ARM: shmobile: Remove FSF address from copyright headers
[cascardo/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/cpufeature.h>
17 #include <asm/hardirq.h>
18 #include <asm/apic.h>
19
20 #include "perf_event.h"
21
22 /*
23  * Intel PerfMon, used on Core and later.
24  */
25 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26 {
27         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
28         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
29         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
30         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
31         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
32         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
33         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
34         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
35 };
36
37 static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 {
39         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
40         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
41         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
42         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
43         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
44         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45         EVENT_CONSTRAINT_END
46 };
47
48 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49 {
50         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
51         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63         EVENT_CONSTRAINT_END
64 };
65
66 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 {
68         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79         EVENT_CONSTRAINT_END
80 };
81
82 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 {
84         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
85         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
86         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
87         EVENT_EXTRA_END
88 };
89
90 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
91 {
92         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
93         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
94         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
95         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
96         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
97         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
98         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
99         EVENT_CONSTRAINT_END
100 };
101
102 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
103 {
104         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
105         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
106         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
107         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
108         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
109         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
110         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
111         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
113         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
114         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116         EVENT_CONSTRAINT_END
117 };
118
119 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
120 {
121         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
122         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
123         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
124         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
125         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
126         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
127         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
128         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
129         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
130         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
131         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
132         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
133         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
134         /*
135          * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
136          * siblings; disable these events because they can corrupt unrelated
137          * counters.
138          */
139         INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
140         INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
141         INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
142         INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
143         EVENT_CONSTRAINT_END
144 };
145
146 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
147 {
148         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
149         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
150         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
151         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
152         EVENT_EXTRA_END
153 };
154
155 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
156 {
157         EVENT_CONSTRAINT_END
158 };
159
160 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
161 {
162         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
163         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
164         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
165         EVENT_CONSTRAINT_END
166 };
167
168 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
169 {
170         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
171         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
172         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
177         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
178         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
179         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
180         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
181         EVENT_EXTRA_END
182 };
183
184 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
185         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
186         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
187         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
188         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
189         EVENT_EXTRA_END
190 };
191
192 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
193 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
194 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
195
196 struct attribute *nhm_events_attrs[] = {
197         EVENT_PTR(mem_ld_nhm),
198         NULL,
199 };
200
201 struct attribute *snb_events_attrs[] = {
202         EVENT_PTR(mem_ld_snb),
203         EVENT_PTR(mem_st_snb),
204         NULL,
205 };
206
207 static struct event_constraint intel_hsw_event_constraints[] = {
208         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
211         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
212         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
213         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
214         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
215         INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
216         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
217         INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
218         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
219         INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
220         EVENT_CONSTRAINT_END
221 };
222
223 static struct event_constraint intel_bdw_event_constraints[] = {
224         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
225         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
226         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
227         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
228         INTEL_EVENT_CONSTRAINT(0xa3, 0x4),      /* CYCLE_ACTIVITY.* */
229         EVENT_CONSTRAINT_END
230 };
231
232 static u64 intel_pmu_event_map(int hw_event)
233 {
234         return intel_perfmon_event_map[hw_event];
235 }
236
237 #define SNB_DMND_DATA_RD        (1ULL << 0)
