ASoC: use of_property_read_bool
[cascardo/linux.git] / arch / x86 / events / intel / cqm.c
1 /*
2  * Intel Cache Quality-of-Service Monitoring (CQM) support.
3  *
4  * Based very, very heavily on work by Peter Zijlstra.
5  */
6
7 #include <linux/perf_event.h>
8 #include <linux/slab.h>
9 #include <asm/cpu_device_id.h>
10 #include "../perf_event.h"
11
12 #define MSR_IA32_PQR_ASSOC      0x0c8f
13 #define MSR_IA32_QM_CTR         0x0c8e
14 #define MSR_IA32_QM_EVTSEL      0x0c8d
15
16 #define MBM_CNTR_WIDTH          24
17 /*
18  * Guaranteed time in ms as per SDM where MBM counters will not overflow.
19  */
20 #define MBM_CTR_OVERFLOW_TIME   1000
21
22 static u32 cqm_max_rmid = -1;
23 static unsigned int cqm_l3_scale; /* supposedly cacheline size */
24 static bool cqm_enabled, mbm_enabled;
25 unsigned int mbm_socket_max;
26
27 /**
28  * struct intel_pqr_state - State cache for the PQR MSR
29  * @rmid:               The cached Resource Monitoring ID
30  * @closid:             The cached Class Of Service ID
31  * @rmid_usecnt:        The usage counter for rmid
32  *
33  * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
34  * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
35  * contains both parts, so we need to cache them.
36  *
37  * The cache also helps to avoid pointless updates if the value does
38  * not change.
39  */
40 struct intel_pqr_state {
41         u32                     rmid;
42         u32                     closid;
43         int                     rmid_usecnt;
44 };
45
46 /*
47  * The cached intel_pqr_state is strictly per CPU and can never be
48  * updated from a remote CPU. Both functions which modify the state
49  * (intel_cqm_event_start and intel_cqm_event_stop) are called with
50  * interrupts disabled, which is sufficient for the protection.
51  */
52 static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
53 static struct hrtimer *mbm_timers;
54 /**
55  * struct sample - mbm event's (local or total) data
56  * @total_bytes    #bytes since we began monitoring
57  * @prev_msr       previous value of MSR
58  */
59 struct sample {
60         u64     total_bytes;
61         u64     prev_msr;
62 };
63
64 /*
65  * samples profiled for total memory bandwidth type events
66  */
67 static struct sample *mbm_total;
68 /*
69  * samples profiled for local memory bandwidth type events
70  */
71 static struct sample *mbm_local;
72
73 #define pkg_id  topology_physical_package_id(smp_processor_id())
74 /*
75  * rmid_2_index returns the index for the rmid in mbm_local/mbm_total array.
76  * mbm_total[] and mbm_local[] are linearly indexed by socket# * max number of
77  * rmids per socket, an example is given below
78  * RMID1 of Socket0:  vrmid =  1
79  * RMID1 of Socket1:  vrmid =  1 * (cqm_max_rmid + 1) + 1
80  * RMID1 of Socket2:  vrmid =  2 * (cqm_max_rmid + 1) + 1
81  */
82 #define rmid_2_index(rmid)  ((pkg_id * (cqm_max_rmid + 1)) + rmid)
83 /*
84  * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
85  * Also protects event->hw.cqm_rmid
86  *
87  * Hold either for stability, both for modification of ->hw.cqm_rmid.
88  */
89 static DEFINE_MUTEX(cache_mutex);
90 static DEFINE_RAW_SPINLOCK(cache_lock);
91
92 /*
93  * Groups of events that have the same target(s), one RMID per group.
94  */
95 static LIST_HEAD(cache_groups);
96
97 /*
98  * Mask of CPUs for reading CQM values. We only need one per-socket.
99  */
100 static cpumask_t cqm_cpumask;
101
102 #define RMID_VAL_ERROR          (1ULL << 63)
103 #define RMID_VAL_UNAVAIL        (1ULL << 62)
104
105 /*
106  * Event IDs are used to program IA32_QM_EVTSEL before reading event
107  * counter from IA32_QM_CTR
108  */
109 #define QOS_L3_OCCUP_EVENT_ID   0x01
110 #define QOS_MBM_TOTAL_EVENT_ID  0x02
111 #define QOS_MBM_LOCAL_EVENT_ID  0x03
112
113 /*
114  * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
115  *
116  * This rmid is always free and is guaranteed to have an associated
117  * near-zero occupancy value, i.e. no cachelines are tagged with this
118  * RMID, once __intel_cqm_rmid_rotate() returns.
119  */
120 static u32 intel_cqm_rotation_rmid;
121
122 #define INVALID_RMID            (-1)
123
124 /*
125  * Is @rmid valid for programming the hardware?
126  *
127  * rmid 0 is reserved by the hardware for all non-monitored tasks, which
128  * means that we should never come across an rmid with that value.
129  * Likewise, an rmid value of -1 is used to indicate "no rmid currently
130  * assigned" and is used as part of the rotation code.
131  */
132 static inline bool __rmid_valid(u32 rmid)
133 {
134         if (!rmid || rmid == INVALID_RMID)
135                 return false;
136
137         return true;
138 }
139
140 static u64 __rmid_read(u32 rmid)
141 {
142         u64 val;
143
144         /*
145          * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
146          * it just says that to increase confusion.
147          */
148         wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
149         rdmsrl(MSR_IA32_QM_CTR, val);
150
151         /*
152          * Aside from the ERROR and UNAVAIL bits, assume this thing returns
153          * the number of cachelines tagged with @rmid.
154          */
155         return val;
156 }
157
158 enum rmid_recycle_state {
159         RMID_YOUNG = 0,
160         RMID_AVAILABLE,
161         RMID_DIRTY,
162 };
163
164 struct cqm_rmid_entry {
165         u32 rmid;
166         enum rmid_recycle_state state;
167         struct list_head list;
168         unsigned long queue_time;
169 };
170
171 /*
172  * cqm_rmid_free_lru - A least recently used list of RMIDs.
173  *
174  * Oldest entry at the head, newest (most recently used) entry at the
175  * tail. This list is never traversed, it's only used to keep track of
176  * the lru order. That is, we only pick entries of the head or insert
177  * them on the tail.
178  *
179  * All entries on the list are 'free', and their RMIDs are not currently
180  * in use. To mark an RMID as in use, remove its entry from the lru
181  * list.
182  *
183  *
184  * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
185  *
186  * This list is contains RMIDs that no one is currently using but that
187  * may have a non-zero occupancy value associated with them. The
188  * rotation worker moves RMIDs from the limbo list to the free list once
189  * the occupancy value drops below __intel_cqm_threshold.
190  *
191  * Both lists are protected by cache_mutex.
192  */
193 static LIST_HEAD(cqm_rmid_free_lru);
194 static LIST_HEAD(cqm_rmid_limbo_lru);
195
196 /*
197  * We use a simple array of pointers so that we can lookup a struct
198  * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
199  * and __put_rmid() from having to worry about dealing with struct
200  * cqm_rmid_entry - they just deal with rmids, i.e. integers.
201  *
202  * Once this array is initialized it is read-only. No locks are required
203  * to access it.
204  *
205  * All entries for all RMIDs can be looked up in the this array at all
206  * times.
