Merge tag 'pci-v4.6-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[cascardo/linux.git] / arch / x86 / events / intel / ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "../perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE         24
12
13 #define BTS_BUFFER_SIZE         (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE        (PAGE_SIZE << 4)
15 #define PEBS_FIXUP_SIZE         PAGE_SIZE
16
17 /*
18  * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21         u32 flags, ip;
22         u32 ax, bc, cx, dx;
23         u32 si, di, bp, sp;
24 };
25
26  */
27
28 union intel_x86_pebs_dse {
29         u64 val;
30         struct {
31                 unsigned int ld_dse:4;
32                 unsigned int ld_stlb_miss:1;
33                 unsigned int ld_locked:1;
34                 unsigned int ld_reserved:26;
35         };
36         struct {
37                 unsigned int st_l1d_hit:1;
38                 unsigned int st_reserved1:3;
39                 unsigned int st_stlb_miss:1;
40                 unsigned int st_locked:1;
41                 unsigned int st_reserved2:26;
42         };
43 };
44
45
46 /*
47  * Map PEBS Load Latency Data Source encodings to generic
48  * memory data source information
49  */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 /* Version for Sandy Bridge and later */
55 static u64 pebs_data_source[] = {
56         P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
57         OP_LH | P(LVL, L1)  | P(SNOOP, NONE),   /* 0x01: L1 local */
58         OP_LH | P(LVL, LFB) | P(SNOOP, NONE),   /* 0x02: LFB hit */
59         OP_LH | P(LVL, L2)  | P(SNOOP, NONE),   /* 0x03: L2 hit */
60         OP_LH | P(LVL, L3)  | P(SNOOP, NONE),   /* 0x04: L3 hit */
61         OP_LH | P(LVL, L3)  | P(SNOOP, MISS),   /* 0x05: L3 hit, snoop miss */
62         OP_LH | P(LVL, L3)  | P(SNOOP, HIT),    /* 0x06: L3 hit, snoop hit */
63         OP_LH | P(LVL, L3)  | P(SNOOP, HITM),   /* 0x07: L3 hit, snoop hitm */
64         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
65         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
66         OP_LH | P(LVL, LOC_RAM)  | P(SNOOP, HIT),  /* 0x0a: L3 miss, shared */
67         OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
68         OP_LH | P(LVL, LOC_RAM)  | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
69         OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
70         OP_LH | P(LVL, IO)  | P(SNOOP, NONE), /* 0x0e: I/O */
71         OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
72 };
73
74 /* Patch up minor differences in the bits */
75 void __init intel_pmu_pebs_data_source_nhm(void)
76 {
77         pebs_data_source[0x05] = OP_LH | P(LVL, L3)  | P(SNOOP, HIT);
78         pebs_data_source[0x06] = OP_LH | P(LVL, L3)  | P(SNOOP, HITM);
79         pebs_data_source[0x07] = OP_LH | P(LVL, L3)  | P(SNOOP, HITM);
80 }
81
82 static u64 precise_store_data(u64 status)
83 {
84         union intel_x86_pebs_dse dse;
85         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
86
87         dse.val = status;
88
89         /*
90          * bit 4: TLB access
91          * 1 = stored missed 2nd level TLB
92          *
93          * so it either hit the walker or the OS
94          * otherwise hit 2nd level TLB
95          */
96         if (dse.st_stlb_miss)
97                 val |= P(TLB, MISS);
98         else
99                 val |= P(TLB, HIT);
100
101         /*
102          * bit 0: hit L1 data cache
103          * if not set, then all we know is that
104          * it missed L1D
105          */
106         if (dse.st_l1d_hit)
107                 val |= P(LVL, HIT);
108         else
109                 val |= P(LVL, MISS);
110
111         /*
112          * bit 5: Locked prefix
113          */
114         if (dse.st_locked)
115                 val |= P(LOCK, LOCKED);
116
117         return val;
118 }
119
120 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
121 {
122         union perf_mem_data_src dse;
123
124         dse.val = PERF_MEM_NA;
125
126         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
127                 dse.mem_op = PERF_MEM_OP_STORE;
128         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
129                 dse.mem_op = PERF_MEM_OP_LOAD;
130
131         /*
132          * L1 info only valid for following events:
133          *
134          * MEM_UOPS_RETIRED.STLB_MISS_STORES
135          * MEM_UOPS_RETIRED.LOCK_STORES
136          * MEM_UOPS_RETIRED.SPLIT_STORES
