Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[cascardo/linux.git] / arch / sparc / mm / srmmu.c
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/gfp.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24
25 #include <asm/mmu_context.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/io-unit.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/bitext.h>
32 #include <asm/vaddrs.h>
33 #include <asm/cache.h>
34 #include <asm/traps.h>
35 #include <asm/oplib.h>
36 #include <asm/mbus.h>
37 #include <asm/page.h>
38 #include <asm/asi.h>
39 #include <asm/msi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51
52 #include "mm_32.h"
53
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 int vac_line_size;
58
59 extern struct resource sparc_iomap;
60
61 extern unsigned long last_valid_pfn;
62
63 static pgd_t *srmmu_swapper_pg_dir;
64
65 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66 EXPORT_SYMBOL(sparc32_cachetlb_ops);
67
68 #ifdef CONFIG_SMP
69 const struct sparc32_cachetlb_ops *local_ops;
70
71 #define FLUSH_BEGIN(mm)
72 #define FLUSH_END
73 #else
74 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
75 #define FLUSH_END       }
76 #endif
77
78 int flush_page_for_dma_global = 1;
79
80 char *srmmu_name;
81
82 ctxd_t *srmmu_ctx_table_phys;
83 static ctxd_t *srmmu_context_table;
84
85 int viking_mxcc_present;
86 static DEFINE_SPINLOCK(srmmu_context_spinlock);
87
88 static int is_hypersparc;
89
90 static int srmmu_cache_pagetables;
91
92 /* these will be initialized in srmmu_nocache_calcsize() */
93 static unsigned long srmmu_nocache_size;
94 static unsigned long srmmu_nocache_end;
95
96 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
98
99 /* The context table is a nocache user with the biggest alignment needs. */
100 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
101
102 void *srmmu_nocache_pool;
103 static struct bit_map srmmu_nocache_map;
104
105 static inline int srmmu_pmd_none(pmd_t pmd)
106 { return !(pmd_val(pmd) & 0xFFFFFFF); }
107
108 /* XXX should we hyper_flush_whole_icache here - Anton */
109 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
110 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
111
112 void pmd_set(pmd_t *pmdp, pte_t *ptep)
113 {
114         unsigned long ptp;      /* Physical address, shifted right by 4 */
115         int i;
116
117         ptp = __nocache_pa((unsigned long) ptep) >> 4;
118         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
119                 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
120                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
121         }
122 }
123
124 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
125 {
126         unsigned long ptp;      /* Physical address, shifted right by 4 */
127         int i;
128
129         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
130         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
131                 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
132                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
133         }
134 }
135
136 /* Find an entry in the third-level page table.. */
137 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
138 {
139         void *pte;
140
141         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
142         return (pte_t *) pte +
143             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
144 }
145
146 /*
147  * size: bytes to allocate in the nocache area.
148  * align: bytes, number to align at.
149  * Returns the virtual address of the allocated area.
150  */
151 static void *__srmmu_get_nocache(int size, int align)
152 {
153         int offset;
154         unsigned long addr;
155
156         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
157                 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
158                        size);
159                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
160         }
161         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
162                 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
163                        size);
164                 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
165         }
166         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167
168         offset = bit_map_string_get(&srmmu_nocache_map,
169                                     size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170                                     align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171         if (offset == -1) {
172                 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
173                        size, (int) srmmu_nocache_size,
174                        srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175                 return NULL;
176         }
177
178         addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
179         return (void *)addr;
180 }
181
182 void *srmmu_get_nocache(int size, int align)
183 {
184         void *tmp;
185
186         tmp = __srmmu_get_nocache(size, align);
187
188         if (tmp)
189                 memset(tmp, 0, size);
190
191         return tmp;
192 }
193
194 void srmmu_free_nocache(void *addr, int size)
195 {
196         unsigned long vaddr;
197         int offset;
198
199         vaddr = (unsigned long)addr;
200         if (vaddr < SRMMU_NOCACHE_VADDR) {
201                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
202                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
203                 BUG();
204         }
205         if (vaddr + size > srmmu_nocache_end) {
206                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
207                     vaddr, srmmu_nocache_end);
208                 BUG();
209         }
210         if (!is_power_of_2(size)) {
211                 printk("Size 0x%x is not a power of 2\n", size);
212                 BUG();
213         }
214         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
215                 printk("Size 0x%x is too small\n", size);
216                 BUG();
217         }
218         if (vaddr & (size - 1)) {
219                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
220                 BUG();
221         }
222
223         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
224         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
225
226         bit_map_clear(&srmmu_nocache_map, offset, size);
227 }
228
229 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
230                                                  unsigned long end);
231
232 /* Return how much physical memory we have.  */
233 static unsigned long __init probe_memory(void)
234 {
235         unsigned long total = 0;
236         int i;
237
238         for (i = 0; sp_banks[i].num_bytes; i++)
239                 total += sp_banks[i].num_bytes;
240
241         return total;
242 }
243
244 /*
245  * Reserve nocache dynamically proportionally to the amount of
246  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
247  */
248 static void __init srmmu_nocache_calcsize(void)
249 {
250         unsigned long sysmemavail = probe_memory() / 1024;
251         int srmmu_nocache_npages;
252
253         srmmu_nocache_npages =
254                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
255
256  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
257         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
258         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
259                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
260
261         /* anything above 1280 blows up */
262         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
263                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
264
265         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
266         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
267 }
268
269 static void __init srmmu_nocache_init(void)
270 {
271         void *srmmu_nocache_bitmap;
272         unsigned int bitmap_bits;
273         pgd_t *pgd;
274         pmd_t *pmd;
275         pte_t *pte;
276         unsigned long paddr, vaddr;
277         unsigned long pteval;
278
279         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
280
281         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
282                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
283         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
284
285         srmmu_nocache_bitmap =
286                 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
287                                 SMP_CACHE_BYTES, 0UL);
288         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
289
290         srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
291         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
292         init_mm.pgd = srmmu_swapper_pg_dir;
293
294         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
295
296         paddr = __pa((unsigned long)srmmu_nocache_pool);
297         vaddr = SRMMU_NOCACHE_VADDR;
298
299         while (vaddr < srmmu_nocache_end) {
300                 pgd = pgd_offset_k(vaddr);
301                 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
302                 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
303
304                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
305
306                 if (srmmu_cache_pagetables)
307                         pteval |= SRMMU_CACHE;
308
309                 set_pte(__nocache_fix(pte), __pte(pteval));
310
311                 vaddr += PAGE_SIZE;
312                 paddr += PAGE_SIZE;
313         }
314
315         flush_cache_all();
316         flush_tlb_all();
317 }
318
319 pgd_t *get_pgd_fast(void)
320 {
321         pgd_t *pgd = NULL;
322
323         pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
324         if (pgd) {
325                 pgd_t *init = pgd_offset_k(0);
326                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
327                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
328                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
329         }
330
331         return pgd;
332 }
333
334 /*
335  * Hardware needs alignment to 256 only, but we align to whole page size
336  * to reduce fragmentation problems due to the buddy principle.