207  */
208 static struct cqm_rmid_entry **cqm_rmid_ptrs;
209
210 static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
211 {
212         struct cqm_rmid_entry *entry;
213
214         entry = cqm_rmid_ptrs[rmid];
215         WARN_ON(entry->rmid != rmid);
216
217         return entry;
218 }
219
220 /*
221  * Returns < 0 on fail.
222  *
223  * We expect to be called with cache_mutex held.
224  */
225 static u32 __get_rmid(void)
226 {
227         struct cqm_rmid_entry *entry;
228
229         lockdep_assert_held(&cache_mutex);
230
231         if (list_empty(&cqm_rmid_free_lru))
232                 return INVALID_RMID;
233
234         entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
235         list_del(&entry->list);
236
237         return entry->rmid;
238 }
239
240 static void __put_rmid(u32 rmid)
241 {
242         struct cqm_rmid_entry *entry;
243
244         lockdep_assert_held(&cache_mutex);
245
246         WARN_ON(!__rmid_valid(rmid));
247         entry = __rmid_entry(rmid);
248
249         entry->queue_time = jiffies;
250         entry->state = RMID_YOUNG;
251
252         list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
253 }
254
255 static void cqm_cleanup(void)
256 {
257         int i;
258
259         if (!cqm_rmid_ptrs)
260                 return;
261
262         for (i = 0; i < cqm_max_rmid; i++)
263                 kfree(cqm_rmid_ptrs[i]);
264
265         kfree(cqm_rmid_ptrs);
266         cqm_rmid_ptrs = NULL;
267         cqm_enabled = false;
268 }
269
270 static int intel_cqm_setup_rmid_cache(void)
271 {
272         struct cqm_rmid_entry *entry;
273         unsigned int nr_rmids;
274         int r = 0;
275
276         nr_rmids = cqm_max_rmid + 1;
277         cqm_rmid_ptrs = kzalloc(sizeof(struct cqm_rmid_entry *) *
278                                 nr_rmids, GFP_KERNEL);
279         if (!cqm_rmid_ptrs)
280                 return -ENOMEM;
281
282         for (; r <= cqm_max_rmid; r++) {
283                 struct cqm_rmid_entry *entry;
284
285                 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
286                 if (!entry)
287                         goto fail;
288
289                 INIT_LIST_HEAD(&entry->list);
290                 entry->rmid = r;
291                 cqm_rmid_ptrs[r] = entry;
292
293                 list_add_tail(&entry->list, &cqm_rmid_free_lru);
294         }
295
296         /*
297          * RMID 0 is special and is always allocated. It's used for all
298          * tasks that are not monitored.
299          */
300         entry = __rmid_entry(0);
301         list_del(&entry->list);
302
303         mutex_lock(&cache_mutex);
304         intel_cqm_rotation_rmid = __get_rmid();
305         mutex_unlock(&cache_mutex);
306
307         return 0;
308
309 fail:
310         cqm_cleanup();
311         return -ENOMEM;
312 }
313
314 /*
315  * Determine if @a and @b measure the same set of tasks.
316  *
317  * If @a and @b measure the same set of tasks then we want to share a
318  * single RMID.
319  */
320 static bool __match_event(struct perf_event *a, struct perf_event *b)
321 {
322         /* Per-cpu and task events don't mix */
323         if ((a->attach_state & PERF_ATTACH_TASK) !=
324             (b->attach_state & PERF_ATTACH_TASK))
325                 return false;
326
327 #ifdef CONFIG_CGROUP_PERF
328         if (a->cgrp != b->cgrp)
329                 return false;
330 #endif
331
332         /* If not task event, we're machine wide */
333         if (!(b->attach_state & PERF_ATTACH_TASK))
334                 return true;
335
336         /*
337          * Events that target same task are placed into the same cache group.
338          * Mark it as a multi event group, so that we update ->count
339          * for every event rather than just the group leader later.
340          */
341         if (a->hw.target == b->hw.target) {
342                 b->hw.is_group_event = true;
343                 return true;
344         }
345
346         /*
347          * Are we an inherited event?
348          */
349         if (b->parent == a)
350                 return true;
351
352         return false;
353 }
354
355 #ifdef CONFIG_CGROUP_PERF
356 static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
357 {
358         if (event->attach_state & PERF_ATTACH_TASK)
359                 return perf_cgroup_from_task(event->hw.target, event->ctx);
360
361         return event->cgrp;
362 }
363 #endif
364
365 /*
366  * Determine if @a's tasks intersect with @b's tasks
367  *
368  * There are combinations of events that we explicitly prohibit,
369  *
370  *                 PROHIBITS
371  *     system-wide    ->        cgroup and task
372  *     cgroup         ->        system-wide
373  *                    ->        task in cgroup
374  *     task           ->        system-wide
375  *                    ->        task in cgroup
376  *
377  * Call this function before allocating an RMID.
378  */
379 static bool __conflict_event(struct perf_event *a, struct perf_event *b)
380 {
381 #ifdef CONFIG_CGROUP_PERF
382         /*
383          * We can have any number of cgroups but only one system-wide
384          * event at a time.
385          */
386         if (a->cgrp && b->cgrp) {
387                 struct perf_cgroup *ac = a->cgrp;
388                 struct perf_cgroup *bc = b->cgrp;
389
390                 /*
391                  * This condition should have been caught in
392                  * __match_event() and we should be sharing an RMID.
393                  */
394                 WARN_ON_ONCE(ac == bc);
395
396                 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
397                     cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
398                         return true;
399
400                 return false;
401         }
402
403         if (a->cgrp || b->cgrp) {
404                 struct perf_cgroup *ac, *bc;
405
406                 /*
407                  * cgroup and system-wide events are mutually exclusive
408                  */
409                 if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
410                     (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
411                         return true;
412
413                 /*
414                  * Ensure neither event is part of the other's cgroup
415                  */
416                 ac = event_to_cgroup(a);
417                 bc = event_to_cgroup(b);
418                 if (ac == bc)
419                         return true;
420
421                 /*
422                  * Must have cgroup and non-intersecting task events.
423                  */
424                 if (!ac || !bc)
425                         return false;
426
427                 /*
428                  * We have cgroup and task events, and the task belongs
429                  * to a cgroup. Check for for overlap.
430                  */
431                 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
432                     cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
433                         return true;
434
435                 return false;
436         }
437 #endif
438         /*
439          * If one of them is not a task, same story as above with cgroups.
440          */
441         if (!(a->attach_state & PERF_ATTACH_TASK) ||
442             !(b->attach_state & PERF_ATTACH_TASK))
443                 return true;
444
445         /*
446          * Must be non-overlapping.
447          */
448         return false;
449 }
450
451 struct rmid_read {
452         u32 rmid;
453         u32 evt_type;
454         atomic64_t value;
455 };
456
457 static void __intel_cqm_event_count(void *info);
458 static void init_mbm_sample(u32 rmid, u32 evt_type);
459 static void __intel_mbm_event_count(void *info);
460
461 static bool is_mbm_event(int e)
462 {
463         return (e >= QOS_MBM_TOTAL_EVENT_ID && e <= QOS_MBM_LOCAL_EVENT_ID);
464 }
465
466 static void cqm_mask_call(struct rmid_read *rr)
467 {
468         if (is_mbm_event(rr->evt_type))
469                 on_each_cpu_mask(&cqm_cpumask, __intel_mbm_event_count, rr, 1);
470         else
471                 on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, rr, 1);
472 }
473
474 /*
475  * Exchange the RMID of a group of events.
