Merge tag 'pm+acpi-3.18-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[cascardo/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35 #include <asm/desc.h>
36 #include <asm/ldt.h>
37
38 #include "perf_event.h"
39
40 struct x86_pmu x86_pmu __read_mostly;
41
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
43         .enabled = 1,
44 };
45
46 u64 __read_mostly hw_cache_event_ids
47                                 [PERF_COUNT_HW_CACHE_MAX]
48                                 [PERF_COUNT_HW_CACHE_OP_MAX]
49                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
50 u64 __read_mostly hw_cache_extra_regs
51                                 [PERF_COUNT_HW_CACHE_MAX]
52                                 [PERF_COUNT_HW_CACHE_OP_MAX]
53                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54
55 /*
56  * Propagate event elapsed time into the generic event.
57  * Can only be executed on the CPU where the event is active.
58  * Returns the delta events processed.
59  */
60 u64 x86_perf_event_update(struct perf_event *event)
61 {
62         struct hw_perf_event *hwc = &event->hw;
63         int shift = 64 - x86_pmu.cntval_bits;
64         u64 prev_raw_count, new_raw_count;
65         int idx = hwc->idx;
66         s64 delta;
67
68         if (idx == INTEL_PMC_IDX_FIXED_BTS)
69                 return 0;
70
71         /*
72          * Careful: an NMI might modify the previous event value.
73          *
74          * Our tactic to handle this is to first atomically read and
75          * exchange a new raw count - then add that new-prev delta
76          * count to the generic event atomically:
77          */
78 again:
79         prev_raw_count = local64_read(&hwc->prev_count);
80         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
81
82         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
83                                         new_raw_count) != prev_raw_count)
84                 goto again;
85
86         /*
87          * Now we have the new raw value and have updated the prev
88          * timestamp already. We can now calculate the elapsed delta
89          * (event-)time and add that to the generic event.
90          *
91          * Careful, not all hw sign-extends above the physical width
92          * of the count.
93          */
94         delta = (new_raw_count << shift) - (prev_raw_count << shift);
95         delta >>= shift;
96
97         local64_add(delta, &event->count);
98         local64_sub(delta, &hwc->period_left);
99
100         return new_raw_count;
101 }
102
103 /*
104  * Find and validate any extra registers to set up.
105  */
106 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
107 {
108         struct hw_perf_event_extra *reg;
109         struct extra_reg *er;
110
111         reg = &event->hw.extra_reg;
112
113         if (!x86_pmu.extra_regs)
114                 return 0;
115
116         for (er = x86_pmu.extra_regs; er->msr; er++) {
117                 if (er->event != (config & er->config_mask))
118                         continue;
119                 if (event->attr.config1 & ~er->valid_mask)
120                         return -EINVAL;
121                 /* Check if the extra msrs can be safely accessed*/
122                 if (!er->extra_msr_access)
123                         return -ENXIO;
124
125                 reg->idx = er->idx;
126                 reg->config = event->attr.config1;
127                 reg->reg = er->msr;
128                 break;
129         }
130         return 0;
131 }
132
133 static atomic_t active_events;
134 static DEFINE_MUTEX(pmc_reserve_mutex);
135
136 #ifdef CONFIG_X86_LOCAL_APIC
137
138 static bool reserve_pmc_hardware(void)
139 {
140         int i;
141
142         for (i = 0; i < x86_pmu.num_counters; i++) {
143                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
144                         goto perfctr_fail;
145         }
146
147         for (i = 0; i < x86_pmu.num_counters; i++) {
148                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
149                         goto eventsel_fail;
150         }
151
152         return true;
153
154 eventsel_fail:
155         for (i--; i >= 0; i--)
156                 release_evntsel_nmi(x86_pmu_config_addr(i));
157
158         i = x86_pmu.num_counters;
159
160 perfctr_fail:
161         for (i--; i >= 0; i--)
162                 release_perfctr_nmi(x86_pmu_event_addr(i));
163
164         return false;
165 }
166
167 static void release_pmc_hardware(void)
168 {
169         int i;
170
171         for (i = 0; i < x86_pmu.num_counters; i++) {
172                 release_perfctr_nmi(x86_pmu_event_addr(i));
173                 release_evntsel_nmi(x86_pmu_config_addr(i));
174         }
175 }
176
177 #else
178
179 static bool reserve_pmc_hardware(void) { return true; }
180 static void release_pmc_hardware(void) {}
181
182 #endif
183
184 static bool check_hw_exists(void)
185 {
186         u64 val, val_fail, val_new= ~0;
187         int i, reg, reg_fail, ret = 0;
188         int bios_fail = 0;
189
190         /*
191          * Check to see if the BIOS enabled any of the counters, if so
192          * complain and bail.
193          */
194         for (i = 0; i < x86_pmu.num_counters; i++) {
195                 reg = x86_pmu_config_addr(i);
196                 ret = rdmsrl_safe(reg, &val);
197                 if (ret)
198                         goto msr_fail;
199                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
200                         bios_fail = 1;
201                         val_fail = val;
202                         reg_fail = reg;
203                 }
204         }
205
206         if (x86_pmu.num_counters_fixed) {
207                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
208                 ret = rdmsrl_safe(reg, &val);
209                 if (ret)
210                         goto msr_fail;
211                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
212                         if (val & (0x03 << i*4)) {
213                                 bios_fail = 1;
214                                 val_fail = val;
215                                 reg_fail = reg;
216                         }
217                 }
218         }
219
220         /*
221          * Read the current value, change it and read it back to see if it
222          * matches, this is needed to detect certain hardware emulators
223          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
224          */
225         reg = x86_pmu_event_addr(0);
226         if (rdmsrl_safe(reg, &val))
227                 goto msr_fail;
228         val ^= 0xffffUL;
229         ret = wrmsrl_safe(reg, val);
230         ret |= rdmsrl_safe(reg, &val_new);
231         if (ret || val != val_new)
232                 goto msr_fail;
233
234         /*
235          * We still allow the PMU driver to operate:
236          */
237         if (bios_fail) {
238                 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
239                 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
240         }
241
242         return true;
243
244 msr_fail:
245         printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
246         printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
247                 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
248                 reg, val_new);
249
250         return false;
251 }
252
253 static void hw_perf_event_destroy(struct perf_event *event)
254 {
255         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
256                 release_pmc_hardware();
257                 release_ds_buffers();
258                 mutex_unlock(&pmc_reserve_mutex);
259         }
260 }
261
262 static inline int x86_pmu_initialized(void)
263 {
264         return x86_pmu.handle_irq != NULL;
265 }
266
267 static inline int
268 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
269 {
270         struct perf_event_attr *attr = &event->attr;
271         unsigned int cache_type, cache_op, cache_result;
272         u64 config, val;
273
274         config = attr->config;
275
276         cache_type = (config >>  0) & 0xff;
277         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
278                 return -EINVAL;
279
280         cache_op = (config >>  8) & 0xff;
281         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
282                 return -EINVAL;
283
284         cache_result = (config >> 16) & 0xff;
285         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
286                 return -EINVAL;
287
288         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
289
290         if (val == 0)
291                 return -ENOENT;
292
293         if (val == -1)
294                 return -EINVAL;
295
296         hwc->config |= val;
297         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
298         return x86_pmu_extra_regs(val, event);
299 }
300
301 int x86_setup_perfctr(struct perf_event *event)
302 {
303         struct perf_event_attr *attr = &event->attr;
304         struct hw_perf_event *hwc = &event->hw;
305         u64 config;
306
307         if (!is_sampling_event(event)) {
