Merge tag 'v3.18' into for_next
[cascardo/linux.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kprobes.h>
12 #include <linux/kgdb.h>
13 #include <linux/smp.h>
14 #include <linux/io.h>
15
16 #include <asm/stackprotector.h>
17 #include <asm/perf_event.h>
18 #include <asm/mmu_context.h>
19 #include <asm/archrandom.h>
20 #include <asm/hypervisor.h>
21 #include <asm/processor.h>
22 #include <asm/debugreg.h>
23 #include <asm/sections.h>
24 #include <asm/vsyscall.h>
25 #include <linux/topology.h>
26 #include <linux/cpumask.h>
27 #include <asm/pgtable.h>
28 #include <linux/atomic.h>
29 #include <asm/proto.h>
30 #include <asm/setup.h>
31 #include <asm/apic.h>
32 #include <asm/desc.h>
33 #include <asm/i387.h>
34 #include <asm/fpu-internal.h>
35 #include <asm/mtrr.h>
36 #include <linux/numa.h>
37 #include <asm/asm.h>
38 #include <asm/cpu.h>
39 #include <asm/mce.h>
40 #include <asm/msr.h>
41 #include <asm/pat.h>
42 #include <asm/microcode.h>
43 #include <asm/microcode_intel.h>
44
45 #ifdef CONFIG_X86_LOCAL_APIC
46 #include <asm/uv/uv.h>
47 #endif
48
49 #include "cpu.h"
50
51 /* all of these masks are initialized in setup_cpu_local_masks() */
52 cpumask_var_t cpu_initialized_mask;
53 cpumask_var_t cpu_callout_mask;
54 cpumask_var_t cpu_callin_mask;
55
56 /* representing cpus for which sibling maps can be computed */
57 cpumask_var_t cpu_sibling_setup_mask;
58
59 /* correctly size the local cpu masks */
60 void __init setup_cpu_local_masks(void)
61 {
62         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
63         alloc_bootmem_cpumask_var(&cpu_callin_mask);
64         alloc_bootmem_cpumask_var(&cpu_callout_mask);
65         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
66 }
67
68 static void default_init(struct cpuinfo_x86 *c)
69 {
70 #ifdef CONFIG_X86_64
71         cpu_detect_cache_sizes(c);
72 #else
73         /* Not much we can do here... */
74         /* Check if at least it has cpuid */
75         if (c->cpuid_level == -1) {
76                 /* No cpuid. It must be an ancient CPU */
77                 if (c->x86 == 4)
78                         strcpy(c->x86_model_id, "486");
79                 else if (c->x86 == 3)
80                         strcpy(c->x86_model_id, "386");
81         }
82 #endif
83 }
84
85 static const struct cpu_dev default_cpu = {
86         .c_init         = default_init,
87         .c_vendor       = "Unknown",
88         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
89 };
90
91 static const struct cpu_dev *this_cpu = &default_cpu;
92
93 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
94 #ifdef CONFIG_X86_64
95         /*
96          * We need valid kernel segments for data and code in long mode too
97          * IRET will check the segment types  kkeil 2000/10/28
98          * Also sysret mandates a special GDT layout
99          *
100          * TLS descriptors are currently at a different place compared to i386.
101          * Hopefully nobody expects them at a fixed place (Wine?)
102          */
103         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
104         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
105         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
106         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
107         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
108         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
109 #else
110         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
111         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
112         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
113         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
114         /*
115          * Segments used for calling PnP BIOS have byte granularity.
116          * They code segments and data segments have fixed 64k limits,
117          * the transfer segment sizes are set at run time.
118          */
119         /* 32-bit code */
120         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
121         /* 16-bit code */
122         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
123         /* 16-bit data */
124         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
125         /* 16-bit data */
126         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
127         /* 16-bit data */
128         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
129         /*
130          * The APM segments have byte granularity and their bases
131          * are set at run time.  All have 64k limits.
132          */
133         /* 32-bit code */
134         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
135         /* 16-bit code */
136         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
137         /* data */
138         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
139
140         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142         GDT_STACK_CANARY_INIT
143 #endif
144 } };
145 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
146
147 static int __init x86_xsave_setup(char *s)
148 {
149         if (strlen(s))
150                 return 0;
151         setup_clear_cpu_cap(X86_FEATURE_XSAVE);
152         setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
153         setup_clear_cpu_cap(X86_FEATURE_XSAVES);
154         setup_clear_cpu_cap(X86_FEATURE_AVX);
155         setup_clear_cpu_cap(X86_FEATURE_AVX2);
156         return 1;
157 }
158 __setup("noxsave", x86_xsave_setup);
159
160 static int __init x86_xsaveopt_setup(char *s)
161 {
162         setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
163         return 1;
164 }
165 __setup("noxsaveopt", x86_xsaveopt_setup);
166
167 static int __init x86_xsaves_setup(char *s)
168 {
169         setup_clear_cpu_cap(X86_FEATURE_XSAVES);
170         return 1;
171 }
172 __setup("noxsaves", x86_xsaves_setup);
173
174 #ifdef CONFIG_X86_32
175 static int cachesize_override = -1;
176 static int disable_x86_serial_nr = 1;
177
178 static int __init cachesize_setup(char *str)
179 {
180         get_option(&str, &cachesize_override);
181         return 1;
182 }
183 __setup("cachesize=", cachesize_setup);
184
185 static int __init x86_fxsr_setup(char *s)
186 {
187         setup_clear_cpu_cap(X86_FEATURE_FXSR);
188         setup_clear_cpu_cap(X86_FEATURE_XMM);
189         return 1;
190 }
191 __setup("nofxsr", x86_fxsr_setup);
192
193 static int __init x86_sep_setup(char *s)
194 {
195         setup_clear_cpu_cap(X86_FEATURE_SEP);
196         return 1;
197 }
198 __setup("nosep", x86_sep_setup);
199
200 /* Standard macro to see if a specific flag is changeable */
201 static inline int flag_is_changeable_p(u32 flag)
202 {
203         u32 f1, f2;
204
205         /*
206          * Cyrix and IDT cpus allow disabling of CPUID
207          * so the code below may return different results
208          * when it is executed before and after enabling
209          * the CPUID. Add "volatile" to not allow gcc to
210          * optimize the subsequent calls to this function.