137          * MEM_UOPS_RETIRED.ALL_STORES
138          */
139         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
140                 if (status & 1)
141                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
142                 else
143                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
144         }
145         return dse.val;
146 }
147
148 static u64 load_latency_data(u64 status)
149 {
150         union intel_x86_pebs_dse dse;
151         u64 val;
152         int model = boot_cpu_data.x86_model;
153         int fam = boot_cpu_data.x86;
154
155         dse.val = status;
156
157         /*
158          * use the mapping table for bit 0-3
159          */
160         val = pebs_data_source[dse.ld_dse];
161
162         /*
163          * Nehalem models do not support TLB, Lock infos
164          */
165         if (fam == 0x6 && (model == 26 || model == 30
166             || model == 31 || model == 46)) {
167                 val |= P(TLB, NA) | P(LOCK, NA);
168                 return val;
169         }
170         /*
171          * bit 4: TLB access
172          * 0 = did not miss 2nd level TLB
173          * 1 = missed 2nd level TLB
174          */
175         if (dse.ld_stlb_miss)
176                 val |= P(TLB, MISS) | P(TLB, L2);
177         else
178                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
179
180         /*
181          * bit 5: locked prefix
182          */
183         if (dse.ld_locked)
184                 val |= P(LOCK, LOCKED);
185
186         return val;
187 }
188
189 struct pebs_record_core {
190         u64 flags, ip;
191         u64 ax, bx, cx, dx;
192         u64 si, di, bp, sp;
193         u64 r8,  r9,  r10, r11;
194         u64 r12, r13, r14, r15;
195 };
196
197 struct pebs_record_nhm {
198         u64 flags, ip;
199         u64 ax, bx, cx, dx;
200         u64 si, di, bp, sp;
201         u64 r8,  r9,  r10, r11;
202         u64 r12, r13, r14, r15;
203         u64 status, dla, dse, lat;
204 };
205
206 /*
207  * Same as pebs_record_nhm, with two additional fields.
208  */
209 struct pebs_record_hsw {
210         u64 flags, ip;
211         u64 ax, bx, cx, dx;
212         u64 si, di, bp, sp;
213         u64 r8,  r9,  r10, r11;
214         u64 r12, r13, r14, r15;
215         u64 status, dla, dse, lat;
216         u64 real_ip, tsx_tuning;
217 };
218
219 union hsw_tsx_tuning {
220         struct {
221                 u32 cycles_last_block     : 32,
222                     hle_abort             : 1,
223                     rtm_abort             : 1,
224                     instruction_abort     : 1,
225                     non_instruction_abort : 1,
226                     retry                 : 1,
227                     data_conflict         : 1,
228                     capacity_writes       : 1,
229                     capacity_reads        : 1;
230         };
231         u64         value;
232 };
233
234 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
235
236 /* Same as HSW, plus TSC */
237
238 struct pebs_record_skl {
239         u64 flags, ip;
240         u64 ax, bx, cx, dx;
241         u64 si, di, bp, sp;
242         u64 r8,  r9,  r10, r11;
243         u64 r12, r13, r14, r15;
244         u64 status, dla, dse, lat;
245         u64 real_ip, tsx_tuning;
246         u64 tsc;
247 };
248
249 void init_debug_store_on_cpu(int cpu)
250 {
251         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
252
253         if (!ds)
254                 return;
255
256         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
257                      (u32)((u64)(unsigned long)ds),
258                      (u32)((u64)(unsigned long)ds >> 32));
259 }
260
261 void fini_debug_store_on_cpu(int cpu)
262 {
263         if (!per_cpu(cpu_hw_events, cpu).ds)
264                 return;
265
266         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
267 }
268
269 static DEFINE_PER_CPU(void *, insn_buffer);
270
271 static int alloc_pebs_buffer(int cpu)
272 {
273         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
274         int node = cpu_to_node(cpu);
275         int max;
276         void *buffer, *ibuffer;
277
278         if (!x86_pmu.pebs)
279                 return 0;
280
281         buffer = kzalloc_node(x86_pmu.pebs_buffer_size, GFP_KERNEL, node);
282         if (unlikely(!buffer))
283                 return -ENOMEM;
284
285         /*
286          * HSW+ already provides us the eventing ip; no need to allocate this
287          * buffer then.