308                 hwc->sample_period = x86_pmu.max_period;
309                 hwc->last_period = hwc->sample_period;
310                 local64_set(&hwc->period_left, hwc->sample_period);
311         }
312
313         if (attr->type == PERF_TYPE_RAW)
314                 return x86_pmu_extra_regs(event->attr.config, event);
315
316         if (attr->type == PERF_TYPE_HW_CACHE)
317                 return set_ext_hw_attr(hwc, event);
318
319         if (attr->config >= x86_pmu.max_events)
320                 return -EINVAL;
321
322         /*
323          * The generic map:
324          */
325         config = x86_pmu.event_map(attr->config);
326
327         if (config == 0)
328                 return -ENOENT;
329
330         if (config == -1LL)
331                 return -EINVAL;
332
333         /*
334          * Branch tracing:
335          */
336         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
337             !attr->freq && hwc->sample_period == 1) {
338                 /* BTS is not supported by this architecture. */
339                 if (!x86_pmu.bts_active)
340                         return -EOPNOTSUPP;
341
342                 /* BTS is currently only allowed for user-mode. */
343                 if (!attr->exclude_kernel)
344                         return -EOPNOTSUPP;
345         }
346
347         hwc->config |= config;
348
349         return 0;
350 }
351
352 /*
353  * check that branch_sample_type is compatible with
354  * settings needed for precise_ip > 1 which implies
355  * using the LBR to capture ALL taken branches at the
356  * priv levels of the measurement
357  */
358 static inline int precise_br_compat(struct perf_event *event)
359 {
360         u64 m = event->attr.branch_sample_type;
361         u64 b = 0;
362
363         /* must capture all branches */
364         if (!(m & PERF_SAMPLE_BRANCH_ANY))
365                 return 0;
366
367         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
368
369         if (!event->attr.exclude_user)
370                 b |= PERF_SAMPLE_BRANCH_USER;
371
372         if (!event->attr.exclude_kernel)
373                 b |= PERF_SAMPLE_BRANCH_KERNEL;
374
375         /*
376          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
377          */
378
379         return m == b;
380 }
381
382 int x86_pmu_hw_config(struct perf_event *event)
383 {
384         if (event->attr.precise_ip) {
385                 int precise = 0;
386
387                 /* Support for constant skid */
388                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
389                         precise++;
390
391                         /* Support for IP fixup */
392                         if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
393                                 precise++;
394                 }
395
396                 if (event->attr.precise_ip > precise)
397                         return -EOPNOTSUPP;
398                 /*
399                  * check that PEBS LBR correction does not conflict with
400                  * whatever the user is asking with attr->branch_sample_type
401                  */
402                 if (event->attr.precise_ip > 1 &&
403                     x86_pmu.intel_cap.pebs_format < 2) {
404                         u64 *br_type = &event->attr.branch_sample_type;
405
406                         if (has_branch_stack(event)) {
407                                 if (!precise_br_compat(event))
408                                         return -EOPNOTSUPP;
409
410                                 /* branch_sample_type is compatible */
411
412                         } else {
413                                 /*
414                                  * user did not specify  branch_sample_type
415                                  *
416                                  * For PEBS fixups, we capture all
417                                  * the branches at the priv level of the
418                                  * event.
419                                  */
420                                 *br_type = PERF_SAMPLE_BRANCH_ANY;
421
422                                 if (!event->attr.exclude_user)
423                                         *br_type |= PERF_SAMPLE_BRANCH_USER;
424
425                                 if (!event->attr.exclude_kernel)
426                                         *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
427                         }
428                 }
429         }
430
431         /*
432          * Generate PMC IRQs:
433          * (keep 'enabled' bit clear for now)
434          */
435         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
436
437         /*
438          * Count user and OS events unless requested not to
439          */
440         if (!event->attr.exclude_user)
441                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
442         if (!event->attr.exclude_kernel)
443                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
444
445         if (event->attr.type == PERF_TYPE_RAW)
446                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
447
448         return x86_setup_perfctr(event);
449 }
450
451 /*
452  * Setup the hardware configuration for a given attr_type
453  */
454 static int __x86_pmu_event_init(struct perf_event *event)
455 {
456         int err;
457
458         if (!x86_pmu_initialized())
459                 return -ENODEV;
460
461         err = 0;
462         if (!atomic_inc_not_zero(&active_events)) {
463                 mutex_lock(&pmc_reserve_mutex);
464                 if (atomic_read(&active_events) == 0) {
465                         if (!reserve_pmc_hardware())
466                                 err = -EBUSY;
467                         else
468                                 reserve_ds_buffers();
469                 }
470                 if (!err)
471                         atomic_inc(&active_events);
472                 mutex_unlock(&pmc_reserve_mutex);
473         }
474         if (err)
475                 return err;
476
477         event->destroy = hw_perf_event_destroy;
478
479         event->hw.idx = -1;
480         event->hw.last_cpu = -1;
481         event->hw.last_tag = ~0ULL;
482
483         /* mark unused */
484         event->hw.extra_reg.idx = EXTRA_REG_NONE;
485         event->hw.branch_reg.idx = EXTRA_REG_NONE;
486
487         return x86_pmu.hw_config(event);
488 }
489
490 void x86_pmu_disable_all(void)
491 {
492         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
493         int idx;
494
495         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
496                 u64 val;
497
498                 if (!test_bit(idx, cpuc->active_mask))
499                         continue;
500                 rdmsrl(x86_pmu_config_addr(idx), val);
501                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
502                         continue;
503                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
504                 wrmsrl(x86_pmu_config_addr(idx), val);
505         }
506 }
507
508 static void x86_pmu_disable(struct pmu *pmu)
509 {
510         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
511
512         if (!x86_pmu_initialized())
513                 return;
514
515         if (!cpuc->enabled)
516                 return;
517
518         cpuc->n_added = 0;
519         cpuc->enabled = 0;
520         barrier();
521
522         x86_pmu.disable_all();
523 }
524
525 void x86_pmu_enable_all(int added)
526 {
527         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
528         int idx;
529
530         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
531                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
532
533                 if (!test_bit(idx, cpuc->active_mask))
534                         continue;
535
536                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
537         }
538 }
539
540 static struct pmu pmu;
541
542 static inline int is_x86_event(struct perf_event *event)
543 {
544         return event->pmu == &pmu;
545 }
546
547 /*
548  * Event scheduler state:
549  *
550  * Assign events iterating over all events and counters, beginning
551  * with events with least weights first. Keep the current iterator
552  * state in struct sched_state.
553  */
554 struct sched_state {
555         int     weight;
556         int     event;          /* event index */
557         int     counter;        /* counter index */
558         int     unassigned;     /* number of events to be assigned left */
559         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
560 };
561
562 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
563 #define SCHED_STATES_MAX        2
564
565 struct perf_sched {
566         int                     max_weight;
567         int                     max_events;
568         struct perf_event       **events;
569         struct sched_state      state;
570         int                     saved_states;
571         struct sched_state      saved[SCHED_STATES_MAX];
572 };
573
574 /*
575  * Initialize interator that runs through all events and counters.
