbs();
1680
1681         __flush_tlb_all();
1682 }
1683
1684 #ifdef CONFIG_DEBUG_PAGEALLOC
1685 void __kernel_map_pages(struct page *page, int numpages, int enable)
1686 {
1687         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1688         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1689
1690         kernel_map_range(phys_start, phys_end,
1691                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1692
1693         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1694                                PAGE_OFFSET + phys_end);
1695
1696         /* we should perform an IPI and flush all tlbs,
1697          * but that can deadlock->flush only current cpu.
1698          */
1699         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1700                                  PAGE_OFFSET + phys_end);
1701 }
1702 #endif
1703
1704 unsigned long __init find_ecache_flush_span(unsigned long size)
1705 {
1706         int i;
1707
1708         for (i = 0; i < pavail_ents; i++) {
1709                 if (pavail[i].reg_size >= size)
1710                         return pavail[i].phys_addr;
1711         }
1712
1713         return ~0UL;
1714 }
1715
1716 unsigned long PAGE_OFFSET;
1717 EXPORT_SYMBOL(PAGE_OFFSET);
1718
1719 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1720 EXPORT_SYMBOL(VMALLOC_END);
1721
1722 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1723 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1724
1725 static void __init setup_page_offset(void)
1726 {
1727         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1728                 /* Cheetah/Panther support a full 64-bit virtual
1729                  * address, so we can use all that our page tables
1730                  * support.
1731                  */
1732                 sparc64_va_hole_top =    0xfff0000000000000UL;
1733                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1734
1735                 max_phys_bits = 42;
1736         } else if (tlb_type == hypervisor) {
1737                 switch (sun4v_chip_type) {
1738                 case SUN4V_CHIP_NIAGARA1:
1739                 case SUN4V_CHIP_NIAGARA2:
1740                         /* T1 and T2 support 48-bit virtual addresses.  */
1741                         sparc64_va_hole_top =    0xffff800000000000UL;
1742                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1743
1744                         max_phys_bits = 39;
1745                         break;
1746                 case SUN4V_CHIP_NIAGARA3:
1747                         /* T3 supports 48-bit virtual addresses.  */
1748                         sparc64_va_hole_top =    0xffff800000000000UL;
1749                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1750
1751                         max_phys_bits = 43;
1752                         break;
1753                 case SUN4V_CHIP_NIAGARA4:
1754                 case SUN4V_CHIP_NIAGARA5:
1755                 case SUN4V_CHIP_SPARC64X:
1756                 case SUN4V_CHIP_SPARC_M6:
1757                         /* T4 and later support 52-bit virtual addresses.  */
1758                         sparc64_va_hole_top =    0xfff8000000000000UL;
1759                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1760                         max_phys_bits = 47;
1761                         break;
1762                 case SUN4V_CHIP_SPARC_M7:
1763                 case SUN4V_CHIP_SPARC_SN:
1764                 default:
1765                         /* M7 and later support 52-bit virtual addresses.  */
1766                         sparc64_va_hole_top =    0xfff8000000000000UL;
1767                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1768                         max_phys_bits = 49;
1769                         break;
1770                 }
1771         }
1772
1773         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1774                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1775                             max_phys_bits);
1776                 prom_halt();
1777         }
1778
1779         PAGE_OFFSET = sparc64_va_hole_top;
1780         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1781                        (sparc64_va_hole_bottom >> 2));
1782
1783         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1784                 PAGE_OFFSET, max_phys_bits);
1785         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1786                 VMALLOC_START, VMALLOC_END);
1787         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1788                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1789 }
1790
1791 static void __init tsb_phys_patch(void)
1792 {
1793         struct tsb_ldquad_phys_patch_entry *pquad;
1794         struct tsb_phys_patch_entry *p;
1795
1796         pquad = &__tsb_ldquad_phys_patch;
1797         while (pquad < &__tsb_ldquad_phys_patch_end) {
1798                 unsigned long addr = pquad->addr;
1799
1800                 if (tlb_type == hypervisor)
1801                         *(unsigned int *) addr = pquad->sun4v_insn;
1802                 else
1803                         *(unsigned int *) addr = pquad->sun4u_insn;
1804                 wmb();
1805                 __asm__ __volatile__("flush     %0"
1806                                      : /* no outputs */
1807                                      : "r" (addr));
1808
1809                 pquad++;
1810         }
1811
1812         p = &__tsb_phys_patch;
1813         while (p < &__tsb_phys_patch_end) {
1814                 unsigned long addr = p->addr;
1815
1816                 *(unsigned int *) addr = p->insn;
1817                 wmb();
1818                 __asm__ __volatile__("flush     %0"
1819                                      : /* no outputs */
1820                                      : "r" (addr));
1821
1822                 p++;
1823         }
1824 }
1825
1826 /* Don't mark as init, we give this to the Hypervisor.  */
1827 #ifndef CONFIG_DEBUG_PAGEALLOC
1828 #define NUM_KTSB_DESCR  2
1829 #else
1830 #define NUM_KTSB_DESCR  1
1831 #endif
1832 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1833
1834 /* The swapper TSBs are loaded with a base sequence of:
1835  *
1836  *      sethi   %uhi(SYMBOL), REG1
1837  *      sethi   %hi(SYMBOL), REG2
1838  *      or      REG1, %ulo(SYMBOL), REG1
1839  *      or      REG2, %lo(SYMBOL), REG2
1840  *      sllx    REG1, 32, REG1
1841  *      or      REG1, REG2, REG1
1842  *
1843  * When we use physical addressing for the TSB accesses, we patch the
1844  * first four instructions in the above sequence.