337  * XXX Provide actual fragmentation statistics in /proc.
338  *
339  * Alignments up to the page size are the same for physical and virtual
340  * addresses of the nocache area.
341  */
342 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
343 {
344         unsigned long pte;
345         struct page *page;
346
347         if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
348                 return NULL;
349         page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
350         if (!pgtable_page_ctor(page)) {
351                 __free_page(page);
352                 return NULL;
353         }
354         return page;
355 }
356
357 void pte_free(struct mm_struct *mm, pgtable_t pte)
358 {
359         unsigned long p;
360
361         pgtable_page_dtor(pte);
362         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
363         if (p == 0)
364                 BUG();
365         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
366
367         /* free non cached virtual address*/
368         srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
369 }
370
371 /* context handling - a dynamically sized pool is used */
372 #define NO_CONTEXT      -1
373
374 struct ctx_list {
375         struct ctx_list *next;
376         struct ctx_list *prev;
377         unsigned int ctx_number;
378         struct mm_struct *ctx_mm;
379 };
380
381 static struct ctx_list *ctx_list_pool;
382 static struct ctx_list ctx_free;
383 static struct ctx_list ctx_used;
384
385 /* At boot time we determine the number of contexts */
386 static int num_contexts;
387
388 static inline void remove_from_ctx_list(struct ctx_list *entry)
389 {
390         entry->next->prev = entry->prev;
391         entry->prev->next = entry->next;
392 }
393
394 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
395 {
396         entry->next = head;
397         (entry->prev = head->prev)->next = entry;
398         head->prev = entry;
399 }
400 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
401 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
402
403
404 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
405 {
406         struct ctx_list *ctxp;
407
408         ctxp = ctx_free.next;
409         if (ctxp != &ctx_free) {
410                 remove_from_ctx_list(ctxp);
411                 add_to_used_ctxlist(ctxp);
412                 mm->context = ctxp->ctx_number;
413                 ctxp->ctx_mm = mm;
414                 return;
415         }
416         ctxp = ctx_used.next;
417         if (ctxp->ctx_mm == old_mm)
418                 ctxp = ctxp->next;
419         if (ctxp == &ctx_used)
420                 panic("out of mmu contexts");
421         flush_cache_mm(ctxp->ctx_mm);
422         flush_tlb_mm(ctxp->ctx_mm);
423         remove_from_ctx_list(ctxp);
424         add_to_used_ctxlist(ctxp);
425         ctxp->ctx_mm->context = NO_CONTEXT;
426         ctxp->ctx_mm = mm;
427         mm->context = ctxp->ctx_number;
428 }
429
430 static inline void free_context(int context)
431 {
432         struct ctx_list *ctx_old;
433
434         ctx_old = ctx_list_pool + context;
435         remove_from_ctx_list(ctx_old);
436         add_to_free_ctxlist(ctx_old);
437 }
438
439 static void __init sparc_context_init(int numctx)
440 {
441         int ctx;
442         unsigned long size;
443
444         size = numctx * sizeof(struct ctx_list);
445         ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
446
447         for (ctx = 0; ctx < numctx; ctx++) {
448                 struct ctx_list *clist;
449
450                 clist = (ctx_list_pool + ctx);
451                 clist->ctx_number = ctx;
452                 clist->ctx_mm = NULL;
453         }
454         ctx_free.next = ctx_free.prev = &ctx_free;
455         ctx_used.next = ctx_used.prev = &ctx_used;
456         for (ctx = 0; ctx < numctx; ctx++)
457                 add_to_free_ctxlist(ctx_list_pool + ctx);
458 }
459
460 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
461                struct task_struct *tsk)
462 {
463         if (mm->context == NO_CONTEXT) {
464                 spin_lock(&srmmu_context_spinlock);
465                 alloc_context(old_mm, mm);
466                 spin_unlock(&srmmu_context_spinlock);
467                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
468         }
469
470         if (sparc_cpu_model == sparc_leon)
471                 leon_switch_mm();
472
473         if (is_hypersparc)
474                 hyper_flush_whole_icache();
475
476         srmmu_set_context(mm->context);
477 }
478
479 /* Low level IO area allocation on the SRMMU. */
480 static inline void srmmu_mapioaddr(unsigned long physaddr,
481                                    unsigned long virt_addr, int bus_type)
482 {
483         pgd_t *pgdp;
484         pmd_t *pmdp;
485         pte_t *ptep;
486         unsigned long tmp;
487
488         physaddr &= PAGE_MASK;
489         pgdp = pgd_offset_k(virt_addr);
490         pmdp = pmd_offset(pgdp, virt_addr);
491         ptep = pte_offset_kernel(pmdp, virt_addr);
492         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
493
494         /* I need to test whether this is consistent over all
495          * sun4m's.  The bus_type represents the upper 4 bits of
496          * 36-bit physical address on the I/O space lines...
497          */
498         tmp |= (bus_type << 28);
499         tmp |= SRMMU_PRIV;
500         __flush_page_to_ram(virt_addr);
501         set_pte(ptep, __pte(tmp));
502 }
503
504 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
505                       unsigned long xva, unsigned int len)
506 {
507         while (len != 0) {
508                 len -= PAGE_SIZE;
509                 srmmu_mapioaddr(xpa, xva, bus);
510                 xva += PAGE_SIZE;
511                 xpa += PAGE_SIZE;
512         }
513         flush_tlb_all();
514 }
515
516 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
517 {
518         pgd_t *pgdp;
519         pmd_t *pmdp;
520         pte_t *ptep;
521
522         pgdp = pgd_offset_k(virt_addr);
523         pmdp = pmd_offset(pgdp, virt_addr);
524         ptep = pte_offset_kernel(pmdp, virt_addr);
525
526         /* No need to flush uncacheable page. */
527         __pte_clear(ptep);
528 }
529
530 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
531 {
532         while (len != 0) {
533                 len -= PAGE_SIZE;
534                 srmmu_unmapioaddr(virt_addr);
535                 virt_addr += PAGE_SIZE;
536         }
537         flush_tlb_all();
538 }
539
540 /* tsunami.S */
541 extern void tsunami_flush_cache_all(void);
542 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
543 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
544 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
545 extern void tsunami_flush_page_to_ram(unsigned long page);
546 extern void tsunami_flush_page_for_dma(unsigned long page);
547 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
548 extern void tsunami_flush_tlb_all(void);
549 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
550 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
551 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
552 extern void tsunami_setup_blockops(void);
553
554 /* swift.S */
555 extern void swift_flush_cache_all(void);
556 extern void swift_flush_cache_mm(struct mm_struct *mm);
557 extern void swift_flush_cache_range(struct vm_area_struct *vma,
558                                     unsigned long start, unsigned long end);
559 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
560 extern void swift_flush_page_to_ram(unsigned long page);
561 extern void swift_flush_page_for_dma(unsigned long page);
562 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
563 extern void swift_flush_tlb_all(void);
564 extern void swift_flush_tlb_mm(struct mm_struct *mm);
565 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
566                                   unsigned long start, unsigned long end);
567 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
568
569 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
570 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
571 {
572         int cctx, ctx1;
573
574         page &= PAGE_MASK;
575         if ((ctx1 = vma->vm_mm->context) != -1) {
576                 cctx = srmmu_get_context();
577 /* Is context # ever different from current context? P3 */
578                 if (cctx != ctx1) {
579                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
580                         srmmu_set_context(ctx1);
581                         swift_flush_page(page);
582                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
583                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
584                         srmmu_set_context(cctx);
585                 } else {
586                          /* Rm. prot. bits from virt. c. */
587                         /* swift_flush_cache_all(); */
588                         /* swift_flush_cache_page(vma, page); */
589                         swift_flush_page(page);
590
591                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
592                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
593                         /* same as above: srmmu_flush_tlb_page() */
594                 }
595         }
596 }
597 #endif
598
599 /*
600  * The following are all MBUS based SRMMU modules, and therefore could
601  * be found in a multiprocessor configuration.  On the whole, these
602  * chips seems to be much more touchy about DVMA and page tables
603  * with respect to cache coherency.
