Merge remote-tracking branches 'spi/fix/dt', 'spi/fix/fsl-dspi' and 'spi/fix/fsl...
[cascardo/linux.git] / arch / sparc / mm / tsb.c
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/page.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
12 #include <asm/setup.h>
13 #include <asm/tsb.h>
14 #include <asm/tlb.h>
15 #include <asm/oplib.h>
16
17 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
18
19 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
20 {
21         vaddr >>= hash_shift;
22         return vaddr & (nentries - 1);
23 }
24
25 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
26 {
27         return (tag == (vaddr >> 22));
28 }
29
30 /* TSB flushes need only occur on the processor initiating the address
31  * space modification, not on each cpu the address space has run on.
32  * Only the TLB flush needs that treatment.
33  */
34
35 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
36 {
37         unsigned long v;
38
39         for (v = start; v < end; v += PAGE_SIZE) {
40                 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
41                                               KERNEL_TSB_NENTRIES);
42                 struct tsb *ent = &swapper_tsb[hash];
43
44                 if (tag_compare(ent->tag, v))
45                         ent->tag = (1UL << TSB_TAG_INVALID_BIT);
46         }
47 }
48
49 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
50                                   unsigned long hash_shift,
51                                   unsigned long nentries)
52 {
53         unsigned long tag, ent, hash;
54
55         v &= ~0x1UL;
56         hash = tsb_hash(v, hash_shift, nentries);
57         ent = tsb + (hash * sizeof(struct tsb));
58         tag = (v >> 22UL);
59
60         tsb_flush(ent, tag);
61 }
62
63 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
64                             unsigned long tsb, unsigned long nentries)
65 {
66         unsigned long i;
67
68         for (i = 0; i < tb->tlb_nr; i++)
69                 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
70 }
71
72 void flush_tsb_user(struct tlb_batch *tb)
73 {
74         struct mm_struct *mm = tb->mm;
75         unsigned long nentries, base, flags;
76
77         spin_lock_irqsave(&mm->context.lock, flags);
78
79         if (!tb->huge) {
80                 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
81                 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
82                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
83                         base = __pa(base);
84                 __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
85         }
86 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
87         if (tb->huge && mm->context.tsb_block[MM_TSB_HUGE].tsb) {
88                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
89                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
90                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
91                         base = __pa(base);
92                 __flush_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries);
93         }
94 #endif
95         spin_unlock_irqrestore(&mm->context.lock, flags);
96 }
97
98 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr, bool huge)
99 {
100         unsigned long nentries, base, flags;
101
102         spin_lock_irqsave(&mm->context.lock, flags);
103
104         if (!huge) {
105                 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
106                 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
107                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
108                         base = __pa(base);
109                 __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
110         }
111 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
112         if (huge && mm->context.tsb_block[MM_TSB_HUGE].tsb) {
113                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
114                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
115                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
116                         base = __pa(base);
117                 __flush_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries);
118         }
119 #endif
120         spin_unlock_irqrestore(&mm->context.lock, flags);
121 }
122
123 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_8K
124 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_8K
125
126 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
127 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_4MB
128 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_4MB
129 #endif
130
131 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
132 {
133         unsigned long tsb_reg, base, tsb_paddr;
134         unsigned long page_sz, tte;
135
136         mm->context.tsb_block[tsb_idx].tsb_nentries =
137                 tsb_bytes / sizeof(struct tsb);
138
139         switch (tsb_idx) {
140         case MM_TSB_BASE:
141                 base = TSBMAP_8K_BASE;
142                 break;
143 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
144         case MM_TSB_HUGE:
145                 base = TSBMAP_4M_BASE;
146                 break;
147 #endif
148         default:
149                 BUG();
150         }
151
152         tte = pgprot_val(PAGE_KERNEL_LOCKED);
153         tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
154         BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
155
156         /* Use the smallest page size that can map the whole TSB
157          * in one TLB entry.