576  */
577 static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
578                             int num, int wmin, int wmax)
579 {
580         int idx;
581
582         memset(sched, 0, sizeof(*sched));
583         sched->max_events       = num;
584         sched->max_weight       = wmax;
585         sched->events           = events;
586
587         for (idx = 0; idx < num; idx++) {
588                 if (events[idx]->hw.constraint->weight == wmin)
589                         break;
590         }
591
592         sched->state.event      = idx;          /* start with min weight */
593         sched->state.weight     = wmin;
594         sched->state.unassigned = num;
595 }
596
597 static void perf_sched_save_state(struct perf_sched *sched)
598 {
599         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
600                 return;
601
602         sched->saved[sched->saved_states] = sched->state;
603         sched->saved_states++;
604 }
605
606 static bool perf_sched_restore_state(struct perf_sched *sched)
607 {
608         if (!sched->saved_states)
609                 return false;
610
611         sched->saved_states--;
612         sched->state = sched->saved[sched->saved_states];
613
614         /* continue with next counter: */
615         clear_bit(sched->state.counter++, sched->state.used);
616
617         return true;
618 }
619
620 /*
621  * Select a counter for the current event to schedule. Return true on
622  * success.
623  */
624 static bool __perf_sched_find_counter(struct perf_sched *sched)
625 {
626         struct event_constraint *c;
627         int idx;
628
629         if (!sched->state.unassigned)
630                 return false;
631
632         if (sched->state.event >= sched->max_events)
633                 return false;
634
635         c = sched->events[sched->state.event]->hw.constraint;
636         /* Prefer fixed purpose counters */
637         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
638                 idx = INTEL_PMC_IDX_FIXED;
639                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
640                         if (!__test_and_set_bit(idx, sched->state.used))
641                                 goto done;
642                 }
643         }
644         /* Grab the first unused counter starting with idx */
645         idx = sched->state.counter;
646         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
647                 if (!__test_and_set_bit(idx, sched->state.used))
648                         goto done;
649         }
650
651         return false;
652
653 done:
654         sched->state.counter = idx;
655
656         if (c->overlap)
657                 perf_sched_save_state(sched);
658
659         return true;
660 }
661
662 static bool perf_sched_find_counter(struct perf_sched *sched)
663 {
664         while (!__perf_sched_find_counter(sched)) {
665                 if (!perf_sched_restore_state(sched))
666                         return false;
667         }
668
669         return true;
670 }
671
672 /*
673  * Go through all unassigned events and find the next one to schedule.
674  * Take events with the least weight first. Return true on success.
675  */
676 static bool perf_sched_next_event(struct perf_sched *sched)
677 {
678         struct event_constraint *c;
679
680         if (!sched->state.unassigned || !--sched->state.unassigned)
681                 return false;
682
683         do {
684                 /* next event */
685                 sched->state.event++;
686                 if (sched->state.event >= sched->max_events) {
687                         /* next weight */
688                         sched->state.event = 0;
689                         sched->state.weight++;
690                         if (sched->state.weight > sched->max_weight)
691                                 return false;
692                 }
693                 c = sched->events[sched->state.event]->hw.constraint;
694         } while (c->weight != sched->state.weight);
695
696         sched->state.counter = 0;       /* start with first counter */
697
698         return true;
699 }
700
701 /*
702  * Assign a counter for each event.
703  */
704 int perf_assign_events(struct perf_event **events, int n,
705                         int wmin, int wmax, int *assign)
706 {
707         struct perf_sched sched;
708
709         perf_sched_init(&sched, events, n, wmin, wmax);
710
711         do {
712                 if (!perf_sched_find_counter(&sched))
713                         break;  /* failed */
714                 if (assign)
715                         assign[sched.state.event] = sched.state.counter;
716         } while (perf_sched_next_event(&sched));
717
718         return sched.state.unassigned;
719 }
720 EXPORT_SYMBOL_GPL(perf_assign_events);
721
722 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
723 {
724         struct event_constraint *c;
725         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
726         struct perf_event *e;
727         int i, wmin, wmax, num = 0;
728         struct hw_perf_event *hwc;
729
730         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
731
732         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
733                 hwc = &cpuc->event_list[i]->hw;
734                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
735                 hwc->constraint = c;
736
737                 wmin = min(wmin, c->weight);
738                 wmax = max(wmax, c->weight);
739         }
740
741         /*
742          * fastpath, try to reuse previous register
743          */
744         for (i = 0; i < n; i++) {
745                 hwc = &cpuc->event_list[i]->hw;
746                 c = hwc->constraint;
747
748                 /* never assigned */
749                 if (hwc->idx == -1)
750                         break;
751
752                 /* constraint still honored */
753                 if (!test_bit(hwc->idx, c->idxmsk))
754                         break;
755
756                 /* not already used */
757                 if (test_bit(hwc->idx, used_mask))
758                         break;
759
760                 __set_bit(hwc->idx, used_mask);
761                 if (assign)
762                         assign[i] = hwc->idx;
763         }
764
765         /* slow path */
766         if (i != n)
767                 num = perf_assign_events(cpuc->event_list, n, wmin,
768                                          wmax, assign);
769
770         /*
771          * Mark the event as committed, so we do not put_constraint()
772          * in case new events are added and fail scheduling.
773          */
774         if (!num && assign) {
775                 for (i = 0; i < n; i++) {
776                         e = cpuc->event_list[i];
777                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
778                 }
779         }
780         /*
781          * scheduling failed or is just a simulation,
782          * free resources if necessary
783          */
784         if (!assign || num) {
785                 for (i = 0; i < n; i++) {
786                         e = cpuc->event_list[i];
787                         /*
788                          * do not put_constraint() on comitted events,
789                          * because they are good to go
790                          */
791                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
792                                 continue;
793
794                         if (x86_pmu.put_event_constraints)
795                                 x86_pmu.put_event_constraints(cpuc, e);
796                 }
797         }
798         return num ? -EINVAL : 0;
799 }
800
801 /*
802  * dogrp: true if must collect siblings events (group)
803  * returns total number of events and error code
804  */
805 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
806 {
807         struct perf_event *event;
808         int n, max_count;
809
810         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
811
812         /* current number of events already accepted */
813         n = cpuc->n_events;
814
815         if (is_x86_event(leader)) {
816                 if (n >= max_count)
817                         return -EINVAL;
818                 cpuc->event_list[n] = leader;
819                 n++;
820         }
821         if (!dogrp)
822                 return n;
823
824         list_for_each_entry(event, &leader->sibling_list, group_entry) {
825                 if (!is_x86_event(event) ||
826                     event->state <= PERF_EVENT_STATE_OFF)
827                         continue;
828
829                 if (n >= max_count)
830                         return -EINVAL;
831
832                 cpuc->event_list[n] = event;
833                 n++;
834         }
835         return n;
836 }
837
838 static inline void x86_assign_hw_event(struct perf_event *event,
839                                 struct cpu_hw_events *cpuc, int i)
840 {
841         struct hw_perf_event *hwc = &event->hw;
842
843         hwc->idx = cpuc->assign[i];
844         hwc->last_cpu = smp_processor_id();
845         hwc->last_tag = ++cpuc->tags[i];
846
847         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
848                 hwc->config_base = 0;
849                 hwc->event_base = 0;
850         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
851                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
852                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
853                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
854         } else {
855                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
856                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
857                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
858         }
859 }
860
861 static inline int match_prev_assignment(struct hw_perf_event *hwc,
862                                         struct cpu_hw_events *cpuc,
863                                         int i)
864 {
865         return hwc->idx == cpuc->assign[i] &&
866                 hwc->last_cpu == smp_processor_id() &&
867                 hwc->last_tag == cpuc->tags[i];
868 }
869
870 static void x86_pmu_start(struct perf_event *event, int flags);
871
872 static void x86_pmu_enable(struct pmu *pmu)
873 {
874         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
875         struct perf_event *event;
876         struct hw_perf_event *hwc;
877         int i, added = cpuc->n_added;
878
879         if (!x86_pmu_initialized())
880                 return;
881
882         if (cpuc->enabled)
883                 return;
884
885         if (cpuc->n_added) {
886                 int n_running = cpuc->n_events - cpuc->n_added;
887                 /*
888                  * apply assignment obtained either from
889                  * hw_perf_group_sched_in() or x86_pmu_enable()
890                  *
891                  * step1: save events moving to new counters
892                  */
893                 for (i = 0; i < n_running; i++) {
894                         event = cpuc->event_list[i];
895                         hwc = &event->hw;
896
897                         /*
898                          * we can avoid reprogramming counter if:
899                          * - assigned same counter as last time
900                          * - running on same CPU as last time
901                          * - no other event has used the counter since
902                          */
903                         if (hwc->idx == -1 ||
904                             match_prev_assignment(hwc, cpuc, i))
905                                 continue;
906
907                         /*
908                          * Ensure we don't accidentally enable a stopped
909                          * counter simply because we rescheduled.