604  */
605
606 /* viking.S */
607 extern void viking_flush_cache_all(void);
608 extern void viking_flush_cache_mm(struct mm_struct *mm);
609 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
610                                      unsigned long end);
611 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
612 extern void viking_flush_page_to_ram(unsigned long page);
613 extern void viking_flush_page_for_dma(unsigned long page);
614 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
615 extern void viking_flush_page(unsigned long page);
616 extern void viking_mxcc_flush_page(unsigned long page);
617 extern void viking_flush_tlb_all(void);
618 extern void viking_flush_tlb_mm(struct mm_struct *mm);
619 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
620                                    unsigned long end);
621 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
622                                   unsigned long page);
623 extern void sun4dsmp_flush_tlb_all(void);
624 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
625 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
626                                    unsigned long end);
627 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
628                                   unsigned long page);
629
630 /* hypersparc.S */
631 extern void hypersparc_flush_cache_all(void);
632 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
633 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
634 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
635 extern void hypersparc_flush_page_to_ram(unsigned long page);
636 extern void hypersparc_flush_page_for_dma(unsigned long page);
637 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
638 extern void hypersparc_flush_tlb_all(void);
639 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
640 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
641 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
642 extern void hypersparc_setup_blockops(void);
643
644 /*
645  * NOTE: All of this startup code assumes the low 16mb (approx.) of
646  *       kernel mappings are done with one single contiguous chunk of
647  *       ram.  On small ram machines (classics mainly) we only get
648  *       around 8mb mapped for us.
649  */
650
651 static void __init early_pgtable_allocfail(char *type)
652 {
653         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
654         prom_halt();
655 }
656
657 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
658                                                         unsigned long end)
659 {
660         pgd_t *pgdp;
661         pmd_t *pmdp;
662         pte_t *ptep;
663
664         while (start < end) {
665                 pgdp = pgd_offset_k(start);
666                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
667                         pmdp = __srmmu_get_nocache(
668                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
669                         if (pmdp == NULL)
670                                 early_pgtable_allocfail("pmd");
671                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
672                         pgd_set(__nocache_fix(pgdp), pmdp);
673                 }
674                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
675                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
676                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
677                         if (ptep == NULL)
678                                 early_pgtable_allocfail("pte");
679                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
680                         pmd_set(__nocache_fix(pmdp), ptep);
681                 }
682                 if (start > (0xffffffffUL - PMD_SIZE))
683                         break;
684                 start = (start + PMD_SIZE) & PMD_MASK;
685         }
686 }
687
688 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
689                                                   unsigned long end)
690 {
691         pgd_t *pgdp;
692         pmd_t *pmdp;
693         pte_t *ptep;
694
695         while (start < end) {
696                 pgdp = pgd_offset_k(start);
697                 if (pgd_none(*pgdp)) {
698                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
699                         if (pmdp == NULL)
700                                 early_pgtable_allocfail("pmd");
701                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
702                         pgd_set(pgdp, pmdp);
703                 }
704                 pmdp = pmd_offset(pgdp, start);
705                 if (srmmu_pmd_none(*pmdp)) {
706                         ptep = __srmmu_get_nocache(PTE_SIZE,
707                                                              PTE_SIZE);
708                         if (ptep == NULL)
709                                 early_pgtable_allocfail("pte");
710                         memset(ptep, 0, PTE_SIZE);
711                         pmd_set(pmdp, ptep);
712                 }
713                 if (start > (0xffffffffUL - PMD_SIZE))
714                         break;
715                 start = (start + PMD_SIZE) & PMD_MASK;
716         }
717 }
718
719 /* These flush types are not available on all chips... */
720 static inline unsigned long srmmu_probe(unsigned long vaddr)
721 {
722         unsigned long retval;
723
724         if (sparc_cpu_model != sparc_leon) {
725
726                 vaddr &= PAGE_MASK;
727                 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
728                                      "=r" (retval) :
729                                      "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
730         } else {
731                 retval = leon_swprobe(vaddr, NULL);
732         }
733         return retval;
734 }
735
736 /*
737  * This is much cleaner than poking around physical address space
738  * looking at the prom's page table directly which is what most
739  * other OS's do.  Yuck... this is much better.
740  */
741 static void __init srmmu_inherit_prom_mappings(unsigned long start,
742                                                unsigned long end)
743 {
744         unsigned long probed;
745         unsigned long addr;
746         pgd_t *pgdp;
747         pmd_t *pmdp;
748         pte_t *ptep;
749         int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
750
751         while (start <= end) {
752                 if (start == 0)
753                         break; /* probably wrap around */
754                 if (start == 0xfef00000)
755                         start = KADB_DEBUGGER_BEGVM;
756                 probed = srmmu_probe(start);
757                 if (!probed) {
758                         /* continue probing until we find an entry */
759                         start += PAGE_SIZE;
760                         continue;
761                 }
762
763                 /* A red snapper, see what it really is. */
764                 what = 0;
765                 addr = start - PAGE_SIZE;
766
767                 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
768                         if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
769                                 what = 1;
770                 }
771
772                 if (!(start & ~(SRMMU_PGDIR_MASK))) {
773                         if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
774                                 what = 2;
775                 }
776
777                 pgdp = pgd_offset_k(start);
778                 if (what == 2) {
779                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
780                         start += SRMMU_PGDIR_SIZE;
781                         continue;
782                 }
783                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
784                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
785                                                    SRMMU_PMD_TABLE_SIZE);
786                         if (pmdp == NULL)
787                                 early_pgtable_allocfail("pmd");
788                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
789                         pgd_set(__nocache_fix(pgdp), pmdp);
790                 }
791                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
792                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
793                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
794                         if (ptep == NULL)
795                                 early_pgtable_allocfail("pte");
796                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
797                         pmd_set(__nocache_fix(pmdp), ptep);
798                 }
799                 if (what == 1) {
800                         /* We bend the rule where all 16 PTPs in a pmd_t point
801                          * inside the same PTE page, and we leak a perfectly
802                          * good hardware PTE piece. Alternatives seem worse.