211          */
212         asm volatile ("pushfl           \n\t"
213                       "pushfl           \n\t"
214                       "popl %0          \n\t"
215                       "movl %0, %1      \n\t"
216                       "xorl %2, %0      \n\t"
217                       "pushl %0         \n\t"
218                       "popfl            \n\t"
219                       "pushfl           \n\t"
220                       "popl %0          \n\t"
221                       "popfl            \n\t"
222
223                       : "=&r" (f1), "=&r" (f2)
224                       : "ir" (flag));
225
226         return ((f1^f2) & flag) != 0;
227 }
228
229 /* Probe for the CPUID instruction */
230 int have_cpuid_p(void)
231 {
232         return flag_is_changeable_p(X86_EFLAGS_ID);
233 }
234
235 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
236 {
237         unsigned long lo, hi;
238
239         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
240                 return;
241
242         /* Disable processor serial number: */
243
244         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
245         lo |= 0x200000;
246         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
247
248         printk(KERN_NOTICE "CPU serial number disabled.\n");
249         clear_cpu_cap(c, X86_FEATURE_PN);
250
251         /* Disabling the serial number may affect the cpuid level */
252         c->cpuid_level = cpuid_eax(0);
253 }
254
255 static int __init x86_serial_nr_setup(char *s)
256 {
257         disable_x86_serial_nr = 0;
258         return 1;
259 }
260 __setup("serialnumber", x86_serial_nr_setup);
261 #else
262 static inline int flag_is_changeable_p(u32 flag)
263 {
264         return 1;
265 }
266 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
267 {
268 }
269 #endif
270
271 static __init int setup_disable_smep(char *arg)
272 {
273         setup_clear_cpu_cap(X86_FEATURE_SMEP);
274         return 1;
275 }
276 __setup("nosmep", setup_disable_smep);
277
278 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
279 {
280         if (cpu_has(c, X86_FEATURE_SMEP))
281                 set_in_cr4(X86_CR4_SMEP);
282 }
283
284 static __init int setup_disable_smap(char *arg)
285 {
286         setup_clear_cpu_cap(X86_FEATURE_SMAP);
287         return 1;
288 }
289 __setup("nosmap", setup_disable_smap);
290
291 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
292 {
293         unsigned long eflags;
294
295         /* This should have been cleared long ago */
296         raw_local_save_flags(eflags);
297         BUG_ON(eflags & X86_EFLAGS_AC);
298
299         if (cpu_has(c, X86_FEATURE_SMAP)) {
300 #ifdef CONFIG_X86_SMAP
301                 set_in_cr4(X86_CR4_SMAP);
302 #else
303                 clear_in_cr4(X86_CR4_SMAP);
304 #endif
305         }
306 }
307
308 /*
309  * Some CPU features depend on higher CPUID levels, which may not always
310  * be available due to CPUID level capping or broken virtualization
311  * software.  Add those features to this table to auto-disable them.
312  */
313 struct cpuid_dependent_feature {
314         u32 feature;
315         u32 level;
316 };
317
318 static const struct cpuid_dependent_feature
319 cpuid_dependent_features[] = {
320         { X86_FEATURE_MWAIT,            0x00000005 },
321         { X86_FEATURE_DCA,              0x00000009 },
322         { X86_FEATURE_XSAVE,            0x0000000d },
323         { 0, 0 }
324 };
325
326 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
327 {
328         const struct cpuid_dependent_feature *df;
329
330         for (df = cpuid_dependent_features; df->feature; df++) {
331
332                 if (!cpu_has(c, df->feature))
333                         continue;
334                 /*
335                  * Note: cpuid_level is set to -1 if unavailable, but
336                  * extended_extended_level is set to 0 if unavailable
337                  * and the legitimate extended levels are all negative
338                  * when signed; hence the weird messing around with
339                  * signs here...
340                  */
341                 if (!((s32)df->level < 0 ?