910                          */
911                         if (hwc->state & PERF_HES_STOPPED)
912                                 hwc->state |= PERF_HES_ARCH;
913
914                         x86_pmu_stop(event, PERF_EF_UPDATE);
915                 }
916
917                 /*
918                  * step2: reprogram moved events into new counters
919                  */
920                 for (i = 0; i < cpuc->n_events; i++) {
921                         event = cpuc->event_list[i];
922                         hwc = &event->hw;
923
924                         if (!match_prev_assignment(hwc, cpuc, i))
925                                 x86_assign_hw_event(event, cpuc, i);
926                         else if (i < n_running)
927                                 continue;
928
929                         if (hwc->state & PERF_HES_ARCH)
930                                 continue;
931
932                         x86_pmu_start(event, PERF_EF_RELOAD);
933                 }
934                 cpuc->n_added = 0;
935                 perf_events_lapic_init();
936         }
937
938         cpuc->enabled = 1;
939         barrier();
940
941         x86_pmu.enable_all(added);
942 }
943
944 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
945
946 /*
947  * Set the next IRQ period, based on the hwc->period_left value.
948  * To be called with the event disabled in hw:
949  */
950 int x86_perf_event_set_period(struct perf_event *event)
951 {
952         struct hw_perf_event *hwc = &event->hw;
953         s64 left = local64_read(&hwc->period_left);
954         s64 period = hwc->sample_period;
955         int ret = 0, idx = hwc->idx;
956
957         if (idx == INTEL_PMC_IDX_FIXED_BTS)
958                 return 0;
959
960         /*
961          * If we are way outside a reasonable range then just skip forward:
962          */
963         if (unlikely(left <= -period)) {
964                 left = period;
965                 local64_set(&hwc->period_left, left);
966                 hwc->last_period = period;
967                 ret = 1;
968         }
969
970         if (unlikely(left <= 0)) {
971                 left += period;
972                 local64_set(&hwc->period_left, left);
973                 hwc->last_period = period;
974                 ret = 1;
975         }
976         /*
977          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
978          */
979         if (unlikely(left < 2))
980                 left = 2;
981
982         if (left > x86_pmu.max_period)
983                 left = x86_pmu.max_period;
984
985         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
986
987         /*
988          * The hw event starts counting from this event offset,
989          * mark it to be able to extra future deltas:
990          */
991         local64_set(&hwc->prev_count, (u64)-left);
992
993         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
994
995         /*
996          * Due to erratum on certan cpu we need
997          * a second write to be sure the register
998          * is updated properly
999          */
1000         if (x86_pmu.perfctr_second_write) {
1001                 wrmsrl(hwc->event_base,
1002                         (u64)(-left) & x86_pmu.cntval_mask);
1003         }
1004
1005         perf_event_update_userpage(event);
1006
1007         return ret;
1008 }
1009
1010 void x86_pmu_enable_event(struct perf_event *event)
1011 {
1012         if (__this_cpu_read(cpu_hw_events.enabled))
1013                 __x86_pmu_enable_event(&event->hw,
1014                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1015 }
1016
1017 /*
1018  * Add a single event to the PMU.
1019  *
1020  * The event is added to the group of enabled events
1021  * but only if it can be scehduled with existing events.
1022  */
1023 static int x86_pmu_add(struct perf_event *event, int flags)
1024 {
1025         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1026         struct hw_perf_event *hwc;
1027         int assign[X86_PMC_IDX_MAX];
1028         int n, n0, ret;
1029
1030         hwc = &event->hw;
1031
1032         perf_pmu_disable(event->pmu);
1033         n0 = cpuc->n_events;
1034         ret = n = collect_events(cpuc, event, false);
1035         if (ret < 0)
1036                 goto out;
1037
1038         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1039         if (!(flags & PERF_EF_START))
1040                 hwc->state |= PERF_HES_ARCH;
1041
1042         /*
1043          * If group events scheduling transaction was started,
1044          * skip the schedulability test here, it will be performed
1045          * at commit time (->commit_txn) as a whole.
1046          */
1047         if (cpuc->group_flag & PERF_EVENT_TXN)
1048                 goto done_collect;
1049
1050         ret = x86_pmu.schedule_events(cpuc, n, assign);
1051         if (ret)
1052                 goto out;
1053         /*
1054          * copy new assignment, now we know it is possible
1055          * will be used by hw_perf_enable()
1056          */
1057         memcpy(cpuc->assign, assign, n*sizeof(int));
1058
1059 done_collect:
1060         /*
1061          * Commit the collect_events() state. See x86_pmu_del() and
1062          * x86_pmu_*_txn().
1063          */
1064         cpuc->n_events = n;
1065         cpuc->n_added += n - n0;
1066         cpuc->n_txn += n - n0;
1067
1068         ret = 0;
1069 out:
1070         perf_pmu_enable(event->pmu);
1071         return ret;
1072 }
1073
1074 static void x86_pmu_start(struct perf_event *event, int flags)
1075 {
1076         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1077         int idx = event->hw.idx;
1078
1079         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1080                 return;
1081
1082         if (WARN_ON_ONCE(idx == -1))
1083                 return;
1084
1085         if (flags & PERF_EF_RELOAD) {
1086                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1087                 x86_perf_event_set_period(event);
1088         }
1089
1090         event->hw.state = 0;
1091
1092         cpuc->events[idx] = event;
1093         __set_bit(idx, cpuc->active_mask);
1094         __set_bit(idx, cpuc->running);
1095         x86_pmu.enable(event);
1096         perf_event_update_userpage(event);
1097 }
1098
1099 void perf_event_print_debug(void)
1100 {
1101         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1102         u64 pebs;
1103         struct cpu_hw_events *cpuc;
1104         unsigned long flags;
1105         int cpu, idx;
1106
1107         if (!x86_pmu.num_counters)
1108                 return;
1109
1110         local_irq_save(flags);
1111
1112         cpu = smp_processor_id();
1113         cpuc = &per_cpu(cpu_hw_events, cpu);
1114
1115         if (x86_pmu.version >= 2) {
1116                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1117                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1118                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1119                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1120                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1121
1122                 pr_info("\n");
1123                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1124                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1125                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1126                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1127                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1128         }
1129         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1130
1131         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1132                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1133                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1134
1135                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1136
1137                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1138                         cpu, idx, pmc_ctrl);
1139                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1140                         cpu, idx, pmc_count);
1141                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1142                         cpu, idx, prev_left);
1143         }
1144         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1145                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1146
1147                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1148                         cpu, idx, pmc_count);
1149         }
1150         local_irq_restore(flags);
1151 }
1152
1153 void x86_pmu_stop(struct perf_event *event, int flags)
1154 {
1155         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1156         struct hw_perf_event *hwc = &event->hw;
1157
1158         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1159                 x86_pmu.disable(event);
1160                 cpuc->events[hwc->idx] = NULL;
1161                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1162                 hwc->state |= PERF_HES_STOPPED;
1163         }
1164
1165         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1166                 /*
1167                  * Drain the remaining delta count out of a event
1168                  * that we are disabling:
1169                  */
1170                 x86_perf_event_update(event);
1171                 hwc->state |= PERF_HES_UPTODATE;
1172         }
1173 }
1174
1175 static void x86_pmu_del(struct perf_event *event, int flags)
1176 {
1177         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1178         int i;
1179
1180         /*
1181          * event is descheduled
1182          */
1183         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1184
1185         /*
1186          * If we're called during a txn, we don't need to do anything.