1845  */
1846
1847 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1848 {
1849         unsigned long high_bits, low_bits;
1850
1851         high_bits = (pa >> 32) & 0xffffffff;
1852         low_bits = (pa >> 0) & 0xffffffff;
1853
1854         while (start < end) {
1855                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1856
1857                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1858                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1859
1860                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1861                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1862
1863                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1864                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
1865
1866                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1867                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
1868
1869                 start++;
1870         }
1871 }
1872
1873 static void ktsb_phys_patch(void)
1874 {
1875         extern unsigned int __swapper_tsb_phys_patch;
1876         extern unsigned int __swapper_tsb_phys_patch_end;
1877         unsigned long ktsb_pa;
1878
1879         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1880         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1881                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1882 #ifndef CONFIG_DEBUG_PAGEALLOC
1883         {
1884         extern unsigned int __swapper_4m_tsb_phys_patch;
1885         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1886         ktsb_pa = (kern_base +
1887                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1888         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1889                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1890         }
1891 #endif
1892 }
1893
1894 static void __init sun4v_ktsb_init(void)
1895 {
1896         unsigned long ktsb_pa;
1897
1898         /* First KTSB for PAGE_SIZE mappings.  */
1899         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1900
1901         switch (PAGE_SIZE) {
1902         case 8 * 1024:
1903         default:
1904                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1905                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1906                 break;
1907
1908         case 64 * 1024:
1909                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1910                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1911                 break;
1912
1913         case 512 * 1024:
1914                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1915                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1916                 break;
1917
1918         case 4 * 1024 * 1024:
1919                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1920                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1921                 break;
1922         }
1923
1924         ktsb_descr[0].assoc = 1;
1925         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1926         ktsb_descr[0].ctx_idx = 0;
1927         ktsb_descr[0].tsb_base = ktsb_pa;
1928         ktsb_descr[0].resv = 0;
1929
1930 #ifndef CONFIG_DEBUG_PAGEALLOC
1931         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1932         ktsb_pa = (kern_base +
1933                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1934
1935         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1936         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1937                                     HV_PGSZ_MASK_256MB |
1938                                     HV_PGSZ_MASK_2GB |
1939                                     HV_PGSZ_MASK_16GB) &
1940                                    cpu_pgsz_mask);
1941         ktsb_descr[1].assoc = 1;
1942         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1943         ktsb_descr[1].ctx_idx = 0;
1944         ktsb_descr[1].tsb_base = ktsb_pa;
1945         ktsb_descr[1].resv = 0;
1946 #endif
1947 }
1948
1949 void sun4v_ktsb_register(void)
1950 {
1951         unsigned long pa, ret;
1952
1953         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1954
1955         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1956         if (ret != 0) {
1957                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1958                             "errors with %lx\n", pa, ret);
1959                 prom_halt();
1960         }
1961 }
1962
1963 static void __init sun4u_linear_pte_xor_finalize(void)
1964 {
1965 #ifndef CONFIG_DEBUG_PAGEALLOC
1966         /* This is where we would add Panther support for
1967          * 32MB and 256MB pages.
1968          */
1969 #endif
1970 }
1971
1972 static void __init sun4v_linear_pte_xor_finalize(void)
1973 {
1974         unsigned long pagecv_flag;
1975
1976         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1977          * enables MCD error. Do not set bit 9 on M7 processor.