803                          */
804                         unsigned int x; /* Index of HW PMD in soft cluster */
805                         unsigned long *val;
806                         x = (start >> PMD_SHIFT) & 15;
807                         val = &pmdp->pmdv[x];
808                         *(unsigned long *)__nocache_fix(val) = probed;
809                         start += SRMMU_REAL_PMD_SIZE;
810                         continue;
811                 }
812                 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
813                 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
814                 start += PAGE_SIZE;
815         }
816 }
817
818 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
819
820 /* Create a third-level SRMMU 16MB page mapping. */
821 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
822 {
823         pgd_t *pgdp = pgd_offset_k(vaddr);
824         unsigned long big_pte;
825
826         big_pte = KERNEL_PTE(phys_base >> 4);
827         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
828 }
829
830 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
831 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
832 {
833         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
834         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
835         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
836         /* Map "low" memory only */
837         const unsigned long min_vaddr = PAGE_OFFSET;
838         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
839
840         if (vstart < min_vaddr || vstart >= max_vaddr)
841                 return vstart;
842
843         if (vend > max_vaddr || vend < min_vaddr)
844                 vend = max_vaddr;
845
846         while (vstart < vend) {
847                 do_large_mapping(vstart, pstart);
848                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
849         }
850         return vstart;
851 }
852
853 static void __init map_kernel(void)
854 {
855         int i;
856
857         if (phys_base > 0) {
858                 do_large_mapping(PAGE_OFFSET, phys_base);
859         }
860
861         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
862                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
863         }
864 }
865
866 void (*poke_srmmu)(void) = NULL;
867
868 void __init srmmu_paging_init(void)
869 {
870         int i;
871         phandle cpunode;
872         char node_str[128];
873         pgd_t *pgd;
874         pmd_t *pmd;
875         pte_t *pte;
876         unsigned long pages_avail;
877
878         init_mm.context = (unsigned long) NO_CONTEXT;
879         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
880
881         if (sparc_cpu_model == sun4d)
882                 num_contexts = 65536; /* We know it is Viking */
883         else {
884                 /* Find the number of contexts on the srmmu. */
885                 cpunode = prom_getchild(prom_root_node);
886                 num_contexts = 0;
887                 while (cpunode != 0) {
888                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
889                         if (!strcmp(node_str, "cpu")) {
890                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
891                                 break;
892                         }
893                         cpunode = prom_getsibling(cpunode);
894                 }
895         }
896
897         if (!num_contexts) {
898                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
899                 prom_halt();
900         }
901
902         pages_avail = 0;
903         last_valid_pfn = bootmem_init(&pages_avail);
904
905         srmmu_nocache_calcsize();
906         srmmu_nocache_init();
907         srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
908         map_kernel();
909
910         /* ctx table has to be physically aligned to its size */
911         srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
912         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
913
914         for (i = 0; i < num_contexts; i++)
915                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
916
917         flush_cache_all();
918         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
919 #ifdef CONFIG_SMP
920         /* Stop from hanging here... */
921         local_ops->tlb_all();
922 #else
923         flush_tlb_all();
924 #endif
925         poke_srmmu();
926
927         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
928         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
929
930         srmmu_allocate_ptable_skeleton(
931                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
932         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
933
934         pgd = pgd_offset_k(PKMAP_BASE);
935         pmd = pmd_offset(pgd, PKMAP_BASE);
936         pte = pte_offset_kernel(pmd, PKMAP_BASE);
937         pkmap_page_table = pte;
938
939         flush_cache_all();
940         flush_tlb_all();
941
942         sparc_context_init(num_contexts);
943
944         kmap_init();
945
946         {
947                 unsigned long zones_size[MAX_NR_ZONES];
948                 unsigned long zholes_size[MAX_NR_ZONES];
949                 unsigned long npages;
950                 int znum;
951
952                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
953                         zones_size[znum] = zholes_size[znum] = 0;
954
955                 npages = max_low_pfn - pfn_base;
956
957                 zones_size[ZONE_DMA] = npages;
958                 zholes_size[ZONE_DMA] = npages - pages_avail;
959
960                 npages = highend_pfn - max_low_pfn;
961                 zones_size[ZONE_HIGHMEM] = npages;
962                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
963
964                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
965         }
966 }
967
968 void mmu_info(struct seq_file *m)
969 {
970         seq_printf(m,
971                    "MMU type\t: %s\n"
972                    "contexts\t: %d\n"
973                    "nocache total\t: %ld\n"
974                    "nocache used\t: %d\n",
975                    srmmu_name,
976                    num_contexts,
977                    srmmu_nocache_size,
978                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
979 }
980
981 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
982 {
983         mm->context = NO_CONTEXT;
984         return 0;
985 }
986
987 void destroy_context(struct mm_struct *mm)
988 {
989
990         if (mm->context != NO_CONTEXT) {
991                 flush_cache_mm(mm);
992                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
993                 flush_tlb_mm(mm);
994                 spin_lock(&srmmu_context_spinlock);
995                 free_context(mm->context);
996                 spin_unlock(&srmmu_context_spinlock);
997                 mm->context = NO_CONTEXT;
998         }
999 }
1000
1001 /* Init various srmmu chip types. */
1002 static void __init srmmu_is_bad(void)
1003 {
1004         prom_printf("Could not determine SRMMU chip type.\n");
1005         prom_halt();
1006 }
1007
1008 static void __init init_vac_layout(void)
1009 {
1010         phandle nd;
1011         int cache_lines;
1012         char node_str[128];
1013 #ifdef CONFIG_SMP
1014         int cpu = 0;
1015         unsigned long max_size = 0;
1016         unsigned long min_line_size = 0x10000000;
1017 #endif
1018
1019         nd = prom_getchild(prom_root_node);
1020         while ((nd = prom_getsibling(nd)) != 0) {
1021                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1022                 if (!strcmp(node_str, "cpu")) {
1023                         vac_line_size = prom_getint(nd, "cache-line-size");
1024                         if (vac_line_size == -1) {
1025                                 prom_printf("can't determine cache-line-size, halting.\n");
1026                                 prom_halt();
1027                         }
1028                         cache_lines = prom_getint(nd, "cache-nlines");
1029                         if (cache_lines == -1) {
1030                                 prom_printf("can't determine cache-nlines, halting.\n");
1031                                 prom_halt();
1032                         }
1033
1034                         vac_cache_size = cache_lines * vac_line_size;
1035 #ifdef CONFIG_SMP
1036                         if (vac_cache_size > max_size)
1037                                 max_size = vac_cache_size;
1038                         if (vac_line_size < min_line_size)
1039                                 min_line_size = vac_line_size;
1040                         //FIXME: cpus not contiguous!!