1187          * The events never got scheduled and ->cancel_txn will truncate
1188          * the event_list.
1189          *
1190          * XXX assumes any ->del() called during a TXN will only be on
1191          * an event added during that same TXN.
1192          */
1193         if (cpuc->group_flag & PERF_EVENT_TXN)
1194                 return;
1195
1196         /*
1197          * Not a TXN, therefore cleanup properly.
1198          */
1199         x86_pmu_stop(event, PERF_EF_UPDATE);
1200
1201         for (i = 0; i < cpuc->n_events; i++) {
1202                 if (event == cpuc->event_list[i])
1203                         break;
1204         }
1205
1206         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1207                 return;
1208
1209         /* If we have a newly added event; make sure to decrease n_added. */
1210         if (i >= cpuc->n_events - cpuc->n_added)
1211                 --cpuc->n_added;
1212
1213         if (x86_pmu.put_event_constraints)
1214                 x86_pmu.put_event_constraints(cpuc, event);
1215
1216         /* Delete the array entry. */
1217         while (++i < cpuc->n_events)
1218                 cpuc->event_list[i-1] = cpuc->event_list[i];
1219         --cpuc->n_events;
1220
1221         perf_event_update_userpage(event);
1222 }
1223
1224 int x86_pmu_handle_irq(struct pt_regs *regs)
1225 {
1226         struct perf_sample_data data;
1227         struct cpu_hw_events *cpuc;
1228         struct perf_event *event;
1229         int idx, handled = 0;
1230         u64 val;
1231
1232         cpuc = this_cpu_ptr(&cpu_hw_events);
1233
1234         /*
1235          * Some chipsets need to unmask the LVTPC in a particular spot
1236          * inside the nmi handler.  As a result, the unmasking was pushed
1237          * into all the nmi handlers.
1238          *
1239          * This generic handler doesn't seem to have any issues where the
1240          * unmasking occurs so it was left at the top.
1241          */
1242         apic_write(APIC_LVTPC, APIC_DM_NMI);
1243
1244         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1245                 if (!test_bit(idx, cpuc->active_mask)) {
1246                         /*
1247                          * Though we deactivated the counter some cpus
1248                          * might still deliver spurious interrupts still
1249                          * in flight. Catch them:
1250                          */
1251                         if (__test_and_clear_bit(idx, cpuc->running))
1252                                 handled++;
1253                         continue;
1254                 }
1255
1256                 event = cpuc->events[idx];
1257
1258                 val = x86_perf_event_update(event);
1259                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1260                         continue;
1261
1262                 /*
1263                  * event overflow
1264                  */
1265                 handled++;
1266                 perf_sample_data_init(&data, 0, event->hw.last_period);
1267
1268                 if (!x86_perf_event_set_period(event))
1269                         continue;
1270
1271                 if (perf_event_overflow(event, &data, regs))
1272                         x86_pmu_stop(event, 0);
1273         }
1274
1275         if (handled)
1276                 inc_irq_stat(apic_perf_irqs);
1277
1278         return handled;
1279 }
1280
1281 void perf_events_lapic_init(void)
1282 {
1283         if (!x86_pmu.apic || !x86_pmu_initialized())
1284                 return;
1285
1286         /*
1287          * Always use NMI for PMU
1288          */
1289         apic_write(APIC_LVTPC, APIC_DM_NMI);
1290 }
1291
1292 static int
1293 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1294 {
1295         u64 start_clock;
1296         u64 finish_clock;
1297         int ret;
1298
1299         if (!atomic_read(&active_events))
1300                 return NMI_DONE;
1301
1302         start_clock = sched_clock();
1303         ret = x86_pmu.handle_irq(regs);
1304         finish_clock = sched_clock();
1305
1306         perf_sample_event_took(finish_clock - start_clock);
1307
1308         return ret;
1309 }
1310 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1311
1312 struct event_constraint emptyconstraint;
1313 struct event_constraint unconstrained;
1314
1315 static int
1316 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1317 {
1318         unsigned int cpu = (long)hcpu;
1319         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1320         int ret = NOTIFY_OK;
1321
1322         switch (action & ~CPU_TASKS_FROZEN) {
1323         case CPU_UP_PREPARE:
1324                 cpuc->kfree_on_online = NULL;
1325                 if (x86_pmu.cpu_prepare)
1326                         ret = x86_pmu.cpu_prepare(cpu);
1327                 break;
1328
1329         case CPU_STARTING:
1330                 if (x86_pmu.attr_rdpmc)
1331                         set_in_cr4(X86_CR4_PCE);
1332                 if (x86_pmu.cpu_starting)
1333                         x86_pmu.cpu_starting(cpu);
1334                 break;
1335
1336         case CPU_ONLINE:
1337                 kfree(cpuc->kfree_on_online);
1338                 break;
1339
1340         case CPU_DYING:
1341                 if (x86_pmu.cpu_dying)
1342                         x86_pmu.cpu_dying(cpu);
1343                 break;
1344
1345         case CPU_UP_CANCELED:
1346         case CPU_DEAD:
1347                 if (x86_pmu.cpu_dead)
1348                         x86_pmu.cpu_dead(cpu);
1349                 break;
1350
1351         default:
1352                 break;
1353         }
1354
1355         return ret;
1356 }
1357
1358 static void __init pmu_check_apic(void)
1359 {
1360         if (cpu_has_apic)
1361                 return;
1362
1363         x86_pmu.apic = 0;
1364         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1365         pr_info("no hardware sampling interrupt available.\n");
1366
1367         /*
1368          * If we have a PMU initialized but no APIC
1369          * interrupts, we cannot sample hardware
1370          * events (user-space has to fall back and
1371          * sample via a hrtimer based software event):
1372          */
1373         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1374
1375 }
1376
1377 static struct attribute_group x86_pmu_format_group = {
1378         .name = "format",
1379         .attrs = NULL,
1380 };
1381
1382 /*
1383  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1384  * out of events_attr attributes.
