tile: provide CONFIG_PAGE_SIZE_64KB etc for tilepro
[cascardo/linux.git] / arch / tile / include / asm / page.h
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14
15 #ifndef _ASM_TILE_PAGE_H
16 #define _ASM_TILE_PAGE_H
17
18 #include <linux/const.h>
19 #include <hv/hypervisor.h>
20 #include <arch/chip.h>
21
22 /* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */
23 #if defined(CONFIG_PAGE_SIZE_4KB)  /* tilepro only */
24 #define PAGE_SHIFT      12
25 #define CTX_PAGE_FLAG   HV_CTX_PG_SM_4K
26 #elif defined(CONFIG_PAGE_SIZE_16KB)
27 #define PAGE_SHIFT      14
28 #define CTX_PAGE_FLAG   HV_CTX_PG_SM_16K
29 #elif defined(CONFIG_PAGE_SIZE_64KB)
30 #define PAGE_SHIFT      16
31 #define CTX_PAGE_FLAG   HV_CTX_PG_SM_64K
32 #else
33 #error Page size not specified in Kconfig
34 #endif
35 #define HPAGE_SHIFT     HV_LOG2_DEFAULT_PAGE_SIZE_LARGE
36
37 #define PAGE_SIZE       (_AC(1, UL) << PAGE_SHIFT)
38 #define HPAGE_SIZE      (_AC(1, UL) << HPAGE_SHIFT)
39
40 #define PAGE_MASK       (~(PAGE_SIZE - 1))
41 #define HPAGE_MASK      (~(HPAGE_SIZE - 1))
42
43 /*
44  * If the Kconfig doesn't specify, set a maximum zone order that
45  * is enough so that we can create huge pages from small pages given
46  * the respective sizes of the two page types.  See <linux/mmzone.h>.
47  */
48 #ifndef CONFIG_FORCE_MAX_ZONEORDER
49 #define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1)
50 #endif
51
52 #ifndef __ASSEMBLY__
53
54 #include <linux/types.h>
55 #include <linux/string.h>
56
57 struct page;
58
59 static inline void clear_page(void *page)
60 {
61         memset(page, 0, PAGE_SIZE);
62 }
63
64 static inline void copy_page(void *to, void *from)
65 {
66         memcpy(to, from, PAGE_SIZE);
67 }
68
69 static inline void clear_user_page(void *page, unsigned long vaddr,
70                                 struct page *pg)
71 {
72         clear_page(page);
73 }
74
75 static inline void copy_user_page(void *to, void *from, unsigned long vaddr,
76                                 struct page *topage)
77 {
78         copy_page(to, from);
79 }
80
81 /*
82  * Hypervisor page tables are made of the same basic structure.
83  */
84
85 typedef HV_PTE pte_t;
86 typedef HV_PTE pgd_t;
87 typedef HV_PTE pgprot_t;
88
89 /*
90  * User L2 page tables are managed as one L2 page table per page,
91  * because we use the page allocator for them.  This keeps the allocation
92  * simple, but it's also inefficient, since L2 page tables are much smaller
93  * than pages (currently 2KB vs 64KB).  So we should revisit this.