1041                         cpu++;
1042                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1043                                 break;
1044 #else
1045                         break;
1046 #endif
1047                 }
1048         }
1049         if (nd == 0) {
1050                 prom_printf("No CPU nodes found, halting.\n");
1051                 prom_halt();
1052         }
1053 #ifdef CONFIG_SMP
1054         vac_cache_size = max_size;
1055         vac_line_size = min_line_size;
1056 #endif
1057         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1058                (int)vac_cache_size, (int)vac_line_size);
1059 }
1060
1061 static void poke_hypersparc(void)
1062 {
1063         volatile unsigned long clear;
1064         unsigned long mreg = srmmu_get_mmureg();
1065
1066         hyper_flush_unconditional_combined();
1067
1068         mreg &= ~(HYPERSPARC_CWENABLE);
1069         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1070         mreg |= (HYPERSPARC_CMODE);
1071
1072         srmmu_set_mmureg(mreg);
1073
1074 #if 0 /* XXX I think this is bad news... -DaveM */
1075         hyper_clear_all_tags();
1076 #endif
1077
1078         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1079         hyper_flush_whole_icache();
1080         clear = srmmu_get_faddr();
1081         clear = srmmu_get_fstatus();
1082 }
1083
1084 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1085         .cache_all      = hypersparc_flush_cache_all,
1086         .cache_mm       = hypersparc_flush_cache_mm,
1087         .cache_page     = hypersparc_flush_cache_page,
1088         .cache_range    = hypersparc_flush_cache_range,
1089         .tlb_all        = hypersparc_flush_tlb_all,
1090         .tlb_mm         = hypersparc_flush_tlb_mm,
1091         .tlb_page       = hypersparc_flush_tlb_page,
1092         .tlb_range      = hypersparc_flush_tlb_range,
1093         .page_to_ram    = hypersparc_flush_page_to_ram,
1094         .sig_insns      = hypersparc_flush_sig_insns,
1095         .page_for_dma   = hypersparc_flush_page_for_dma,
1096 };
1097
1098 static void __init init_hypersparc(void)
1099 {
1100         srmmu_name = "ROSS HyperSparc";
1101         srmmu_modtype = HyperSparc;
1102
1103         init_vac_layout();
1104
1105         is_hypersparc = 1;
1106         sparc32_cachetlb_ops = &hypersparc_ops;
1107
1108         poke_srmmu = poke_hypersparc;
1109
1110         hypersparc_setup_blockops();
1111 }
1112
1113 static void poke_swift(void)
1114 {
1115         unsigned long mreg;
1116
1117         /* Clear any crap from the cache or else... */
1118         swift_flush_cache_all();
1119
1120         /* Enable I & D caches */
1121         mreg = srmmu_get_mmureg();
1122         mreg |= (SWIFT_IE | SWIFT_DE);
1123         /*
1124          * The Swift branch folding logic is completely broken.  At
1125          * trap time, if things are just right, if can mistakenly
1126          * think that a trap is coming from kernel mode when in fact
1127          * it is coming from user mode (it mis-executes the branch in
1128          * the trap code).  So you see things like crashme completely
1129          * hosing your machine which is completely unacceptable.  Turn
1130          * this shit off... nice job Fujitsu.
1131          */
1132         mreg &= ~(SWIFT_BF);
1133         srmmu_set_mmureg(mreg);
1134 }
1135
1136 static const struct sparc32_cachetlb_ops swift_ops = {
1137         .cache_all      = swift_flush_cache_all,
1138         .cache_mm       = swift_flush_cache_mm,
1139         .cache_page     = swift_flush_cache_page,
1140         .cache_range    = swift_flush_cache_range,
1141         .tlb_all        = swift_flush_tlb_all,
1142         .tlb_mm         = swift_flush_tlb_mm,
1143         .tlb_page       = swift_flush_tlb_page,
1144         .tlb_range      = swift_flush_tlb_range,
1145         .page_to_ram    = swift_flush_page_to_ram,
1146         .sig_insns      = swift_flush_sig_insns,
1147         .page_for_dma   = swift_flush_page_for_dma,
1148 };
1149
1150 #define SWIFT_MASKID_ADDR  0x10003018
1151 static void __init init_swift(void)
1152 {
1153         unsigned long swift_rev;
1154
1155         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1156                              "srl %0, 0x18, %0\n\t" :
1157                              "=r" (swift_rev) :
1158                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1159         srmmu_name = "Fujitsu Swift";
1160         switch (swift_rev) {
1161         case 0x11:
1162         case 0x20:
1163         case 0x23:
1164         case 0x30:
1165                 srmmu_modtype = Swift_lots_o_bugs;
1166                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1167                 /*
1168                  * Gee george, I wonder why Sun is so hush hush about
1169                  * this hardware bug... really braindamage stuff going
1170                  * on here.  However I think we can find a way to avoid
1171                  * all of the workaround overhead under Linux.  Basically,
1172                  * any page fault can cause kernel pages to become user
1173                  * accessible (the mmu gets confused and clears some of
1174                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1175                  * horrible eh?  But wait, after extensive testing it appears
1176                  * that if you use pgd_t level large kernel pte's (like the
1177                  * 4MB pages on the Pentium) the bug does not get tripped
1178                  * at all.  This avoids almost all of the major overhead.
1179                  * Welcome to a world where your vendor tells you to,
1180                  * "apply this kernel patch" instead of "sorry for the
1181                  * broken hardware, send it back and we'll give you
1182                  * properly functioning parts"
1183                  */
1184                 break;
1185         case 0x25:
1186         case 0x31:
1187                 srmmu_modtype = Swift_bad_c;
1188                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1189                 /*
1190                  * You see Sun allude to this hardware bug but never
1191                  * admit things directly, they'll say things like,
1192                  * "the Swift chip cache problems" or similar.
1193                  */
1194                 break;
1195         default:
1196                 srmmu_modtype = Swift_ok;
1197                 break;
1198         }
1199
1200         sparc32_cachetlb_ops = &swift_ops;
1201         flush_page_for_dma_global = 0;
1202
1203         /*
1204          * Are you now convinced that the Swift is one of the
1205          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1206          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1207          * you examined the microcode of the Swift you'd find
1208          * XXX's all over the place.
