Linux-2.6.12-rc2
[cascardo/linux.git] / arch / sparc64 / kernel / us2e_cpufreq.c
1 /* us2e_cpufreq.c: UltraSPARC-IIe cpu frequency support
2  *
3  * Copyright (C) 2003 David S. Miller (davem@redhat.com)
4  *
5  * Many thanks to Dominik Brodowski for fixing up the cpufreq
6  * infrastructure in order to make this driver easier to implement.
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/smp.h>
13 #include <linux/cpufreq.h>
14 #include <linux/threads.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18
19 #include <asm/asi.h>
20 #include <asm/timer.h>
21
22 static struct cpufreq_driver *cpufreq_us2e_driver;
23
24 struct us2e_freq_percpu_info {
25         struct cpufreq_frequency_table table[6];
26 };
27
28 /* Indexed by cpu number. */
29 static struct us2e_freq_percpu_info *us2e_freq_table;
30
31 #define HBIRD_MEM_CNTL0_ADDR    0x1fe0000f010UL
32 #define HBIRD_ESTAR_MODE_ADDR   0x1fe0000f080UL
33
34 /* UltraSPARC-IIe has five dividers: 1, 2, 4, 6, and 8.  These are controlled
35  * in the ESTAR mode control register.
36  */
37 #define ESTAR_MODE_DIV_1        0x0000000000000000UL
38 #define ESTAR_MODE_DIV_2        0x0000000000000001UL
39 #define ESTAR_MODE_DIV_4        0x0000000000000003UL
40 #define ESTAR_MODE_DIV_6        0x0000000000000002UL
41 #define ESTAR_MODE_DIV_8        0x0000000000000004UL
42 #define ESTAR_MODE_DIV_MASK     0x0000000000000007UL
43
44 #define MCTRL0_SREFRESH_ENAB    0x0000000000010000UL
45 #define MCTRL0_REFR_COUNT_MASK  0x0000000000007f00UL
46 #define MCTRL0_REFR_COUNT_SHIFT 8
47 #define MCTRL0_REFR_INTERVAL    7800
48 #define MCTRL0_REFR_CLKS_P_CNT  64
49
50 static unsigned long read_hbreg(unsigned long addr)
51 {
52         unsigned long ret;
53
54         __asm__ __volatile__("ldxa      [%1] %2, %0"
55                              : "=&r" (ret)
56                              : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
57         return ret;
58 }
59
60 static void write_hbreg(unsigned long addr, unsigned long val)
61 {
62         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
63                              "membar    #Sync"
64                              : /* no outputs */
65                              : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)
66                              : "memory");
67         if (addr == HBIRD_ESTAR_MODE_ADDR) {
68                 /* Need to wait 16 clock cycles for the PLL to lock.  */
69                 udelay(1);
70         }
71 }
72
73 static void self_refresh_ctl(int enable)
74 {
75         unsigned long mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
76
77         if (enable)
78                 mctrl |= MCTRL0_SREFRESH_ENAB;
79         else
80                 mctrl &= ~MCTRL0_SREFRESH_ENAB;
81         write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
82         (void) read_hbreg(HBIRD_MEM_CNTL0_ADDR);
83 }
84
85 static void frob_mem_refresh(int cpu_slowing_down,
86                              unsigned long clock_tick,
87                              unsigned long old_divisor, unsigned long divisor)
88 {
89         unsigned long old_refr_count, refr_count, mctrl;
90
91
92         refr_count  = (clock_tick * MCTRL0_REFR_INTERVAL);
93         refr_count /= (MCTRL0_REFR_CLKS_P_CNT * divisor * 1000000000UL);
94
95         mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
96         old_refr_count = (mctrl & MCTRL0_REFR_COUNT_MASK)
97                 >> MCTRL0_REFR_COUNT_SHIFT;
98
99         mctrl &= ~MCTRL0_REFR_COUNT_MASK;
100         mctrl |= refr_count << MCTRL0_REFR_COUNT_SHIFT;
101         write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
102         mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
103
104         if (cpu_slowing_down && !(mctrl & MCTRL0_SREFRESH_ENAB)) {
105                 unsigned long usecs;
106
107                 /* We have to wait for both refresh counts (old
108                  * and new) to go to zero.