342                      (u32)df->level > (u32)c->extended_cpuid_level :
343                      (s32)df->level > (s32)c->cpuid_level))
344                         continue;
345
346                 clear_cpu_cap(c, df->feature);
347                 if (!warn)
348                         continue;
349
350                 printk(KERN_WARNING
351                        "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
352                                 x86_cap_flag(df->feature), df->level);
353         }
354 }
355
356 /*
357  * Naming convention should be: <Name> [(<Codename>)]
358  * This table only is used unless init_<vendor>() below doesn't set it;
359  * in particular, if CPUID levels 0x80000002..4 are supported, this
360  * isn't used
361  */
362
363 /* Look up CPU names by table lookup. */
364 static const char *table_lookup_model(struct cpuinfo_x86 *c)
365 {
366 #ifdef CONFIG_X86_32
367         const struct legacy_cpu_model_info *info;
368
369         if (c->x86_model >= 16)
370                 return NULL;    /* Range check */
371
372         if (!this_cpu)
373                 return NULL;
374
375         info = this_cpu->legacy_models;
376
377         while (info->family) {
378                 if (info->family == c->x86)
379                         return info->model_names[c->x86_model];
380                 info++;
381         }
382 #endif
383         return NULL;            /* Not found */
384 }
385
386 __u32 cpu_caps_cleared[NCAPINTS];
387 __u32 cpu_caps_set[NCAPINTS];
388
389 void load_percpu_segment(int cpu)
390 {
391 #ifdef CONFIG_X86_32
392         loadsegment(fs, __KERNEL_PERCPU);
393 #else
394         loadsegment(gs, 0);
395         wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
396 #endif
397         load_stack_canary_segment();
398 }
399
400 /*
401  * Current gdt points %fs at the "master" per-cpu area: after this,
402  * it's on the real one.
403  */
404 void switch_to_new_gdt(int cpu)
405 {
406         struct desc_ptr gdt_descr;
407
408         gdt_descr.address = (long)get_cpu_gdt_table(cpu);
409         gdt_descr.size = GDT_SIZE - 1;
410         load_gdt(&gdt_descr);
411         /* Reload the per-cpu base */
412
413         load_percpu_segment(cpu);
414 }
415
416 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
417
418 static void get_model_name(struct cpuinfo_x86 *c)
419 {
420         unsigned int *v;
421         char *p, *q;
422
423         if (c->extended_cpuid_level < 0x80000004)
424                 return;
425
426         v = (unsigned int *)c->x86_model_id;
427         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
428         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
429         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
430         c->x86_model_id[48] = 0;
431
432         /*
433          * Intel chips right-justify this string for some dumb reason;
434          * undo that brain damage:
435          */
436         p = q = &c->x86_model_id[0];
437         while (*p == ' ')
438                 p++;
439         if (p != q) {
440                 while (*p)
441                         *q++ = *p++;
442                 while (q <= &c->x86_model_id[48])
443                         *q++ = '\0';    /* Zero-pad the rest */
444         }
445 }
446
447 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
448 {
449         unsigned int n, dummy, ebx, ecx, edx, l2size;
450
451         n = c->extended_cpuid_level;
452
453         if (n >= 0x80000005) {
454                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
455                 c->x86_cache_size = (ecx>>24) + (edx>>24);
456 #ifdef CONFIG_X86_64
457                 /* On K8 L1 TLB is inclusive, so don't count it */
458                 c->x86_tlbsize = 0;
459 #endif
460         }
461
462         if (n < 0x80000006)     /* Some chips just has a large L1. */
463                 return;
464
465         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
466         l2size = ecx >> 16;
467
468 #ifdef CONFIG_X86_64
469         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
470 #else
471         /* do processor-specific cache resizing */
472         if (this_cpu->legacy_cache_size)
473                 l2size = this_cpu->legacy_cache_size(c, l2size);
474
475         /* Allow user to override all this if necessary. */
476         if (cachesize_override != -1)
477                 l2size = cachesize_override;
478
479         if (l2size == 0)
480                 return;         /* Again, no L2 cache is possible */
481 #endif
482
483         c->x86_cache_size = l2size;
484 }
485
486 u16 __read_mostly tlb_lli_4k[NR_INFO];
487 u16 __read_mostly tlb_lli_2m[NR_INFO];
488 u16 __read_mostly tlb_lli_4m[NR_INFO];
489 u16 __read_mostly tlb_lld_4k[NR_INFO];
490 u16 __read_mostly tlb_lld_2m[NR_INFO];
491 u16 __read_mostly tlb_lld_4m[NR_INFO];
492 u16 __read_mostly tlb_lld_1g[NR_INFO];
493
494 void cpu_detect_tlb(struct cpuinfo_x86 *c)
495 {
496         if (this_cpu->c_detect_tlb)
497                 this_cpu->c_detect_tlb(c);
498
499         printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
500                 "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
501                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
502                 tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
503                 tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
504                 tlb_lld_1g[ENTRIES]);
505 }
506
507 void detect_ht(struct cpuinfo_x86 *c)
508 {
509 #ifdef CONFIG_X86_HT
510         u32 eax, ebx, ecx, edx;
511         int index_msb, core_bits;
512         static bool printed;
513
514         if (!cpu_has(c, X86_FEATURE_HT))
515                 return;
516
517         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
518                 goto out;
519
520         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
521                 return;
522
523         cpuid(1, &eax, &ebx, &ecx, &edx);
524
525         smp_num_siblings = (ebx & 0xff0000) >> 16;
526
527         if (smp_num_siblings == 1) {
528                 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
529                 goto out;
530         }
531
532         if (smp_num_siblings <= 1)