476  */
477 static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
478 {
479         struct perf_event *event;
480         struct list_head *head = &group->hw.cqm_group_entry;
481         u32 old_rmid = group->hw.cqm_rmid;
482
483         lockdep_assert_held(&cache_mutex);
484
485         /*
486          * If our RMID is being deallocated, perform a read now.
487          */
488         if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
489                 struct rmid_read rr = {
490                         .rmid = old_rmid,
491                         .evt_type = group->attr.config,
492                         .value = ATOMIC64_INIT(0),
493                 };
494
495                 cqm_mask_call(&rr);
496                 local64_set(&group->count, atomic64_read(&rr.value));
497         }
498
499         raw_spin_lock_irq(&cache_lock);
500
501         group->hw.cqm_rmid = rmid;
502         list_for_each_entry(event, head, hw.cqm_group_entry)
503                 event->hw.cqm_rmid = rmid;
504
505         raw_spin_unlock_irq(&cache_lock);
506
507         /*
508          * If the allocation is for mbm, init the mbm stats.
509          * Need to check if each event in the group is mbm event
510          * because there could be multiple type of events in the same group.
511          */
512         if (__rmid_valid(rmid)) {
513                 event = group;
514                 if (is_mbm_event(event->attr.config))
515                         init_mbm_sample(rmid, event->attr.config);
516
517                 list_for_each_entry(event, head, hw.cqm_group_entry) {
518                         if (is_mbm_event(event->attr.config))
519                                 init_mbm_sample(rmid, event->attr.config);
520                 }
521         }
522
523         return old_rmid;
524 }
525
526 /*
527  * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
528  * cachelines are still tagged with RMIDs in limbo, we progressively
529  * increment the threshold until we find an RMID in limbo with <=
530  * __intel_cqm_threshold lines tagged. This is designed to mitigate the
531  * problem where cachelines tagged with an RMID are not steadily being
532  * evicted.
533  *
534  * On successful rotations we decrease the threshold back towards zero.
535  *
536  * __intel_cqm_max_threshold provides an upper bound on the threshold,
537  * and is measured in bytes because it's exposed to userland.
538  */
539 static unsigned int __intel_cqm_threshold;
540 static unsigned int __intel_cqm_max_threshold;
541
542 /*
543  * Test whether an RMID has a zero occupancy value on this cpu.
544  */
545 static void intel_cqm_stable(void *arg)
546 {
547         struct cqm_rmid_entry *entry;
548
549         list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
550                 if (entry->state != RMID_AVAILABLE)
551                         break;
552
553                 if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
554                         entry->state = RMID_DIRTY;
555         }
556 }
557
558 /*
559  * If we have group events waiting for an RMID that don't conflict with
560  * events already running, assign @rmid.
561  */
562 static bool intel_cqm_sched_in_event(u32 rmid)
563 {
564         struct perf_event *leader, *event;
565
566         lockdep_assert_held(&cache_mutex);
567
568         leader = list_first_entry(&cache_groups, struct perf_event,
569                                   hw.cqm_groups_entry);
570         event = leader;
571
572         list_for_each_entry_continue(event, &cache_groups,
573                                      hw.cqm_groups_entry) {
574                 if (__rmid_valid(event->hw.cqm_rmid))
575                         continue;
576
577                 if (__conflict_event(event, leader))
578                         continue;
579
580                 intel_cqm_xchg_rmid(event, rmid);
581                 return true;
582         }
583
584         return false;
585 }
586
587 /*
588  * Initially use this constant for both the limbo queue time and the
589  * rotation timer interval, pmu::hrtimer_interval_ms.
590  *
591  * They don't need to be the same, but the two are related since if you
592  * rotate faster than you recycle RMIDs, you may run out of available
593  * RMIDs.
594  */
595 #define RMID_DEFAULT_QUEUE_TIME 250     /* ms */
596
597 static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
598
599 /*
600  * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
601  * @nr_available: number of freeable RMIDs on the limbo list
602  *
603  * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
604  * cachelines are tagged with those RMIDs. After this we can reuse them
605  * and know that the current set of active RMIDs is stable.
606  *
607  * Return %true or %false depending on whether stabilization needs to be
608  * reattempted.
609  *
610  * If we return %true then @nr_available is updated to indicate the
611  * number of RMIDs on the limbo list that have been queued for the
612  * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
613  * are above __intel_cqm_threshold.
614  */
615 static bool intel_cqm_rmid_stabilize(unsigned int *available)
616 {
617         struct cqm_rmid_entry *entry, *tmp;
618
619         lockdep_assert_held(&cache_mutex);
620
621         *available = 0;
622         list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
623                 unsigned long min_queue_time;
624                 unsigned long now = jiffies;
625
626                 /*
627                  * We hold RMIDs placed into limbo for a minimum queue
628                  * time. Before the minimum queue time has elapsed we do
629                  * not recycle RMIDs.
630                  *
631                  * The reasoning is that until a sufficient time has
632                  * passed since we stopped using an RMID, any RMID
633                  * placed onto the limbo list will likely still have
634                  * data tagged in the cache, which means we'll probably
635                  * fail to recycle it anyway.
636                  *
637                  * We can save ourselves an expensive IPI by skipping
638                  * any RMIDs that have not been queued for the minimum
639                  * time.
640                  */
641                 min_queue_time = entry->queue_time +
642                         msecs_to_jiffies(__rmid_queue_time_ms);
643
644                 if (time_after(min_queue_time, now))
645                         break;
646
647                 entry->state = RMID_AVAILABLE;
648                 (*available)++;
649         }
650
651         /*
652          * Fast return if none of the RMIDs on the limbo list have been
653          * sitting on the queue for the minimum queue time.
654          */
655         if (!*available)
656                 return false;
657
658         /*
659          * Test whether an RMID is free for each package.
660          */
661         on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
662
663         list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
664                 /*
665                  * Exhausted all RMIDs that have waited min queue time.
666                  */
667                 if (entry->state == RMID_YOUNG)
668                         break;
669
670                 if (entry->state == RMID_DIRTY)
671                         continue;
672
673                 list_del(&entry->list); /* remove from limbo */
674
675                 /*
676                  * The rotation RMID gets priority if it's
677                  * currently invalid. In which case, skip adding
678                  * the RMID to the the free lru.
679                  */
680                 if (!__rmid_valid(intel_cqm_rotation_rmid)) {
681                         intel_cqm_rotation_rmid = entry->rmid;
682                         continue;
683                 }
684
685                 /*
686                  * If we have groups waiting for RMIDs, hand
687                  * them one now provided they don't conflict.
688                  */
689                 if (intel_cqm_sched_in_event(entry->rmid))
690                         continue;
691
692                 /*
693                  * Otherwise place it onto the free list.
694                  */
695                 list_add_tail(&entry->list, &cqm_rmid_free_lru);
696         }
697
698
699         return __rmid_valid(intel_cqm_rotation_rmid);
700 }
701
702 /*
703  * Pick a victim group and move it to the tail of the group list.
