Merge remote-tracking branch 'airlied/drm-prime-vmap' into drm-intel-next-queued
[cascardo/linux.git] / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  * Derived from iLib's single-stepping code.
16  */
17
18 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
19
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/unaligned.h>
29 #include <arch/abi.h>
30 #include <arch/opcode.h>
31
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
34
35 int unaligned_printk;
36
37 static int __init setup_unaligned_printk(char *str)
38 {
39         long val;
40         if (strict_strtol(str, 0, &val) != 0)
41                 return 0;
42         unaligned_printk = val;
43         pr_info("Printk for each unaligned data accesses is %s\n",
44                 unaligned_printk ? "enabled" : "disabled");
45         return 1;
46 }
47 __setup("unaligned_printk=", setup_unaligned_printk);
48
49 unsigned int unaligned_fixup_count;
50
51 enum mem_op {
52         MEMOP_NONE,
53         MEMOP_LOAD,
54         MEMOP_STORE,
55         MEMOP_LOAD_POSTINCR,
56         MEMOP_STORE_POSTINCR
57 };
58
59 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
60 {
61         tile_bundle_bits result;
62
63         /* mask out the old offset */
64         tile_bundle_bits mask = create_BrOff_X1(-1);
65         result = n & (~mask);
66
67         /* or in the new offset */
68         result |= create_BrOff_X1(offset);
69
70         return result;
71 }
72
73 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
74 {
75         tile_bundle_bits result;
76         tile_bundle_bits op;
77
78         result = n & (~TILE_X1_MASK);
79
80         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82                 create_Dest_X1(dest) |
83                 create_SrcB_X1(TREG_ZERO) |
84                 create_SrcA_X1(src) ;
85
86         result |= op;
87         return result;
88 }
89
90 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
91 {
92         return move_X1(n, TREG_ZERO, TREG_ZERO);
93 }
94
95 static inline tile_bundle_bits addi_X1(
96         tile_bundle_bits n, int dest, int src, int imm)
97 {
98         n &= ~TILE_X1_MASK;
99
100         n |=  (create_SrcA_X1(src) |
101                create_Dest_X1(dest) |
102                create_Imm8_X1(imm) |
103                create_S_X1(0) |
104                create_Opcode_X1(IMM_0_OPCODE_X1) |
105                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
106
107         return n;
108 }
109
110 static tile_bundle_bits rewrite_load_store_unaligned(
111         struct single_step_state *state,
112         tile_bundle_bits bundle,
113         struct pt_regs *regs,
114         enum mem_op mem_op,
115         int size, int sign_ext)
116 {
117         unsigned char __user *addr;
118         int val_reg, addr_reg, err, val;
119
120         /* Get address and value registers */
121         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
122                 addr_reg = get_SrcA_Y2(bundle);
123                 val_reg = get_SrcBDest_Y2(bundle);
124         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125                 addr_reg = get_SrcA_X1(bundle);
126                 val_reg  = get_Dest_X1(bundle);
127         } else {
128                 addr_reg = get_SrcA_X1(bundle);
129                 val_reg  = get_SrcB_X1(bundle);
130         }
131
132         /*
133          * If registers are not GPRs, don't try to handle it.
134          *
135          * FIXME: we could handle non-GPR loads by getting the real value
136          * from memory, writing it to the single step buffer, using a
137          * temp_reg to hold a pointer to that memory, then executing that
138          * instruction and resetting temp_reg.  For non-GPR stores, it's a
139          * little trickier; we could use the single step buffer for that
140          * too, but we'd have to add some more state bits so that we could
141          * call back in here to copy that value to the real target.  For
142          * now, we just handle the simple case.
143          */
144         if ((val_reg >= PTREGS_NR_GPRS &&
145              (val_reg != TREG_ZERO ||
146               mem_op == MEMOP_LOAD ||
147               mem_op == MEMOP_LOAD_POSTINCR)) ||
148             addr_reg >= PTREGS_NR_GPRS)
149                 return bundle;
150
151         /* If it's aligned, don't handle it specially */
152         addr = (void __user *)regs->regs[addr_reg];
153         if (((unsigned long)addr % size) == 0)
154                 return bundle;
155
156         /*
157          * Return SIGBUS with the unaligned address, if requested.