1385  */
1386 static void __init filter_events(struct attribute **attrs)
1387 {
1388         struct device_attribute *d;
1389         struct perf_pmu_events_attr *pmu_attr;
1390         int i, j;
1391
1392         for (i = 0; attrs[i]; i++) {
1393                 d = (struct device_attribute *)attrs[i];
1394                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1395                 /* str trumps id */
1396                 if (pmu_attr->event_str)
1397                         continue;
1398                 if (x86_pmu.event_map(i))
1399                         continue;
1400
1401                 for (j = i; attrs[j]; j++)
1402                         attrs[j] = attrs[j + 1];
1403
1404                 /* Check the shifted attr. */
1405                 i--;
1406         }
1407 }
1408
1409 /* Merge two pointer arrays */
1410 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1411 {
1412         struct attribute **new;
1413         int j, i;
1414
1415         for (j = 0; a[j]; j++)
1416                 ;
1417         for (i = 0; b[i]; i++)
1418                 j++;
1419         j++;
1420
1421         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1422         if (!new)
1423                 return NULL;
1424
1425         j = 0;
1426         for (i = 0; a[i]; i++)
1427                 new[j++] = a[i];
1428         for (i = 0; b[i]; i++)
1429                 new[j++] = b[i];
1430         new[j] = NULL;
1431
1432         return new;
1433 }
1434
1435 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1436                           char *page)
1437 {
1438         struct perf_pmu_events_attr *pmu_attr = \
1439                 container_of(attr, struct perf_pmu_events_attr, attr);
1440         u64 config = x86_pmu.event_map(pmu_attr->id);
1441
1442         /* string trumps id */
1443         if (pmu_attr->event_str)
1444                 return sprintf(page, "%s", pmu_attr->event_str);
1445
1446         return x86_pmu.events_sysfs_show(page, config);
1447 }
1448
1449 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1450 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1451 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1452 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1453 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1454 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1455 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1456 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1457 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1458 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1459
1460 static struct attribute *empty_attrs;
1461
1462 static struct attribute *events_attr[] = {
1463         EVENT_PTR(CPU_CYCLES),
1464         EVENT_PTR(INSTRUCTIONS),
1465         EVENT_PTR(CACHE_REFERENCES),
1466         EVENT_PTR(CACHE_MISSES),
1467         EVENT_PTR(BRANCH_INSTRUCTIONS),
1468         EVENT_PTR(BRANCH_MISSES),
1469         EVENT_PTR(BUS_CYCLES),
1470         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1471         EVENT_PTR(STALLED_CYCLES_BACKEND),
1472         EVENT_PTR(REF_CPU_CYCLES),
1473         NULL,
1474 };
1475
1476 static struct attribute_group x86_pmu_events_group = {
1477         .name = "events",
1478         .attrs = events_attr,
1479 };
1480
1481 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1482 {
1483         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1484         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1485         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1486         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1487         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1488         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1489         ssize_t ret;
1490
1491         /*
1492         * We have whole page size to spend and just little data
1493         * to write, so we can safely use sprintf.
1494         */
1495         ret = sprintf(page, "event=0x%02llx", event);
1496
1497         if (umask)
1498                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1499
1500         if (edge)
1501                 ret += sprintf(page + ret, ",edge");
1502
1503         if (pc)
1504                 ret += sprintf(page + ret, ",pc");
1505
1506         if (any)
1507                 ret += sprintf(page + ret, ",any");
1508
1509         if (inv)
1510                 ret += sprintf(page + ret, ",inv");
1511
1512         if (cmask)
1513                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1514
1515         ret += sprintf(page + ret, "\n");
1516
1517         return ret;
1518 }
1519
1520 static int __init init_hw_perf_events(void)
1521 {
1522         struct x86_pmu_quirk *quirk;
1523         int err;
1524
1525         pr_info("Performance Events: ");
1526
1527         switch (boot_cpu_data.x86_vendor) {
1528         case X86_VENDOR_INTEL:
1529                 err = intel_pmu_init();
1530                 break;
1531         case X86_VENDOR_AMD:
1532                 err = amd_pmu_init();
1533                 break;
1534         default:
1535                 err = -ENOTSUPP;
1536         }
1537         if (err != 0) {
1538                 pr_cont("no PMU driver, software events only.\n");
1539                 return 0;
1540         }
1541
1542         pmu_check_apic();
1543
1544         /* sanity check that the hardware exists or is emulated */
1545         if (!check_hw_exists())
1546                 return 0;
1547
1548         pr_cont("%s PMU driver.\n", x86_pmu.name);
1549
1550         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1551
1552         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1553                 quirk->func();
1554
1555         if (!x86_pmu.intel_ctrl)
1556                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1557
1558         perf_events_lapic_init();
1559         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1560
1561         unconstrained = (struct event_constraint)
1562                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1563                                    0, x86_pmu.num_counters, 0, 0);
1564
1565         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1566
1567         if (x86_pmu.event_attrs)
1568                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1569
1570         if (!x86_pmu.events_sysfs_show)
1571                 x86_pmu_events_group.attrs = &empty_attrs;
1572         else
1573                 filter_events(x86_pmu_events_group.attrs);
1574
1575         if (x86_pmu.cpu_events) {
1576                 struct attribute **tmp;
1577
1578                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1579                 if (!WARN_ON(!tmp))
1580                         x86_pmu_events_group.attrs = tmp;
1581         }
1582
1583         pr_info("... version:                %d\n",     x86_pmu.version);
1584         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1585         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1586         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1587         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1588         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1589         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1590
1591         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1592         perf_cpu_notifier(x86_pmu_notifier);
1593
1594         return 0;
1595 }
1596 early_initcall(init_hw_perf_events);
1597
1598 static inline void x86_pmu_read(struct perf_event *event)
1599 {
1600         x86_perf_event_update(event);
1601 }
1602
1603 /*
1604  * Start group events scheduling transaction
1605  * Set the flag to make pmu::enable() not perform the
1606  * schedulability test, it will be performed at commit time
1607  */
1608 static void x86_pmu_start_txn(struct pmu *pmu)
1609 {
1610         perf_pmu_disable(pmu);
1611         __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1612         __this_cpu_write(cpu_hw_events.n_txn, 0);
1613 }
1614
1615 /*
1616  * Stop group events scheduling transaction
1617  * Clear the flag and pmu::enable() will perform the
1618  * schedulability test.
1619  */
1620 static void x86_pmu_cancel_txn(struct pmu *pmu)
1621 {
1622         __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1623         /*
1624          * Truncate collected array by the number of events added in this
1625          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1626          */
1627         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1628         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1629         perf_pmu_enable(pmu);
1630 }
1631
1632 /*
1633  * Commit group events scheduling transaction
1634  * Perform the group schedulability test as a whole
1635  * Return 0 if success
1636  *
1637  * Does not cancel the transaction on failure; expects the caller to do this.
1638  */
1639 static int x86_pmu_commit_txn(struct pmu *pmu)
1640 {
1641         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1642         int assign[X86_PMC_IDX_MAX];
1643         int n, ret;
1644
1645         n = cpuc->n_events;
1646
1647         if (!x86_pmu_initialized())
1648                 return -EAGAIN;
1649
1650         ret = x86_pmu.schedule_events(cpuc, n, assign);
1651         if (ret)
1652                 return ret;
1653
1654         /*
1655          * copy new assignment, now we know it is possible
1656          * will be used by hw_perf_enable()
1657          */
1658         memcpy(cpuc->assign, assign, n*sizeof(int));
1659
1660         cpuc->group_flag &= ~PERF_EVENT_TXN;
1661         perf_pmu_enable(pmu);
1662         return 0;
1663 }
1664 /*
1665  * a fake_cpuc is used to validate event groups. Due to
1666  * the extra reg logic, we need to also allocate a fake
1667  * per_core and per_cpu structure. Otherwise, group events
1668  * using extra reg may conflict without the kernel being
1669  * able to catch this when the last event gets added to
1670  * the group.