533                 goto out;
534
535         index_msb = get_count_order(smp_num_siblings);
536         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
537
538         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
539
540         index_msb = get_count_order(smp_num_siblings);
541
542         core_bits = get_count_order(c->x86_max_cores);
543
544         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
545                                        ((1 << core_bits) - 1);
546
547 out:
548         if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
549                 printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
550                        c->phys_proc_id);
551                 printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
552                        c->cpu_core_id);
553                 printed = 1;
554         }
555 #endif
556 }
557
558 static void get_cpu_vendor(struct cpuinfo_x86 *c)
559 {
560         char *v = c->x86_vendor_id;
561         int i;
562
563         for (i = 0; i < X86_VENDOR_NUM; i++) {
564                 if (!cpu_devs[i])
565                         break;
566
567                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
568                     (cpu_devs[i]->c_ident[1] &&
569                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
570
571                         this_cpu = cpu_devs[i];
572                         c->x86_vendor = this_cpu->c_x86_vendor;
573                         return;
574                 }
575         }
576
577         printk_once(KERN_ERR
578                         "CPU: vendor_id '%s' unknown, using generic init.\n" \
579                         "CPU: Your system may be unstable.\n", v);
580
581         c->x86_vendor = X86_VENDOR_UNKNOWN;
582         this_cpu = &default_cpu;
583 }
584
585 void cpu_detect(struct cpuinfo_x86 *c)
586 {
587         /* Get vendor name */
588         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
589               (unsigned int *)&c->x86_vendor_id[0],
590               (unsigned int *)&c->x86_vendor_id[8],
591               (unsigned int *)&c->x86_vendor_id[4]);
592
593         c->x86 = 4;
594         /* Intel-defined flags: level 0x00000001 */
595         if (c->cpuid_level >= 0x00000001) {
596                 u32 junk, tfms, cap0, misc;
597
598                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
599                 c->x86 = (tfms >> 8) & 0xf;
600                 c->x86_model = (tfms >> 4) & 0xf;
601                 c->x86_mask = tfms & 0xf;
602
603                 if (c->x86 == 0xf)
604                         c->x86 += (tfms >> 20) & 0xff;
605                 if (c->x86 >= 0x6)
606                         c->x86_model += ((tfms >> 16) & 0xf) << 4;
607
608                 if (cap0 & (1<<19)) {
609                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
610                         c->x86_cache_alignment = c->x86_clflush_size;
611                 }
612         }
613 }
614
615 void get_cpu_cap(struct cpuinfo_x86 *c)
616 {
617         u32 tfms, xlvl;
618         u32 ebx;
619
620         /* Intel-defined flags: level 0x00000001 */
621         if (c->cpuid_level >= 0x00000001) {
622                 u32 capability, excap;
623
624                 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
625                 c->x86_capability[0] = capability;
626                 c->x86_capability[4] = excap;
627         }
628
629         /* Additional Intel-defined flags: level 0x00000007 */
630         if (c->cpuid_level >= 0x00000007) {
631                 u32 eax, ebx, ecx, edx;
632
633                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
634
635                 c->x86_capability[9] = ebx;
636         }
637
638         /* Extended state features: level 0x0000000d */
639         if (c->cpuid_level >= 0x0000000d) {
640                 u32 eax, ebx, ecx, edx;
641
642                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
643
644                 c->x86_capability[10] = eax;
645         }
646
647         /* AMD-defined flags: level 0x80000001 */
648         xlvl = cpuid_eax(0x80000000);
649         c->extended_cpuid_level = xlvl;
650
651         if ((xlvl & 0xffff0000) == 0x80000000) {
652                 if (xlvl >= 0x80000001) {
653                         c->x86_capability[1] = cpuid_edx(0x80000001);
654                         c->x86_capability[6] = cpuid_ecx(0x80000001);
655                 }
656         }
657
658         if (c->extended_cpuid_level >= 0x80000008) {
659                 u32 eax = cpuid_eax(0x80000008);
660
661                 c->x86_virt_bits = (eax >> 8) & 0xff;
662                 c->x86_phys_bits = eax & 0xff;
663         }
664 #ifdef CONFIG_X86_32
665         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
666                 c->x86_phys_bits = 36;
667 #endif
668
669         if (c->extended_cpuid_level >= 0x80000007)
670                 c->x86_power = cpuid_edx(0x80000007);
671
672         init_scattered_cpuid_features(c);
673 }
674
675 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
676 {
677 #ifdef CONFIG_X86_32
678         int i;
679
680         /*
681          * First of all, decide if this is a 486 or higher
682          * It's a 486 if we can modify the AC flag
683          */
684         if (flag_is_changeable_p(X86_EFLAGS_AC))
685                 c->x86 = 4;
686         else
687                 c->x86 = 3;
688
689         for (i = 0; i < X86_VENDOR_NUM; i++)
690                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
691                         c->x86_vendor_id[0] = 0;
692                         cpu_devs[i]->c_identify(c);
693                         if (c->x86_vendor_id[0]) {
694                                 get_cpu_vendor(c);
695                                 break;
696                         }
697                 }
698 #endif
699 }
700
701 /*
702  * Do minimum CPU detection early.
703  * Fields really needed: vendor, cpuid_level, family, model, mask,
704  * cache alignment.
705  * The others are not touched to avoid unwanted side effects.
706  *
707  * WARNING: this function is only called on the BP.  Don't add code here
708  * that is supposed to run on all CPUs.