704  * @next: The first group without an RMID
705  */
706 static void __intel_cqm_pick_and_rotate(struct perf_event *next)
707 {
708         struct perf_event *rotor;
709         u32 rmid;
710
711         lockdep_assert_held(&cache_mutex);
712
713         rotor = list_first_entry(&cache_groups, struct perf_event,
714                                  hw.cqm_groups_entry);
715
716         /*
717          * The group at the front of the list should always have a valid
718          * RMID. If it doesn't then no groups have RMIDs assigned and we
719          * don't need to rotate the list.
720          */
721         if (next == rotor)
722                 return;
723
724         rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
725         __put_rmid(rmid);
726
727         list_rotate_left(&cache_groups);
728 }
729
730 /*
731  * Deallocate the RMIDs from any events that conflict with @event, and
732  * place them on the back of the group list.
733  */
734 static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
735 {
736         struct perf_event *group, *g;
737         u32 rmid;
738
739         lockdep_assert_held(&cache_mutex);
740
741         list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
742                 if (group == event)
743                         continue;
744
745                 rmid = group->hw.cqm_rmid;
746
747                 /*
748                  * Skip events that don't have a valid RMID.
749                  */
750                 if (!__rmid_valid(rmid))
751                         continue;
752
753                 /*
754                  * No conflict? No problem! Leave the event alone.
755                  */
756                 if (!__conflict_event(group, event))
757                         continue;
758
759                 intel_cqm_xchg_rmid(group, INVALID_RMID);
760                 __put_rmid(rmid);
761         }
762 }
763
764 /*
765  * Attempt to rotate the groups and assign new RMIDs.
766  *
767  * We rotate for two reasons,
768  *   1. To handle the scheduling of conflicting events
769  *   2. To recycle RMIDs
770  *
771  * Rotating RMIDs is complicated because the hardware doesn't give us
772  * any clues.
773  *
774  * There's problems with the hardware interface; when you change the
775  * task:RMID map cachelines retain their 'old' tags, giving a skewed
776  * picture. In order to work around this, we must always keep one free
777  * RMID - intel_cqm_rotation_rmid.
778  *
779  * Rotation works by taking away an RMID from a group (the old RMID),
780  * and assigning the free RMID to another group (the new RMID). We must
781  * then wait for the old RMID to not be used (no cachelines tagged).
782  * This ensure that all cachelines are tagged with 'active' RMIDs. At
783  * this point we can start reading values for the new RMID and treat the
784  * old RMID as the free RMID for the next rotation.
785  *
786  * Return %true or %false depending on whether we did any rotating.
787  */
788 static bool __intel_cqm_rmid_rotate(void)
789 {
790         struct perf_event *group, *start = NULL;
791         unsigned int threshold_limit;
792         unsigned int nr_needed = 0;
793         unsigned int nr_available;
794         bool rotated = false;
795
796         mutex_lock(&cache_mutex);
797
798 again:
799         /*
800          * Fast path through this function if there are no groups and no
801          * RMIDs that need cleaning.
802          */
803         if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
804                 goto out;
805
806         list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
807                 if (!__rmid_valid(group->hw.cqm_rmid)) {
808                         if (!start)
809                                 start = group;
810                         nr_needed++;
811                 }
812         }
813
814         /*
815          * We have some event groups, but they all have RMIDs assigned
816          * and no RMIDs need cleaning.
817          */
818         if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
819                 goto out;
820
821         if (!nr_needed)
822                 goto stabilize;
823
824         /*
825          * We have more event groups without RMIDs than available RMIDs,
826          * or we have event groups that conflict with the ones currently
827          * scheduled.
828          *
829          * We force deallocate the rmid of the group at the head of
830          * cache_groups. The first event group without an RMID then gets
831          * assigned intel_cqm_rotation_rmid. This ensures we always make
832          * forward progress.
833          *
834          * Rotate the cache_groups list so the previous head is now the
835          * tail.
836          */
837         __intel_cqm_pick_and_rotate(start);
838
839         /*
840          * If the rotation is going to succeed, reduce the threshold so
841          * that we don't needlessly reuse dirty RMIDs.
842          */
843         if (__rmid_valid(intel_cqm_rotation_rmid)) {
844                 intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
845                 intel_cqm_rotation_rmid = __get_rmid();
846
847                 intel_cqm_sched_out_conflicting_events(start);
848
849                 if (__intel_cqm_threshold)
850                         __intel_cqm_threshold--;
851         }
852
853         rotated = true;
854
855 stabilize:
856         /*
857          * We now need to stablize the RMID we freed above (if any) to
858          * ensure that the next time we rotate we have an RMID with zero
859          * occupancy value.
860          *
861          * Alternatively, if we didn't need to perform any rotation,
862          * we'll have a bunch of RMIDs in limbo that need stabilizing.
863          */
864         threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
865
866         while (intel_cqm_rmid_stabilize(&nr_available) &&
867                __intel_cqm_threshold < threshold_limit) {
868                 unsigned int steal_limit;
869
870                 /*
871                  * Don't spin if nobody is actively waiting for an RMID,
872                  * the rotation worker will be kicked as soon as an
873                  * event needs an RMID anyway.
874                  */
875                 if (!nr_needed)
876                         break;
877
878                 /* Allow max 25% of RMIDs to be in limbo. */
879                 steal_limit = (cqm_max_rmid + 1) / 4;
880
881                 /*
882                  * We failed to stabilize any RMIDs so our rotation
883                  * logic is now stuck. In order to make forward progress
884                  * we have a few options:
885                  *
886                  *   1. rotate ("steal") another RMID
887                  *   2. increase the threshold
888                  *   3. do nothing
889                  *
890                  * We do both of 1. and 2. until we hit the steal limit.
891                  *
892                  * The steal limit prevents all RMIDs ending up on the
893                  * limbo list. This can happen if every RMID has a
894                  * non-zero occupancy above threshold_limit, and the
895                  * occupancy values aren't dropping fast enough.
896                  *
897                  * Note that there is prioritisation at work here - we'd
898                  * rather increase the number of RMIDs on the limbo list
899                  * than increase the threshold, because increasing the
900                  * threshold skews the event data (because we reuse
901                  * dirty RMIDs) - threshold bumps are a last resort.
902                  */
903                 if (nr_available < steal_limit)
904                         goto again;
905
906                 __intel_cqm_threshold++;
907         }
908
909 out:
910         mutex_unlock(&cache_mutex);
911         return rotated;
912 }
913
914 static void intel_cqm_rmid_rotate(struct work_struct *work);
915
916 static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
917
918 static struct pmu intel_cqm_pmu;
919
920 static void intel_cqm_rmid_rotate(struct work_struct *work)
921 {
922         unsigned long delay;
923
924         __intel_cqm_rmid_rotate();
925
926         delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
927         schedule_delayed_work(&intel_cqm_rmid_work, delay);
928 }
929
930 static u64 update_sample(unsigned int rmid, u32 evt_type, int first)
931 {
932         struct sample *mbm_current;
933         u32 vrmid = rmid_2_index(rmid);
934         u64 val, bytes, shift;
935         u32 eventid;
936
937         if (evt_type == QOS_MBM_LOCAL_EVENT_ID) {
938                 mbm_current = &mbm_local[vrmid];
939                 eventid     = QOS_MBM_LOCAL_EVENT_ID;
940         } else {
941                 mbm_current = &mbm_total[vrmid];
942                 eventid     = QOS_MBM_TOTAL_EVENT_ID;
943         }
944
945         wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
946         rdmsrl(MSR_IA32_QM_CTR, val);
947         if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
948                 return mbm_current->total_bytes;
949
950         if (first) {
951                 mbm_current->prev_msr = val;
952                 mbm_current->total_bytes = 0;
953                 return mbm_current->total_bytes;
954         }
955
956         /*
957          * The h/w guarantees that counters will not overflow
958          * so long as we poll them at least once per second.
