Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / tile / mm / hugetlbpage.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * TILE Huge TLB Page Support for Kernel.
15  * Taken from i386 hugetlb implementation:
16  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
17  */
18
19 #include <linux/init.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/hugetlb.h>
23 #include <linux/pagemap.h>
24 #include <linux/slab.h>
25 #include <linux/err.h>
26 #include <linux/sysctl.h>
27 #include <linux/mman.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include <asm/setup.h>
31
32 #ifdef CONFIG_HUGETLB_SUPER_PAGES
33
34 /*
35  * Provide an additional huge page size (in addition to the regular default
36  * huge page size) if no "hugepagesz" arguments are specified.
37  * Note that it must be smaller than the default huge page size so
38  * that it's possible to allocate them on demand from the buddy allocator.
39  * You can change this to 64K (on a 16K build), 256K, 1M, or 4M,
40  * or not define it at all.
41  */
42 #define ADDITIONAL_HUGE_SIZE (1024 * 1024UL)
43
44 /* "Extra" page-size multipliers, one per level of the page table. */
45 int huge_shift[HUGE_SHIFT_ENTRIES] = {
46 #ifdef ADDITIONAL_HUGE_SIZE
47 #define ADDITIONAL_HUGE_SHIFT __builtin_ctzl(ADDITIONAL_HUGE_SIZE / PAGE_SIZE)
48         [HUGE_SHIFT_PAGE] = ADDITIONAL_HUGE_SHIFT
49 #endif
50 };
51
52 #endif
53
54 pte_t *huge_pte_alloc(struct mm_struct *mm,
55                       unsigned long addr, unsigned long sz)
56 {
57         pgd_t *pgd;
58         pud_t *pud;
59
60         addr &= -sz;   /* Mask off any low bits in the address. */
61
62         pgd = pgd_offset(mm, addr);
63         pud = pud_alloc(mm, pgd, addr);
64
65 #ifdef CONFIG_HUGETLB_SUPER_PAGES
66         if (sz >= PGDIR_SIZE) {
67                 BUG_ON(sz != PGDIR_SIZE &&
68                        sz != PGDIR_SIZE << huge_shift[HUGE_SHIFT_PGDIR]);
69                 return (pte_t *)pud;
70         } else {
71                 pmd_t *pmd = pmd_alloc(mm, pud, addr);
72                 if (sz >= PMD_SIZE) {
73                         BUG_ON(sz != PMD_SIZE &&
74                                sz != (PMD_SIZE << huge_shift[HUGE_SHIFT_PMD]));
75                         return (pte_t *)pmd;
76                 }
77                 else {
78                         if (sz != PAGE_SIZE << huge_shift[HUGE_SHIFT_PAGE])
79                                 panic("Unexpected page size %#lx\n", sz);
80                         return pte_alloc_map(mm, NULL, pmd, addr);
81                 }
82         }
83 #else
84         BUG_ON(sz != PMD_SIZE);
85         return (pte_t *) pmd_alloc(mm, pud, addr);
86 #endif
87 }
88
89 static pte_t *get_pte(pte_t *base, int index, int level)
90 {
91         pte_t *ptep = base + index;
92 #ifdef CONFIG_HUGETLB_SUPER_PAGES
93         if (!pte_present(*ptep) && huge_shift[level] != 0) {
94                 unsigned long mask = -1UL << huge_shift[level];
95                 pte_t *super_ptep = base + (index & mask);
96                 pte_t pte = *super_ptep;
97                 if (pte_present(pte) && pte_super(pte))
98                         ptep = super_ptep;
99         }
100 #endif
101         return ptep;
102 }
103
104 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
105 {
106         pgd_t *pgd;
107         pud_t *pud;
108         pmd_t *pmd;
109 #ifdef CONFIG_HUGETLB_SUPER_PAGES
110         pte_t *pte;
111 #endif
112
113         /* Get the top-level page table entry. */
114         pgd = (pgd_t *)get_pte((pte_t *)mm->pgd, pgd_index(addr), 0);
115
116         /* We don't have four levels. */
117         pud = pud_offset(pgd, addr);
118 #ifndef __PAGETABLE_PUD_FOLDED
119 # error support fourth page table level