1978          */
1979         switch (sun4v_chip_type) {
1980         case SUN4V_CHIP_SPARC_M7:
1981         case SUN4V_CHIP_SPARC_SN:
1982                 pagecv_flag = 0x00;
1983                 break;
1984         default:
1985                 pagecv_flag = _PAGE_CV_4V;
1986                 break;
1987         }
1988 #ifndef CONFIG_DEBUG_PAGEALLOC
1989         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1990                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1991                         PAGE_OFFSET;
1992                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
1993                                            _PAGE_P_4V | _PAGE_W_4V);
1994         } else {
1995                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1996         }
1997
1998         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1999                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2000                         PAGE_OFFSET;
2001                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2002                                            _PAGE_P_4V | _PAGE_W_4V);
2003         } else {
2004                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2005         }
2006
2007         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2008                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2009                         PAGE_OFFSET;
2010                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2011                                            _PAGE_P_4V | _PAGE_W_4V);
2012         } else {
2013                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2014         }
2015 #endif
2016 }
2017
2018 /* paging_init() sets up the page tables */
2019
2020 static unsigned long last_valid_pfn;
2021
2022 static void sun4u_pgprot_init(void);
2023 static void sun4v_pgprot_init(void);
2024
2025 static phys_addr_t __init available_memory(void)
2026 {
2027         phys_addr_t available = 0ULL;
2028         phys_addr_t pa_start, pa_end;
2029         u64 i;
2030
2031         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2032                                 &pa_end, NULL)
2033                 available = available + (pa_end  - pa_start);
2034
2035         return available;
2036 }
2037
2038 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2039 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2040 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2041 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2042 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2043 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2044
2045 /* We need to exclude reserved regions. This exclusion will include
2046  * vmlinux and initrd. To be more precise the initrd size could be used to
2047  * compute a new lower limit because it is freed later during initialization.
2048  */
2049 static void __init reduce_memory(phys_addr_t limit_ram)
2050 {
2051         phys_addr_t avail_ram = available_memory();
2052         phys_addr_t pa_start, pa_end;
2053         u64 i;
2054
2055         if (limit_ram >= avail_ram)
2056                 return;
2057
2058         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2059                                 &pa_end, NULL) {
2060                 phys_addr_t region_size = pa_end - pa_start;
2061                 phys_addr_t clip_start = pa_start;
2062
2063                 avail_ram = avail_ram - region_size;
2064                 /* Are we consuming too much? */
2065                 if (avail_ram < limit_ram) {
2066                         phys_addr_t give_back = limit_ram - avail_ram;
2067
2068                         region_size = region_size - give_back;
2069                         clip_start = clip_start + give_back;
2070                 }
2071
2072                 memblock_remove(clip_start, region_size);
2073
2074                 if (avail_ram <= limit_ram)
2075                         break;
2076                 i = 0UL;
2077         }
2078 }
2079
2080 void __init paging_init(void)
2081 {
2082         unsigned long end_pfn, shift, phys_base;
2083         unsigned long real_end, i;
2084
2085         setup_page_offset();
2086
2087         /* These build time checkes make sure that the dcache_dirty_cpu()
2088          * page->flags usage will work.
2089          *
2090          * When a page gets marked as dcache-dirty, we store the
2091          * cpu number starting at bit 32 in the page->flags.  Also,
2092          * functions like clear_dcache_dirty_cpu use the cpu mask
2093          * in 13-bit signed-immediate instruction fields.
2094          */
2095
2096         /*
2097          * Page flags must not reach into upper 32 bits that are used
2098          * for the cpu number
2099          */
2100         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2101
2102         /*
2103          * The bit fields placed in the high range must not reach below
2104          * the 32 bit boundary. Otherwise we cannot place the cpu field
2105          * at the 32 bit boundary.
2106          */
2107         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2108                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2109
2110         BUILD_BUG_ON(NR_CPUS > 4096);
2111
2112         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2113         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2114
2115         /* Invalidate both kernel TSBs.  */
2116         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2117 #ifndef CONFIG_DEBUG_PAGEALLOC
2118         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2119 #endif
2120
2121         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2122          * bit on M7 processor. This is a conflicting usage of the same
2123          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2124          * Detection error on all pages and this will lead to problems
2125          * later. Kernel does not run with MCD enabled and hence rest
2126          * of the required steps to fully configure memory corruption
2127          * detection are not taken. We need to ensure TTE.mcde is not
2128          * set on M7 processor. Compute the value of cacheability
2129          * flag for use later taking this into consideration.