158          * Note that we return SIGBUS even for completely invalid addresses
159          * as long as they are in fact unaligned; this matches what the
160          * tilepro hardware would be doing, if it could provide us with the
161          * actual bad address in an SPR, which it doesn't.
162          */
163         if (unaligned_fixup == 0) {
164                 siginfo_t info = {
165                         .si_signo = SIGBUS,
166                         .si_code = BUS_ADRALN,
167                         .si_addr = addr
168                 };
169                 trace_unhandled_signal("unaligned trap", regs,
170                                        (unsigned long)addr, SIGBUS);
171                 force_sig_info(info.si_signo, &info, current);
172                 return (tilepro_bundle_bits) 0;
173         }
174
175         /* Handle unaligned load/store */
176         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
177                 unsigned short val_16;
178                 switch (size) {
179                 case 2:
180                         err = copy_from_user(&val_16, addr, sizeof(val_16));
181                         val = sign_ext ? ((short)val_16) : val_16;
182                         break;
183                 case 4:
184                         err = copy_from_user(&val, addr, sizeof(val));
185                         break;
186                 default:
187                         BUG();
188                 }
189                 if (err == 0) {
190                         state->update_reg = val_reg;
191                         state->update_value = val;
192                         state->update = 1;
193                 }
194         } else {
195                 unsigned short val_16;
196                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
197                 switch (size) {
198                 case 2:
199                         val_16 = val;
200                         err = copy_to_user(addr, &val_16, sizeof(val_16));
201                         break;
202                 case 4:
203                         err = copy_to_user(addr, &val, sizeof(val));
204                         break;
205                 default:
206                         BUG();
207                 }
208         }
209
210         if (err) {
211                 siginfo_t info = {
212                         .si_signo = SIGSEGV,
213                         .si_code = SEGV_MAPERR,
214                         .si_addr = addr
215                 };
216                 trace_unhandled_signal("segfault", regs,
217                                        (unsigned long)addr, SIGSEGV);
218                 force_sig_info(info.si_signo, &info, current);
219                 return (tile_bundle_bits) 0;
220         }
221
222         if (unaligned_printk || unaligned_fixup_count == 0) {
223                 pr_info("Process %d/%s: PC %#lx: Fixup of"
224                         " unaligned %s at %#lx.\n",
225                         current->pid, current->comm, regs->pc,
226                         (mem_op == MEMOP_LOAD ||
227                          mem_op == MEMOP_LOAD_POSTINCR) ?
228                         "load" : "store",
229                         (unsigned long)addr);
230                 if (!unaligned_printk) {
231 #define P pr_info
232 P("\n");
233 P("Unaligned fixups in the kernel will slow your application considerably.\n");
234 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
235 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
236 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
237 P("access will become a SIGBUS you can debug. No further warnings will be\n");
238 P("shown so as to avoid additional slowdown, but you can track the number\n");
239 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
240 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
241 P("\n");
242 #undef P
243                 }
244         }
245         ++unaligned_fixup_count;
246
247         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
248                 /* Convert the Y2 instruction to a prefetch. */
249                 bundle &= ~(create_SrcBDest_Y2(-1) |
250                             create_Opcode_Y2(-1));
251                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
252                            create_Opcode_Y2(LW_OPCODE_Y2));
253         /* Replace the load postincr with an addi */
254         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
255                 bundle = addi_X1(bundle, addr_reg, addr_reg,
256                                  get_Imm8_X1(bundle));
257         /* Replace the store postincr with an addi */
258         } else if (mem_op == MEMOP_STORE_POSTINCR) {
259                 bundle = addi_X1(bundle, addr_reg, addr_reg,
260                                  get_Dest_Imm8_X1(bundle));
261         } else {
262                 /* Convert the X1 instruction to a nop. */
263                 bundle &= ~(create_Opcode_X1(-1) |
264                             create_UnShOpcodeExtension_X1(-1) |
265                             create_UnOpcodeExtension_X1(-1));
266                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
267                            create_UnShOpcodeExtension_X1(
268                                    UN_0_SHUN_0_OPCODE_X1) |
269                            create_UnOpcodeExtension_X1(
270                                    NOP_UN_0_SHUN_0_OPCODE_X1));
271         }
272
273         return bundle;
274 }
275
276 /*
277  * Called after execve() has started the new image.  This allows us
278  * to reset the info state.  Note that the the mmap'ed memory, if there
279  * was any, has already been unmapped by the exec.