288          */
289         if (x86_pmu.intel_cap.pebs_format < 2) {
290                 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
291                 if (!ibuffer) {
292                         kfree(buffer);
293                         return -ENOMEM;
294                 }
295                 per_cpu(insn_buffer, cpu) = ibuffer;
296         }
297
298         max = x86_pmu.pebs_buffer_size / x86_pmu.pebs_record_size;
299
300         ds->pebs_buffer_base = (u64)(unsigned long)buffer;
301         ds->pebs_index = ds->pebs_buffer_base;
302         ds->pebs_absolute_maximum = ds->pebs_buffer_base +
303                 max * x86_pmu.pebs_record_size;
304
305         return 0;
306 }
307
308 static void release_pebs_buffer(int cpu)
309 {
310         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
311
312         if (!ds || !x86_pmu.pebs)
313                 return;
314
315         kfree(per_cpu(insn_buffer, cpu));
316         per_cpu(insn_buffer, cpu) = NULL;
317
318         kfree((void *)(unsigned long)ds->pebs_buffer_base);
319         ds->pebs_buffer_base = 0;
320 }
321
322 static int alloc_bts_buffer(int cpu)
323 {
324         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
325         int node = cpu_to_node(cpu);
326         int max, thresh;
327         void *buffer;
328
329         if (!x86_pmu.bts)
330                 return 0;
331
332         buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
333         if (unlikely(!buffer)) {
334                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
335                 return -ENOMEM;
336         }
337
338         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
339         thresh = max / 16;
340
341         ds->bts_buffer_base = (u64)(unsigned long)buffer;
342         ds->bts_index = ds->bts_buffer_base;
343         ds->bts_absolute_maximum = ds->bts_buffer_base +
344                 max * BTS_RECORD_SIZE;
345         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
346                 thresh * BTS_RECORD_SIZE;
347
348         return 0;
349 }
350
351 static void release_bts_buffer(int cpu)
352 {
353         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
354
355         if (!ds || !x86_pmu.bts)
356                 return;
357
358         kfree((void *)(unsigned long)ds->bts_buffer_base);
359         ds->bts_buffer_base = 0;
360 }
361
362 static int alloc_ds_buffer(int cpu)
363 {
364         int node = cpu_to_node(cpu);
365         struct debug_store *ds;
366
367         ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
368         if (unlikely(!ds))
369                 return -ENOMEM;
370
371         per_cpu(cpu_hw_events, cpu).ds = ds;
372
373         return 0;
374 }
375
376 static void release_ds_buffer(int cpu)
377 {
378         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
379
380         if (!ds)
381                 return;
382
383         per_cpu(cpu_hw_events, cpu).ds = NULL;
384         kfree(ds);
385 }
386
387 void release_ds_buffers(void)
388 {
389         int cpu;
390
391         if (!x86_pmu.bts && !x86_pmu.pebs)
392                 return;
393
394         get_online_cpus();
395         for_each_online_cpu(cpu)
396                 fini_debug_store_on_cpu(cpu);
397
398         for_each_possible_cpu(cpu) {
399                 release_pebs_buffer(cpu);
400                 release_bts_buffer(cpu);
401                 release_ds_buffer(cpu);
402         }
403         put_online_cpus();
404 }
405
406 void reserve_ds_buffers(void)
407 {
408         int bts_err = 0, pebs_err = 0;
409         int cpu;
410
411         x86_pmu.bts_active = 0;
412         x86_pmu.pebs_active = 0;
413
414         if (!x86_pmu.bts && !x86_pmu.pebs)
415                 return;
416
417         if (!x86_pmu.bts)
418                 bts_err = 1;
419
420         if (!x86_pmu.pebs)
421                 pebs_err = 1;
422
423         get_online_cpus();
424
425         for_each_possible_cpu(cpu) {
426                 if (alloc_ds_buffer(cpu)) {
427                         bts_err = 1;
428                         pebs_err = 1;
429                 }
430
431                 if (!bts_err && alloc_bts_buffer(cpu))
432                         bts_err = 1;
433
434                 if (!pebs_err && alloc_pebs_buffer(cpu))
435                         pebs_err = 1;
436
437                 if (bts_err && pebs_err)
438                         break;
439         }
440
441         if (bts_err) {
442                 for_each_possible_cpu(cpu)
443                         release_bts_buffer(cpu);
444         }
445
446         if (pebs_err) {
447                 for_each_possible_cpu(cpu)
448                         release_pebs_buffer(cpu);
449         }
450
451         if (bts_err && pebs_err) {
452                 for_each_possible_cpu(cpu)
453                         release_ds_buffer(cpu);
454         } else {
455                 if (x86_pmu.bts && !bts_err)
456                         x86_pmu.bts_active = 1;
457
458                 if (x86_pmu.pebs && !pebs_err)
459                         x86_pmu.pebs_active = 1;
460
461                 for_each_online_cpu(cpu)
462                         init_debug_store_on_cpu(cpu);
463         }
464
465         put_online_cpus();
466 }
467
468 /*
469  * BTS
470  */
471
472 struct event_constraint bts_constraint =
473         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
474
475 void intel_pmu_enable_bts(u64 config)
476 {
477         unsigned long debugctlmsr;
478
479         debugctlmsr = get_debugctlmsr();
480
481         debugctlmsr |= DEBUGCTLMSR_TR;
482         debugctlmsr |= DEBUGCTLMSR_BTS;
483         if (config & ARCH_PERFMON_EVENTSEL_INT)
484                 debugctlmsr |= DEBUGCTLMSR_BTINT;
485
486         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
487                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
488
489         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
490                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
491
492         update_debugctlmsr(debugctlmsr);
493 }
494
495 void intel_pmu_disable_bts(void)
496 {
497         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
498         unsigned long debugctlmsr;
499
500         if (!cpuc->ds)
501                 return;
502
503         debugctlmsr = get_debugctlmsr();
504
505         debugctlmsr &=
506                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
507                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
508
509         update_debugctlmsr(debugctlmsr);
510 }
511
512 int intel_pmu_drain_bts_buffer(void)
513 {
514         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
515         struct debug_store *ds = cpuc->ds;
516         struct bts_record {
517                 u64     from;
518                 u64     to;
519                 u64     flags;
520         };
521         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
522         struct bts_record *at, *base, *top;
523         struct perf_output_handle handle;
524         struct perf_event_header header;
525         struct perf_sample_data data;
526         unsigned long skip = 0;
527         struct pt_regs regs;
528
529         if (!event)
530                 return 0;
531
532         if (!x86_pmu.bts_active)
533                 return 0;
534
535         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
536         top  = (struct bts_record *)(unsigned long)ds->bts_index;
537
538         if (top <= base)
539                 return 0;
540
541         memset(&regs, 0, sizeof(regs));
542
543         ds->bts_index = ds->bts_buffer_base;
544
545         perf_sample_data_init(&data, 0, event->hw.last_period);
546
547         /*
548          * BTS leaks kernel addresses in branches across the cpl boundary,
549          * such as traps or system calls, so unless the user is asking for
550          * kernel tracing (and right now it's not possible), we'd need to
551          * filter them out. But first we need to count how many of those we
552          * have in the current batch. This is an extra O(n) pass, however,
553          * it's much faster than the other one especially considering that
554          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
555          * alloc_bts_buffer()).
556          */
557         for (at = base; at < top; at++) {
558                 /*
559                  * Note that right now *this* BTS code only works if
560                  * attr::exclude_kernel is set, but let's keep this extra
561                  * check here in case that changes.
562                  */
563                 if (event->attr.exclude_kernel &&
564                     (kernel_ip(at->from) || kernel_ip(at->to)))
565                         skip++;
566         }
567
568         /*