959          */
960         shift = 64 - MBM_CNTR_WIDTH;
961         bytes = (val << shift) - (mbm_current->prev_msr << shift);
962         bytes >>= shift;
963
964         bytes *= cqm_l3_scale;
965
966         mbm_current->total_bytes += bytes;
967         mbm_current->prev_msr = val;
968
969         return mbm_current->total_bytes;
970 }
971
972 static u64 rmid_read_mbm(unsigned int rmid, u32 evt_type)
973 {
974         return update_sample(rmid, evt_type, 0);
975 }
976
977 static void __intel_mbm_event_init(void *info)
978 {
979         struct rmid_read *rr = info;
980
981         update_sample(rr->rmid, rr->evt_type, 1);
982 }
983
984 static void init_mbm_sample(u32 rmid, u32 evt_type)
985 {
986         struct rmid_read rr = {
987                 .rmid = rmid,
988                 .evt_type = evt_type,
989                 .value = ATOMIC64_INIT(0),
990         };
991
992         /* on each socket, init sample */
993         on_each_cpu_mask(&cqm_cpumask, __intel_mbm_event_init, &rr, 1);
994 }
995
996 /*
997  * Find a group and setup RMID.
998  *
999  * If we're part of a group, we use the group's RMID.
1000  */
1001 static void intel_cqm_setup_event(struct perf_event *event,
1002                                   struct perf_event **group)
1003 {
1004         struct perf_event *iter;
1005         bool conflict = false;
1006         u32 rmid;
1007
1008         event->hw.is_group_event = false;
1009         list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
1010                 rmid = iter->hw.cqm_rmid;
1011
1012                 if (__match_event(iter, event)) {
1013                         /* All tasks in a group share an RMID */
1014                         event->hw.cqm_rmid = rmid;
1015                         *group = iter;
1016                         if (is_mbm_event(event->attr.config) && __rmid_valid(rmid))
1017                                 init_mbm_sample(rmid, event->attr.config);
1018                         return;
1019                 }
1020
1021                 /*
1022                  * We only care about conflicts for events that are
1023                  * actually scheduled in (and hence have a valid RMID).
1024                  */
1025                 if (__conflict_event(iter, event) && __rmid_valid(rmid))
1026                         conflict = true;
1027         }
1028
1029         if (conflict)
1030                 rmid = INVALID_RMID;
1031         else
1032                 rmid = __get_rmid();
1033
1034         if (is_mbm_event(event->attr.config) && __rmid_valid(rmid))
1035                 init_mbm_sample(rmid, event->attr.config);
1036
1037         event->hw.cqm_rmid = rmid;
1038 }
1039
1040 static void intel_cqm_event_read(struct perf_event *event)
1041 {
1042         unsigned long flags;
1043         u32 rmid;
1044         u64 val;
1045
1046         /*
1047          * Task events are handled by intel_cqm_event_count().
1048          */
1049         if (event->cpu == -1)
1050                 return;
1051
1052         raw_spin_lock_irqsave(&cache_lock, flags);
1053         rmid = event->hw.cqm_rmid;
1054
1055         if (!__rmid_valid(rmid))
1056                 goto out;
1057
1058         if (is_mbm_event(event->attr.config))
1059                 val = rmid_read_mbm(rmid, event->attr.config);
1060         else
1061                 val = __rmid_read(rmid);
1062
1063         /*
1064          * Ignore this reading on error states and do not update the value.
1065          */
1066         if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
1067                 goto out;
1068
1069         local64_set(&event->count, val);
1070 out:
1071         raw_spin_unlock_irqrestore(&cache_lock, flags);
1072 }
1073
1074 static void __intel_cqm_event_count(void *info)
1075 {
1076         struct rmid_read *rr = info;
1077         u64 val;
1078
1079         val = __rmid_read(rr->rmid);
1080
1081         if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
1082                 return;
1083
1084         atomic64_add(val, &rr->value);
1085 }
1086
1087 static inline bool cqm_group_leader(struct perf_event *event)
1088 {
1089         return !list_empty(&event->hw.cqm_groups_entry);
1090 }
1091
1092 static void __intel_mbm_event_count(void *info)
1093 {
1094         struct rmid_read *rr = info;
1095         u64 val;
1096
1097         val = rmid_read_mbm(rr->rmid, rr->evt_type);
1098         if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
1099                 return;
1100         atomic64_add(val, &rr->value);
1101 }
1102
1103 static enum hrtimer_restart mbm_hrtimer_handle(struct hrtimer *hrtimer)
1104 {
1105         struct perf_event *iter, *iter1;
1106         int ret = HRTIMER_RESTART;
1107         struct list_head *head;
1108         unsigned long flags;
1109         u32 grp_rmid;
1110
1111         /*
1112          * Need to cache_lock as the timer Event Select MSR reads
1113          * can race with the mbm/cqm count() and mbm_init() reads.
1114          */
1115         raw_spin_lock_irqsave(&cache_lock, flags);
1116
1117         if (list_empty(&cache_groups)) {
1118                 ret = HRTIMER_NORESTART;
1119                 goto out;
1120         }
1121
1122         list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
1123                 grp_rmid = iter->hw.cqm_rmid;
1124                 if (!__rmid_valid(grp_rmid))
1125                         continue;
1126                 if (is_mbm_event(iter->attr.config))
1127                         update_sample(grp_rmid, iter->attr.config, 0);
1128
1129                 head = &iter->hw.cqm_group_entry;
1130                 if (list_empty(head))
1131                         continue;
1132                 list_for_each_entry(iter1, head, hw.cqm_group_entry) {
1133                         if (!iter1->hw.is_group_event)
1134                                 break;
1135                         if (is_mbm_event(iter1->attr.config))
1136                                 update_sample(iter1->hw.cqm_rmid,
1137                                               iter1->attr.config, 0);
1138                 }
1139         }
1140
1141         hrtimer_forward_now(hrtimer, ms_to_ktime(MBM_CTR_OVERFLOW_TIME));
1142 out:
1143         raw_spin_unlock_irqrestore(&cache_lock, flags);
1144
1145         return ret;
1146 }
1147
1148 static void __mbm_start_timer(void *info)
1149 {
1150         hrtimer_start(&mbm_timers[pkg_id], ms_to_ktime(MBM_CTR_OVERFLOW_TIME),
1151                              HRTIMER_MODE_REL_PINNED);
1152 }
1153
1154 static void __mbm_stop_timer(void *info)
1155 {
1156         hrtimer_cancel(&mbm_timers[pkg_id]);
1157 }
1158
1159 static void mbm_start_timers(void)
1160 {
1161         on_each_cpu_mask(&cqm_cpumask, __mbm_start_timer, NULL, 1);
1162 }
1163
1164 static void mbm_stop_timers(void)
1165 {
1166         on_each_cpu_mask(&cqm_cpumask, __mbm_stop_timer, NULL, 1);
1167 }
1168
1169 static void mbm_hrtimer_init(void)
1170 {
1171         struct hrtimer *hr;
1172         int i;
1173
1174         for (i = 0; i < mbm_socket_max; i++) {
1175                 hr = &mbm_timers[i];
1176                 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177                 hr->function = mbm_hrtimer_handle;
1178         }
1179 }
1180
1181 static u64 intel_cqm_event_count(struct perf_event *event)
1182 {
1183         unsigned long flags;
1184         struct rmid_read rr = {
1185                 .evt_type = event->attr.config,
1186                 .value = ATOMIC64_INIT(0),
1187         };
1188
1189         /*
1190          * We only need to worry about task events. System-wide events
1191          * are handled like usual, i.e. entirely with
1192          * intel_cqm_event_read().