280  */
281 void single_step_execve(void)
282 {
283         struct thread_info *ti = current_thread_info();
284         kfree(ti->step_state);
285         ti->step_state = NULL;
286 }
287
288 /**
289  * single_step_once() - entry point when single stepping has been triggered.
290  * @regs: The machine register state
291  *
292  *  When we arrive at this routine via a trampoline, the single step
293  *  engine copies the executing bundle to the single step buffer.
294  *  If the instruction is a condition branch, then the target is
295  *  reset to one past the next instruction. If the instruction
296  *  sets the lr, then that is noted. If the instruction is a jump
297  *  or call, then the new target pc is preserved and the current
298  *  bundle instruction set to null.
299  *
300  *  The necessary post-single-step rewriting information is stored in
301  *  single_step_state->  We use data segment values because the
302  *  stack will be rewound when we run the rewritten single-stepped
303  *  instruction.
304  */
305 void single_step_once(struct pt_regs *regs)
306 {
307         extern tile_bundle_bits __single_step_ill_insn;
308         extern tile_bundle_bits __single_step_j_insn;
309         extern tile_bundle_bits __single_step_addli_insn;
310         extern tile_bundle_bits __single_step_auli_insn;
311         struct thread_info *info = (void *)current_thread_info();
312         struct single_step_state *state = info->step_state;
313         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
314         tile_bundle_bits __user *buffer, *pc;
315         tile_bundle_bits bundle;
316         int temp_reg;
317         int target_reg = TREG_LR;
318         int err;
319         enum mem_op mem_op = MEMOP_NONE;
320         int size = 0, sign_ext = 0;  /* happy compiler */
321
322         asm(
323 "    .pushsection .rodata.single_step\n"
324 "    .align 8\n"
325 "    .globl    __single_step_ill_insn\n"
326 "__single_step_ill_insn:\n"
327 "    ill\n"
328 "    .globl    __single_step_addli_insn\n"
329 "__single_step_addli_insn:\n"
330 "    { nop; addli r0, zero, 0 }\n"
331 "    .globl    __single_step_auli_insn\n"
332 "__single_step_auli_insn:\n"
333 "    { nop; auli r0, r0, 0 }\n"
334 "    .globl    __single_step_j_insn\n"
335 "__single_step_j_insn:\n"
336 "    j .\n"
337 "    .popsection\n"
338         );
339
340         /*
341          * Enable interrupts here to allow touching userspace and the like.
342          * The callers expect this: do_trap() already has interrupts
343          * enabled, and do_work_pending() handles functions that enable
344          * interrupts internally.
345          */
346         local_irq_enable();
347
348         if (state == NULL) {
349                 /* allocate a page of writable, executable memory */
350                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
351                 if (state == NULL) {
352                         pr_err("Out of kernel memory trying to single-step\n");
353                         return;
354                 }
355
356                 /* allocate a cache line of writable, executable memory */
357                 buffer = (void __user *) vm_mmap(NULL, 0, 64,
358                                           PROT_EXEC | PROT_READ | PROT_WRITE,
359                                           MAP_PRIVATE | MAP_ANONYMOUS,
360                                           0);
361
362                 if (IS_ERR((void __force *)buffer)) {
363                         kfree(state);
364                         pr_err("Out of kernel pages trying to single-step\n");
365                         return;
366                 }
367
368                 state->buffer = buffer;
369                 state->is_enabled = 0;
370
371                 info->step_state = state;
372
373                 /* Validate our stored instruction patterns */
374                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
375                        ADDLI_OPCODE_X1);
376                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
377                        AULI_OPCODE_X1);
378                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
379                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
380                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
381         }
382
383         /*
384          * If we are returning from a syscall, we still haven't hit the
385          * "ill" for the swint1 instruction.  So back the PC up to be
386          * pointing at the swint1, but we'll actually return directly
387          * back to the "ill" so we come back in via SIGILL as if we
388          * had "executed" the swint1 without ever being in kernel space.