569          * Prepare a generic sample, i.e. fill in the invariant fields.
570          * We will overwrite the from and to address before we output
571          * the sample.
572          */
573         perf_prepare_sample(&header, &data, event, &regs);
574
575         if (perf_output_begin(&handle, event, header.size *
576                               (top - base - skip)))
577                 return 1;
578
579         for (at = base; at < top; at++) {
580                 /* Filter out any records that contain kernel addresses. */
581                 if (event->attr.exclude_kernel &&
582                     (kernel_ip(at->from) || kernel_ip(at->to)))
583                         continue;
584
585                 data.ip         = at->from;
586                 data.addr       = at->to;
587
588                 perf_output_sample(&handle, &header, &data, event);
589         }
590
591         perf_output_end(&handle);
592
593         /* There's new data available. */
594         event->hw.interrupts++;
595         event->pending_kill = POLL_IN;
596         return 1;
597 }
598
599 static inline void intel_pmu_drain_pebs_buffer(void)
600 {
601         struct pt_regs regs;
602
603         x86_pmu.drain_pebs(&regs);
604 }
605
606 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
607 {
608         if (!sched_in)
609                 intel_pmu_drain_pebs_buffer();
610 }
611
612 /*
613  * PEBS
614  */
615 struct event_constraint intel_core2_pebs_event_constraints[] = {
616         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
617         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
618         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
619         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
620         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
621         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
622         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
623         EVENT_CONSTRAINT_END
624 };
625
626 struct event_constraint intel_atom_pebs_event_constraints[] = {
627         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
628         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
629         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
630         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
631         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
632         /* Allow all events as PEBS with no flags */
633         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
634         EVENT_CONSTRAINT_END
635 };
636
637 struct event_constraint intel_slm_pebs_event_constraints[] = {
638         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
639         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
640         /* Allow all events as PEBS with no flags */
641         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
642         EVENT_CONSTRAINT_END
643 };
644
645 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
646         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
647         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
648         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
649         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
650         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
651         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
652         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
653         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
654         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
655         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
656         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
657         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
658         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
659         EVENT_CONSTRAINT_END
660 };
661
662 struct event_constraint intel_westmere_pebs_event_constraints[] = {
663         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
664         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
665         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
666         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
667         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
668         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
669         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
670         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
671         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
672         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
673         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
674         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
675         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
676         EVENT_CONSTRAINT_END
677 };
678
679 struct event_constraint intel_snb_pebs_event_constraints[] = {
680         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
681         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
682         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
683         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
684         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
685         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
686         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
687         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
688         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
689         /* Allow all events as PEBS with no flags */
690         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
691         EVENT_CONSTRAINT_END
692 };
693
694 struct event_constraint intel_ivb_pebs_event_constraints[] = {
695         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
696         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
697         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
698         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
699         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
700         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
701         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
702         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
703         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
704         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
705         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
706         /* Allow all events as PEBS with no flags */
707         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
708         EVENT_CONSTRAINT_END
709 };
710
711 struct event_constraint intel_hsw_pebs_event_constraints[] = {
712         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
713         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
714         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
715         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
716         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
717         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
718         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
719         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
720         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
721         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
722         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
723         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
724         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
725         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
726         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
727         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
728         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
729         /* Allow all events as PEBS with no flags */
730         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
731         EVENT_CONSTRAINT_END
732 };
733
734 struct event_constraint intel_bdw_pebs_event_constraints[] = {
735         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
736         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
737         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
738         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
739         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
740         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
741         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
742         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
743         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
744         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
745         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