109                  */
110                 usecs = (MCTRL0_REFR_CLKS_P_CNT *
111                          (refr_count + old_refr_count) *
112                          1000000UL *
113                          old_divisor) / clock_tick;
114                 udelay(usecs + 1UL);
115         }
116 }
117
118 static void us2e_transition(unsigned long estar, unsigned long new_bits,
119                             unsigned long clock_tick,
120                             unsigned long old_divisor, unsigned long divisor)
121 {
122         unsigned long flags;
123
124         local_irq_save(flags);
125
126         estar &= ~ESTAR_MODE_DIV_MASK;
127
128         /* This is based upon the state transition diagram in the IIe manual.  */
129         if (old_divisor == 2 && divisor == 1) {
130                 self_refresh_ctl(0);
131                 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
132                 frob_mem_refresh(0, clock_tick, old_divisor, divisor);
133         } else if (old_divisor == 1 && divisor == 2) {
134                 frob_mem_refresh(1, clock_tick, old_divisor, divisor);
135                 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
136                 self_refresh_ctl(1);
137         } else if (old_divisor == 1 && divisor > 2) {
138                 us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
139                                 1, 2);
140                 us2e_transition(estar, new_bits, clock_tick,
141                                 2, divisor);
142         } else if (old_divisor > 2 && divisor == 1) {
143                 us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
144                                 old_divisor, 2);
145                 us2e_transition(estar, new_bits, clock_tick,
146                                 2, divisor);
147         } else if (old_divisor < divisor) {
148                 frob_mem_refresh(0, clock_tick, old_divisor, divisor);
149                 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
150         } else if (old_divisor > divisor) {
151                 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
152                 frob_mem_refresh(1, clock_tick, old_divisor, divisor);
153         } else {
154                 BUG();
155         }
156
157         local_irq_restore(flags);
158 }
159
160 static unsigned long index_to_estar_mode(unsigned int index)
161 {
162         switch (index) {
163         case 0:
164                 return ESTAR_MODE_DIV_1;
165
166         case 1:
167                 return ESTAR_MODE_DIV_2;
168
169         case 2:
170                 return ESTAR_MODE_DIV_4;
171
172         case 3:
173                 return ESTAR_MODE_DIV_6;
174
175         case 4:
176                 return ESTAR_MODE_DIV_8;
177
178         default:
179                 BUG();
180         };
181 }
182
183 static unsigned long index_to_divisor(unsigned int index)
184 {
185         switch (index) {
186         case 0:
187                 return 1;
188
189         case 1:
190                 return 2;
191
192         case 2:
193                 return 4;
194
195         case 3:
196                 return 6;
197
198         case 4:
199                 return 8;
200
201         default:
202                 BUG();
203         };
204 }
205
206 static unsigned long estar_to_divisor(unsigned long estar)
207 {
208         unsigned long ret;
209
210         switch (estar & ESTAR_MODE_DIV_MASK) {
211         case ESTAR_MODE_DIV_1:
212                 ret = 1;
213                 break;
214         case ESTAR_MODE_DIV_2:
215                 ret = 2;
216                 break;
217         case ESTAR_MODE_DIV_4:
218                 ret = 4;
219                 break;
220         case ESTAR_MODE_DIV_6:
221                 ret = 6;
222                 break;
223         case ESTAR_MODE_DIV_8:
224                 ret = 8;
225                 break;
226         default:
227                 BUG();
228         };
229
230         return ret;
231 }
232
233 static void us2e_set_cpu_divider_index(unsigned int cpu, unsigned int index)
234 {
235         unsigned long new_bits, new_freq;
236         unsigned long clock_tick, divisor, old_divisor, estar;
237         cpumask_t cpus_allowed;
238         struct cpufreq_freqs freqs;
239
240         if (!cpu_online(cpu))
241                 return;
242
243         cpus_allowed = current->cpus_allowed;
244         set_cpus_allowed(current, cpumask_of_cpu(cpu));
245
246         new_freq = clock_tick = sparc64_get_clock_tick(cpu);
247         new_bits = index_to_estar_mode(index);
248         divisor = index_to_divisor(index);
249         new_freq /= divisor;
250
251         estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
252
253         old_divisor = estar_to_divisor(estar);
254
255         freqs.old = clock_tick / old_divisor;
256         freqs.new = new_freq;
257         freqs.cpu = cpu;
258         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
259