389          */
390         if (regs->faultnum == INT_SWINT_1)
391                 regs->pc -= 8;
392
393         pc = (tile_bundle_bits __user *)(regs->pc);
394         if (get_user(bundle, pc) != 0) {
395                 pr_err("Couldn't read instruction at %p trying to step\n", pc);
396                 return;
397         }
398
399         /* We'll follow the instruction with 2 ill op bundles */
400         state->orig_pc = (unsigned long)pc;
401         state->next_pc = (unsigned long)(pc + 1);
402         state->branch_next_pc = 0;
403         state->update = 0;
404
405         if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
406                 /* two wide, check for control flow */
407                 int opcode = get_Opcode_X1(bundle);
408
409                 switch (opcode) {
410                 /* branches */
411                 case BRANCH_OPCODE_X1:
412                 {
413                         s32 offset = signExtend17(get_BrOff_X1(bundle));
414
415                         /*
416                          * For branches, we use a rewriting trick to let the
417                          * hardware evaluate whether the branch is taken or
418                          * untaken.  We record the target offset and then
419                          * rewrite the branch instruction to target 1 insn
420                          * ahead if the branch is taken.  We then follow the
421                          * rewritten branch with two bundles, each containing
422                          * an "ill" instruction. The supervisor examines the
423                          * pc after the single step code is executed, and if
424                          * the pc is the first ill instruction, then the
425                          * branch (if any) was not taken.  If the pc is the
426                          * second ill instruction, then the branch was
427                          * taken. The new pc is computed for these cases, and
428                          * inserted into the registers for the thread.  If
429                          * the pc is the start of the single step code, then
430                          * an exception or interrupt was taken before the
431                          * code started processing, and the same "original"
432                          * pc is restored.  This change, different from the
433                          * original implementation, has the advantage of
434                          * executing a single user instruction.
435                          */
436                         state->branch_next_pc = (unsigned long)(pc + offset);
437
438                         /* rewrite branch offset to go forward one bundle */
439                         bundle = set_BrOff_X1(bundle, 2);
440                 }
441                 break;
442
443                 /* jumps */
444                 case JALB_OPCODE_X1:
445                 case JALF_OPCODE_X1:
446                         state->update = 1;
447                         state->next_pc =
448                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
449                         break;
450
451                 case JB_OPCODE_X1:
452                 case JF_OPCODE_X1:
453                         state->next_pc =
454                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
455                         bundle = nop_X1(bundle);
456                         break;
457
458                 case SPECIAL_0_OPCODE_X1:
459                         switch (get_RRROpcodeExtension_X1(bundle)) {
460                         /* jump-register */
461                         case JALRP_SPECIAL_0_OPCODE_X1:
462                         case JALR_SPECIAL_0_OPCODE_X1:
463                                 state->update = 1;
464                                 state->next_pc =
465                                         regs->regs[get_SrcA_X1(bundle)];
466                                 break;
467
468                         case JRP_SPECIAL_0_OPCODE_X1:
469                         case JR_SPECIAL_0_OPCODE_X1:
470                                 state->next_pc =
471                                         regs->regs[get_SrcA_X1(bundle)];
472                                 bundle = nop_X1(bundle);
473                                 break;
474
475                         case LNK_SPECIAL_0_OPCODE_X1:
476                                 state->update = 1;
477                                 target_reg = get_Dest_X1(bundle);
478                                 break;
479
480                         /* stores */
481                         case SH_SPECIAL_0_OPCODE_X1:
482                                 mem_op = MEMOP_STORE;
483                                 size = 2;
484                                 break;
485
486                         case SW_SPECIAL_0_OPCODE_X1:
487                                 mem_op = MEMOP_STORE;
488                                 size = 4;
489                                 break;
490                         }
491                         break;
492
493                 /* loads and iret */
494                 case SHUN_0_OPCODE_X1:
495                         if (get_UnShOpcodeExtension_X1(bundle) ==
496                             UN_0_SHUN_0_OPCODE_X1) {
497                                 switch (get_UnOpcodeExtension_X1(bundle)) {
498                                 case LH_UN_0_SHUN_0_OPCODE_X1:
499                                         mem_op = MEMOP_LOAD;
500                                         size = 2;
501                                         sign_ext = 1;
502                                         break;
503
504                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
505                                         mem_op = MEMOP_LOAD;
506                                         size = 2;
507                                         sign_ext = 0;
508                                         break;
509
510                                 case LW_UN_0_SHUN_0_OPCODE_X1:
511                                         mem_op = MEMOP_LOAD;
512                                         size = 4;
513                                         break;
514
515                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
516                                 {
517                                         unsigned long ex0_0 = __insn_mfspr(
518                                                 SPR_EX_CONTEXT_0_0);
519                                         unsigned long ex0_1 = __insn_mfspr(
520                                                 SPR_EX_CONTEXT_0_1);
521                                         /*
522                                          * Special-case it if we're iret'ing
523                                          * to PL0 again.  Otherwise just let
524                                          * it run and it will generate SIGILL.