746         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
747         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
748         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
749         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
750         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
751         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
752         /* Allow all events as PEBS with no flags */
753         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
754         EVENT_CONSTRAINT_END
755 };
756
757
758 struct event_constraint intel_skl_pebs_event_constraints[] = {
759         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
760         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
761         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
762         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
763         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
764         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
765         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
766         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
767         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
768         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
769         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
770         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
771         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
772         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
773         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
774         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
775         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
776         /* Allow all events as PEBS with no flags */
777         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
778         EVENT_CONSTRAINT_END
779 };
780
781 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
782 {
783         struct event_constraint *c;
784
785         if (!event->attr.precise_ip)
786                 return NULL;
787
788         if (x86_pmu.pebs_constraints) {
789                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
790                         if ((event->hw.config & c->cmask) == c->code) {
791                                 event->hw.flags |= c->flags;
792                                 return c;
793                         }
794                 }
795         }
796
797         return &emptyconstraint;
798 }
799
800 static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
801 {
802         return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
803 }
804
805 void intel_pmu_pebs_enable(struct perf_event *event)
806 {
807         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
808         struct hw_perf_event *hwc = &event->hw;
809         struct debug_store *ds = cpuc->ds;
810         bool first_pebs;
811         u64 threshold;
812
813         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
814
815         first_pebs = !pebs_is_enabled(cpuc);
816         cpuc->pebs_enabled |= 1ULL << hwc->idx;
817
818         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
819                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
820         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
821                 cpuc->pebs_enabled |= 1ULL << 63;
822
823         /*
824          * When the event is constrained enough we can use a larger
825          * threshold and run the event with less frequent PMI.
826          */
827         if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
828                 threshold = ds->pebs_absolute_maximum -
829                         x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
830
831                 if (first_pebs)
832                         perf_sched_cb_inc(event->ctx->pmu);
833         } else {
834                 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
835
836                 /*
837                  * If not all events can use larger buffer,
838                  * roll back to threshold = 1
839                  */
840                 if (!first_pebs &&
841                     (ds->pebs_interrupt_threshold > threshold))
842                         perf_sched_cb_dec(event->ctx->pmu);
843         }
844
845         /* Use auto-reload if possible to save a MSR write in the PMI */
846         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
847                 ds->pebs_event_reset[hwc->idx] =
848                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
849         }
850
851         if (first_pebs || ds->pebs_interrupt_threshold > threshold)
852                 ds->pebs_interrupt_threshold = threshold;
853 }
854
855 void intel_pmu_pebs_disable(struct perf_event *event)
856 {
857         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
858         struct hw_perf_event *hwc = &event->hw;
859         struct debug_store *ds = cpuc->ds;
860         bool large_pebs = ds->pebs_interrupt_threshold >
861                 ds->pebs_buffer_base + x86_pmu.pebs_record_size;
862
863         if (large_pebs)
864                 intel_pmu_drain_pebs_buffer();
865
866         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
867
868         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
869                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
870         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
871                 cpuc->pebs_enabled &= ~(1ULL << 63);
872
873         if (large_pebs && !pebs_is_enabled(cpuc))
874                 perf_sched_cb_dec(event->ctx->pmu);
875
876         if (cpuc->enabled)
877                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
878
879         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
880 }
881
882 void intel_pmu_pebs_enable_all(void)
883 {
884         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
885
886         if (cpuc->pebs_enabled)
887                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
888 }
889
890 void intel_pmu_pebs_disable_all(void)
891 {
892         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
893
894         if (cpuc->pebs_enabled)
895                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
896 }
897
898 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
899 {
900         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
901         unsigned long from = cpuc->lbr_entries[0].from;
902         unsigned long old_to, to = cpuc->lbr_entries[0].to;
903         unsigned long ip = regs->ip;
904         int is_64bit = 0;
905         void *kaddr;
906         int size;
907
908         /*
909          * We don't need to fixup if the PEBS assist is fault like
910          */
911         if (!x86_pmu.intel_cap.pebs_trap)
912                 return 1;
913
914         /*
915          * No LBR entry, no basic block, no rewinding
916          */
917         if (!cpuc->lbr_stack.nr || !from || !to)
918                 return 0;
919
920         /*
921          * Basic blocks should never cross user/kernel boundaries
922          */
923         if (kernel_ip(ip) != kernel_ip(to))
924                 return 0;
925
926         /*
927          * unsigned math, either ip is before the start (impossible) or
928          * the basic block is larger than 1 page (sanity)
929          */
930         if ((ip - to) > PEBS_FIXUP_SIZE)
931                 return 0;
932
933         /*
934          * We sampled a branch insn, rewind using the LBR stack
935          */
936         if (ip == to) {
937                 set_linear_ip(regs, from);
938                 return 1;
939         }
940
941         size = ip - to;
942         if (!kernel_ip(ip)) {
943                 int bytes;
944                 u8 *buf = this_cpu_read(insn_buffer);
945
946                 /* 'size' must fit our buffer, see above */
947                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
948                 if (bytes != 0)
949                         return 0;
950
951                 kaddr = buf;
952         } else {
953                 kaddr = (void *)to;
954         }
955
956         do {
957                 struct insn insn;
958
959                 old_to = to;
960
961 #ifdef CONFIG_X86_64
962                 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
963 #endif
964                 insn_init(&insn, kaddr, size, is_64bit);
965                 insn_get_length(&insn);
966                 /*
967                  * Make sure there was not a problem decoding the
968                  * instruction and getting the length.  This is
969                  * doubly important because we have an infinite
970                  * loop if insn.length=0.