158          */
159         switch (tsb_bytes) {
160         case 8192 << 0:
161                 tsb_reg = 0x0UL;
162 #ifdef DCACHE_ALIASING_POSSIBLE
163                 base += (tsb_paddr & 8192);
164 #endif
165                 page_sz = 8192;
166                 break;
167
168         case 8192 << 1:
169                 tsb_reg = 0x1UL;
170                 page_sz = 64 * 1024;
171                 break;
172
173         case 8192 << 2:
174                 tsb_reg = 0x2UL;
175                 page_sz = 64 * 1024;
176                 break;
177
178         case 8192 << 3:
179                 tsb_reg = 0x3UL;
180                 page_sz = 64 * 1024;
181                 break;
182
183         case 8192 << 4:
184                 tsb_reg = 0x4UL;
185                 page_sz = 512 * 1024;
186                 break;
187
188         case 8192 << 5:
189                 tsb_reg = 0x5UL;
190                 page_sz = 512 * 1024;
191                 break;
192
193         case 8192 << 6:
194                 tsb_reg = 0x6UL;
195                 page_sz = 512 * 1024;
196                 break;
197
198         case 8192 << 7:
199                 tsb_reg = 0x7UL;
200                 page_sz = 4 * 1024 * 1024;
201                 break;
202
203         default:
204                 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
205                        current->comm, current->pid, tsb_bytes);
206                 do_exit(SIGSEGV);
207         }
208         tte |= pte_sz_bits(page_sz);
209
210         if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
211                 /* Physical mapping, no locked TLB entry for TSB.  */
212                 tsb_reg |= tsb_paddr;
213
214                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
215                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
216                 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
217         } else {
218                 tsb_reg |= base;
219                 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
220                 tte |= (tsb_paddr & ~(page_sz - 1UL));
221
222                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
223                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
224                 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
225         }
226
227         /* Setup the Hypervisor TSB descriptor.  */
228         if (tlb_type == hypervisor) {
229                 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
230
231                 switch (tsb_idx) {
232                 case MM_TSB_BASE:
233                         hp->pgsz_idx = HV_PGSZ_IDX_BASE;
234                         break;
235 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
236                 case MM_TSB_HUGE:
237                         hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
238                         break;
239 #endif
240                 default:
241                         BUG();
242                 }
243                 hp->assoc = 1;
244                 hp->num_ttes = tsb_bytes / 16;
245                 hp->ctx_idx = 0;
246                 switch (tsb_idx) {
247                 case MM_TSB_BASE:
248                         hp->pgsz_mask = HV_PGSZ_MASK_BASE;
249                         break;
250 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
251                 case MM_TSB_HUGE:
252                         hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
253                         break;
254 #endif
255                 default:
256                         BUG();
257                 }
258                 hp->tsb_base = tsb_paddr;
259                 hp->resv = 0;
260         }
261 }
262
263 struct kmem_cache *pgtable_cache __read_mostly;
264
265 static struct kmem_cache *tsb_caches[8] __read_mostly;
266
267 static const char *tsb_cache_names[8] = {
268         "tsb_8KB",
269         "tsb_16KB",
270         "tsb_32KB",
271         "tsb_64KB",
272         "tsb_128KB",
273         "tsb_256KB",
274         "tsb_512KB",
275         "tsb_1MB",
276 };
277
278 void __init pgtable_cache_init(void)
279 {
280         unsigned long i;
281
282         pgtable_cache = kmem_cache_create("pgtable_cache",
283                                           PAGE_SIZE, PAGE_SIZE,
284                                           0,
285                                           _clear_page);
286         if (!pgtable_cache) {
287                 prom_printf("pgtable_cache_init(): Could not create!\n");
288                 prom_halt();
289         }
290
291         for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
292                 unsigned long size = 8192 << i;
293                 const char *name = tsb_cache_names[i];
294
295                 tsb_caches[i] = kmem_cache_create(name,
296                                                   size, size,
297                                                   0, NULL);
298                 if (!tsb_caches[i]) {
299                         prom_printf("Could not create %s cache\n", name);
300                         prom_halt();
301                 }
302         }
303 }
304
305 int sysctl_tsb_ratio = -2;
306
307 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
308 {
309         unsigned long num_ents = (new_size / sizeof(struct tsb));
310
311         if (sysctl_tsb_ratio < 0)
312                 return num_ents - (num_ents >> -sysctl_tsb_ratio);
313         else
314                 return num_ents + (num_ents >> sysctl_tsb_ratio);
315 }
316
317 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
318  * do_sparc64_fault() invokes this routine to try and grow it.