1671  */
1672 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1673 {
1674         kfree(cpuc->shared_regs);
1675         kfree(cpuc);
1676 }
1677
1678 static struct cpu_hw_events *allocate_fake_cpuc(void)
1679 {
1680         struct cpu_hw_events *cpuc;
1681         int cpu = raw_smp_processor_id();
1682
1683         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1684         if (!cpuc)
1685                 return ERR_PTR(-ENOMEM);
1686
1687         /* only needed, if we have extra_regs */
1688         if (x86_pmu.extra_regs) {
1689                 cpuc->shared_regs = allocate_shared_regs(cpu);
1690                 if (!cpuc->shared_regs)
1691                         goto error;
1692         }
1693         cpuc->is_fake = 1;
1694         return cpuc;
1695 error:
1696         free_fake_cpuc(cpuc);
1697         return ERR_PTR(-ENOMEM);
1698 }
1699
1700 /*
1701  * validate that we can schedule this event
1702  */
1703 static int validate_event(struct perf_event *event)
1704 {
1705         struct cpu_hw_events *fake_cpuc;
1706         struct event_constraint *c;
1707         int ret = 0;
1708
1709         fake_cpuc = allocate_fake_cpuc();
1710         if (IS_ERR(fake_cpuc))
1711                 return PTR_ERR(fake_cpuc);
1712
1713         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1714
1715         if (!c || !c->weight)
1716                 ret = -EINVAL;
1717
1718         if (x86_pmu.put_event_constraints)
1719                 x86_pmu.put_event_constraints(fake_cpuc, event);
1720
1721         free_fake_cpuc(fake_cpuc);
1722
1723         return ret;
1724 }
1725
1726 /*
1727  * validate a single event group
1728  *
1729  * validation include:
1730  *      - check events are compatible which each other
1731  *      - events do not compete for the same counter
1732  *      - number of events <= number of counters
1733  *
1734  * validation ensures the group can be loaded onto the
1735  * PMU if it was the only group available.
1736  */
1737 static int validate_group(struct perf_event *event)
1738 {
1739         struct perf_event *leader = event->group_leader;
1740         struct cpu_hw_events *fake_cpuc;
1741         int ret = -EINVAL, n;
1742
1743         fake_cpuc = allocate_fake_cpuc();
1744         if (IS_ERR(fake_cpuc))
1745                 return PTR_ERR(fake_cpuc);
1746         /*
1747          * the event is not yet connected with its
1748          * siblings therefore we must first collect
1749          * existing siblings, then add the new event
1750          * before we can simulate the scheduling
1751          */
1752         n = collect_events(fake_cpuc, leader, true);
1753         if (n < 0)
1754                 goto out;
1755
1756         fake_cpuc->n_events = n;
1757         n = collect_events(fake_cpuc, event, false);
1758         if (n < 0)
1759                 goto out;
1760
1761         fake_cpuc->n_events = n;
1762
1763         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1764
1765 out:
1766         free_fake_cpuc(fake_cpuc);
1767         return ret;
1768 }
1769
1770 static int x86_pmu_event_init(struct perf_event *event)
1771 {
1772         struct pmu *tmp;
1773         int err;
1774
1775         switch (event->attr.type) {
1776         case PERF_TYPE_RAW:
1777         case PERF_TYPE_HARDWARE:
1778         case PERF_TYPE_HW_CACHE:
1779                 break;
1780
1781         default:
1782                 return -ENOENT;
1783         }
1784
1785         err = __x86_pmu_event_init(event);
1786         if (!err) {
1787                 /*
1788                  * we temporarily connect event to its pmu
1789                  * such that validate_group() can classify
1790                  * it as an x86 event using is_x86_event()
1791                  */
1792                 tmp = event->pmu;
1793                 event->pmu = &pmu;
1794
1795                 if (event->group_leader != event)
1796                         err = validate_group(event);
1797                 else
1798                         err = validate_event(event);
1799
1800                 event->pmu = tmp;
1801         }
1802         if (err) {
1803                 if (event->destroy)
1804                         event->destroy(event);
1805         }
1806
1807         return err;
1808 }
1809
1810 static int x86_pmu_event_idx(struct perf_event *event)
1811 {
1812         int idx = event->hw.idx;
1813
1814         if (!x86_pmu.attr_rdpmc)
1815                 return 0;
1816
1817         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1818                 idx -= INTEL_PMC_IDX_FIXED;
1819                 idx |= 1 << 30;
1820         }
1821
1822         return idx + 1;
1823 }
1824
1825 static ssize_t get_attr_rdpmc(struct device *cdev,
1826                               struct device_attribute *attr,
1827                               char *buf)
1828 {
1829         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1830 }
1831
1832 static void change_rdpmc(void *info)
1833 {
1834         bool enable = !!(unsigned long)info;
1835
1836         if (enable)
1837                 set_in_cr4(X86_CR4_PCE);
1838         else
1839                 clear_in_cr4(X86_CR4_PCE);
1840 }
1841
1842 static ssize_t set_attr_rdpmc(struct device *cdev,
1843                               struct device_attribute *attr,
1844                               const char *buf, size_t count)
1845 {
1846         unsigned long val;
1847         ssize_t ret;
1848
1849         ret = kstrtoul(buf, 0, &val);
1850         if (ret)
1851                 return ret;
1852
1853         if (x86_pmu.attr_rdpmc_broken)
1854                 return -ENOTSUPP;
1855
1856         if (!!val != !!x86_pmu.attr_rdpmc) {
1857                 x86_pmu.attr_rdpmc = !!val;
1858                 on_each_cpu(change_rdpmc, (void *)val, 1);
1859         }
1860
1861         return count;
1862 }
1863
1864 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1865
1866 static struct attribute *x86_pmu_attrs[] = {
1867         &dev_attr_rdpmc.attr,
1868         NULL,
1869 };
1870
1871 static struct attribute_group x86_pmu_attr_group = {
1872         .attrs = x86_pmu_attrs,
1873 };
1874
1875 static const struct attribute_group *x86_pmu_attr_groups[] = {
1876         &x86_pmu_attr_group,
1877         &x86_pmu_format_group,
1878         &x86_pmu_events_group,
1879         NULL,
1880 };
1881
1882 static void x86_pmu_flush_branch_stack(void)
1883 {
1884         if (x86_pmu.flush_branch_stack)
1885                 x86_pmu.flush_branch_stack();
1886 }
1887
1888 void perf_check_microcode(void)
1889 {
1890         if (x86_pmu.check_microcode)
1891                 x86_pmu.check_microcode();
1892 }
1893 EXPORT_SYMBOL_GPL(perf_check_microcode);
1894
1895 static struct pmu pmu = {
1896         .pmu_enable             = x86_pmu_enable,
1897         .pmu_disable            = x86_pmu_disable,
1898
1899         .attr_groups            = x86_pmu_attr_groups,
1900
1901         .event_init             = x86_pmu_event_init,
1902
1903         .add                    = x86_pmu_add,
1904         .del                    = x86_pmu_del,
1905         .start                  = x86_pmu_start,
1906         .stop                   = x86_pmu_stop,
1907         .read                   = x86_pmu_read,
1908
1909         .start_txn              = x86_pmu_start_txn,
1910         .cancel_txn             = x86_pmu_cancel_txn,
1911         .commit_txn             = x86_pmu_commit_txn,
1912
1913         .event_idx              = x86_pmu_event_idx,
1914         .flush_branch_stack     = x86_pmu_flush_branch_stack,
1915 };
1916
1917 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1918 {
1919         struct cyc2ns_data *data;
1920
1921         userpg->cap_user_time = 0;
1922         userpg->cap_user_time_zero = 0;
1923         userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc;
1924         userpg->pmc_width = x86_pmu.cntval_bits;
1925
1926         if (!sched_clock_stable())
1927                 return;
1928
1929         data = cyc2ns_read_begin();