1209          */
1210         poke_srmmu = poke_swift;
1211 }
1212
1213 static void turbosparc_flush_cache_all(void)
1214 {
1215         flush_user_windows();
1216         turbosparc_idflash_clear();
1217 }
1218
1219 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1220 {
1221         FLUSH_BEGIN(mm)
1222         flush_user_windows();
1223         turbosparc_idflash_clear();
1224         FLUSH_END
1225 }
1226
1227 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1228 {
1229         FLUSH_BEGIN(vma->vm_mm)
1230         flush_user_windows();
1231         turbosparc_idflash_clear();
1232         FLUSH_END
1233 }
1234
1235 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1236 {
1237         FLUSH_BEGIN(vma->vm_mm)
1238         flush_user_windows();
1239         if (vma->vm_flags & VM_EXEC)
1240                 turbosparc_flush_icache();
1241         turbosparc_flush_dcache();
1242         FLUSH_END
1243 }
1244
1245 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1246 static void turbosparc_flush_page_to_ram(unsigned long page)
1247 {
1248 #ifdef TURBOSPARC_WRITEBACK
1249         volatile unsigned long clear;
1250
1251         if (srmmu_probe(page))
1252                 turbosparc_flush_page_cache(page);
1253         clear = srmmu_get_fstatus();
1254 #endif
1255 }
1256
1257 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1258 {
1259 }
1260
1261 static void turbosparc_flush_page_for_dma(unsigned long page)
1262 {
1263         turbosparc_flush_dcache();
1264 }
1265
1266 static void turbosparc_flush_tlb_all(void)
1267 {
1268         srmmu_flush_whole_tlb();
1269 }
1270
1271 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1272 {
1273         FLUSH_BEGIN(mm)
1274         srmmu_flush_whole_tlb();
1275         FLUSH_END
1276 }
1277
1278 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1279 {
1280         FLUSH_BEGIN(vma->vm_mm)
1281         srmmu_flush_whole_tlb();
1282         FLUSH_END
1283 }
1284
1285 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1286 {
1287         FLUSH_BEGIN(vma->vm_mm)
1288         srmmu_flush_whole_tlb();
1289         FLUSH_END
1290 }
1291
1292
1293 static void poke_turbosparc(void)
1294 {
1295         unsigned long mreg = srmmu_get_mmureg();
1296         unsigned long ccreg;
1297
1298         /* Clear any crap from the cache or else... */
1299         turbosparc_flush_cache_all();
1300         /* Temporarily disable I & D caches */
1301         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1302         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1303         srmmu_set_mmureg(mreg);
1304
1305         ccreg = turbosparc_get_ccreg();
1306
1307 #ifdef TURBOSPARC_WRITEBACK
1308         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1309         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1310                         /* Write-back D-cache, emulate VLSI
1311                          * abortion number three, not number one */
1312 #else
1313         /* For now let's play safe, optimize later */
1314         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1315                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1316         ccreg &= ~(TURBOSPARC_uS2);
1317                         /* Emulate VLSI abortion number three, not number one */
1318 #endif
1319
1320         switch (ccreg & 7) {
1321         case 0: /* No SE cache */
1322         case 7: /* Test mode */
1323                 break;
1324         default:
1325                 ccreg |= (TURBOSPARC_SCENABLE);
1326         }
1327         turbosparc_set_ccreg(ccreg);
1328
1329         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1330         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1331         srmmu_set_mmureg(mreg);
1332 }
1333
1334 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1335         .cache_all      = turbosparc_flush_cache_all,
1336         .cache_mm       = turbosparc_flush_cache_mm,
1337         .cache_page     = turbosparc_flush_cache_page,
1338         .cache_range    = turbosparc_flush_cache_range,
1339         .tlb_all        = turbosparc_flush_tlb_all,
1340         .tlb_mm         = turbosparc_flush_tlb_mm,
1341         .tlb_page       = turbosparc_flush_tlb_page,
1342         .tlb_range      = turbosparc_flush_tlb_range,
1343         .page_to_ram    = turbosparc_flush_page_to_ram,
1344         .sig_insns      = turbosparc_flush_sig_insns,
1345         .page_for_dma   = turbosparc_flush_page_for_dma,
1346 };
1347
1348 static void __init init_turbosparc(void)
1349 {
1350         srmmu_name = "Fujitsu TurboSparc";
1351         srmmu_modtype = TurboSparc;
1352         sparc32_cachetlb_ops = &turbosparc_ops;
1353         poke_srmmu = poke_turbosparc;
1354 }
1355
1356 static void poke_tsunami(void)
1357 {
1358         unsigned long mreg = srmmu_get_mmureg();
1359
1360         tsunami_flush_icache();
1361         tsunami_flush_dcache();
1362         mreg &= ~TSUNAMI_ITD;
1363         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1364         srmmu_set_mmureg(mreg);
1365 }
1366
1367 static const struct sparc32_cachetlb_ops tsunami_ops = {
1368         .cache_all      = tsunami_flush_cache_all,
1369         .cache_mm       = tsunami_flush_cache_mm,
1370         .cache_page     = tsunami_flush_cache_page,
1371         .cache_range    = tsunami_flush_cache_range,
1372         .tlb_all        = tsunami_flush_tlb_all,
1373         .tlb_mm         = tsunami_flush_tlb_mm,
1374         .tlb_page       = tsunami_flush_tlb_page,
1375         .tlb_range      = tsunami_flush_tlb_range,
1376         .page_to_ram    = tsunami_flush_page_to_ram,
1377         .sig_insns      = tsunami_flush_sig_insns,
1378         .page_for_dma   = tsunami_flush_page_for_dma,
1379 };
1380
1381 static void __init init_tsunami(void)
1382 {
1383         /*
1384          * Tsunami's pretty sane, Sun and TI actually got it
1385          * somewhat right this time.  Fujitsu should have
1386          * taken some lessons from them.
1387          */
1388
1389         srmmu_name = "TI Tsunami";
1390         srmmu_modtype = Tsunami;
1391         sparc32_cachetlb_ops = &tsunami_ops;
1392         poke_srmmu = poke_tsunami;
1393
1394         tsunami_setup_blockops();
1395 }
1396
1397 static void poke_viking(void)
1398 {
1399         unsigned long mreg = srmmu_get_mmureg();
1400         static int smp_catch;
1401
1402         if (viking_mxcc_present) {
1403                 unsigned long mxcc_control = mxcc_get_creg();
1404
1405                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1406                 mxcc_control &= ~(MXCC_CTL_RRC);
1407                 mxcc_set_creg(mxcc_control);
1408
1409                 /*
1410                  * We don't need memory parity checks.
