tile: remove support for TILE64
[cascardo/linux.git] / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  */
16
17 #include <linux/smp.h>
18 #include <linux/ptrace.h>
19 #include <linux/slab.h>
20 #include <linux/thread_info.h>
21 #include <linux/uaccess.h>
22 #include <linux/mman.h>
23 #include <linux/types.h>
24 #include <linux/err.h>
25 #include <linux/prctl.h>
26 #include <asm/cacheflush.h>
27 #include <asm/traps.h>
28 #include <asm/uaccess.h>
29 #include <asm/unaligned.h>
30 #include <arch/abi.h>
31 #include <arch/spr_def.h>
32 #include <arch/opcode.h>
33
34
35 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
36
37 #define signExtend17(val) sign_extend((val), 17)
38 #define TILE_X1_MASK (0xffffffffULL << 31)
39
40 enum mem_op {
41         MEMOP_NONE,
42         MEMOP_LOAD,
43         MEMOP_STORE,
44         MEMOP_LOAD_POSTINCR,
45         MEMOP_STORE_POSTINCR
46 };
47
48 static inline tilepro_bundle_bits set_BrOff_X1(tilepro_bundle_bits n,
49         s32 offset)
50 {
51         tilepro_bundle_bits result;
52
53         /* mask out the old offset */
54         tilepro_bundle_bits mask = create_BrOff_X1(-1);
55         result = n & (~mask);
56
57         /* or in the new offset */
58         result |= create_BrOff_X1(offset);
59
60         return result;
61 }
62
63 static inline tilepro_bundle_bits move_X1(tilepro_bundle_bits n, int dest,
64         int src)
65 {
66         tilepro_bundle_bits result;
67         tilepro_bundle_bits op;
68
69         result = n & (~TILE_X1_MASK);
70
71         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
72                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
73                 create_Dest_X1(dest) |
74                 create_SrcB_X1(TREG_ZERO) |
75                 create_SrcA_X1(src) ;
76
77         result |= op;
78         return result;
79 }
80
81 static inline tilepro_bundle_bits nop_X1(tilepro_bundle_bits n)
82 {
83         return move_X1(n, TREG_ZERO, TREG_ZERO);
84 }
85
86 static inline tilepro_bundle_bits addi_X1(
87         tilepro_bundle_bits n, int dest, int src, int imm)
88 {
89         n &= ~TILE_X1_MASK;
90
91         n |=  (create_SrcA_X1(src) |
92                create_Dest_X1(dest) |
93                create_Imm8_X1(imm) |
94                create_S_X1(0) |
95                create_Opcode_X1(IMM_0_OPCODE_X1) |
96                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
97
98         return n;
99 }
100
101 static tilepro_bundle_bits rewrite_load_store_unaligned(
102         struct single_step_state *state,
103         tilepro_bundle_bits bundle,
104         struct pt_regs *regs,
105         enum mem_op mem_op,
106         int size, int sign_ext)
107 {
108         unsigned char __user *addr;
109         int val_reg, addr_reg, err, val;
110         int align_ctl;
111
112         align_ctl = unaligned_fixup;
113         switch (task_thread_info(current)->align_ctl) {
114         case PR_UNALIGN_NOPRINT:
115                 align_ctl = 1;
116                 break;
117         case PR_UNALIGN_SIGBUS:
118                 align_ctl = 0;
119                 break;
120         }
121
122         /* Get address and value registers */
123         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
124                 addr_reg = get_SrcA_Y2(bundle);
125                 val_reg = get_SrcBDest_Y2(bundle);
126         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
127                 addr_reg = get_SrcA_X1(bundle);
128                 val_reg  = get_Dest_X1(bundle);
129         } else {
130                 addr_reg = get_SrcA_X1(bundle);
131                 val_reg  = get_SrcB_X1(bundle);
132         }
133
134         /*
135          * If registers are not GPRs, don't try to handle it.
136          *
137          * FIXME: we could handle non-GPR loads by getting the real value
138          * from memory, writing it to the single step buffer, using a
139          * temp_reg to hold a pointer to that memory, then executing that
140          * instruction and resetting temp_reg.  For non-GPR stores, it's a
141          * little trickier; we could use the single step buffer for that
142          * too, but we'd have to add some more state bits so that we could
143          * call back in here to copy that value to the real target.  For
144          * now, we just handle the simple case.