260         if (old_divisor != divisor)
261                 us2e_transition(estar, new_bits, clock_tick, old_divisor, divisor);
262
263         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
264
265         set_cpus_allowed(current, cpus_allowed);
266 }
267
268 static int us2e_freq_target(struct cpufreq_policy *policy,
269                           unsigned int target_freq,
270                           unsigned int relation)
271 {
272         unsigned int new_index = 0;
273
274         if (cpufreq_frequency_table_target(policy,
275                                               &us2e_freq_table[policy->cpu].table[0],
276                                               target_freq,
277                                               relation,
278                                               &new_index))
279                 return -EINVAL;
280
281         us2e_set_cpu_divider_index(policy->cpu, new_index);
282
283         return 0;
284 }
285
286 static int us2e_freq_verify(struct cpufreq_policy *policy)
287 {
288         return cpufreq_frequency_table_verify(policy,
289                                               &us2e_freq_table[policy->cpu].table[0]);
290 }
291
292 static int __init us2e_freq_cpu_init(struct cpufreq_policy *policy)
293 {
294         unsigned int cpu = policy->cpu;
295         unsigned long clock_tick = sparc64_get_clock_tick(cpu);
296         struct cpufreq_frequency_table *table =
297                 &us2e_freq_table[cpu].table[0];
298
299         table[0].index = 0;
300         table[0].frequency = clock_tick / 1;
301         table[1].index = 1;
302         table[1].frequency = clock_tick / 2;
303         table[2].index = 2;
304         table[2].frequency = clock_tick / 4;
305         table[2].index = 3;
306         table[2].frequency = clock_tick / 6;
307         table[2].index = 4;
308         table[2].frequency = clock_tick / 8;
309         table[2].index = 5;
310         table[3].frequency = CPUFREQ_TABLE_END;
311
312         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
313         policy->cpuinfo.transition_latency = 0;
314         policy->cur = clock_tick;
315
316         return cpufreq_frequency_table_cpuinfo(policy, table);
317 }
318
319 static int us2e_freq_cpu_exit(struct cpufreq_policy *policy)
320 {
321         if (cpufreq_us2e_driver)
322                 us2e_set_cpu_divider_index(policy->cpu, 0);
323
324         return 0;
325 }
326
327 static int __init us2e_freq_init(void)
328 {
329         unsigned long manuf, impl, ver;
330         int ret;
331
332         __asm__("rdpr %%ver, %0" : "=r" (ver));
333         manuf = ((ver >> 48) & 0xffff);
334         impl  = ((ver >> 32) & 0xffff);
335
336         if (manuf == 0x17 && impl == 0x13) {
337                 struct cpufreq_driver *driver;
338
339                 ret = -ENOMEM;
340                 driver = kmalloc(sizeof(struct cpufreq_driver), GFP_KERNEL);
341                 if (!driver)
342                         goto err_out;
343                 memset(driver, 0, sizeof(*driver));
344
345                 us2e_freq_table = kmalloc(
346                         (NR_CPUS * sizeof(struct us2e_freq_percpu_info)),
347                         GFP_KERNEL);
348                 if (!us2e_freq_table)
349                         goto err_out;
350
351                 memset(us2e_freq_table, 0,
352                        (NR_CPUS * sizeof(struct us2e_freq_percpu_info)));
353
354                 driver->verify = us2e_freq_verify;
355                 driver->target = us2e_freq_target;
356                 driver->init = us2e_freq_cpu_init;
357                 driver->exit = us2e_freq_cpu_exit;
358                 driver->owner = THIS_MODULE,
359                 strcpy(driver->name, "UltraSPARC-IIe");
360
361                 cpufreq_us2e_driver = driver;
362                 ret = cpufreq_register_driver(driver);
363                 if (ret)
364                         goto err_out;
365
366                 return 0;
367
368 err_out:
369                 if (driver) {
370                         kfree(driver);
371                         cpufreq_us2e_driver = NULL;
372                 }
373                 if (us2e_freq_table) {
374                         kfree(us2e_freq_table);
375                         us2e_freq_table = NULL;
376                 }
377                 return ret;
378         }
379
380         return -ENODEV;
381 }
382
383 static void __exit us2e_freq_exit(void)
384 {
385         if (cpufreq_us2e_driver) {
386                 cpufreq_unregister_driver(cpufreq_us2e_driver);
387
388                 kfree(cpufreq_us2e_driver);
389                 cpufreq_us2e_driver = NULL;
390                 kfree(us2e_freq_table);
391                 us2e_freq_table = NULL;
392         }
393 }
394
395 MODULE_AUTHOR("David S. Miller <davem@redhat.com>");
396 MODULE_DESCRIPTION("cpufreq driver for UltraSPARC-IIe");
397 MODULE_LICENSE("GPL");
398
399 module_init(us2e_freq_init);
400 module_exit(us2e_freq_exit);