1411                  * XXX This is a mess, have to dig out later. ecd.
1412                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1413                  */
1414
1415                 /* We do cache ptables on MXCC. */
1416                 mreg |= VIKING_TCENABLE;
1417         } else {
1418                 unsigned long bpreg;
1419
1420                 mreg &= ~(VIKING_TCENABLE);
1421                 if (smp_catch++) {
1422                         /* Must disable mixed-cmd mode here for other cpu's. */
1423                         bpreg = viking_get_bpreg();
1424                         bpreg &= ~(VIKING_ACTION_MIX);
1425                         viking_set_bpreg(bpreg);
1426
1427                         /* Just in case PROM does something funny. */
1428                         msi_set_sync();
1429                 }
1430         }
1431
1432         mreg |= VIKING_SPENABLE;
1433         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1434         mreg |= VIKING_SBENABLE;
1435         mreg &= ~(VIKING_ACENABLE);
1436         srmmu_set_mmureg(mreg);
1437 }
1438
1439 static struct sparc32_cachetlb_ops viking_ops = {
1440         .cache_all      = viking_flush_cache_all,
1441         .cache_mm       = viking_flush_cache_mm,
1442         .cache_page     = viking_flush_cache_page,
1443         .cache_range    = viking_flush_cache_range,
1444         .tlb_all        = viking_flush_tlb_all,
1445         .tlb_mm         = viking_flush_tlb_mm,
1446         .tlb_page       = viking_flush_tlb_page,
1447         .tlb_range      = viking_flush_tlb_range,
1448         .page_to_ram    = viking_flush_page_to_ram,
1449         .sig_insns      = viking_flush_sig_insns,
1450         .page_for_dma   = viking_flush_page_for_dma,
1451 };
1452
1453 #ifdef CONFIG_SMP
1454 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1455  * perform the local TLB flush and all the other cpus will see it.
1456  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1457  * that requires that we add some synchronization to these flushes.
1458  *
1459  * The bug is that the fifo which keeps track of all the pending TLB
1460  * broadcasts in the system is an entry or two too small, so if we
1461  * have too many going at once we'll overflow that fifo and lose a TLB
1462  * flush resulting in corruption.
1463  *
1464  * Our workaround is to take a global spinlock around the TLB flushes,
1465  * which guarentees we won't ever have too many pending.  It's a big
1466  * hammer, but a semaphore like system to make sure we only have N TLB
1467  * flushes going at once will require SMP locking anyways so there's
1468  * no real value in trying any harder than this.
1469  */
1470 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1471         .cache_all      = viking_flush_cache_all,
1472         .cache_mm       = viking_flush_cache_mm,
1473         .cache_page     = viking_flush_cache_page,
1474         .cache_range    = viking_flush_cache_range,
1475         .tlb_all        = sun4dsmp_flush_tlb_all,
1476         .tlb_mm         = sun4dsmp_flush_tlb_mm,
1477         .tlb_page       = sun4dsmp_flush_tlb_page,
1478         .tlb_range      = sun4dsmp_flush_tlb_range,
1479         .page_to_ram    = viking_flush_page_to_ram,
1480         .sig_insns      = viking_flush_sig_insns,
1481         .page_for_dma   = viking_flush_page_for_dma,
1482 };
1483 #endif
1484
1485 static void __init init_viking(void)
1486 {
1487         unsigned long mreg = srmmu_get_mmureg();
1488
1489         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1490         if (mreg & VIKING_MMODE) {
1491                 srmmu_name = "TI Viking";
1492                 viking_mxcc_present = 0;
1493                 msi_set_sync();
1494
1495                 /*
1496                  * We need this to make sure old viking takes no hits
1497                  * on it's cache for dma snoops to workaround the
1498                  * "load from non-cacheable memory" interrupt bug.
1499                  * This is only necessary because of the new way in
1500                  * which we use the IOMMU.
1501                  */
1502                 viking_ops.page_for_dma = viking_flush_page;
1503 #ifdef CONFIG_SMP
1504                 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1505 #endif
1506                 flush_page_for_dma_global = 0;
1507         } else {
1508                 srmmu_name = "TI Viking/MXCC";
1509                 viking_mxcc_present = 1;
1510                 srmmu_cache_pagetables = 1;
1511         }
1512
1513         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1514                 &viking_ops;
1515 #ifdef CONFIG_SMP
1516         if (sparc_cpu_model == sun4d)
1517                 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1518                         &viking_sun4d_smp_ops;
1519 #endif
1520
1521         poke_srmmu = poke_viking;
1522 }
1523
1524 /* Probe for the srmmu chip version. */
1525 static void __init get_srmmu_type(void)
1526 {
1527         unsigned long mreg, psr;
1528         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1529
1530         srmmu_modtype = SRMMU_INVAL_MOD;
1531         hwbug_bitmask = 0;
1532
1533         mreg = srmmu_get_mmureg(); psr = get_psr();
1534         mod_typ = (mreg & 0xf0000000) >> 28;
1535         mod_rev = (mreg & 0x0f000000) >> 24;
1536         psr_typ = (psr >> 28) & 0xf;
1537         psr_vers = (psr >> 24) & 0xf;
1538
1539         /* First, check for sparc-leon. */
1540         if (sparc_cpu_model == sparc_leon) {
1541                 init_leon();
1542                 return;
1543         }
1544
1545         /* Second, check for HyperSparc or Cypress. */
1546         if (mod_typ == 1) {
1547                 switch (mod_rev) {
1548                 case 7:
1549                         /* UP or MP Hypersparc */
1550                         init_hypersparc();
1551                         break;
1552                 case 0:
1553                 case 2:
1554                 case 10:
1555                 case 11:
1556                 case 12:
1557                 case 13:
1558                 case 14:
1559                 case 15:
1560                 default:
1561                         prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1562                         prom_halt();
1563                         break;
1564                 }
1565                 return;
1566         }
1567
1568         /* Now Fujitsu TurboSparc. It might happen that it is
1569          * in Swift emulation mode, so we will check later...