145          */
146         if ((val_reg >= PTREGS_NR_GPRS &&
147              (val_reg != TREG_ZERO ||
148               mem_op == MEMOP_LOAD ||
149               mem_op == MEMOP_LOAD_POSTINCR)) ||
150             addr_reg >= PTREGS_NR_GPRS)
151                 return bundle;
152
153         /* If it's aligned, don't handle it specially */
154         addr = (void __user *)regs->regs[addr_reg];
155         if (((unsigned long)addr % size) == 0)
156                 return bundle;
157
158         /*
159          * Return SIGBUS with the unaligned address, if requested.
160          * Note that we return SIGBUS even for completely invalid addresses
161          * as long as they are in fact unaligned; this matches what the
162          * tilepro hardware would be doing, if it could provide us with the
163          * actual bad address in an SPR, which it doesn't.
164          */
165         if (align_ctl == 0) {
166                 siginfo_t info = {
167                         .si_signo = SIGBUS,
168                         .si_code = BUS_ADRALN,
169                         .si_addr = addr
170                 };
171                 trace_unhandled_signal("unaligned trap", regs,
172                                        (unsigned long)addr, SIGBUS);
173                 force_sig_info(info.si_signo, &info, current);
174                 return (tilepro_bundle_bits) 0;
175         }
176
177         /* Handle unaligned load/store */
178         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
179                 unsigned short val_16;
180                 switch (size) {
181                 case 2:
182                         err = copy_from_user(&val_16, addr, sizeof(val_16));
183                         val = sign_ext ? ((short)val_16) : val_16;
184                         break;
185                 case 4:
186                         err = copy_from_user(&val, addr, sizeof(val));
187                         break;
188                 default:
189                         BUG();
190                 }
191                 if (err == 0) {
192                         state->update_reg = val_reg;
193                         state->update_value = val;
194                         state->update = 1;
195                 }
196         } else {
197                 unsigned short val_16;
198                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
199                 switch (size) {
200                 case 2:
201                         val_16 = val;
202                         err = copy_to_user(addr, &val_16, sizeof(val_16));
203                         break;
204                 case 4:
205                         err = copy_to_user(addr, &val, sizeof(val));
206                         break;
207                 default:
208                         BUG();
209                 }
210         }
211
212         if (err) {
213                 siginfo_t info = {
214                         .si_signo = SIGBUS,
215                         .si_code = BUS_ADRALN,
216                         .si_addr = addr
217                 };
218                 trace_unhandled_signal("bad address for unaligned fixup", regs,
219                                        (unsigned long)addr, SIGBUS);
220                 force_sig_info(info.si_signo, &info, current);
221                 return (tilepro_bundle_bits) 0;
222         }
223
224         if (unaligned_printk || unaligned_fixup_count == 0) {
225                 pr_info("Process %d/%s: PC %#lx: Fixup of"
226                         " unaligned %s at %#lx.\n",
227                         current->pid, current->comm, regs->pc,
228                         (mem_op == MEMOP_LOAD ||
229                          mem_op == MEMOP_LOAD_POSTINCR) ?
230                         "load" : "store",
231                         (unsigned long)addr);
232                 if (!unaligned_printk) {
233 #define P pr_info
234 P("\n");
235 P("Unaligned fixups in the kernel will slow your application considerably.\n");
236 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
237 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
238 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
239 P("access will become a SIGBUS you can debug. No further warnings will be\n");
240 P("shown so as to avoid additional slowdown, but you can track the number\n");
241 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
242 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
243 P("\n");
244 #undef P
245                 }
246         }
247         ++unaligned_fixup_count;
248
249         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
250                 /* Convert the Y2 instruction to a prefetch. */
251                 bundle &= ~(create_SrcBDest_Y2(-1) |
252                             create_Opcode_Y2(-1));
253                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
254                            create_Opcode_Y2(LW_OPCODE_Y2));
255         /* Replace the load postincr with an addi */
256         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
257                 bundle = addi_X1(bundle, addr_reg, addr_reg,
258                                  get_Imm8_X1(bundle));
259         /* Replace the store postincr with an addi */
260         } else if (mem_op == MEMOP_STORE_POSTINCR) {
261                 bundle = addi_X1(bundle, addr_reg, addr_reg,
262                                  get_Dest_Imm8_X1(bundle));
263         } else {
264                 /* Convert the X1 instruction to a nop. */
265                 bundle &= ~(create_Opcode_X1(-1) |
266                             create_UnShOpcodeExtension_X1(-1) |
267                             create_UnOpcodeExtension_X1(-1));
268                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
269                            create_UnShOpcodeExtension_X1(
270                                    UN_0_SHUN_0_OPCODE_X1) |
271                            create_UnOpcodeExtension_X1(
272                                    NOP_UN_0_SHUN_0_OPCODE_X1));
273         }
274
275         return bundle;
276 }
277
278 /*
279  * Called after execve() has started the new image.  This allows us
280  * to reset the info state.  Note that the the mmap'ed memory, if there
281  * was any, has already been unmapped by the exec.