525                                          */
526                                         if (EX1_PL(ex0_1) == USER_PL) {
527                                                 state->next_pc = ex0_0;
528                                                 regs->ex1 = ex0_1;
529                                                 bundle = nop_X1(bundle);
530                                         }
531                                 }
532                                 }
533                         }
534                         break;
535
536 #if CHIP_HAS_WH64()
537                 /* postincrement operations */
538                 case IMM_0_OPCODE_X1:
539                         switch (get_ImmOpcodeExtension_X1(bundle)) {
540                         case LWADD_IMM_0_OPCODE_X1:
541                                 mem_op = MEMOP_LOAD_POSTINCR;
542                                 size = 4;
543                                 break;
544
545                         case LHADD_IMM_0_OPCODE_X1:
546                                 mem_op = MEMOP_LOAD_POSTINCR;
547                                 size = 2;
548                                 sign_ext = 1;
549                                 break;
550
551                         case LHADD_U_IMM_0_OPCODE_X1:
552                                 mem_op = MEMOP_LOAD_POSTINCR;
553                                 size = 2;
554                                 sign_ext = 0;
555                                 break;
556
557                         case SWADD_IMM_0_OPCODE_X1:
558                                 mem_op = MEMOP_STORE_POSTINCR;
559                                 size = 4;
560                                 break;
561
562                         case SHADD_IMM_0_OPCODE_X1:
563                                 mem_op = MEMOP_STORE_POSTINCR;
564                                 size = 2;
565                                 break;
566
567                         default:
568                                 break;
569                         }
570                         break;
571 #endif /* CHIP_HAS_WH64() */
572                 }
573
574                 if (state->update) {
575                         /*
576                          * Get an available register.  We start with a
577                          * bitmask with 1's for available registers.
578                          * We truncate to the low 32 registers since
579                          * we are guaranteed to have set bits in the
580                          * low 32 bits, then use ctz to pick the first.
581                          */
582                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
583                                            (1ULL << get_SrcA_X0(bundle)) |
584                                            (1ULL << get_SrcB_X0(bundle)) |
585                                            (1ULL << target_reg));
586                         temp_reg = __builtin_ctz(mask);
587                         state->update_reg = temp_reg;
588                         state->update_value = regs->regs[temp_reg];
589                         regs->regs[temp_reg] = (unsigned long) (pc+1);
590                         regs->flags |= PT_FLAGS_RESTORE_REGS;
591                         bundle = move_X1(bundle, target_reg, temp_reg);
592                 }
593         } else {
594                 int opcode = get_Opcode_Y2(bundle);
595
596                 switch (opcode) {
597                 /* loads */
598                 case LH_OPCODE_Y2:
599                         mem_op = MEMOP_LOAD;
600                         size = 2;
601                         sign_ext = 1;
602                         break;
603
604                 case LH_U_OPCODE_Y2:
605                         mem_op = MEMOP_LOAD;
606                         size = 2;
607                         sign_ext = 0;
608                         break;
609
610                 case LW_OPCODE_Y2:
611                         mem_op = MEMOP_LOAD;
612                         size = 4;
613                         break;
614
615                 /* stores */
616                 case SH_OPCODE_Y2:
617                         mem_op = MEMOP_STORE;
618                         size = 2;
619                         break;
620
621                 case SW_OPCODE_Y2:
622                         mem_op = MEMOP_STORE;
623                         size = 4;
624                         break;
625                 }
626         }
627
628         /*
629          * Check if we need to rewrite an unaligned load/store.