1930
1931         userpg->cap_user_time = 1;
1932         userpg->time_mult = data->cyc2ns_mul;
1933         userpg->time_shift = data->cyc2ns_shift;
1934         userpg->time_offset = data->cyc2ns_offset - now;
1935
1936         userpg->cap_user_time_zero = 1;
1937         userpg->time_zero = data->cyc2ns_offset;
1938
1939         cyc2ns_read_end(data);
1940 }
1941
1942 /*
1943  * callchain support
1944  */
1945
1946 static int backtrace_stack(void *data, char *name)
1947 {
1948         return 0;
1949 }
1950
1951 static void backtrace_address(void *data, unsigned long addr, int reliable)
1952 {
1953         struct perf_callchain_entry *entry = data;
1954
1955         perf_callchain_store(entry, addr);
1956 }
1957
1958 static const struct stacktrace_ops backtrace_ops = {
1959         .stack                  = backtrace_stack,
1960         .address                = backtrace_address,
1961         .walk_stack             = print_context_stack_bp,
1962 };
1963
1964 void
1965 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1966 {
1967         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1968                 /* TODO: We don't support guest os callchain now */
1969                 return;
1970         }
1971
1972         perf_callchain_store(entry, regs->ip);
1973
1974         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1975 }
1976
1977 static inline int
1978 valid_user_frame(const void __user *fp, unsigned long size)
1979 {
1980         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1981 }
1982
1983 static unsigned long get_segment_base(unsigned int segment)
1984 {
1985         struct desc_struct *desc;
1986         int idx = segment >> 3;
1987
1988         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1989                 if (idx > LDT_ENTRIES)
1990                         return 0;
1991
1992                 if (idx > current->active_mm->context.size)
1993                         return 0;
1994
1995                 desc = current->active_mm->context.ldt;
1996         } else {
1997                 if (idx > GDT_ENTRIES)
1998                         return 0;
1999
2000                 desc = raw_cpu_ptr(gdt_page.gdt);
2001         }
2002
2003         return get_desc_base(desc + idx);
2004 }
2005
2006 #ifdef CONFIG_COMPAT
2007
2008 #include <asm/compat.h>
2009
2010 static inline int
2011 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2012 {
2013         /* 32-bit process in 64-bit kernel. */
2014         unsigned long ss_base, cs_base;
2015         struct stack_frame_ia32 frame;
2016         const void __user *fp;
2017
2018         if (!test_thread_flag(TIF_IA32))
2019                 return 0;
2020
2021         cs_base = get_segment_base(regs->cs);
2022         ss_base = get_segment_base(regs->ss);
2023
2024         fp = compat_ptr(ss_base + regs->bp);
2025         while (entry->nr < PERF_MAX_STACK_DEPTH) {
2026                 unsigned long bytes;
2027                 frame.next_frame     = 0;
2028                 frame.return_address = 0;
2029
2030                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2031                 if (bytes != 0)
2032                         break;
2033
2034                 if (!valid_user_frame(fp, sizeof(frame)))
2035                         break;
2036
2037                 perf_callchain_store(entry, cs_base + frame.return_address);
2038                 fp = compat_ptr(ss_base + frame.next_frame);
2039         }
2040         return 1;
2041 }
2042 #else
2043 static inline int
2044 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2045 {
2046     return 0;
2047 }
2048 #endif
2049
2050 void
2051 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2052 {
2053         struct stack_frame frame;
2054         const void __user *fp;
2055
2056         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2057                 /* TODO: We don't support guest os callchain now */
2058                 return;
2059         }
2060
2061         /*
2062          * We don't know what to do with VM86 stacks.. ignore them for now.
2063          */
2064         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2065                 return;
2066
2067         fp = (void __user *)regs->bp;
2068
2069         perf_callchain_store(entry, regs->ip);
2070
2071         if (!current->mm)
2072                 return;
2073
2074         if (perf_callchain_user32(regs, entry))
2075                 return;
2076
2077         while (entry->nr < PERF_MAX_STACK_DEPTH) {
2078                 unsigned long bytes;
2079                 frame.next_frame             = NULL;
2080                 frame.return_address = 0;
2081
2082                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2083                 if (bytes != 0)
2084                         break;
2085
2086                 if (!valid_user_frame(fp, sizeof(frame)))
2087                         break;
2088
2089                 perf_callchain_store(entry, frame.return_address);
2090                 fp = frame.next_frame;
2091         }
2092 }
2093
2094 /*
2095  * Deal with code segment offsets for the various execution modes:
2096  *
2097  *   VM86 - the good olde 16 bit days, where the linear address is
2098  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2099  *
2100  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2101  *          to figure out what the 32bit base address is.
2102  *
2103  *    X32 - has TIF_X32 set, but is running in x86_64
2104  *
2105  * X86_64 - CS,DS,SS,ES are all zero based.
2106  */
2107 static unsigned long code_segment_base(struct pt_regs *regs)
2108 {
2109         /*
2110          * If we are in VM86 mode, add the segment offset to convert to a
2111          * linear address.
2112          */
2113         if (regs->flags & X86_VM_MASK)
2114                 return 0x10 * regs->cs;
2115
2116         /*
2117          * For IA32 we look at the GDT/LDT segment base to convert the
2118          * effective IP to a linear address.
2119          */
2120 #ifdef CONFIG_X86_32
2121         if (user_mode(regs) && regs->cs != __USER_CS)
2122                 return get_segment_base(regs->cs);
2123 #else
2124         if (test_thread_flag(TIF_IA32)) {
2125                 if (user_mode(regs) && regs->cs != __USER32_CS)
2126                         return get_segment_base(regs->cs);
2127         }
2128 #endif
2129         return 0;
2130 }
2131
2132 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2133 {
2134         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2135                 return perf_guest_cbs->get_guest_ip();
2136
2137         return regs->ip + code_segment_base(regs);
2138 }
2139
2140 unsigned long perf_misc_flags(struct pt_regs *regs)
2141 {
2142         int misc = 0;
2143
2144         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2145                 if (perf_guest_cbs->is_user_mode())
2146                         misc |= PERF_RECORD_MISC_GUEST_USER;
2147                 else
2148                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2149         } else {
2150                 if (user_mode(regs))
2151                         misc |= PERF_RECORD_MISC_USER;
2152                 else
2153                         misc |= PERF_RECORD_MISC_KERNEL;
2154         }
2155
2156         if (regs->flags & PERF_EFLAGS_EXACT)
2157                 misc |= PERF_RECORD_MISC_EXACT_IP;
2158
2159         return misc;
2160 }
2161
2162 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2163 {
2164         cap->version            = x86_pmu.version;
2165         cap->num_counters_gp    = x86_pmu.num_counters;
2166         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2167         cap->bit_width_gp       = x86_pmu.cntval_bits;
2168         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2169         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2170         cap->events_mask_len    = x86_pmu.events_mask_len;
2171 }
2172 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);