2130          */
2131         switch (sun4v_chip_type) {
2132         case SUN4V_CHIP_SPARC_M7:
2133         case SUN4V_CHIP_SPARC_SN:
2134                 page_cache4v_flag = _PAGE_CP_4V;
2135                 break;
2136         default:
2137                 page_cache4v_flag = _PAGE_CACHE_4V;
2138                 break;
2139         }
2140
2141         if (tlb_type == hypervisor)
2142                 sun4v_pgprot_init();
2143         else
2144                 sun4u_pgprot_init();
2145
2146         if (tlb_type == cheetah_plus ||
2147             tlb_type == hypervisor) {
2148                 tsb_phys_patch();
2149                 ktsb_phys_patch();
2150         }
2151
2152         if (tlb_type == hypervisor)
2153                 sun4v_patch_tlb_handlers();
2154
2155         /* Find available physical memory...
2156          *
2157          * Read it twice in order to work around a bug in openfirmware.
2158          * The call to grab this table itself can cause openfirmware to
2159          * allocate memory, which in turn can take away some space from
2160          * the list of available memory.  Reading it twice makes sure
2161          * we really do get the final value.
2162          */
2163         read_obp_translations();
2164         read_obp_memory("reg", &pall[0], &pall_ents);
2165         read_obp_memory("available", &pavail[0], &pavail_ents);
2166         read_obp_memory("available", &pavail[0], &pavail_ents);
2167
2168         phys_base = 0xffffffffffffffffUL;
2169         for (i = 0; i < pavail_ents; i++) {
2170                 phys_base = min(phys_base, pavail[i].phys_addr);
2171                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2172         }
2173
2174         memblock_reserve(kern_base, kern_size);
2175
2176         find_ramdisk(phys_base);
2177
2178         if (cmdline_memory_size)
2179                 reduce_memory(cmdline_memory_size);
2180
2181         memblock_allow_resize();
2182         memblock_dump_all();
2183
2184         set_bit(0, mmu_context_bmap);
2185
2186         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2187
2188         real_end = (unsigned long)_end;
2189         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2190         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2191                num_kernel_image_mappings);
2192
2193         /* Set kernel pgd to upper alias so physical page computations
2194          * work.
2195          */
2196         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2197         
2198         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2199
2200         inherit_prom_mappings();
2201         
2202         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2203         setup_tba();
2204
2205         __flush_tlb_all();
2206
2207         prom_build_devicetree();
2208         of_populate_present_mask();
2209 #ifndef CONFIG_SMP
2210         of_fill_in_cpu_data();
2211 #endif
2212
2213         if (tlb_type == hypervisor) {
2214                 sun4v_mdesc_init();
2215                 mdesc_populate_present_mask(cpu_all_mask);
2216 #ifndef CONFIG_SMP
2217                 mdesc_fill_in_cpu_data(cpu_all_mask);
2218 #endif
2219                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2220
2221                 sun4v_linear_pte_xor_finalize();
2222
2223                 sun4v_ktsb_init();
2224                 sun4v_ktsb_register();
2225         } else {
2226                 unsigned long impl, ver;
2227
2228                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2229                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2230
2231                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2232                 impl = ((ver >> 32) & 0xffff);
2233                 if (impl == PANTHER_IMPL)
2234                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2235                                           HV_PGSZ_MASK_256MB);
2236
2237                 sun4u_linear_pte_xor_finalize();
2238         }
2239
2240         /* Flush the TLBs and the 4M TSB so that the updated linear
2241          * pte XOR settings are realized for all mappings.
2242          */
2243         __flush_tlb_all();
2244 #ifndef CONFIG_DEBUG_PAGEALLOC
2245         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2246 #endif
2247         __flush_tlb_all();
2248
2249         /* Setup bootmem... */
2250         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2251
2252         kernel_physical_mapping_init();
2253
2254         {
2255                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2256
2257                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2258
2259                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2260
2261                 free_area_init_nodes(max_zone_pfns);
2262         }
2263
2264         printk("Booting Linux...\n");
2265 }
2266
2267 int page_in_phys_avail(unsigned long paddr)
2268 {
2269         int i;
2270
2271         paddr &= PAGE_MASK;
2272
2273         for (i = 0; i < pavail_ents; i++) {
2274                 unsigned long start, end;
2275
2276                 start = pavail[i].phys_addr;
2277                 end = start + pavail[i].reg_size;
2278
2279                 if (paddr >= start && paddr < end)
2280                         return 1;
2281         }
2282         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2283                 return 1;
2284 #ifdef CONFIG_BLK_DEV_INITRD
2285         if (paddr >= __pa(initrd_start) &&
2286             paddr < __pa(PAGE_ALIGN(initrd_end)))
2287                 return 1;
2288 #endif
2289
2290         return 0;
2291 }
2292
2293 static void __init register_page_bootmem_info(void)
2294 {
2295 #ifdef CONFIG_NEED_MULTIPLE_NODES
2296         int i;
2297
2298         for_each_online_node(i)
2299                 if (NODE_DATA(i)->node_spanned_pages)
2300                         register_page_bootmem_info_node(NODE_DATA(i));
2301 #endif
2302 }
2303 void __init mem_init(void)
2304 {
2305         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2306
2307         register_page_bootmem_info();
2308         free_all_bootmem();
2309
2310         /*
2311          * Set up the zero page, mark it reserved, so that page count
2312          * is not manipulated when freeing the page from user ptes.