94  */
95 typedef struct page *pgtable_t;
96
97 /* Must be a macro since it is used to create constants. */
98 #define __pgprot(val) hv_pte(val)
99
100 /* Rarely-used initializers, typically with a "zero" value. */
101 #define __pte(x) hv_pte(x)
102 #define __pgd(x) hv_pte(x)
103
104 static inline u64 pgprot_val(pgprot_t pgprot)
105 {
106         return hv_pte_val(pgprot);
107 }
108
109 static inline u64 pte_val(pte_t pte)
110 {
111         return hv_pte_val(pte);
112 }
113
114 static inline u64 pgd_val(pgd_t pgd)
115 {
116         return hv_pte_val(pgd);
117 }
118
119 #ifdef __tilegx__
120
121 typedef HV_PTE pmd_t;
122
123 #define __pmd(x) hv_pte(x)
124
125 static inline u64 pmd_val(pmd_t pmd)
126 {
127         return hv_pte_val(pmd);
128 }
129
130 #endif
131
132 static inline __attribute_const__ int get_order(unsigned long size)
133 {
134         return BITS_PER_LONG - __builtin_clzl((size - 1) >> PAGE_SHIFT);
135 }
136
137 #endif /* !__ASSEMBLY__ */
138
139 #define HUGETLB_PAGE_ORDER      (HPAGE_SHIFT - PAGE_SHIFT)
140
141 #define HUGE_MAX_HSTATE         6
142
143 #ifdef CONFIG_HUGETLB_PAGE
144 #define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
145 #endif
146
147 /* Allow overriding how much VA or PA the kernel will use. */
148 #define MAX_PA_WIDTH CHIP_PA_WIDTH()
149 #define MAX_VA_WIDTH CHIP_VA_WIDTH()
150
151 /* Each memory controller has PAs distinct in their high bits. */
152 #define NR_PA_HIGHBIT_SHIFT (MAX_PA_WIDTH - CHIP_LOG_NUM_MSHIMS())
153 #define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS())
154 #define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT)
155 #define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT))
156
157 #ifdef __tilegx__
158
159 /*
160  * We reserve the lower half of memory for user-space programs, and the
161  * upper half for system code.  We re-map all of physical memory in the
162  * upper half, which takes a quarter of our VA space.  Then we have
163  * the vmalloc regions.  The supervisor code lives at the highest address,
164  * with the hypervisor above that.
165  *
166  * Loadable kernel modules are placed immediately after the static
167  * supervisor code, with each being allocated a 256MB region of
168  * address space, so we don't have to worry about the range of "jal"
169  * and other branch instructions.
170  *
171  * For now we keep life simple and just allocate one pmd (4GB) for vmalloc.
172  * Similarly, for now we don't play any struct page mapping games.
173  */
174
175 #if MAX_PA_WIDTH + 2 > MAX_VA_WIDTH
176 # error Too much PA to map with the VA available!
177 #endif
178
179 #define PAGE_OFFSET             (-(_AC(1, UL) << (MAX_VA_WIDTH - 1)))
180 #define KERNEL_HIGH_VADDR       _AC(0xfffffff800000000, UL)  /* high 32GB */
181 #define FIXADDR_BASE            (KERNEL_HIGH_VADDR - 0x300000000) /* 4 GB */
182 #define FIXADDR_TOP             (KERNEL_HIGH_VADDR - 0x200000000) /* 4 GB */
183 #define _VMALLOC_START          FIXADDR_TOP
184 #define MEM_SV_START            (KERNEL_HIGH_VADDR - 0x100000000) /* 256 MB */
185 #define MEM_MODULE_START        (MEM_SV_START + (256*1024*1024)) /* 256 MB */
186 #define MEM_MODULE_END          (MEM_MODULE_START + (256*1024*1024))
187
188 #else /* !__tilegx__ */
189
190 /*
191  * A PAGE_OFFSET of 0xC0000000 means that the kernel has
192  * a virtual address space of one gigabyte, which limits the
193  * amount of physical memory you can use to about 768MB.
194  * If you want more physical memory than this then see the CONFIG_HIGHMEM
195  * option in the kernel configuration.
196  *
197  * The top 16MB chunk in the table below is unavailable to Linux.  Since
198  * the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000
199  * (depending on whether the kernel is at PL2 or Pl1), we map all of the
200  * bottom of RAM at this address with a huge page table entry to minimize
201  * its ITLB footprint (as well as at PAGE_OFFSET).  The last architected
202  * requirement is that user interrupt vectors live at 0xfc000000, so we
203  * make that range of memory available to user processes.  The remaining
204  * regions are sized as shown; the first four addresses use the PL 1
205  * values, and after that, we show "typical" values, since the actual
206  * addresses depend on kernel #defines.