630          * Returning zero is a special value meaning we need to SIGSEGV.
631          */
632         if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
633                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
634                                                       mem_op, size, sign_ext);
635                 if (bundle == 0)
636                         return;
637         }
638
639         /* write the bundle to our execution area */
640         buffer = state->buffer;
641         err = __put_user(bundle, buffer++);
642
643         /*
644          * If we're really single-stepping, we take an INT_ILL after.
645          * If we're just handling an unaligned access, we can just
646          * jump directly back to where we were in user code.
647          */
648         if (is_single_step) {
649                 err |= __put_user(__single_step_ill_insn, buffer++);
650                 err |= __put_user(__single_step_ill_insn, buffer++);
651         } else {
652                 long delta;
653
654                 if (state->update) {
655                         /* We have some state to update; do it inline */
656                         int ha16;
657                         bundle = __single_step_addli_insn;
658                         bundle |= create_Dest_X1(state->update_reg);
659                         bundle |= create_Imm16_X1(state->update_value);
660                         err |= __put_user(bundle, buffer++);
661                         bundle = __single_step_auli_insn;
662                         bundle |= create_Dest_X1(state->update_reg);
663                         bundle |= create_SrcA_X1(state->update_reg);
664                         ha16 = (state->update_value + 0x8000) >> 16;
665                         bundle |= create_Imm16_X1(ha16);
666                         err |= __put_user(bundle, buffer++);
667                         state->update = 0;
668                 }
669
670                 /* End with a jump back to the next instruction */
671                 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
672                         (unsigned long)buffer) >>
673                         TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
674                 bundle = __single_step_j_insn;
675                 bundle |= create_JOffLong_X1(delta);
676                 err |= __put_user(bundle, buffer++);
677         }
678
679         if (err) {
680                 pr_err("Fault when writing to single-step buffer\n");
681                 return;
682         }
683
684         /*
685          * Flush the buffer.
686          * We do a local flush only, since this is a thread-specific buffer.
687          */
688         __flush_icache_range((unsigned long)state->buffer,
689                              (unsigned long)buffer);
690
691         /* Indicate enabled */
692         state->is_enabled = is_single_step;
693         regs->pc = (unsigned long)state->buffer;
694
695         /* Fault immediately if we are coming back from a syscall. */
696         if (regs->faultnum == INT_SWINT_1)
697                 regs->pc += 8;
698 }
699
700 #else
701 #include <linux/smp.h>
702 #include <linux/ptrace.h>
703 #include <arch/spr_def.h>
704
705 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
706
707
708 /*
709  * Called directly on the occasion of an interrupt.
710  *
711  * If the process doesn't have single step set, then we use this as an
712  * opportunity to turn single step off.
713  *
714  * It has been mentioned that we could conditionally turn off single stepping
715  * on each entry into the kernel and rely on single_step_once to turn it
716  * on for the processes that matter (as we already do), but this
717  * implementation is somewhat more efficient in that we muck with registers
718  * once on a bum interrupt rather than on every entry into the kernel.
719  *
720  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
721  * so we have to run through this process again before we can say that an
722  * instruction has executed.
723  *
724  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
725  * it changes the PC.  If it hasn't changed, then we know that the interrupt
726  * wasn't generated by swint and we'll need to run this process again before
727  * we can say an instruction has executed.
728  *
729  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
730  * on with our lives.
731  */
732
733 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
734 {
735         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
736         struct thread_info *info = (void *)current_thread_info();
737         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
738         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
739
740         if (is_single_step == 0) {
741                 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
742
743         } else if ((*ss_pc != regs->pc) ||
744                    (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
745
746                 ptrace_notify(SIGTRAP);
747                 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
748                 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
749                 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
750         }
751 }
752
753
754 /*
755  * Called from need_singlestep.  Set up the control registers and the enable
756  * register, then return back.
757  */
758
759 void single_step_once(struct pt_regs *regs)
760 {
761         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
762         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
763
764         *ss_pc = regs->pc;
765         control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
766         control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
767         __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
768         __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
769 }
770
771 void single_step_execve(void)
772 {
773         /* Nothing */
774 }
775
776 #endif /* !__tilegx__ */