2313          */
2314         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2315         if (mem_map_zero == NULL) {
2316                 prom_printf("paging_init: Cannot alloc zero page.\n");
2317                 prom_halt();
2318         }
2319         mark_page_reserved(mem_map_zero);
2320
2321         mem_init_print_info(NULL);
2322
2323         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2324                 cheetah_ecache_flush_init();
2325 }
2326
2327 void free_initmem(void)
2328 {
2329         unsigned long addr, initend;
2330         int do_free = 1;
2331
2332         /* If the physical memory maps were trimmed by kernel command
2333          * line options, don't even try freeing this initmem stuff up.
2334          * The kernel image could have been in the trimmed out region
2335          * and if so the freeing below will free invalid page structs.
2336          */
2337         if (cmdline_memory_size)
2338                 do_free = 0;
2339
2340         /*
2341          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2342          */
2343         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2344         initend = (unsigned long)(__init_end) & PAGE_MASK;
2345         for (; addr < initend; addr += PAGE_SIZE) {
2346                 unsigned long page;
2347
2348                 page = (addr +
2349                         ((unsigned long) __va(kern_base)) -
2350                         ((unsigned long) KERNBASE));
2351                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2352
2353                 if (do_free)
2354                         free_reserved_page(virt_to_page(page));
2355         }
2356 }
2357
2358 #ifdef CONFIG_BLK_DEV_INITRD
2359 void free_initrd_mem(unsigned long start, unsigned long end)
2360 {
2361         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2362                            "initrd");
2363 }
2364 #endif
2365
2366 pgprot_t PAGE_KERNEL __read_mostly;
2367 EXPORT_SYMBOL(PAGE_KERNEL);
2368
2369 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2370 pgprot_t PAGE_COPY __read_mostly;
2371
2372 pgprot_t PAGE_SHARED __read_mostly;
2373 EXPORT_SYMBOL(PAGE_SHARED);
2374
2375 unsigned long pg_iobits __read_mostly;
2376
2377 unsigned long _PAGE_IE __read_mostly;
2378 EXPORT_SYMBOL(_PAGE_IE);
2379
2380 unsigned long _PAGE_E __read_mostly;
2381 EXPORT_SYMBOL(_PAGE_E);
2382
2383 unsigned long _PAGE_CACHE __read_mostly;
2384 EXPORT_SYMBOL(_PAGE_CACHE);
2385
2386 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2387 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2388                                int node)
2389 {
2390         unsigned long pte_base;
2391
2392         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2393                     _PAGE_CP_4U | _PAGE_CV_4U |
2394                     _PAGE_P_4U | _PAGE_W_4U);
2395         if (tlb_type == hypervisor)
2396                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2397                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2398
2399         pte_base |= _PAGE_PMD_HUGE;
2400
2401         vstart = vstart & PMD_MASK;
2402         vend = ALIGN(vend, PMD_SIZE);
2403         for (; vstart < vend; vstart += PMD_SIZE) {
2404                 pgd_t *pgd = pgd_offset_k(vstart);
2405                 unsigned long pte;
2406                 pud_t *pud;
2407                 pmd_t *pmd;
2408
2409                 if (pgd_none(*pgd)) {
2410                         pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2411
2412                         if (!new)
2413                                 return -ENOMEM;
2414                         pgd_populate(&init_mm, pgd, new);
2415                 }
2416
2417                 pud = pud_offset(pgd, vstart);
2418                 if (pud_none(*pud)) {
2419                         pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2420
2421                         if (!new)
2422                                 return -ENOMEM;
2423                         pud_populate(&init_mm, pud, new);
2424                 }
2425
2426                 pmd = pmd_offset(pud, vstart);
2427
2428                 pte = pmd_val(*pmd);
2429                 if (!(pte & _PAGE_VALID)) {
2430                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2431
2432                         if (!block)
2433                                 return -ENOMEM;
2434
2435                         pmd_val(*pmd) = pte_base | __pa(block);
2436                 }
2437         }
2438
2439         return 0;
2440 }
2441
2442 void vmemmap_free(unsigned long start, unsigned long end)
2443 {
2444 }
2445 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2446
2447 static void prot_init_common(unsigned long page_none,
2448                              unsigned long page_shared,
2449                              unsigned long page_copy,
2450                              unsigned long page_readonly,
2451                              unsigned long page_exec_bit)
2452 {
2453         PAGE_COPY = __pgprot(page_copy);
2454         PAGE_SHARED = __pgprot(page_shared);
2455
2456         protection_map[0x0] = __pgprot(page_none);
2457         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2458         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2459         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2460         protection_map[0x4] = __pgprot(page_readonly);
2461         protection_map[0x5] = __pgprot(page_readonly);
2462         protection_map[0x6] = __pgprot(page_copy);
2463         protection_map[0x7] = __pgprot(page_copy);
2464         protection_map[0x8] = __pgprot(page_none);
2465         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2466         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2467         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2468         protection_map[0xc] = __pgprot(page_readonly);
2469         protection_map[0xd] = __pgprot(page_readonly);
2470         protection_map[0xe] = __pgprot(page_shared);
2471         protection_map[0xf] = __pgprot(page_shared);
2472 }
2473
2474 static void __init sun4u_pgprot_init(void)
2475 {
2476         unsigned long page_none, page_shared, page_copy, page_readonly;
2477         unsigned long page_exec_bit;
2478         int i;
2479
2480         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2481                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2482                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2483                                 _PAGE_EXEC_4U);