120 #endif
121         if (!pud_present(*pud))
122                 return NULL;
123
124         /* Check for an L0 huge PTE, if we have three levels. */
125 #ifndef __PAGETABLE_PMD_FOLDED
126         if (pud_huge(*pud))
127                 return (pte_t *)pud;
128
129         pmd = (pmd_t *)get_pte((pte_t *)pud_page_vaddr(*pud),
130                                pmd_index(addr), 1);
131         if (!pmd_present(*pmd))
132                 return NULL;
133 #else
134         pmd = pmd_offset(pud, addr);
135 #endif
136
137         /* Check for an L1 huge PTE. */
138         if (pmd_huge(*pmd))
139                 return (pte_t *)pmd;
140
141 #ifdef CONFIG_HUGETLB_SUPER_PAGES
142         /* Check for an L2 huge PTE. */
143         pte = get_pte((pte_t *)pmd_page_vaddr(*pmd), pte_index(addr), 2);
144         if (!pte_present(*pte))
145                 return NULL;
146         if (pte_super(*pte))
147                 return pte;
148 #endif
149
150         return NULL;
151 }
152
153 struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address,
154                               int write)
155 {
156         return ERR_PTR(-EINVAL);
157 }
158
159 int pmd_huge(pmd_t pmd)
160 {
161         return !!(pmd_val(pmd) & _PAGE_HUGE_PAGE);
162 }
163
164 int pud_huge(pud_t pud)
165 {
166         return !!(pud_val(pud) & _PAGE_HUGE_PAGE);
167 }
168
169 struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
170                              pmd_t *pmd, int write)
171 {
172         struct page *page;
173
174         page = pte_page(*(pte_t *)pmd);
175         if (page)
176                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
177         return page;
178 }
179
180 struct page *follow_huge_pud(struct mm_struct *mm, unsigned long address,
181                              pud_t *pud, int write)
182 {
183         struct page *page;
184
185         page = pte_page(*(pte_t *)pud);
186         if (page)
187                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
188         return page;
189 }
190
191 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
192 {
193         return 0;
194 }
195
196 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
197 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
198                 unsigned long addr, unsigned long len,
199                 unsigned long pgoff, unsigned long flags)
200 {
201         struct hstate *h = hstate_file(file);
202         struct vm_unmapped_area_info info;
203
204         info.flags = 0;
205         info.length = len;
206         info.low_limit = TASK_UNMAPPED_BASE;
207         info.high_limit = TASK_SIZE;
208         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
209         info.align_offset = 0;
210         return vm_unmapped_area(&info);
211 }
212
213 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
214                 unsigned long addr0, unsigned long len,
215                 unsigned long pgoff, unsigned long flags)
216 {
217         struct hstate *h = hstate_file(file);
218         struct vm_unmapped_area_info info;
219         unsigned long addr;
220
221         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
222         info.length = len;
223         info.low_limit = PAGE_SIZE;
224         info.high_limit = current->mm->mmap_base;
225         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226         info.align_offset = 0;
227         addr = vm_unmapped_area(&info);
228
229         /*
230          * A failed mmap() very likely causes application failure,
231          * so fall back to the bottom-up function here. This scenario
232          * can happen with large stack limits and large mmap()
233          * allocations.