971                  */
972                 if (!insn.length)
973                         break;
974
975                 to += insn.length;
976                 kaddr += insn.length;
977                 size -= insn.length;
978         } while (to < ip);
979
980         if (to == ip) {
981                 set_linear_ip(regs, old_to);
982                 return 1;
983         }
984
985         /*
986          * Even though we decoded the basic block, the instruction stream
987          * never matched the given IP, either the TO or the IP got corrupted.
988          */
989         return 0;
990 }
991
992 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
993 {
994         if (pebs->tsx_tuning) {
995                 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
996                 return tsx.cycles_last_block;
997         }
998         return 0;
999 }
1000
1001 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1002 {
1003         u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1004
1005         /* For RTM XABORTs also log the abort code from AX */
1006         if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
1007                 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1008         return txn;
1009 }
1010
1011 static void setup_pebs_sample_data(struct perf_event *event,
1012                                    struct pt_regs *iregs, void *__pebs,
1013                                    struct perf_sample_data *data,
1014                                    struct pt_regs *regs)
1015 {
1016 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1017                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1018                  PERF_X86_EVENT_PEBS_LD_HSW | \
1019                  PERF_X86_EVENT_PEBS_NA_HSW)
1020         /*
1021          * We cast to the biggest pebs_record but are careful not to
1022          * unconditionally access the 'extra' entries.
1023          */
1024         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1025         struct pebs_record_skl *pebs = __pebs;
1026         u64 sample_type;
1027         int fll, fst, dsrc;
1028         int fl = event->hw.flags;
1029
1030         if (pebs == NULL)
1031                 return;
1032
1033         sample_type = event->attr.sample_type;
1034         dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1035
1036         fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1037         fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1038
1039         perf_sample_data_init(data, 0, event->hw.last_period);
1040
1041         data->period = event->hw.last_period;
1042
1043         /*
1044          * Use latency for weight (only avail with PEBS-LL)
1045          */
1046         if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1047                 data->weight = pebs->lat;
1048
1049         /*
1050          * data.data_src encodes the data source
1051          */
1052         if (dsrc) {
1053                 u64 val = PERF_MEM_NA;
1054                 if (fll)
1055                         val = load_latency_data(pebs->dse);
1056                 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1057                         val = precise_datala_hsw(event, pebs->dse);
1058                 else if (fst)
1059                         val = precise_store_data(pebs->dse);
1060                 data->data_src.val = val;
1061         }
1062
1063         /*
1064          * We use the interrupt regs as a base because the PEBS record
1065          * does not contain a full regs set, specifically it seems to
1066          * lack segment descriptors, which get used by things like
1067          * user_mode().
1068          *
1069          * In the simple case fix up only the IP and BP,SP regs, for
1070          * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
1071          * A possible PERF_SAMPLE_REGS will have to transfer all regs.