2484         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2485                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2486                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2487                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2488
2489         _PAGE_IE = _PAGE_IE_4U;
2490         _PAGE_E = _PAGE_E_4U;
2491         _PAGE_CACHE = _PAGE_CACHE_4U;
2492
2493         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2494                      __ACCESS_BITS_4U | _PAGE_E_4U);
2495
2496 #ifdef CONFIG_DEBUG_PAGEALLOC
2497         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2498 #else
2499         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2500                 PAGE_OFFSET;
2501 #endif
2502         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2503                                    _PAGE_P_4U | _PAGE_W_4U);
2504
2505         for (i = 1; i < 4; i++)
2506                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2507
2508         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2509                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2510                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2511
2512
2513         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2514         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2515                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2516         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2517                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2518         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2519                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2520
2521         page_exec_bit = _PAGE_EXEC_4U;
2522
2523         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2524                          page_exec_bit);
2525 }
2526
2527 static void __init sun4v_pgprot_init(void)
2528 {
2529         unsigned long page_none, page_shared, page_copy, page_readonly;
2530         unsigned long page_exec_bit;
2531         int i;
2532
2533         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2534                                 page_cache4v_flag | _PAGE_P_4V |
2535                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2536                                 _PAGE_EXEC_4V);
2537         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2538
2539         _PAGE_IE = _PAGE_IE_4V;
2540         _PAGE_E = _PAGE_E_4V;
2541         _PAGE_CACHE = page_cache4v_flag;
2542
2543 #ifdef CONFIG_DEBUG_PAGEALLOC
2544         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2545 #else
2546         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2547                 PAGE_OFFSET;
2548 #endif
2549         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2550                                    _PAGE_W_4V);
2551
2552         for (i = 1; i < 4; i++)
2553                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2554
2555         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2556                      __ACCESS_BITS_4V | _PAGE_E_4V);
2557
2558         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2559                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2560                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2561                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2562
2563         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2564         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2565                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2566         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2567                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2568         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2569                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2570
2571         page_exec_bit = _PAGE_EXEC_4V;
2572
2573         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2574                          page_exec_bit);
2575 }
2576
2577 unsigned long pte_sz_bits(unsigned long sz)
2578 {
2579         if (tlb_type == hypervisor) {
2580                 switch (sz) {
2581                 case 8 * 1024:
2582                 default:
2583                         return _PAGE_SZ8K_4V;
2584                 case 64 * 1024:
2585                         return _PAGE_SZ64K_4V;
2586                 case 512 * 1024:
2587                         return _PAGE_SZ512K_4V;
2588                 case 4 * 1024 * 1024:
2589                         return _PAGE_SZ4MB_4V;
2590                 }
2591         } else {
2592                 switch (sz) {
2593                 case 8 * 1024:
2594                 default:
2595                         return _PAGE_SZ8K_4U;
2596                 case 64 * 1024:
2597                         return _PAGE_SZ64K_4U;
2598                 case 512 * 1024:
2599                         return _PAGE_SZ512K_4U;
2600                 case 4 * 1024 * 1024:
2601                         return _PAGE_SZ4MB_4U;
2602                 }
2603         }
2604 }
2605
2606 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2607 {
2608         pte_t pte;
2609
2610         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2611         pte_val(pte) |= (((unsigned long)space) << 32);
2612         pte_val(pte) |= pte_sz_bits(page_size);
2613
2614         return pte;
2615 }
2616
2617 static unsigned long kern_large_tte(unsigned long paddr)
2618 {
2619         unsigned long val;
2620
2621         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2622                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2623                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2624         if (tlb_type == hypervisor)
2625                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2626                        page_cache4v_flag | _PAGE_P_4V |
2627                        _PAGE_EXEC_4V | _PAGE_W_4V);
2628
2629         return val | paddr;
2630 }
2631
2632 /* If not locked, zap it. */
2633 void __flush_tlb_all(void)
2634 {
2635         unsigned long pstate;
2636         int i;
2637
2638         __asm__ __volatile__("flushw\n\t"
2639                              "rdpr      %%pstate, %0\n\t"
2640                              "wrpr      %0, %1, %%pstate"
2641                              : "=r" (pstate)