1193          */
1194         if (event->cpu != -1)
1195                 return __perf_event_count(event);
1196
1197         /*
1198          * Only the group leader gets to report values except in case of
1199          * multiple events in the same group, we still need to read the
1200          * other events.This stops us
1201          * reporting duplicate values to userspace, and gives us a clear
1202          * rule for which task gets to report the values.
1203          *
1204          * Note that it is impossible to attribute these values to
1205          * specific packages - we forfeit that ability when we create
1206          * task events.
1207          */
1208         if (!cqm_group_leader(event) && !event->hw.is_group_event)
1209                 return 0;
1210
1211         /*
1212          * Getting up-to-date values requires an SMP IPI which is not
1213          * possible if we're being called in interrupt context. Return
1214          * the cached values instead.
1215          */
1216         if (unlikely(in_interrupt()))
1217                 goto out;
1218
1219         /*
1220          * Notice that we don't perform the reading of an RMID
1221          * atomically, because we can't hold a spin lock across the
1222          * IPIs.
1223          *
1224          * Speculatively perform the read, since @event might be
1225          * assigned a different (possibly invalid) RMID while we're
1226          * busying performing the IPI calls. It's therefore necessary to
1227          * check @event's RMID afterwards, and if it has changed,
1228          * discard the result of the read.
1229          */
1230         rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
1231
1232         if (!__rmid_valid(rr.rmid))
1233                 goto out;
1234
1235         cqm_mask_call(&rr);
1236
1237         raw_spin_lock_irqsave(&cache_lock, flags);
1238         if (event->hw.cqm_rmid == rr.rmid)
1239                 local64_set(&event->count, atomic64_read(&rr.value));
1240         raw_spin_unlock_irqrestore(&cache_lock, flags);
1241 out:
1242         return __perf_event_count(event);
1243 }
1244
1245 static void intel_cqm_event_start(struct perf_event *event, int mode)
1246 {
1247         struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1248         u32 rmid = event->hw.cqm_rmid;
1249
1250         if (!(event->hw.cqm_state & PERF_HES_STOPPED))
1251                 return;
1252
1253         event->hw.cqm_state &= ~PERF_HES_STOPPED;
1254
1255         if (state->rmid_usecnt++) {
1256                 if (!WARN_ON_ONCE(state->rmid != rmid))
1257                         return;
1258         } else {
1259                 WARN_ON_ONCE(state->rmid);
1260         }
1261
1262         state->rmid = rmid;
1263         wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
1264 }
1265
1266 static void intel_cqm_event_stop(struct perf_event *event, int mode)
1267 {
1268         struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1269
1270         if (event->hw.cqm_state & PERF_HES_STOPPED)
1271                 return;
1272
1273         event->hw.cqm_state |= PERF_HES_STOPPED;
1274
1275         intel_cqm_event_read(event);
1276
1277         if (!--state->rmid_usecnt) {
1278                 state->rmid = 0;
1279                 wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
1280         } else {
1281                 WARN_ON_ONCE(!state->rmid);
1282         }
1283 }
1284
1285 static int intel_cqm_event_add(struct perf_event *event, int mode)
1286 {
1287         unsigned long flags;
1288         u32 rmid;
1289
1290         raw_spin_lock_irqsave(&cache_lock, flags);
1291
1292         event->hw.cqm_state = PERF_HES_STOPPED;
1293         rmid = event->hw.cqm_rmid;
1294
1295         if (__rmid_valid(rmid) && (mode & PERF_EF_START))
1296                 intel_cqm_event_start(event, mode);
1297
1298         raw_spin_unlock_irqrestore(&cache_lock, flags);
1299
1300         return 0;
1301 }
1302
1303 static void intel_cqm_event_destroy(struct perf_event *event)
1304 {
1305         struct perf_event *group_other = NULL;
1306         unsigned long flags;
1307
1308         mutex_lock(&cache_mutex);
1309         /*
1310         * Hold the cache_lock as mbm timer handlers could be
1311         * scanning the list of events.
1312         */
1313         raw_spin_lock_irqsave(&cache_lock, flags);
1314
1315         /*
1316          * If there's another event in this group...
1317          */
1318         if (!list_empty(&event->hw.cqm_group_entry)) {
1319                 group_other = list_first_entry(&event->hw.cqm_group_entry,
1320                                                struct perf_event,
1321                                                hw.cqm_group_entry);
1322                 list_del(&event->hw.cqm_group_entry);
1323         }
1324
1325         /*
1326          * And we're the group leader..
1327          */
1328         if (cqm_group_leader(event)) {
1329                 /*
1330                  * If there was a group_other, make that leader, otherwise
1331                  * destroy the group and return the RMID.
1332                  */
1333                 if (group_other) {
1334                         list_replace(&event->hw.cqm_groups_entry,
1335                                      &group_other->hw.cqm_groups_entry);
1336                 } else {
1337                         u32 rmid = event->hw.cqm_rmid;
1338
1339                         if (__rmid_valid(rmid))
1340                                 __put_rmid(rmid);
1341                         list_del(&event->hw.cqm_groups_entry);
1342                 }
1343         }
1344
1345         raw_spin_unlock_irqrestore(&cache_lock, flags);
1346
1347         /*
1348          * Stop the mbm overflow timers when the last event is destroyed.
1349         */
1350         if (mbm_enabled && list_empty(&cache_groups))
1351                 mbm_stop_timers();
1352
1353         mutex_unlock(&cache_mutex);
1354 }
1355
1356 static int intel_cqm_event_init(struct perf_event *event)
1357 {
1358         struct perf_event *group = NULL;
1359         bool rotate = false;
1360         unsigned long flags;
1361
1362         if (event->attr.type != intel_cqm_pmu.type)
1363                 return -ENOENT;
1364
1365         if ((event->attr.config < QOS_L3_OCCUP_EVENT_ID) ||
1366              (event->attr.config > QOS_MBM_LOCAL_EVENT_ID))
1367                 return -EINVAL;
1368
1369         /* unsupported modes and filters */
1370         if (event->attr.exclude_user   ||
1371             event->attr.exclude_kernel ||
1372             event->attr.exclude_hv     ||
1373             event->attr.exclude_idle   ||
1374             event->attr.exclude_host   ||
1375             event->attr.exclude_guest  ||
1376             event->attr.sample_period) /* no sampling */
1377                 return -EINVAL;
1378
1379         INIT_LIST_HEAD(&event->hw.cqm_group_entry);
1380         INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
1381
1382         event->destroy = intel_cqm_event_destroy;
1383
1384         mutex_lock(&cache_mutex);
1385
1386         /*
1387          * Start the mbm overflow timers when the first event is created.