709  */
710 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
711 {
712 #ifdef CONFIG_X86_64
713         c->x86_clflush_size = 64;
714         c->x86_phys_bits = 36;
715         c->x86_virt_bits = 48;
716 #else
717         c->x86_clflush_size = 32;
718         c->x86_phys_bits = 32;
719         c->x86_virt_bits = 32;
720 #endif
721         c->x86_cache_alignment = c->x86_clflush_size;
722
723         memset(&c->x86_capability, 0, sizeof c->x86_capability);
724         c->extended_cpuid_level = 0;
725
726         if (!have_cpuid_p())
727                 identify_cpu_without_cpuid(c);
728
729         /* cyrix could have cpuid enabled via c_identify()*/
730         if (!have_cpuid_p())
731                 return;
732
733         cpu_detect(c);
734         get_cpu_vendor(c);
735         get_cpu_cap(c);
736         fpu_detect(c);
737
738         if (this_cpu->c_early_init)
739                 this_cpu->c_early_init(c);
740
741         c->cpu_index = 0;
742         filter_cpuid_features(c, false);
743
744         if (this_cpu->c_bsp_init)
745                 this_cpu->c_bsp_init(c);
746
747         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
748 }
749
750 void __init early_cpu_init(void)
751 {
752         const struct cpu_dev *const *cdev;
753         int count = 0;
754
755 #ifdef CONFIG_PROCESSOR_SELECT
756         printk(KERN_INFO "KERNEL supported cpus:\n");
757 #endif
758
759         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
760                 const struct cpu_dev *cpudev = *cdev;
761
762                 if (count >= X86_VENDOR_NUM)
763                         break;
764                 cpu_devs[count] = cpudev;
765                 count++;
766
767 #ifdef CONFIG_PROCESSOR_SELECT
768                 {
769                         unsigned int j;
770
771                         for (j = 0; j < 2; j++) {
772                                 if (!cpudev->c_ident[j])
773                                         continue;
774                                 printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
775                                         cpudev->c_ident[j]);
776                         }
777                 }
778 #endif
779         }
780         early_identify_cpu(&boot_cpu_data);
781 }
782
783 /*
784  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
785  * unfortunately, that's not true in practice because of early VIA
786  * chips and (more importantly) broken virtualizers that are not easy
787  * to detect. In the latter case it doesn't even *fail* reliably, so
788  * probing for it doesn't even work. Disable it completely on 32-bit
789  * unless we can find a reliable way to detect all the broken cases.
790  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
791  */
792 static void detect_nopl(struct cpuinfo_x86 *c)
793 {
794 #ifdef CONFIG_X86_32
795         clear_cpu_cap(c, X86_FEATURE_NOPL);
796 #else
797         set_cpu_cap(c, X86_FEATURE_NOPL);
798 #endif
799 }
800
801 static void generic_identify(struct cpuinfo_x86 *c)
802 {
803         c->extended_cpuid_level = 0;
804
805         if (!have_cpuid_p())
806                 identify_cpu_without_cpuid(c);
807
808         /* cyrix could have cpuid enabled via c_identify()*/
809         if (!have_cpuid_p())
810                 return;
811
812         cpu_detect(c);
813
814         get_cpu_vendor(c);
815
816         get_cpu_cap(c);
817
818         if (c->cpuid_level >= 0x00000001) {
819                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
820 #ifdef CONFIG_X86_32
821 # ifdef CONFIG_X86_HT
822                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
823 # else
824                 c->apicid = c->initial_apicid;
825 # endif
826 #endif
827                 c->phys_proc_id = c->initial_apicid;
828         }
829
830         get_model_name(c); /* Default name */
831
832         detect_nopl(c);
833 }
834
835 /*
836  * This does the hard work of actually picking apart the CPU stuff...
837  */
838 static void identify_cpu(struct cpuinfo_x86 *c)
839 {
840         int i;
841
842         c->loops_per_jiffy = loops_per_jiffy;
843         c->x86_cache_size = -1;
844         c->x86_vendor = X86_VENDOR_UNKNOWN;
845         c->x86_model = c->x86_mask = 0; /* So far unknown... */
846         c->x86_vendor_id[0] = '\0'; /* Unset */
847         c->x86_model_id[0] = '\0';  /* Unset */
848         c->x86_max_cores = 1;
849         c->x86_coreid_bits = 0;
850 #ifdef CONFIG_X86_64
851         c->x86_clflush_size = 64;
852         c->x86_phys_bits = 36;
853         c->x86_virt_bits = 48;
854 #else
855         c->cpuid_level = -1;    /* CPUID not detected */
856         c->x86_clflush_size = 32;
857         c->x86_phys_bits = 32;
858         c->x86_virt_bits = 32;
859 #endif
860         c->x86_cache_alignment = c->x86_clflush_size;
861         memset(&c->x86_capability, 0, sizeof c->x86_capability);
862
863         generic_identify(c);
864
865         if (this_cpu->c_identify)
866                 this_cpu->c_identify(c);
867
868         /* Clear/Set all flags overriden by options, after probe */
869         for (i = 0; i < NCAPINTS; i++) {
870                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
871                 c->x86_capability[i] |= cpu_caps_set[i];
872         }
873
874 #ifdef CONFIG_X86_64
875         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
876 #endif
877
878         /*
879          * Vendor-specific initialization.  In this section we
880          * canonicalize the feature flags, meaning if there are
881          * features a certain CPU supports which CPUID doesn't
882          * tell us, CPUID claiming incorrect flags, or other bugs,
883          * we handle them here.
884          *
885          * At the end of this section, c->x86_capability better
886          * indicate the features this CPU genuinely supports!