234          */
235         if (addr & ~PAGE_MASK) {
236                 VM_BUG_ON(addr != -ENOMEM);
237                 info.flags = 0;
238                 info.low_limit = TASK_UNMAPPED_BASE;
239                 info.high_limit = TASK_SIZE;
240                 addr = vm_unmapped_area(&info);
241         }
242
243         return addr;
244 }
245
246 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
247                 unsigned long len, unsigned long pgoff, unsigned long flags)
248 {
249         struct hstate *h = hstate_file(file);
250         struct mm_struct *mm = current->mm;
251         struct vm_area_struct *vma;
252
253         if (len & ~huge_page_mask(h))
254                 return -EINVAL;
255         if (len > TASK_SIZE)
256                 return -ENOMEM;
257
258         if (flags & MAP_FIXED) {
259                 if (prepare_hugepage_range(file, addr, len))
260                         return -EINVAL;
261                 return addr;
262         }
263
264         if (addr) {
265                 addr = ALIGN(addr, huge_page_size(h));
266                 vma = find_vma(mm, addr);
267                 if (TASK_SIZE - len >= addr &&
268                     (!vma || addr + len <= vma->vm_start))
269                         return addr;
270         }
271         if (current->mm->get_unmapped_area == arch_get_unmapped_area)
272                 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
273                                 pgoff, flags);
274         else
275                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
276                                 pgoff, flags);
277 }
278 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
279
280 #ifdef CONFIG_HUGETLB_SUPER_PAGES
281 static __init int __setup_hugepagesz(unsigned long ps)
282 {
283         int log_ps = __builtin_ctzl(ps);
284         int level, base_shift;
285
286         if ((1UL << log_ps) != ps || (log_ps & 1) != 0) {
287                 pr_warn("Not enabling %ld byte huge pages; must be a power of four\n",
288                         ps);
289                 return -EINVAL;
290         }
291
292         if (ps > 64*1024*1024*1024UL) {
293                 pr_warn("Not enabling %ld MB huge pages; largest legal value is 64 GB\n",
294                         ps >> 20);
295                 return -EINVAL;
296         } else if (ps >= PUD_SIZE) {
297                 static long hv_jpage_size;
298                 if (hv_jpage_size == 0)
299                         hv_jpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_JUMBO);
300                 if (hv_jpage_size != PUD_SIZE) {
301                         pr_warn("Not enabling >= %ld MB huge pages: hypervisor reports size %ld\n",
302                                 PUD_SIZE >> 20, hv_jpage_size);
303                         return -EINVAL;
304                 }
305                 level = 0;
306                 base_shift = PUD_SHIFT;
307         } else if (ps >= PMD_SIZE) {
308                 level = 1;
309                 base_shift = PMD_SHIFT;
310         } else if (ps > PAGE_SIZE) {
311                 level = 2;
312                 base_shift = PAGE_SHIFT;
313         } else {
314                 pr_err("hugepagesz: huge page size %ld too small\n", ps);
315                 return -EINVAL;
316         }
317
318         if (log_ps != base_shift) {
319                 int shift_val = log_ps - base_shift;
320                 if (huge_shift[level] != 0) {
321                         int old_shift = base_shift + huge_shift[level];
322                         pr_warn("Not enabling %ld MB huge pages; already have size %ld MB\n",
323                                 ps >> 20, (1UL << old_shift) >> 20);
324                         return -EINVAL;
325                 }
326                 if (hv_set_pte_super_shift(level, shift_val) != 0) {
327                         pr_warn("Not enabling %ld MB huge pages; no hypervisor support\n",
328                                 ps >> 20);
329                         return -EINVAL;
330                 }
331                 printk(KERN_DEBUG "Enabled %ld MB huge pages\n", ps >> 20);
332                 huge_shift[level] = shift_val;
333         }
334
335         hugetlb_add_hstate(log_ps - PAGE_SHIFT);
336
337         return 0;
338 }
339
340 static bool saw_hugepagesz;
341
342 static __init int setup_hugepagesz(char *opt)
343 {
344         if (!saw_hugepagesz) {
345                 saw_hugepagesz = true;
346                 memset(huge_shift, 0, sizeof(huge_shift));
347         }
348         return __setup_hugepagesz(memparse(opt, NULL));
349 }
350 __setup("hugepagesz=", setup_hugepagesz);
351
352 #ifdef ADDITIONAL_HUGE_SIZE
353 /*
354  * Provide an additional huge page size if no "hugepagesz" args are given.
355  * In that case, all the cores have properly set up their hv super_shift
356  * already, but we need to notify the hugetlb code to enable the
357  * new huge page size from the Linux point of view.
358  */
359 static __init int add_default_hugepagesz(void)
360 {
361         if (!saw_hugepagesz) {
362                 BUILD_BUG_ON(ADDITIONAL_HUGE_SIZE >= PMD_SIZE ||
363                              ADDITIONAL_HUGE_SIZE <= PAGE_SIZE);
364                 BUILD_BUG_ON((PAGE_SIZE << ADDITIONAL_HUGE_SHIFT) !=
365                              ADDITIONAL_HUGE_SIZE);
366                 BUILD_BUG_ON(ADDITIONAL_HUGE_SHIFT & 1);
367                 hugetlb_add_hstate(ADDITIONAL_HUGE_SHIFT);
368         }
369         return 0;
370 }
371 arch_initcall(add_default_hugepagesz);
372 #endif
373
374 #endif /* CONFIG_HUGETLB_SUPER_PAGES */