282  */
283 void single_step_execve(void)
284 {
285         struct thread_info *ti = current_thread_info();
286         kfree(ti->step_state);
287         ti->step_state = NULL;
288 }
289
290 /*
291  * single_step_once() - entry point when single stepping has been triggered.
292  * @regs: The machine register state
293  *
294  *  When we arrive at this routine via a trampoline, the single step
295  *  engine copies the executing bundle to the single step buffer.
296  *  If the instruction is a condition branch, then the target is
297  *  reset to one past the next instruction. If the instruction
298  *  sets the lr, then that is noted. If the instruction is a jump
299  *  or call, then the new target pc is preserved and the current
300  *  bundle instruction set to null.
301  *
302  *  The necessary post-single-step rewriting information is stored in
303  *  single_step_state->  We use data segment values because the
304  *  stack will be rewound when we run the rewritten single-stepped
305  *  instruction.
306  */
307 void single_step_once(struct pt_regs *regs)
308 {
309         extern tilepro_bundle_bits __single_step_ill_insn;
310         extern tilepro_bundle_bits __single_step_j_insn;
311         extern tilepro_bundle_bits __single_step_addli_insn;
312         extern tilepro_bundle_bits __single_step_auli_insn;
313         struct thread_info *info = (void *)current_thread_info();
314         struct single_step_state *state = info->step_state;
315         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
316         tilepro_bundle_bits __user *buffer, *pc;
317         tilepro_bundle_bits bundle;
318         int temp_reg;
319         int target_reg = TREG_LR;
320         int err;
321         enum mem_op mem_op = MEMOP_NONE;
322         int size = 0, sign_ext = 0;  /* happy compiler */
323         int align_ctl;
324
325         align_ctl = unaligned_fixup;
326         switch (task_thread_info(current)->align_ctl) {
327         case PR_UNALIGN_NOPRINT:
328                 align_ctl = 1;
329                 break;
330         case PR_UNALIGN_SIGBUS:
331                 align_ctl = 0;
332                 break;
333         }
334
335         asm(
336 "    .pushsection .rodata.single_step\n"
337 "    .align 8\n"
338 "    .globl    __single_step_ill_insn\n"
339 "__single_step_ill_insn:\n"
340 "    ill\n"
341 "    .globl    __single_step_addli_insn\n"
342 "__single_step_addli_insn:\n"
343 "    { nop; addli r0, zero, 0 }\n"
344 "    .globl    __single_step_auli_insn\n"
345 "__single_step_auli_insn:\n"
346 "    { nop; auli r0, r0, 0 }\n"
347 "    .globl    __single_step_j_insn\n"
348 "__single_step_j_insn:\n"
349 "    j .\n"
350 "    .popsection\n"
351         );
352
353         /*
354          * Enable interrupts here to allow touching userspace and the like.
355          * The callers expect this: do_trap() already has interrupts
356          * enabled, and do_work_pending() handles functions that enable
357          * interrupts internally.
358          */
359         local_irq_enable();
360
361         if (state == NULL) {
362                 /* allocate a page of writable, executable memory */
363                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
364                 if (state == NULL) {
365                         pr_err("Out of kernel memory trying to single-step\n");
366                         return;
367                 }
368
369                 /* allocate a cache line of writable, executable memory */
370                 buffer = (void __user *) vm_mmap(NULL, 0, 64,
371                                           PROT_EXEC | PROT_READ | PROT_WRITE,
372                                           MAP_PRIVATE | MAP_ANONYMOUS,
373                                           0);
374
375                 if (IS_ERR((void __force *)buffer)) {
376                         kfree(state);
377                         pr_err("Out of kernel pages trying to single-step\n");
378                         return;
379                 }
380
381                 state->buffer = buffer;
382                 state->is_enabled = 0;
383
384                 info->step_state = state;
385
386                 /* Validate our stored instruction patterns */
387                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
388                        ADDLI_OPCODE_X1);
389                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
390                        AULI_OPCODE_X1);
391                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
392                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
393                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
394         }
395
396         /*
397          * If we are returning from a syscall, we still haven't hit the
398          * "ill" for the swint1 instruction.  So back the PC up to be
399          * pointing at the swint1, but we'll actually return directly
400          * back to the "ill" so we come back in via SIGILL as if we
401          * had "executed" the swint1 without ever being in kernel space.