887          */
888         if (this_cpu->c_init)
889                 this_cpu->c_init(c);
890
891         /* Disable the PN if appropriate */
892         squash_the_stupid_serial_number(c);
893
894         /* Set up SMEP/SMAP */
895         setup_smep(c);
896         setup_smap(c);
897
898         /*
899          * The vendor-specific functions might have changed features.
900          * Now we do "generic changes."
901          */
902
903         /* Filter out anything that depends on CPUID levels we don't have */
904         filter_cpuid_features(c, true);
905
906         /* If the model name is still unset, do table lookup. */
907         if (!c->x86_model_id[0]) {
908                 const char *p;
909                 p = table_lookup_model(c);
910                 if (p)
911                         strcpy(c->x86_model_id, p);
912                 else
913                         /* Last resort... */
914                         sprintf(c->x86_model_id, "%02x/%02x",
915                                 c->x86, c->x86_model);
916         }
917
918 #ifdef CONFIG_X86_64
919         detect_ht(c);
920 #endif
921
922         init_hypervisor(c);
923         x86_init_rdrand(c);
924
925         /*
926          * Clear/Set all flags overriden by options, need do it
927          * before following smp all cpus cap AND.
928          */
929         for (i = 0; i < NCAPINTS; i++) {
930                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
931                 c->x86_capability[i] |= cpu_caps_set[i];
932         }
933
934         /*
935          * On SMP, boot_cpu_data holds the common feature set between
936          * all CPUs; so make sure that we indicate which features are
937          * common between the CPUs.  The first time this routine gets
938          * executed, c == &boot_cpu_data.
939          */
940         if (c != &boot_cpu_data) {
941                 /* AND the already accumulated flags with these */
942                 for (i = 0; i < NCAPINTS; i++)
943                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
944
945                 /* OR, i.e. replicate the bug flags */
946                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
947                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
948         }
949
950         /* Init Machine Check Exception if available. */
951         mcheck_cpu_init(c);
952
953         select_idle_routine(c);
954
955 #ifdef CONFIG_NUMA
956         numa_add_cpu(smp_processor_id());
957 #endif
958 }
959
960 #ifdef CONFIG_X86_64
961 static void vgetcpu_set_mode(void)
962 {
963         if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
964                 vgetcpu_mode = VGETCPU_RDTSCP;
965         else
966                 vgetcpu_mode = VGETCPU_LSL;
967 }
968
969 #ifdef CONFIG_IA32_EMULATION
970 /* May not be __init: called during resume */
971 static void syscall32_cpu_init(void)
972 {
973         /* Load these always in case some future AMD CPU supports
974            SYSENTER from compat mode too. */
975         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
976         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
977         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
978
979         wrmsrl(MSR_CSTAR, ia32_cstar_target);
980 }
981 #endif          /* CONFIG_IA32_EMULATION */
982 #endif          /* CONFIG_X86_64 */
983
984 #ifdef CONFIG_X86_32
985 void enable_sep_cpu(void)
986 {
987         int cpu = get_cpu();
988         struct tss_struct *tss = &per_cpu(init_tss, cpu);
989
990         if (!boot_cpu_has(X86_FEATURE_SEP)) {
991                 put_cpu();
992                 return;
993         }
994
995         tss->x86_tss.ss1 = __KERNEL_CS;
996         tss->x86_tss.sp1 = sizeof(struct tss_struct) + (unsigned long) tss;
997         wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
998         wrmsr(MSR_IA32_SYSENTER_ESP, tss->x86_tss.sp1, 0);
999         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long) ia32_sysenter_target, 0);
1000         put_cpu();
1001 }
1002 #endif
1003
1004 void __init identify_boot_cpu(void)
1005 {
1006         identify_cpu(&boot_cpu_data);
1007         init_amd_e400_c1e_mask();
1008 #ifdef CONFIG_X86_32
1009         sysenter_setup();
1010         enable_sep_cpu();
1011 #else
1012         vgetcpu_set_mode();
1013 #endif
1014         cpu_detect_tlb(&boot_cpu_data);
1015 }
1016
1017 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1018 {
1019         BUG_ON(c == &boot_cpu_data);
1020         identify_cpu(c);
1021 #ifdef CONFIG_X86_32
1022         enable_sep_cpu();
1023 #endif
1024         mtrr_ap_init();
1025 }
1026
1027 struct msr_range {
1028         unsigned        min;
1029         unsigned        max;
1030 };
1031
1032 static const struct msr_range msr_range_array[] = {
1033         { 0x00000000, 0x00000418},
1034         { 0xc0000000, 0xc000040b},
1035         { 0xc0010000, 0xc0010142},
1036         { 0xc0011000, 0xc001103b},
1037 };
1038
1039 static void __print_cpu_msr(void)
1040 {
1041         unsigned index_min, index_max;
1042         unsigned index;
1043         u64 val;
1044         int i;
1045
1046         for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1047                 index_min = msr_range_array[i].min;
1048                 index_max = msr_range_array[i].max;
1049
1050                 for (index = index_min; index < index_max; index++) {
1051                         if (rdmsrl_safe(index, &val))
1052                                 continue;
1053                         printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1054                 }
1055         }
1056 }
1057
1058 static int show_msr;
1059
1060 static __init int setup_show_msr(char *arg)
1061 {
1062         int num;
1063
1064         get_option(&arg, &num);
1065
1066         if (num > 0)
1067                 show_msr = num;
1068         return 1;
1069 }
1070 __setup("show_msr=", setup_show_msr);
1071
1072 static __init int setup_noclflush(char *arg)
1073 {
1074         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1075         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1076         return 1;
1077 }
1078 __setup("noclflush", setup_noclflush);