2642                              : "i" (PSTATE_IE));
2643         if (tlb_type == hypervisor) {
2644                 sun4v_mmu_demap_all();
2645         } else if (tlb_type == spitfire) {
2646                 for (i = 0; i < 64; i++) {
2647                         /* Spitfire Errata #32 workaround */
2648                         /* NOTE: Always runs on spitfire, so no
2649                          *       cheetah+ page size encodings.
2650                          */
2651                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2652                                              "flush     %%g6"
2653                                              : /* No outputs */
2654                                              : "r" (0),
2655                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2656
2657                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2658                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2659                                                      "membar #Sync"
2660                                                      : /* no outputs */
2661                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2662                                 spitfire_put_dtlb_data(i, 0x0UL);
2663                         }
2664
2665                         /* Spitfire Errata #32 workaround */
2666                         /* NOTE: Always runs on spitfire, so no
2667                          *       cheetah+ page size encodings.
2668                          */
2669                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2670                                              "flush     %%g6"
2671                                              : /* No outputs */
2672                                              : "r" (0),
2673                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2674
2675                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2676                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2677                                                      "membar #Sync"
2678                                                      : /* no outputs */
2679                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2680                                 spitfire_put_itlb_data(i, 0x0UL);
2681                         }
2682                 }
2683         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2684                 cheetah_flush_dtlb_all();
2685                 cheetah_flush_itlb_all();
2686         }
2687         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2688                              : : "r" (pstate));
2689 }
2690
2691 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2692                             unsigned long address)
2693 {
2694         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2695         pte_t *pte = NULL;
2696
2697         if (page)
2698                 pte = (pte_t *) page_address(page);
2699
2700         return pte;
2701 }
2702
2703 pgtable_t pte_alloc_one(struct mm_struct *mm,
2704                         unsigned long address)
2705 {
2706         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2707         if (!page)
2708                 return NULL;
2709         if (!pgtable_page_ctor(page)) {
2710                 free_hot_cold_page(page, 0);
2711                 return NULL;
2712         }
2713         return (pte_t *) page_address(page);
2714 }
2715
2716 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2717 {
2718         free_page((unsigned long)pte);
2719 }
2720
2721 static void __pte_free(pgtable_t pte)
2722 {
2723         struct page *page = virt_to_page(pte);
2724
2725         pgtable_page_dtor(page);
2726         __free_page(page);
2727 }
2728
2729 void pte_free(struct mm_struct *mm, pgtable_t pte)
2730 {
2731         __pte_free(pte);
2732 }
2733
2734 void pgtable_free(void *table, bool is_page)
2735 {
2736         if (is_page)
2737                 __pte_free(table);
2738         else
2739                 kmem_cache_free(pgtable_cache, table);
2740 }
2741
2742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2743 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2744                           pmd_t *pmd)
2745 {
2746         unsigned long pte, flags;
2747         struct mm_struct *mm;
2748         pmd_t entry = *pmd;
2749
2750         if (!pmd_large(entry) || !pmd_young(entry))
2751                 return;
2752
2753         pte = pmd_val(entry);
2754
2755         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2756         if (!(pte & _PAGE_VALID))
2757                 return;
2758
2759         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2760         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2761
2762         mm = vma->vm_mm;
2763
2764         spin_lock_irqsave(&mm->context.lock, flags);
2765
2766         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2767                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2768                                         addr, pte);
2769
2770         spin_unlock_irqrestore(&mm->context.lock, flags);
2771 }
2772 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2773
2774 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2775 static void context_reload(void *__data)
2776 {
2777         struct mm_struct *mm = __data;
2778
2779         if (mm == current->mm)
2780                 load_secondary_context(mm);
2781 }
2782
2783 void hugetlb_setup(struct pt_regs *regs)
2784 {
2785         struct mm_struct *mm = current->mm;
2786         struct tsb_config *tp;
2787
2788         if (faulthandler_disabled() || !mm) {
2789                 const struct exception_table_entry *entry;
2790
2791                 entry = search_exception_tables(regs->tpc);
2792                 if (entry) {
2793                         regs->tpc = entry->fixup;
2794                         regs->tnpc = regs->tpc + 4;
2795                         return;
2796                 }
2797                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2798                 die_if_kernel("HugeTSB in atomic", regs);
2799         }
2800
2801         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2802         if (likely(tp->tsb == NULL))
2803                 tsb_grow(mm, MM_TSB_HUGE, 0);
2804
2805         tsb_context_switch(mm);
2806         smp_tsb_sync(mm);
2807
2808         /* On UltraSPARC-III+ and later, configure the second half of
2809          * the Data-TLB for huge pages.