402          */
403         if (regs->faultnum == INT_SWINT_1)
404                 regs->pc -= 8;
405
406         pc = (tilepro_bundle_bits __user *)(regs->pc);
407         if (get_user(bundle, pc) != 0) {
408                 pr_err("Couldn't read instruction at %p trying to step\n", pc);
409                 return;
410         }
411
412         /* We'll follow the instruction with 2 ill op bundles */
413         state->orig_pc = (unsigned long)pc;
414         state->next_pc = (unsigned long)(pc + 1);
415         state->branch_next_pc = 0;
416         state->update = 0;
417
418         if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
419                 /* two wide, check for control flow */
420                 int opcode = get_Opcode_X1(bundle);
421
422                 switch (opcode) {
423                 /* branches */
424                 case BRANCH_OPCODE_X1:
425                 {
426                         s32 offset = signExtend17(get_BrOff_X1(bundle));
427
428                         /*
429                          * For branches, we use a rewriting trick to let the
430                          * hardware evaluate whether the branch is taken or
431                          * untaken.  We record the target offset and then
432                          * rewrite the branch instruction to target 1 insn
433                          * ahead if the branch is taken.  We then follow the
434                          * rewritten branch with two bundles, each containing
435                          * an "ill" instruction. The supervisor examines the
436                          * pc after the single step code is executed, and if
437                          * the pc is the first ill instruction, then the
438                          * branch (if any) was not taken.  If the pc is the
439                          * second ill instruction, then the branch was
440                          * taken. The new pc is computed for these cases, and
441                          * inserted into the registers for the thread.  If
442                          * the pc is the start of the single step code, then
443                          * an exception or interrupt was taken before the
444                          * code started processing, and the same "original"
445                          * pc is restored.  This change, different from the
446                          * original implementation, has the advantage of
447                          * executing a single user instruction.
448                          */
449                         state->branch_next_pc = (unsigned long)(pc + offset);
450
451                         /* rewrite branch offset to go forward one bundle */
452                         bundle = set_BrOff_X1(bundle, 2);
453                 }
454                 break;
455
456                 /* jumps */
457                 case JALB_OPCODE_X1:
458                 case JALF_OPCODE_X1:
459                         state->update = 1;
460                         state->next_pc =
461                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
462                         break;
463
464                 case JB_OPCODE_X1:
465                 case JF_OPCODE_X1:
466                         state->next_pc =
467                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
468                         bundle = nop_X1(bundle);
469                         break;
470
471                 case SPECIAL_0_OPCODE_X1:
472                         switch (get_RRROpcodeExtension_X1(bundle)) {
473                         /* jump-register */
474                         case JALRP_SPECIAL_0_OPCODE_X1:
475                         case JALR_SPECIAL_0_OPCODE_X1:
476                                 state->update = 1;
477                                 state->next_pc =
478                                         regs->regs[get_SrcA_X1(bundle)];
479                                 break;
480
481                         case JRP_SPECIAL_0_OPCODE_X1:
482                         case JR_SPECIAL_0_OPCODE_X1:
483                                 state->next_pc =
484                                         regs->regs[get_SrcA_X1(bundle)];
485                                 bundle = nop_X1(bundle);
486                                 break;
487
488                         case LNK_SPECIAL_0_OPCODE_X1:
489                                 state->update = 1;
490                                 target_reg = get_Dest_X1(bundle);
491                                 break;
492
493                         /* stores */
494                         case SH_SPECIAL_0_OPCODE_X1:
495                                 mem_op = MEMOP_STORE;
496                                 size = 2;
497                                 break;
498
499                         case SW_SPECIAL_0_OPCODE_X1:
500                                 mem_op = MEMOP_STORE;
501                                 size = 4;
502                                 break;
503                         }
504                         break;
505
506                 /* loads and iret */
507                 case SHUN_0_OPCODE_X1:
508                         if (get_UnShOpcodeExtension_X1(bundle) ==
509                             UN_0_SHUN_0_OPCODE_X1) {
510                                 switch (get_UnOpcodeExtension_X1(bundle)) {
511                                 case LH_UN_0_SHUN_0_OPCODE_X1:
512                                         mem_op = MEMOP_LOAD;
513                                         size = 2;
514                                         sign_ext = 1;
515                                         break;
516
517                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
518                                         mem_op = MEMOP_LOAD;
519                                         size = 2;
520                                         sign_ext = 0;
521                                         break;
522
523                                 case LW_UN_0_SHUN_0_OPCODE_X1:
524                                         mem_op = MEMOP_LOAD;
525                                         size = 4;
526                                         break;
527
528                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
529                                 {
530                                         unsigned long ex0_0 = __insn_mfspr(
531                                                 SPR_EX_CONTEXT_0_0);
532                                         unsigned long ex0_1 = __insn_mfspr(
533                                                 SPR_EX_CONTEXT_0_1);
534                                         /*
535                                          * Special-case it if we're iret'ing
536                                          * to PL0 again.  Otherwise just let
537                                          * it run and it will generate SIGILL.