319  *
320  * When we reach the maximum TSB size supported, we stick ~0UL into
321  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
322  * will not trigger any longer.
323  *
324  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
325  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
326  * must be 512K aligned.  It also must be physically contiguous, so we
327  * cannot use vmalloc().
328  *
329  * The idea here is to grow the TSB when the RSS of the process approaches
330  * the number of entries that the current TSB can hold at once.  Currently,
331  * we trigger when the RSS hits 3/4 of the TSB capacity.
332  */
333 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
334 {
335         unsigned long max_tsb_size = 1 * 1024 * 1024;
336         unsigned long new_size, old_size, flags;
337         struct tsb *old_tsb, *new_tsb;
338         unsigned long new_cache_index, old_cache_index;
339         unsigned long new_rss_limit;
340         gfp_t gfp_flags;
341
342         if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
343                 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
344
345         new_cache_index = 0;
346         for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
347                 new_rss_limit = tsb_size_to_rss_limit(new_size);
348                 if (new_rss_limit > rss)
349                         break;
350                 new_cache_index++;
351         }
352
353         if (new_size == max_tsb_size)
354                 new_rss_limit = ~0UL;
355
356 retry_tsb_alloc:
357         gfp_flags = GFP_KERNEL;
358         if (new_size > (PAGE_SIZE * 2))
359                 gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
360
361         new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
362                                         gfp_flags, numa_node_id());
363         if (unlikely(!new_tsb)) {
364                 /* Not being able to fork due to a high-order TSB
365                  * allocation failure is very bad behavior.  Just back
366                  * down to a 0-order allocation and force no TSB
367                  * growing for this address space.
368                  */
369                 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
370                     new_cache_index > 0) {
371                         new_cache_index = 0;
372                         new_size = 8192;
373                         new_rss_limit = ~0UL;
374                         goto retry_tsb_alloc;
375                 }
376
377                 /* If we failed on a TSB grow, we are under serious
378                  * memory pressure so don't try to grow any more.
379                  */
380                 if (mm->context.tsb_block[tsb_index].tsb != NULL)
381                         mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
382                 return;
383         }
384
385         /* Mark all tags as invalid.  */
386         tsb_init(new_tsb, new_size);
387
388         /* Ok, we are about to commit the changes.  If we are
389          * growing an existing TSB the locking is very tricky,
390          * so WATCH OUT!
391          *
392          * We have to hold mm->context.lock while committing to the
393          * new TSB, this synchronizes us with processors in
394          * flush_tsb_user() and switch_mm() for this address space.
395          *
396          * But even with that lock held, processors run asynchronously
397          * accessing the old TSB via TLB miss handling.  This is OK
398          * because those actions are just propagating state from the
399          * Linux page tables into the TSB, page table mappings are not
400          * being changed.  If a real fault occurs, the processor will
401          * synchronize with us when it hits flush_tsb_user(), this is
402          * also true for the case where vmscan is modifying the page
403          * tables.  The only thing we need to be careful with is to
404          * skip any locked TSB entries during copy_tsb().
405          *
406          * When we finish committing to the new TSB, we have to drop
407          * the lock and ask all other cpus running this address space
408          * to run tsb_context_switch() to see the new TSB table.
409          */
410         spin_lock_irqsave(&mm->context.lock, flags);
411
412         old_tsb = mm->context.tsb_block[tsb_index].tsb;
413         old_cache_index =
414                 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
415         old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
416                     sizeof(struct tsb));
417
418
419         /* Handle multiple threads trying to grow the TSB at the same time.
420          * One will get in here first, and bump the size and the RSS limit.