1388         */
1389         if (mbm_enabled && list_empty(&cache_groups))
1390                 mbm_start_timers();
1391
1392         /* Will also set rmid */
1393         intel_cqm_setup_event(event, &group);
1394
1395         /*
1396         * Hold the cache_lock as mbm timer handlers be
1397         * scanning the list of events.
1398         */
1399         raw_spin_lock_irqsave(&cache_lock, flags);
1400
1401         if (group) {
1402                 list_add_tail(&event->hw.cqm_group_entry,
1403                               &group->hw.cqm_group_entry);
1404         } else {
1405                 list_add_tail(&event->hw.cqm_groups_entry,
1406                               &cache_groups);
1407
1408                 /*
1409                  * All RMIDs are either in use or have recently been
1410                  * used. Kick the rotation worker to clean/free some.
1411                  *
1412                  * We only do this for the group leader, rather than for
1413                  * every event in a group to save on needless work.
1414                  */
1415                 if (!__rmid_valid(event->hw.cqm_rmid))
1416                         rotate = true;
1417         }
1418
1419         raw_spin_unlock_irqrestore(&cache_lock, flags);
1420         mutex_unlock(&cache_mutex);
1421
1422         if (rotate)
1423                 schedule_delayed_work(&intel_cqm_rmid_work, 0);
1424
1425         return 0;
1426 }
1427
1428 EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
1429 EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
1430 EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
1431 EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
1432 EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
1433
1434 EVENT_ATTR_STR(total_bytes, intel_cqm_total_bytes, "event=0x02");
1435 EVENT_ATTR_STR(total_bytes.per-pkg, intel_cqm_total_bytes_pkg, "1");
1436 EVENT_ATTR_STR(total_bytes.unit, intel_cqm_total_bytes_unit, "MB");
1437 EVENT_ATTR_STR(total_bytes.scale, intel_cqm_total_bytes_scale, "1e-6");
1438
1439 EVENT_ATTR_STR(local_bytes, intel_cqm_local_bytes, "event=0x03");
1440 EVENT_ATTR_STR(local_bytes.per-pkg, intel_cqm_local_bytes_pkg, "1");
1441 EVENT_ATTR_STR(local_bytes.unit, intel_cqm_local_bytes_unit, "MB");
1442 EVENT_ATTR_STR(local_bytes.scale, intel_cqm_local_bytes_scale, "1e-6");
1443
1444 static struct attribute *intel_cqm_events_attr[] = {
1445         EVENT_PTR(intel_cqm_llc),
1446         EVENT_PTR(intel_cqm_llc_pkg),
1447         EVENT_PTR(intel_cqm_llc_unit),
1448         EVENT_PTR(intel_cqm_llc_scale),
1449         EVENT_PTR(intel_cqm_llc_snapshot),
1450         NULL,
1451 };
1452
1453 static struct attribute *intel_mbm_events_attr[] = {
1454         EVENT_PTR(intel_cqm_total_bytes),
1455         EVENT_PTR(intel_cqm_local_bytes),
1456         EVENT_PTR(intel_cqm_total_bytes_pkg),
1457         EVENT_PTR(intel_cqm_local_bytes_pkg),
1458         EVENT_PTR(intel_cqm_total_bytes_unit),
1459         EVENT_PTR(intel_cqm_local_bytes_unit),
1460         EVENT_PTR(intel_cqm_total_bytes_scale),
1461         EVENT_PTR(intel_cqm_local_bytes_scale),
1462         NULL,
1463 };
1464
1465 static struct attribute *intel_cmt_mbm_events_attr[] = {
1466         EVENT_PTR(intel_cqm_llc),
1467         EVENT_PTR(intel_cqm_total_bytes),
1468         EVENT_PTR(intel_cqm_local_bytes),
1469         EVENT_PTR(intel_cqm_llc_pkg),
1470         EVENT_PTR(intel_cqm_total_bytes_pkg),
1471         EVENT_PTR(intel_cqm_local_bytes_pkg),
1472         EVENT_PTR(intel_cqm_llc_unit),
1473         EVENT_PTR(intel_cqm_total_bytes_unit),
1474         EVENT_PTR(intel_cqm_local_bytes_unit),
1475         EVENT_PTR(intel_cqm_llc_scale),
1476         EVENT_PTR(intel_cqm_total_bytes_scale),
1477         EVENT_PTR(intel_cqm_local_bytes_scale),
1478         EVENT_PTR(intel_cqm_llc_snapshot),
1479         NULL,
1480 };
1481
1482 static struct attribute_group intel_cqm_events_group = {
1483         .name = "events",
1484         .attrs = NULL,
1485 };
1486
1487 PMU_FORMAT_ATTR(event, "config:0-7");
1488 static struct attribute *intel_cqm_formats_attr[] = {
1489         &format_attr_event.attr,
1490         NULL,
1491 };
1492
1493 static struct attribute_group intel_cqm_format_group = {
1494         .name = "format",
1495         .attrs = intel_cqm_formats_attr,
1496 };
1497
1498 static ssize_t
1499 max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
1500                            char *page)
1501 {
1502         ssize_t rv;
1503
1504         mutex_lock(&cache_mutex);
1505         rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
1506         mutex_unlock(&cache_mutex);
1507
1508         return rv;
1509 }
1510
1511 static ssize_t
1512 max_recycle_threshold_store(struct device *dev,
1513                             struct device_attribute *attr,
1514                             const char *buf, size_t count)
1515 {
1516         unsigned int bytes, cachelines;
1517         int ret;
1518
1519         ret = kstrtouint(buf, 0, &bytes);
1520         if (ret)
1521                 return ret;
1522
1523         mutex_lock(&cache_mutex);
1524
1525         __intel_cqm_max_threshold = bytes;
1526         cachelines = bytes / cqm_l3_scale;
1527
1528         /*
1529          * The new maximum takes effect immediately.