538                                          */
539                                         if (EX1_PL(ex0_1) == USER_PL) {
540                                                 state->next_pc = ex0_0;
541                                                 regs->ex1 = ex0_1;
542                                                 bundle = nop_X1(bundle);
543                                         }
544                                 }
545                                 }
546                         }
547                         break;
548
549                 /* postincrement operations */
550                 case IMM_0_OPCODE_X1:
551                         switch (get_ImmOpcodeExtension_X1(bundle)) {
552                         case LWADD_IMM_0_OPCODE_X1:
553                                 mem_op = MEMOP_LOAD_POSTINCR;
554                                 size = 4;
555                                 break;
556
557                         case LHADD_IMM_0_OPCODE_X1:
558                                 mem_op = MEMOP_LOAD_POSTINCR;
559                                 size = 2;
560                                 sign_ext = 1;
561                                 break;
562
563                         case LHADD_U_IMM_0_OPCODE_X1:
564                                 mem_op = MEMOP_LOAD_POSTINCR;
565                                 size = 2;
566                                 sign_ext = 0;
567                                 break;
568
569                         case SWADD_IMM_0_OPCODE_X1:
570                                 mem_op = MEMOP_STORE_POSTINCR;
571                                 size = 4;
572                                 break;
573
574                         case SHADD_IMM_0_OPCODE_X1:
575                                 mem_op = MEMOP_STORE_POSTINCR;
576                                 size = 2;
577                                 break;
578
579                         default:
580                                 break;
581                         }
582                         break;
583                 }
584
585                 if (state->update) {
586                         /*
587                          * Get an available register.  We start with a
588                          * bitmask with 1's for available registers.
589                          * We truncate to the low 32 registers since
590                          * we are guaranteed to have set bits in the
591                          * low 32 bits, then use ctz to pick the first.
592                          */
593                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
594                                            (1ULL << get_SrcA_X0(bundle)) |
595                                            (1ULL << get_SrcB_X0(bundle)) |
596                                            (1ULL << target_reg));
597                         temp_reg = __builtin_ctz(mask);
598                         state->update_reg = temp_reg;
599                         state->update_value = regs->regs[temp_reg];
600                         regs->regs[temp_reg] = (unsigned long) (pc+1);
601                         regs->flags |= PT_FLAGS_RESTORE_REGS;
602                         bundle = move_X1(bundle, target_reg, temp_reg);
603                 }
604         } else {
605                 int opcode = get_Opcode_Y2(bundle);
606
607                 switch (opcode) {
608                 /* loads */
609                 case LH_OPCODE_Y2:
610                         mem_op = MEMOP_LOAD;
611                         size = 2;
612                         sign_ext = 1;
613                         break;
614
615                 case LH_U_OPCODE_Y2:
616                         mem_op = MEMOP_LOAD;
617                         size = 2;
618                         sign_ext = 0;
619                         break;
620
621                 case LW_OPCODE_Y2:
622                         mem_op = MEMOP_LOAD;
623                         size = 4;
624                         break;
625
626                 /* stores */
627                 case SH_OPCODE_Y2:
628                         mem_op = MEMOP_STORE;
629                         size = 2;
630                         break;
631
632                 case SW_OPCODE_Y2:
633                         mem_op = MEMOP_STORE;
634                         size = 4;
635                         break;
636                 }
637         }
638
639         /*
640          * Check if we need to rewrite an unaligned load/store.