421          * The others will get in here next and hit this check.
422          */
423         if (unlikely(old_tsb &&
424                      (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
425                 spin_unlock_irqrestore(&mm->context.lock, flags);
426
427                 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
428                 return;
429         }
430
431         mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
432
433         if (old_tsb) {
434                 extern void copy_tsb(unsigned long old_tsb_base,
435                                      unsigned long old_tsb_size,
436                                      unsigned long new_tsb_base,
437                                      unsigned long new_tsb_size);
438                 unsigned long old_tsb_base = (unsigned long) old_tsb;
439                 unsigned long new_tsb_base = (unsigned long) new_tsb;
440
441                 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
442                         old_tsb_base = __pa(old_tsb_base);
443                         new_tsb_base = __pa(new_tsb_base);
444                 }
445                 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
446         }
447
448         mm->context.tsb_block[tsb_index].tsb = new_tsb;
449         setup_tsb_params(mm, tsb_index, new_size);
450
451         spin_unlock_irqrestore(&mm->context.lock, flags);
452
453         /* If old_tsb is NULL, we're being invoked for the first time
454          * from init_new_context().
455          */
456         if (old_tsb) {
457                 /* Reload it on the local cpu.  */
458                 tsb_context_switch(mm);
459
460                 /* Now force other processors to do the same.  */
461                 preempt_disable();
462                 smp_tsb_sync(mm);
463                 preempt_enable();
464
465                 /* Now it is safe to free the old tsb.  */
466                 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
467         }
468 }
469
470 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
471 {
472         unsigned long mm_rss = get_mm_rss(mm);
473 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
474         unsigned long saved_hugetlb_pte_count;
475         unsigned long saved_thp_pte_count;
476 #endif
477         unsigned int i;
478
479         spin_lock_init(&mm->context.lock);
480
481         mm->context.sparc64_ctx_val = 0UL;
482
483 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
484         /* We reset them to zero because the fork() page copying
485          * will re-increment the counters as the parent PTEs are
486          * copied into the child address space.
487          */
488         saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
489         saved_thp_pte_count = mm->context.thp_pte_count;
490         mm->context.hugetlb_pte_count = 0;
491         mm->context.thp_pte_count = 0;
492
493         mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
494 #endif
495
496         /* copy_mm() copies over the parent's mm_struct before calling
497          * us, so we need to zero out the TSB pointer or else tsb_grow()
498          * will be confused and think there is an older TSB to free up.
499          */
500         for (i = 0; i < MM_NUM_TSBS; i++)
501                 mm->context.tsb_block[i].tsb = NULL;
502
503         /* If this is fork, inherit the parent's TSB size.  We would
504          * grow it to that size on the first page fault anyways.
505          */
506         tsb_grow(mm, MM_TSB_BASE, mm_rss);
507
508 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
509         if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
510                 tsb_grow(mm, MM_TSB_HUGE,
511                          (saved_hugetlb_pte_count + saved_thp_pte_count) *
512                          REAL_HPAGE_PER_HPAGE);
513 #endif
514
515         if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
516                 return -ENOMEM;
517
518         return 0;
519 }
520
521 static void tsb_destroy_one(struct tsb_config *tp)
522 {
523         unsigned long cache_index;
524
525         if (!tp->tsb)
526                 return;
527         cache_index = tp->tsb_reg_val & 0x7UL;
528         kmem_cache_free(tsb_caches[cache_index], tp->tsb);
529         tp->tsb = NULL;
530         tp->tsb_reg_val = 0UL;
531 }
532
533 void destroy_context(struct mm_struct *mm)
534 {
535         unsigned long flags, i;
536
537         for (i = 0; i < MM_NUM_TSBS; i++)
538                 tsb_destroy_one(&mm->context.tsb_block[i]);
539
540         spin_lock_irqsave(&ctx_alloc_lock, flags);
541
542         if (CTX_VALID(mm->context)) {
543                 unsigned long nr = CTX_NRBITS(mm->context);
544                 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
545         }
546
547         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
548 }