1079
1080 void print_cpu_info(struct cpuinfo_x86 *c)
1081 {
1082         const char *vendor = NULL;
1083
1084         if (c->x86_vendor < X86_VENDOR_NUM) {
1085                 vendor = this_cpu->c_vendor;
1086         } else {
1087                 if (c->cpuid_level >= 0)
1088                         vendor = c->x86_vendor_id;
1089         }
1090
1091         if (vendor && !strstr(c->x86_model_id, vendor))
1092                 printk(KERN_CONT "%s ", vendor);
1093
1094         if (c->x86_model_id[0])
1095                 printk(KERN_CONT "%s", strim(c->x86_model_id));
1096         else
1097                 printk(KERN_CONT "%d86", c->x86);
1098
1099         printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1100
1101         if (c->x86_mask || c->cpuid_level >= 0)
1102                 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1103         else
1104                 printk(KERN_CONT ")\n");
1105
1106         print_cpu_msr(c);
1107 }
1108
1109 void print_cpu_msr(struct cpuinfo_x86 *c)
1110 {
1111         if (c->cpu_index < show_msr)
1112                 __print_cpu_msr();
1113 }
1114
1115 static __init int setup_disablecpuid(char *arg)
1116 {
1117         int bit;
1118
1119         if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1120                 setup_clear_cpu_cap(bit);
1121         else
1122                 return 0;
1123
1124         return 1;
1125 }
1126 __setup("clearcpuid=", setup_disablecpuid);
1127
1128 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1129         (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1130 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1131
1132 #ifdef CONFIG_X86_64
1133 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1134 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1135                                     (unsigned long) debug_idt_table };
1136
1137 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1138                      irq_stack_union) __aligned(PAGE_SIZE) __visible;
1139
1140 /*
1141  * The following four percpu variables are hot.  Align current_task to
1142  * cacheline size such that all four fall in the same cacheline.
1143  */
1144 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1145         &init_task;
1146 EXPORT_PER_CPU_SYMBOL(current_task);
1147
1148 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1149         init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1150
1151 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1152
1153 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1154 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1155
1156 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1157
1158 /*
1159  * Special IST stacks which the CPU switches to when it calls
1160  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1161  * limit), all of them are 4K, except the debug stack which
1162  * is 8K.
1163  */
1164 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1165           [0 ... N_EXCEPTION_STACKS - 1]        = EXCEPTION_STKSZ,
1166           [DEBUG_STACK - 1]                     = DEBUG_STKSZ
1167 };
1168
1169 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1170         [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1171
1172 /* May not be marked __init: used by software suspend */
1173 void syscall_init(void)
1174 {
1175         /*
1176          * LSTAR and STAR live in a bit strange symbiosis.
1177          * They both write to the same internal register. STAR allows to
1178          * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1179          */
1180         wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1181         wrmsrl(MSR_LSTAR, system_call);
1182         wrmsrl(MSR_CSTAR, ignore_sysret);
1183
1184 #ifdef CONFIG_IA32_EMULATION
1185         syscall32_cpu_init();
1186 #endif
1187
1188         /* Flags to clear on syscall */
1189         wrmsrl(MSR_SYSCALL_MASK,
1190                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1191                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1192 }
1193
1194 /*
1195  * Copies of the original ist values from the tss are only accessed during
1196  * debugging, no special alignment required.
1197  */
1198 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1199
1200 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1201 DEFINE_PER_CPU(int, debug_stack_usage);
1202
1203 int is_debug_stack(unsigned long addr)
1204 {
1205         return __this_cpu_read(debug_stack_usage) ||
1206                 (addr <= __this_cpu_read(debug_stack_addr) &&
1207                  addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1208 }
1209 NOKPROBE_SYMBOL(is_debug_stack);
1210
1211 DEFINE_PER_CPU(u32, debug_idt_ctr);
1212
1213 void debug_stack_set_zero(void)
1214 {
1215         this_cpu_inc(debug_idt_ctr);
1216         load_current_idt();
1217 }
1218 NOKPROBE_SYMBOL(debug_stack_set_zero);
1219
1220 void debug_stack_reset(void)
1221 {
1222         if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1223                 return;
1224         if (this_cpu_dec_return(debug_idt_ctr) == 0)
1225                 load_current_idt();
1226 }
1227 NOKPROBE_SYMBOL(debug_stack_reset);
1228
1229 #else   /* CONFIG_X86_64 */
1230
1231 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1232 EXPORT_PER_CPU_SYMBOL(current_task);
1233 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1234 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1235 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1236
1237 #ifdef CONFIG_CC_STACKPROTECTOR
1238 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1239 #endif
1240
1241 #endif  /* CONFIG_X86_64 */
1242
1243 /*
1244  * Clear all 6 debug registers:
1245  */
1246 static void clear_all_debug_regs(void)
1247 {
1248         int i;
1249
1250         for (i = 0; i < 8; i++) {
1251                 /* Ignore db4, db5 */
1252                 if ((i == 4) || (i == 5))
1253                         continue;
1254
1255                 set_debugreg(0, i);
1256         }
1257 }
1258
1259 #ifdef CONFIG_KGDB
1260 /*
1261  * Restore debug regs if using kgdbwait and you have a kernel debugger
1262  * connection established.