641          * Returning zero is a special value meaning we generated a signal.
642          */
643         if (mem_op != MEMOP_NONE && align_ctl >= 0) {
644                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
645                                                       mem_op, size, sign_ext);
646                 if (bundle == 0)
647                         return;
648         }
649
650         /* write the bundle to our execution area */
651         buffer = state->buffer;
652         err = __put_user(bundle, buffer++);
653
654         /*
655          * If we're really single-stepping, we take an INT_ILL after.
656          * If we're just handling an unaligned access, we can just
657          * jump directly back to where we were in user code.
658          */
659         if (is_single_step) {
660                 err |= __put_user(__single_step_ill_insn, buffer++);
661                 err |= __put_user(__single_step_ill_insn, buffer++);
662         } else {
663                 long delta;
664
665                 if (state->update) {
666                         /* We have some state to update; do it inline */
667                         int ha16;
668                         bundle = __single_step_addli_insn;
669                         bundle |= create_Dest_X1(state->update_reg);
670                         bundle |= create_Imm16_X1(state->update_value);
671                         err |= __put_user(bundle, buffer++);
672                         bundle = __single_step_auli_insn;
673                         bundle |= create_Dest_X1(state->update_reg);
674                         bundle |= create_SrcA_X1(state->update_reg);
675                         ha16 = (state->update_value + 0x8000) >> 16;
676                         bundle |= create_Imm16_X1(ha16);
677                         err |= __put_user(bundle, buffer++);
678                         state->update = 0;
679                 }
680
681                 /* End with a jump back to the next instruction */
682                 delta = ((regs->pc + TILEPRO_BUNDLE_SIZE_IN_BYTES) -
683                         (unsigned long)buffer) >>
684                         TILEPRO_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
685                 bundle = __single_step_j_insn;
686                 bundle |= create_JOffLong_X1(delta);
687                 err |= __put_user(bundle, buffer++);
688         }
689
690         if (err) {
691                 pr_err("Fault when writing to single-step buffer\n");
692                 return;
693         }
694
695         /*
696          * Flush the buffer.
697          * We do a local flush only, since this is a thread-specific buffer.
698          */
699         __flush_icache_range((unsigned long)state->buffer,
700                              (unsigned long)buffer);
701
702         /* Indicate enabled */
703         state->is_enabled = is_single_step;
704         regs->pc = (unsigned long)state->buffer;
705
706         /* Fault immediately if we are coming back from a syscall. */
707         if (regs->faultnum == INT_SWINT_1)
708                 regs->pc += 8;
709 }
710
711 #else
712
713 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
714
715
716 /*
717  * Called directly on the occasion of an interrupt.
718  *
719  * If the process doesn't have single step set, then we use this as an
720  * opportunity to turn single step off.
721  *
722  * It has been mentioned that we could conditionally turn off single stepping
723  * on each entry into the kernel and rely on single_step_once to turn it
724  * on for the processes that matter (as we already do), but this
725  * implementation is somewhat more efficient in that we muck with registers
726  * once on a bum interrupt rather than on every entry into the kernel.
727  *
728  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
729  * so we have to run through this process again before we can say that an
730  * instruction has executed.
731  *
732  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
733  * it changes the PC.  If it hasn't changed, then we know that the interrupt
734  * wasn't generated by swint and we'll need to run this process again before
735  * we can say an instruction has executed.
736  *
737  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
738  * on with our lives.
739  */
740
741 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
742 {
743         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
744         struct thread_info *info = (void *)current_thread_info();
745         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
746         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
747
748         if (is_single_step == 0) {
749                 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
750
751         } else if ((*ss_pc != regs->pc) ||
752                    (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
753
754                 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
755                 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
756                 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
757                 send_sigtrap(current, regs);
758         }
759 }
760
761
762 /*
763  * Called from need_singlestep.  Set up the control registers and the enable
764  * register, then return back.
765  */
766
767 void single_step_once(struct pt_regs *regs)
768 {
769         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
770         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
771
772         *ss_pc = regs->pc;
773         control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
774         control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
775         __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
776         __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
777 }
778
779 void single_step_execve(void)
780 {
781         /* Nothing */
782 }
783
784 #endif /* !__tilegx__ */