1072          */
1073         *regs = *iregs;
1074         regs->flags = pebs->flags;
1075         set_linear_ip(regs, pebs->ip);
1076         regs->bp = pebs->bp;
1077         regs->sp = pebs->sp;
1078
1079         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1080                 regs->ax = pebs->ax;
1081                 regs->bx = pebs->bx;
1082                 regs->cx = pebs->cx;
1083                 regs->dx = pebs->dx;
1084                 regs->si = pebs->si;
1085                 regs->di = pebs->di;
1086                 regs->bp = pebs->bp;
1087                 regs->sp = pebs->sp;
1088
1089                 regs->flags = pebs->flags;
1090 #ifndef CONFIG_X86_32
1091                 regs->r8 = pebs->r8;
1092                 regs->r9 = pebs->r9;
1093                 regs->r10 = pebs->r10;
1094                 regs->r11 = pebs->r11;
1095                 regs->r12 = pebs->r12;
1096                 regs->r13 = pebs->r13;
1097                 regs->r14 = pebs->r14;
1098                 regs->r15 = pebs->r15;
1099 #endif
1100         }
1101
1102         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1103                 regs->ip = pebs->real_ip;
1104                 regs->flags |= PERF_EFLAGS_EXACT;
1105         } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1106                 regs->flags |= PERF_EFLAGS_EXACT;
1107         else
1108                 regs->flags &= ~PERF_EFLAGS_EXACT;
1109
1110         if ((sample_type & PERF_SAMPLE_ADDR) &&
1111             x86_pmu.intel_cap.pebs_format >= 1)
1112                 data->addr = pebs->dla;
1113
1114         if (x86_pmu.intel_cap.pebs_format >= 2) {
1115                 /* Only set the TSX weight when no memory weight. */
1116                 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1117                         data->weight = intel_hsw_weight(pebs);
1118
1119                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1120                         data->txn = intel_hsw_transaction(pebs);
1121         }
1122
1123         /*
1124          * v3 supplies an accurate time stamp, so we use that
1125          * for the time stamp.
1126          *
1127          * We can only do this for the default trace clock.
1128          */
1129         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1130                 event->attr.use_clockid == 0)
1131                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1132
1133         if (has_branch_stack(event))
1134                 data->br_stack = &cpuc->lbr_stack;
1135 }
1136
1137 static inline void *
1138 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1139 {
1140         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1141         void *at;
1142         u64 pebs_status;
1143
1144         /*
1145          * fmt0 does not have a status bitfield (does not use
1146          * perf_record_nhm format)
1147          */
1148         if (x86_pmu.intel_cap.pebs_format < 1)
1149                 return base;
1150
1151         if (base == NULL)
1152                 return NULL;
1153
1154         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1155                 struct pebs_record_nhm *p = at;
1156
1157                 if (test_bit(bit, (unsigned long *)&p->status)) {
1158                         /* PEBS v3 has accurate status bits */
1159                         if (x86_pmu.intel_cap.pebs_format >= 3)
1160                                 return at;
1161
1162                         if (p->status == (1 << bit))
1163                                 return at;
1164
1165                         /* clear non-PEBS bit and re-check */
1166                         pebs_status = p->status & cpuc->pebs_enabled;
1167                         pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1168                         if (pebs_status == (1 << bit))
1169                                 return at;
1170                 }
1171         }
1172         return NULL;
1173 }
1174
1175 static void __intel_pmu_pebs_event(struct perf_event *event,
1176                                    struct pt_regs *iregs,
1177                                    void *base, void *top,
1178                                    int bit, int count)
1179 {
1180         struct perf_sample_data data;
1181         struct pt_regs regs;
1182         void *at = get_next_pebs_record_by_bit(base, top, bit);
1183
1184         if (!intel_pmu_save_and_restart(event) &&
1185             !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1186                 return;
1187
1188         while (count > 1) {
1189                 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1190                 perf_event_output(event, &data, &regs);
1191                 at += x86_pmu.pebs_record_size;
1192                 at = get_next_pebs_record_by_bit(at, top, bit);
1193                 count--;
1194         }
1195
1196         setup_pebs_sample_data(event, iregs, at, &data, &regs);
1197
1198         /*
1199          * All but the last records are processed.
1200          * The last one is left to be able to call the overflow handler.
1201          */
1202         if (perf_event_overflow(event, &data, &regs)) {
1203                 x86_pmu_stop(event, 0);
1204                 return;
1205         }
1206
1207 }
1208
1209 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1210 {
1211         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1212         struct debug_store *ds = cpuc->ds;
1213         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1214         struct pebs_record_core *at, *top;
1215         int n;
1216
1217         if (!x86_pmu.pebs_active)
1218                 return;
1219
1220         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1221         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1222
1223         /*
1224          * Whatever else happens, drain the thing
1225          */
1226         ds->pebs_index = ds->pebs_buffer_base;
1227
1228         if (!test_bit(0, cpuc->active_mask))
1229                 return;
1230
1231         WARN_ON_ONCE(!event);
1232
1233         if (!event->attr.precise_ip)
1234                 return;
1235
1236         n = top - at;
1237         if (n <= 0)
1238                 return;
1239
1240         __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1241 }
1242
1243 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1244 {
1245         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1246         struct debug_store *ds = cpuc->ds;
1247         struct perf_event *event;
1248         void *base, *at, *top;
1249         short counts[MAX_PEBS_EVENTS] = {};
1250         short error[MAX_PEBS_EVENTS] = {};
1251         int bit, i;
1252
1253         if (!x86_pmu.pebs_active)
1254                 return;
1255
1256         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1257         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1258
1259         ds->pebs_index = ds->pebs_buffer_base;
1260
1261         if (unlikely(base >= top))
1262                 return;
1263
1264         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1265                 struct pebs_record_nhm *p = at;
1266                 u64 pebs_status;
1267
1268                 /* PEBS v3 has accurate status bits */
1269                 if (x86_pmu.intel_cap.pebs_format >= 3) {
1270                         for_each_set_bit(bit, (unsigned long *)&p->status,
1271                                          MAX_PEBS_EVENTS)
1272                                 counts[bit]++;
1273
1274                         continue;
1275                 }
1276
1277                 pebs_status = p->status & cpuc->pebs_enabled;
1278                 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1279
1280                 /*
1281                  * On some CPUs the PEBS status can be zero when PEBS is
1282                  * racing with clearing of GLOBAL_STATUS.