2810          */
2811         if (tlb_type == cheetah_plus) {
2812                 bool need_context_reload = false;
2813                 unsigned long ctx;
2814
2815                 spin_lock_irq(&ctx_alloc_lock);
2816                 ctx = mm->context.sparc64_ctx_val;
2817                 ctx &= ~CTX_PGSZ_MASK;
2818                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2819                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2820
2821                 if (ctx != mm->context.sparc64_ctx_val) {
2822                         /* When changing the page size fields, we
2823                          * must perform a context flush so that no
2824                          * stale entries match.  This flush must
2825                          * occur with the original context register
2826                          * settings.
2827                          */
2828                         do_flush_tlb_mm(mm);
2829
2830                         /* Reload the context register of all processors
2831                          * also executing in this address space.
2832                          */
2833                         mm->context.sparc64_ctx_val = ctx;
2834                         need_context_reload = true;
2835                 }
2836                 spin_unlock_irq(&ctx_alloc_lock);
2837
2838                 if (need_context_reload)
2839                         on_each_cpu(context_reload, mm, 0);
2840         }
2841 }
2842 #endif
2843
2844 static struct resource code_resource = {
2845         .name   = "Kernel code",
2846         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2847 };
2848
2849 static struct resource data_resource = {
2850         .name   = "Kernel data",
2851         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2852 };
2853
2854 static struct resource bss_resource = {
2855         .name   = "Kernel bss",
2856         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2857 };
2858
2859 static inline resource_size_t compute_kern_paddr(void *addr)
2860 {
2861         return (resource_size_t) (addr - KERNBASE + kern_base);
2862 }
2863
2864 static void __init kernel_lds_init(void)
2865 {
2866         code_resource.start = compute_kern_paddr(_text);
2867         code_resource.end   = compute_kern_paddr(_etext - 1);
2868         data_resource.start = compute_kern_paddr(_etext);
2869         data_resource.end   = compute_kern_paddr(_edata - 1);
2870         bss_resource.start  = compute_kern_paddr(__bss_start);
2871         bss_resource.end    = compute_kern_paddr(_end - 1);
2872 }
2873
2874 static int __init report_memory(void)
2875 {
2876         int i;
2877         struct resource *res;
2878
2879         kernel_lds_init();
2880
2881         for (i = 0; i < pavail_ents; i++) {
2882                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2883
2884                 if (!res) {
2885                         pr_warn("Failed to allocate source.\n");
2886                         break;
2887                 }
2888
2889                 res->name = "System RAM";
2890                 res->start = pavail[i].phys_addr;
2891                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2892                 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2893
2894                 if (insert_resource(&iomem_resource, res) < 0) {
2895                         pr_warn("Resource insertion failed.\n");
2896                         break;
2897                 }
2898
2899                 insert_resource(res, &code_resource);
2900                 insert_resource(res, &data_resource);
2901                 insert_resource(res, &bss_resource);
2902         }
2903
2904         return 0;
2905 }
2906 arch_initcall(report_memory);
2907
2908 #ifdef CONFIG_SMP
2909 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
2910 #else
2911 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
2912 #endif
2913
2914 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2915 {
2916         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2917                 if (start < LOW_OBP_ADDRESS) {
2918                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2919                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2920                 }
2921                 if (end > HI_OBP_ADDRESS) {
2922                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2923                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2924                 }
2925         } else {
2926                 flush_tsb_kernel_range(start, end);
2927                 do_flush_tlb_kernel_range(start, end);
2928         }
2929 }