1263  */
1264 static void dbg_restore_debug_regs(void)
1265 {
1266         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1267                 arch_kgdb_ops.correct_hw_break();
1268 }
1269 #else /* ! CONFIG_KGDB */
1270 #define dbg_restore_debug_regs()
1271 #endif /* ! CONFIG_KGDB */
1272
1273 static void wait_for_master_cpu(int cpu)
1274 {
1275 #ifdef CONFIG_SMP
1276         /*
1277          * wait for ACK from master CPU before continuing
1278          * with AP initialization
1279          */
1280         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1281         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1282                 cpu_relax();
1283 #endif
1284 }
1285
1286 /*
1287  * cpu_init() initializes state that is per-CPU. Some data is already
1288  * initialized (naturally) in the bootstrap process, such as the GDT
1289  * and IDT. We reload them nevertheless, this function acts as a
1290  * 'CPU state barrier', nothing should get across.
1291  * A lot of state is already set up in PDA init for 64 bit
1292  */
1293 #ifdef CONFIG_X86_64
1294
1295 void cpu_init(void)
1296 {
1297         struct orig_ist *oist;
1298         struct task_struct *me;
1299         struct tss_struct *t;
1300         unsigned long v;
1301         int cpu = stack_smp_processor_id();
1302         int i;
1303
1304         wait_for_master_cpu(cpu);
1305
1306         /*
1307          * Load microcode on this cpu if a valid microcode is available.
1308          * This is early microcode loading procedure.
1309          */
1310         load_ucode_ap();
1311
1312         t = &per_cpu(init_tss, cpu);
1313         oist = &per_cpu(orig_ist, cpu);
1314
1315 #ifdef CONFIG_NUMA
1316         if (this_cpu_read(numa_node) == 0 &&
1317             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1318                 set_numa_node(early_cpu_to_node(cpu));
1319 #endif
1320
1321         me = current;
1322
1323         pr_debug("Initializing CPU#%d\n", cpu);
1324
1325         clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1326
1327         /*
1328          * Initialize the per-CPU GDT with the boot GDT,
1329          * and set up the GDT descriptor:
1330          */
1331
1332         switch_to_new_gdt(cpu);
1333         loadsegment(fs, 0);
1334
1335         load_current_idt();
1336
1337         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1338         syscall_init();
1339
1340         wrmsrl(MSR_FS_BASE, 0);
1341         wrmsrl(MSR_KERNEL_GS_BASE, 0);
1342         barrier();
1343
1344         x86_configure_nx();
1345         enable_x2apic();
1346
1347         /*
1348          * set up and load the per-CPU TSS
1349          */
1350         if (!oist->ist[0]) {
1351                 char *estacks = per_cpu(exception_stacks, cpu);
1352
1353                 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1354                         estacks += exception_stack_sizes[v];
1355                         oist->ist[v] = t->x86_tss.ist[v] =
1356                                         (unsigned long)estacks;
1357                         if (v == DEBUG_STACK-1)
1358                                 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1359                 }
1360         }
1361
1362         t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1363
1364         /*
1365          * <= is required because the CPU will access up to
1366          * 8 bits beyond the end of the IO permission bitmap.
1367          */
1368         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1369                 t->io_bitmap[i] = ~0UL;
1370
1371         atomic_inc(&init_mm.mm_count);
1372         me->active_mm = &init_mm;
1373         BUG_ON(me->mm);
1374         enter_lazy_tlb(&init_mm, me);
1375
1376         load_sp0(t, &current->thread);
1377         set_tss_desc(cpu, t);
1378         load_TR_desc();
1379         load_LDT(&init_mm.context);
1380
1381         clear_all_debug_regs();
1382         dbg_restore_debug_regs();
1383
1384         fpu_init();
1385
1386         if (is_uv_system())
1387                 uv_cpu_init();
1388 }
1389
1390 #else
1391
1392 void cpu_init(void)
1393 {
1394         int cpu = smp_processor_id();
1395         struct task_struct *curr = current;
1396         struct tss_struct *t = &per_cpu(init_tss, cpu);
1397         struct thread_struct *thread = &curr->thread;
1398
1399         wait_for_master_cpu(cpu);
1400
1401         show_ucode_info_early();
1402
1403         printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1404
1405         if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1406                 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1407
1408         load_current_idt();
1409         switch_to_new_gdt(cpu);
1410
1411         /*
1412          * Set up and load the per-CPU TSS and LDT
1413          */
1414         atomic_inc(&init_mm.mm_count);
1415         curr->active_mm = &init_mm;
1416         BUG_ON(curr->mm);
1417         enter_lazy_tlb(&init_mm, curr);
1418
1419         load_sp0(t, thread);
1420         set_tss_desc(cpu, t);
1421         load_TR_desc();
1422         load_LDT(&init_mm.context);
1423
1424         t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1425
1426 #ifdef CONFIG_DOUBLEFAULT
1427         /* Set up doublefault TSS pointer in the GDT */
1428         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1429 #endif
1430
1431         clear_all_debug_regs();
1432         dbg_restore_debug_regs();
1433
1434         fpu_init();
1435 }
1436 #endif
1437
1438 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1439 void warn_pre_alternatives(void)
1440 {
1441         WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1442 }
1443 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1444 #endif
1445
1446 inline bool __static_cpu_has_safe(u16 bit)
1447 {
1448         return boot_cpu_has(bit);
1449 }
1450 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);