207  *
208  * MEM_HV_START                    0xfe000000
209  * MEM_SV_START  (kernel code)     0xfd000000
210  * MEM_USER_INTRPT (user vector)   0xfc000000
211  * FIX_KMAP_xxx                    0xfa000000 (via NR_CPUS * KM_TYPE_NR)
212  * PKMAP_BASE                      0xf9000000 (via LAST_PKMAP)
213  * VMALLOC_START                   0xf7000000 (via VMALLOC_RESERVE)
214  * mapped LOWMEM                   0xc0000000
215  */
216
217 #define MEM_USER_INTRPT         _AC(0xfc000000, UL)
218 #define MEM_SV_START            _AC(0xfd000000, UL)
219 #define MEM_HV_START            _AC(0xfe000000, UL)
220
221 #define INTRPT_SIZE             0x4000
222
223 /* Tolerate page size larger than the architecture interrupt region size. */
224 #if PAGE_SIZE > INTRPT_SIZE
225 #undef INTRPT_SIZE
226 #define INTRPT_SIZE PAGE_SIZE
227 #endif
228
229 #define KERNEL_HIGH_VADDR       MEM_USER_INTRPT
230 #define FIXADDR_TOP             (KERNEL_HIGH_VADDR - PAGE_SIZE)
231
232 #define PAGE_OFFSET             _AC(CONFIG_PAGE_OFFSET, UL)
233
234 /* On 32-bit architectures we mix kernel modules in with other vmaps. */
235 #define MEM_MODULE_START        VMALLOC_START
236 #define MEM_MODULE_END          VMALLOC_END
237
238 #endif /* __tilegx__ */
239
240 #if !defined(__ASSEMBLY__) && !defined(VDSO_BUILD)
241
242 #ifdef CONFIG_HIGHMEM
243
244 /* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */
245 extern unsigned long pbase_map[];
246 extern void *vbase_map[];
247
248 static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr)
249 {
250         unsigned long kaddr = (unsigned long)_kaddr;
251         return pbase_map[kaddr >> HPAGE_SHIFT] +
252                 ((kaddr & (HPAGE_SIZE - 1)) >> PAGE_SHIFT);
253 }
254
255 static inline void *pfn_to_kaddr(unsigned long pfn)
256 {
257         return vbase_map[__pfn_to_highbits(pfn)] + (pfn << PAGE_SHIFT);
258 }
259
260 static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
261 {
262         unsigned long pfn = kaddr_to_pfn(kaddr);
263         return ((phys_addr_t)pfn << PAGE_SHIFT) +
264                 ((unsigned long)kaddr & (PAGE_SIZE-1));
265 }
266
267 static inline void *phys_to_virt(phys_addr_t paddr)
268 {
269         return pfn_to_kaddr(paddr >> PAGE_SHIFT) + (paddr & (PAGE_SIZE-1));
270 }
271
272 /* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */
273 static inline int virt_addr_valid(const volatile void *kaddr)
274 {
275         extern void *high_memory;  /* copied from <linux/mm.h> */
276         return ((unsigned long)kaddr >= PAGE_OFFSET && kaddr < high_memory);
277 }
278
279 #else /* !CONFIG_HIGHMEM */
280
281 static inline unsigned long kaddr_to_pfn(const volatile void *kaddr)
282 {
283         return ((unsigned long)kaddr - PAGE_OFFSET) >> PAGE_SHIFT;
284 }
285
286 static inline void *pfn_to_kaddr(unsigned long pfn)
287 {
288         return (void *)((pfn << PAGE_SHIFT) + PAGE_OFFSET);
289 }
290
291 static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
292 {
293         return (phys_addr_t)((unsigned long)kaddr - PAGE_OFFSET);
294 }
295
296 static inline void *phys_to_virt(phys_addr_t paddr)
297 {
298         return (void *)((unsigned long)paddr + PAGE_OFFSET);
299 }
300
301 /* Check that the given address is within some mapped range of PAs. */
302 #define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr))
303
304 #endif /* !CONFIG_HIGHMEM */
305
306 /* All callers are not consistent in how they call these functions. */
307 #define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr))
308 #define __va(paddr) phys_to_virt((phys_addr_t)(paddr))
309
310 extern int devmem_is_allowed(unsigned long pagenr);
311
312 #ifdef CONFIG_FLATMEM
313 static inline int pfn_valid(unsigned long pfn)
314 {
315         return pfn < max_mapnr;
316 }
317 #endif
318
319 /* Provide as macros since these require some other headers included. */
320 #define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT)
321 #define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn((void *)(kaddr)))
322 #define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page))
323
324 struct mm_struct;
325 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
326 extern pte_t *virt_to_kpte(unsigned long kaddr);
327
328 #endif /* !__ASSEMBLY__ */
329
330 #define VM_DATA_DEFAULT_FLAGS \
331         (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
332
333 #include <asm-generic/memory_model.h>
334
335 #endif /* _ASM_TILE_PAGE_H */