1570          */
1571         if (psr_typ == 0 && psr_vers == 5) {
1572                 init_turbosparc();
1573                 return;
1574         }
1575
1576         /* Next check for Fujitsu Swift. */
1577         if (psr_typ == 0 && psr_vers == 4) {
1578                 phandle cpunode;
1579                 char node_str[128];
1580
1581                 /* Look if it is not a TurboSparc emulating Swift... */
1582                 cpunode = prom_getchild(prom_root_node);
1583                 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1584                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1585                         if (!strcmp(node_str, "cpu")) {
1586                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1587                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1588                                         init_turbosparc();
1589                                         return;
1590                                 }
1591                                 break;
1592                         }
1593                 }
1594
1595                 init_swift();
1596                 return;
1597         }
1598
1599         /* Now the Viking family of srmmu. */
1600         if (psr_typ == 4 &&
1601            ((psr_vers == 0) ||
1602             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1603                 init_viking();
1604                 return;
1605         }
1606
1607         /* Finally the Tsunami. */
1608         if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1609                 init_tsunami();
1610                 return;
1611         }
1612
1613         /* Oh well */
1614         srmmu_is_bad();
1615 }
1616
1617 #ifdef CONFIG_SMP
1618 /* Local cross-calls. */
1619 static void smp_flush_page_for_dma(unsigned long page)
1620 {
1621         xc1((smpfunc_t) local_ops->page_for_dma, page);
1622         local_ops->page_for_dma(page);
1623 }
1624
1625 static void smp_flush_cache_all(void)
1626 {
1627         xc0((smpfunc_t) local_ops->cache_all);
1628         local_ops->cache_all();
1629 }
1630
1631 static void smp_flush_tlb_all(void)
1632 {
1633         xc0((smpfunc_t) local_ops->tlb_all);
1634         local_ops->tlb_all();
1635 }
1636
1637 static void smp_flush_cache_mm(struct mm_struct *mm)
1638 {
1639         if (mm->context != NO_CONTEXT) {
1640                 cpumask_t cpu_mask;
1641                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1642                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1643                 if (!cpumask_empty(&cpu_mask))
1644                         xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1645                 local_ops->cache_mm(mm);
1646         }
1647 }
1648
1649 static void smp_flush_tlb_mm(struct mm_struct *mm)
1650 {
1651         if (mm->context != NO_CONTEXT) {
1652                 cpumask_t cpu_mask;
1653                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1654                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1655                 if (!cpumask_empty(&cpu_mask)) {
1656                         xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1657                         if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1658                                 cpumask_copy(mm_cpumask(mm),
1659                                              cpumask_of(smp_processor_id()));
1660                 }
1661                 local_ops->tlb_mm(mm);
1662         }
1663 }
1664
1665 static void smp_flush_cache_range(struct vm_area_struct *vma,
1666                                   unsigned long start,
1667                                   unsigned long end)
1668 {
1669         struct mm_struct *mm = vma->vm_mm;
1670
1671         if (mm->context != NO_CONTEXT) {
1672                 cpumask_t cpu_mask;
1673                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1674                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1675                 if (!cpumask_empty(&cpu_mask))
1676                         xc3((smpfunc_t) local_ops->cache_range,
1677                             (unsigned long) vma, start, end);
1678                 local_ops->cache_range(vma, start, end);
1679         }
1680 }
1681
1682 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1683                                 unsigned long start,
1684                                 unsigned long end)
1685 {
1686         struct mm_struct *mm = vma->vm_mm;
1687
1688         if (mm->context != NO_CONTEXT) {
1689                 cpumask_t cpu_mask;
1690                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1691                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1692                 if (!cpumask_empty(&cpu_mask))
1693                         xc3((smpfunc_t) local_ops->tlb_range,
1694                             (unsigned long) vma, start, end);
1695                 local_ops->tlb_range(vma, start, end);
1696         }
1697 }
1698
1699 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1700 {
1701         struct mm_struct *mm = vma->vm_mm;
1702
1703         if (mm->context != NO_CONTEXT) {
1704                 cpumask_t cpu_mask;
1705                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1706                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1707                 if (!cpumask_empty(&cpu_mask))
1708                         xc2((smpfunc_t) local_ops->cache_page,
1709                             (unsigned long) vma, page);
1710                 local_ops->cache_page(vma, page);
1711         }
1712 }
1713
1714 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1715 {
1716         struct mm_struct *mm = vma->vm_mm;
1717
1718         if (mm->context != NO_CONTEXT) {
1719                 cpumask_t cpu_mask;
1720                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1721                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1722                 if (!cpumask_empty(&cpu_mask))
1723                         xc2((smpfunc_t) local_ops->tlb_page,
1724                             (unsigned long) vma, page);
1725                 local_ops->tlb_page(vma, page);
1726         }
1727 }
1728
1729 static void smp_flush_page_to_ram(unsigned long page)
1730 {
1731         /* Current theory is that those who call this are the one's
1732          * who have just dirtied their cache with the pages contents
1733          * in kernel space, therefore we only run this on local cpu.
1734          *
1735          * XXX This experiment failed, research further... -DaveM
1736          */
1737 #if 1
1738         xc1((smpfunc_t) local_ops->page_to_ram, page);
1739 #endif
1740         local_ops->page_to_ram(page);
1741 }
1742
1743 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1744 {
1745         cpumask_t cpu_mask;
1746         cpumask_copy(&cpu_mask, mm_cpumask(mm));
1747         cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1748         if (!cpumask_empty(&cpu_mask))
1749                 xc2((smpfunc_t) local_ops->sig_insns,
1750                     (unsigned long) mm, insn_addr);
1751         local_ops->sig_insns(mm, insn_addr);
1752 }
1753
1754 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1755         .cache_all      = smp_flush_cache_all,
1756         .cache_mm       = smp_flush_cache_mm,
1757         .cache_page     = smp_flush_cache_page,
1758         .cache_range    = smp_flush_cache_range,
1759         .tlb_all        = smp_flush_tlb_all,
1760         .tlb_mm         = smp_flush_tlb_mm,
1761         .tlb_page       = smp_flush_tlb_page,
1762         .tlb_range      = smp_flush_tlb_range,
1763         .page_to_ram    = smp_flush_page_to_ram,
1764         .sig_insns      = smp_flush_sig_insns,
1765         .page_for_dma   = smp_flush_page_for_dma,
1766 };
1767 #endif
1768
1769 /* Load up routines and constants for sun4m and sun4d mmu */
1770 void __init load_mmu(void)
1771 {
1772         /* Functions */
1773         get_srmmu_type();
1774
1775 #ifdef CONFIG_SMP
1776         /* El switcheroo... */
1777         local_ops = sparc32_cachetlb_ops;
1778
1779         if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1780                 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1781                 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1782                 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1783                 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1784         }
1785
1786         if (poke_srmmu == poke_viking) {
1787                 /* Avoid unnecessary cross calls. */
1788                 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1789                 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1790                 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1791                 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1792
1793                 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1794                 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1795                 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1796         }
1797
1798         /* It really is const after this point. */
1799         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1800                 &smp_cachetlb_ops;
1801 #endif
1802
1803         if (sparc_cpu_model == sun4d)
1804                 ld_mmu_iounit();
1805         else
1806                 ld_mmu_iommu();
1807 #ifdef CONFIG_SMP
1808         if (sparc_cpu_model == sun4d)
1809                 sun4d_init_smp();
1810         else if (sparc_cpu_model == sparc_leon)
1811                 leon_init_smp();
1812         else
1813                 sun4m_init_smp();
1814 #endif
1815 }