1283                  *
1284                  * Normally we would drop that record, but in the
1285                  * case when there is only a single active PEBS event
1286                  * we can assume it's for that event.
1287                  */
1288                 if (!pebs_status && cpuc->pebs_enabled &&
1289                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1290                         pebs_status = cpuc->pebs_enabled;
1291
1292                 bit = find_first_bit((unsigned long *)&pebs_status,
1293                                         x86_pmu.max_pebs_events);
1294                 if (bit >= x86_pmu.max_pebs_events)
1295                         continue;
1296
1297                 /*
1298                  * The PEBS hardware does not deal well with the situation
1299                  * when events happen near to each other and multiple bits
1300                  * are set. But it should happen rarely.
1301                  *
1302                  * If these events include one PEBS and multiple non-PEBS
1303                  * events, it doesn't impact PEBS record. The record will
1304                  * be handled normally. (slow path)
1305                  *
1306                  * If these events include two or more PEBS events, the
1307                  * records for the events can be collapsed into a single
1308                  * one, and it's not possible to reconstruct all events
1309                  * that caused the PEBS record. It's called collision.
1310                  * If collision happened, the record will be dropped.
1311                  */
1312                 if (p->status != (1ULL << bit)) {
1313                         for_each_set_bit(i, (unsigned long *)&pebs_status,
1314                                          x86_pmu.max_pebs_events)
1315                                 error[i]++;
1316                         continue;
1317                 }
1318
1319                 counts[bit]++;
1320         }
1321
1322         for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1323                 if ((counts[bit] == 0) && (error[bit] == 0))
1324                         continue;
1325
1326                 event = cpuc->events[bit];
1327                 WARN_ON_ONCE(!event);
1328                 WARN_ON_ONCE(!event->attr.precise_ip);
1329
1330                 /* log dropped samples number */
1331                 if (error[bit])
1332                         perf_log_lost_samples(event, error[bit]);
1333
1334                 if (counts[bit]) {
1335                         __intel_pmu_pebs_event(event, iregs, base,
1336                                                top, bit, counts[bit]);
1337                 }
1338         }
1339 }
1340
1341 /*
1342  * BTS, PEBS probe and setup
1343  */
1344
1345 void __init intel_ds_init(void)
1346 {
1347         /*
1348          * No support for 32bit formats
1349          */
1350         if (!boot_cpu_has(X86_FEATURE_DTES64))
1351                 return;
1352
1353         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
1354         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1355         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1356         if (x86_pmu.pebs) {
1357                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
1358                 int format = x86_pmu.intel_cap.pebs_format;
1359
1360                 switch (format) {
1361                 case 0:
1362                         pr_cont("PEBS fmt0%c, ", pebs_type);
1363                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1364                         /*
1365                          * Using >PAGE_SIZE buffers makes the WRMSR to
1366                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1367                          * mysteriously hang on Core2.
1368                          *
1369                          * As a workaround, we don't do this.
1370                          */
1371                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
1372                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1373                         break;
1374
1375                 case 1:
1376                         pr_cont("PEBS fmt1%c, ", pebs_type);
1377                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1378                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1379                         break;
1380
1381                 case 2:
1382                         pr_cont("PEBS fmt2%c, ", pebs_type);
1383                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1384                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1385                         break;
1386
1387                 case 3:
1388                         pr_cont("PEBS fmt3%c, ", pebs_type);
1389                         x86_pmu.pebs_record_size =
1390                                                 sizeof(struct pebs_record_skl);
1391                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1392                         x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1393                         break;
1394
1395                 default:
1396                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1397                         x86_pmu.pebs = 0;
1398                 }
1399         }
1400 }
1401
1402 void perf_restore_debug_store(void)
1403 {
1404         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1405
1406         if (!x86_pmu.bts && !x86_pmu.pebs)
1407                 return;
1408
1409         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1410 }