1530          */
1531         if (__intel_cqm_threshold > cachelines)
1532                 __intel_cqm_threshold = cachelines;
1533
1534         mutex_unlock(&cache_mutex);
1535
1536         return count;
1537 }
1538
1539 static DEVICE_ATTR_RW(max_recycle_threshold);
1540
1541 static struct attribute *intel_cqm_attrs[] = {
1542         &dev_attr_max_recycle_threshold.attr,
1543         NULL,
1544 };
1545
1546 static const struct attribute_group intel_cqm_group = {
1547         .attrs = intel_cqm_attrs,
1548 };
1549
1550 static const struct attribute_group *intel_cqm_attr_groups[] = {
1551         &intel_cqm_events_group,
1552         &intel_cqm_format_group,
1553         &intel_cqm_group,
1554         NULL,
1555 };
1556
1557 static struct pmu intel_cqm_pmu = {
1558         .hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
1559         .attr_groups         = intel_cqm_attr_groups,
1560         .task_ctx_nr         = perf_sw_context,
1561         .event_init          = intel_cqm_event_init,
1562         .add                 = intel_cqm_event_add,
1563         .del                 = intel_cqm_event_stop,
1564         .start               = intel_cqm_event_start,
1565         .stop                = intel_cqm_event_stop,
1566         .read                = intel_cqm_event_read,
1567         .count               = intel_cqm_event_count,
1568 };
1569
1570 static inline void cqm_pick_event_reader(int cpu)
1571 {
1572         int reader;
1573
1574         /* First online cpu in package becomes the reader */
1575         reader = cpumask_any_and(&cqm_cpumask, topology_core_cpumask(cpu));
1576         if (reader >= nr_cpu_ids)
1577                 cpumask_set_cpu(cpu, &cqm_cpumask);
1578 }
1579
1580 static int intel_cqm_cpu_starting(unsigned int cpu)
1581 {
1582         struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
1583         struct cpuinfo_x86 *c = &cpu_data(cpu);
1584
1585         state->rmid = 0;
1586         state->closid = 0;
1587         state->rmid_usecnt = 0;
1588
1589         WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
1590         WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
1591
1592         cqm_pick_event_reader(cpu);
1593         return 0;
1594 }
1595
1596 static int intel_cqm_cpu_exit(unsigned int cpu)
1597 {
1598         int target;
1599
1600         /* Is @cpu the current cqm reader for this package ? */
1601         if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
1602                 return 0;
1603
1604         /* Find another online reader in this package */
1605         target = cpumask_any_but(topology_core_cpumask(cpu), cpu);
1606
1607         if (target < nr_cpu_ids)
1608                 cpumask_set_cpu(target, &cqm_cpumask);
1609
1610         return 0;
1611 }
1612
1613 static const struct x86_cpu_id intel_cqm_match[] = {
1614         { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
1615         {}
1616 };
1617
1618 static void mbm_cleanup(void)
1619 {
1620         if (!mbm_enabled)
1621                 return;
1622
1623         kfree(mbm_local);
1624         kfree(mbm_total);
1625         mbm_enabled = false;
1626 }
1627
1628 static const struct x86_cpu_id intel_mbm_local_match[] = {
1629         { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_MBM_LOCAL },
1630         {}
1631 };
1632
1633 static const struct x86_cpu_id intel_mbm_total_match[] = {
1634         { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_MBM_TOTAL },
1635         {}
1636 };
1637
1638 static int intel_mbm_init(void)
1639 {
1640         int ret = 0, array_size, maxid = cqm_max_rmid + 1;
1641
1642         mbm_socket_max = topology_max_packages();
1643         array_size = sizeof(struct sample) * maxid * mbm_socket_max;
1644         mbm_local = kmalloc(array_size, GFP_KERNEL);
1645         if (!mbm_local)
1646                 return -ENOMEM;
1647
1648         mbm_total = kmalloc(array_size, GFP_KERNEL);
1649         if (!mbm_total) {
1650                 ret = -ENOMEM;
1651                 goto out;
1652         }
1653
1654         array_size = sizeof(struct hrtimer) * mbm_socket_max;
1655         mbm_timers = kmalloc(array_size, GFP_KERNEL);
1656         if (!mbm_timers) {
1657                 ret = -ENOMEM;
1658                 goto out;
1659         }
1660         mbm_hrtimer_init();
1661
1662 out:
1663         if (ret)
1664                 mbm_cleanup();
1665
1666         return ret;
1667 }
1668
1669 static int __init intel_cqm_init(void)
1670 {
1671         char *str = NULL, scale[20];
1672         int cpu, ret;
1673
1674         if (x86_match_cpu(intel_cqm_match))
1675                 cqm_enabled = true;
1676
1677         if (x86_match_cpu(intel_mbm_local_match) &&
1678              x86_match_cpu(intel_mbm_total_match))
1679                 mbm_enabled = true;
1680
1681         if (!cqm_enabled && !mbm_enabled)
1682                 return -ENODEV;
1683
1684         cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
1685
1686         /*
1687          * It's possible that not all resources support the same number
1688          * of RMIDs. Instead of making scheduling much more complicated
1689          * (where we have to match a task's RMID to a cpu that supports
1690          * that many RMIDs) just find the minimum RMIDs supported across
1691          * all cpus.
1692          *
1693          * Also, check that the scales match on all cpus.
1694          */
1695         get_online_cpus();
1696         for_each_online_cpu(cpu) {
1697                 struct cpuinfo_x86 *c = &cpu_data(cpu);
1698
1699                 if (c->x86_cache_max_rmid < cqm_max_rmid)
1700                         cqm_max_rmid = c->x86_cache_max_rmid;
1701
1702                 if (c->x86_cache_occ_scale != cqm_l3_scale) {
1703                         pr_err("Multiple LLC scale values, disabling\n");
1704                         ret = -EINVAL;
1705                         goto out;
1706                 }
1707         }
1708
1709         /*
1710          * A reasonable upper limit on the max threshold is the number
1711          * of lines tagged per RMID if all RMIDs have the same number of
1712          * lines tagged in the LLC.
1713          *
1714          * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1715          */
1716         __intel_cqm_max_threshold =
1717                 boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
1718
1719         snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
1720         str = kstrdup(scale, GFP_KERNEL);
1721         if (!str) {
1722                 ret = -ENOMEM;
1723                 goto out;
1724         }
1725
1726         event_attr_intel_cqm_llc_scale.event_str = str;
1727
1728         ret = intel_cqm_setup_rmid_cache();
1729         if (ret)
1730                 goto out;
1731
1732         if (mbm_enabled)
1733                 ret = intel_mbm_init();
1734         if (ret && !cqm_enabled)
1735                 goto out;
1736
1737         if (cqm_enabled && mbm_enabled)
1738                 intel_cqm_events_group.attrs = intel_cmt_mbm_events_attr;
1739         else if (!cqm_enabled && mbm_enabled)
1740                 intel_cqm_events_group.attrs = intel_mbm_events_attr;
1741         else if (cqm_enabled && !mbm_enabled)
1742                 intel_cqm_events_group.attrs = intel_cqm_events_attr;
1743
1744         ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
1745         if (ret) {
1746                 pr_err("Intel CQM perf registration failed: %d\n", ret);
1747                 goto out;
1748         }
1749
1750         if (cqm_enabled)
1751                 pr_info("Intel CQM monitoring enabled\n");
1752         if (mbm_enabled)
1753                 pr_info("Intel MBM enabled\n");
1754
1755         /*
1756          * Setup the hot cpu notifier once we are sure cqm
1757          * is enabled to avoid notifier leak.
1758          */
1759         cpuhp_setup_state(CPUHP_AP_PERF_X86_CQM_STARTING,
1760                           "AP_PERF_X86_CQM_STARTING",
1761                           intel_cqm_cpu_starting, NULL);
1762         cpuhp_setup_state(CPUHP_AP_PERF_X86_CQM_ONLINE, "AP_PERF_X86_CQM_ONLINE",
1763                           NULL, intel_cqm_cpu_exit);
1764
1765 out:
1766         put_online_cpus();
1767
1768         if (ret) {
1769                 kfree(str);
1770                 cqm_cleanup();
1771                 mbm_cleanup();
1772         }
1773
1774         return ret;
1775 }
1776 device_initcall(intel_cqm_init);