238 #define SNB_DMND_RFO            (1ULL << 1)
239 #define SNB_DMND_IFETCH         (1ULL << 2)
240 #define SNB_DMND_WB             (1ULL << 3)
241 #define SNB_PF_DATA_RD          (1ULL << 4)
242 #define SNB_PF_RFO              (1ULL << 5)
243 #define SNB_PF_IFETCH           (1ULL << 6)
244 #define SNB_LLC_DATA_RD         (1ULL << 7)
245 #define SNB_LLC_RFO             (1ULL << 8)
246 #define SNB_LLC_IFETCH          (1ULL << 9)
247 #define SNB_BUS_LOCKS           (1ULL << 10)
248 #define SNB_STRM_ST             (1ULL << 11)
249 #define SNB_OTHER               (1ULL << 15)
250 #define SNB_RESP_ANY            (1ULL << 16)
251 #define SNB_NO_SUPP             (1ULL << 17)
252 #define SNB_LLC_HITM            (1ULL << 18)
253 #define SNB_LLC_HITE            (1ULL << 19)
254 #define SNB_LLC_HITS            (1ULL << 20)
255 #define SNB_LLC_HITF            (1ULL << 21)
256 #define SNB_LOCAL               (1ULL << 22)
257 #define SNB_REMOTE              (0xffULL << 23)
258 #define SNB_SNP_NONE            (1ULL << 31)
259 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
260 #define SNB_SNP_MISS            (1ULL << 33)
261 #define SNB_NO_FWD              (1ULL << 34)
262 #define SNB_SNP_FWD             (1ULL << 35)
263 #define SNB_HITM                (1ULL << 36)
264 #define SNB_NON_DRAM            (1ULL << 37)
265
266 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
267 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
268 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
269
270 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
271                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
272                                  SNB_HITM)
273
274 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
275 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
276
277 #define SNB_L3_ACCESS           SNB_RESP_ANY
278 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
279
280 static __initconst const u64 snb_hw_cache_extra_regs
281                                 [PERF_COUNT_HW_CACHE_MAX]
282                                 [PERF_COUNT_HW_CACHE_OP_MAX]
283                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
284 {
285  [ C(LL  ) ] = {
286         [ C(OP_READ) ] = {
287                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
288                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
289         },
290         [ C(OP_WRITE) ] = {
291                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
292                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
293         },
294         [ C(OP_PREFETCH) ] = {
295                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
296                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
297         },
298  },
299  [ C(NODE) ] = {
300         [ C(OP_READ) ] = {
301                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
302                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
303         },
304         [ C(OP_WRITE) ] = {
305                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
306                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
307         },
308         [ C(OP_PREFETCH) ] = {
309                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
310                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
311         },
312  },
313 };
314
315 static __initconst const u64 snb_hw_cache_event_ids
316                                 [PERF_COUNT_HW_CACHE_MAX]
317                                 [PERF_COUNT_HW_CACHE_OP_MAX]
318                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
319 {
320  [ C(L1D) ] = {
321         [ C(OP_READ) ] = {
322                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
323                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
324         },
325         [ C(OP_WRITE) ] = {
326                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
327                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
328         },
329         [ C(OP_PREFETCH) ] = {
330                 [ C(RESULT_ACCESS) ] = 0x0,
331                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
332         },
333  },
334  [ C(L1I ) ] = {
335         [ C(OP_READ) ] = {
336                 [ C(RESULT_ACCESS) ] = 0x0,
337                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
338         },
339         [ C(OP_WRITE) ] = {
340                 [ C(RESULT_ACCESS) ] = -1,
341                 [ C(RESULT_MISS)   ] = -1,
342         },
343         [ C(OP_PREFETCH) ] = {
344                 [ C(RESULT_ACCESS) ] = 0x0,
345                 [ C(RESULT_MISS)   ] = 0x0,
346         },
347  },
348  [ C(LL  ) ] = {
349         [ C(OP_READ) ] = {
350                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
351                 [ C(RESULT_ACCESS) ] = 0x01b7,
352                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
353                 [ C(RESULT_MISS)   ] = 0x01b7,
354         },
355         [ C(OP_WRITE) ] = {
356                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
357                 [ C(RESULT_ACCESS) ] = 0x01b7,
358                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
359                 [ C(RESULT_MISS)   ] = 0x01b7,
360         },
361         [ C(OP_PREFETCH) ] = {
362                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
363                 [ C(RESULT_ACCESS) ] = 0x01b7,
364                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
365                 [ C(RESULT_MISS)   ] = 0x01b7,
366         },
367  },
368  [ C(DTLB) ] = {
369         [ C(OP_READ) ] = {
370                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
371                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
372         },
373         [ C(OP_WRITE) ] = {
374                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
375                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
376         },
377         [ C(OP_PREFETCH) ] = {
378                 [ C(RESULT_ACCESS) ] = 0x0,
379                 [ C(RESULT_MISS)   ] = 0x0,
380         },
381  },
382  [ C(ITLB) ] = {
383         [ C(OP_READ) ] = {
384                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
385                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
386         },
387         [ C(OP_WRITE) ] = {
388                 [ C(RESULT_ACCESS) ] = -1,
389                 [ C(RESULT_MISS)   ] = -1,
390         },
391         [ C(OP_PREFETCH) ] = {
392                 [ C(RESULT_ACCESS) ] = -1,
393                 [ C(RESULT_MISS)   ] = -1,
394         },
395  },
396  [ C(BPU ) ] = {
397         [ C(OP_READ) ] = {
398                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
399                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
400         },
401         [ C(OP_WRITE) ] = {
402                 [ C(RESULT_ACCESS) ] = -1,
403                 [ C(RESULT_MISS)   ] = -1,
404         },
405         [ C(OP_PREFETCH) ] = {
406                 [ C(RESULT_ACCESS) ] = -1,
407                 [ C(RESULT_MISS)   ] = -1,
408         },
409  },
410  [ C(NODE) ] = {
411         [ C(OP_READ) ] = {
412                 [ C(RESULT_ACCESS) ] = 0x01b7,
413                 [ C(RESULT_MISS)   ] = 0x01b7,
414         },
415         [ C(OP_WRITE) ] = {
416                 [ C(RESULT_ACCESS) ] = 0x01b7,
417                 [ C(RESULT_MISS)   ] = 0x01b7,
418         },
419         [ C(OP_PREFETCH) ] = {
420                 [ C(RESULT_ACCESS) ] = 0x01b7,
421                 [ C(RESULT_MISS)   ] = 0x01b7,
422         },
423  },
424
425 };
426
427 static __initconst const u64 hsw_hw_cache_event_ids
428                                 [PERF_COUNT_HW_CACHE_MAX]
429                                 [PERF_COUNT_HW_CACHE_OP_MAX]
430                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
431 {
432  [ C(L1D ) ] = {
433         [ C(OP_READ) ] = {
434                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
435                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
436         },
437         [ C(OP_WRITE) ] = {
438                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
439                 [ C(RESULT_MISS)   ] = 0x0,
440         },
441         [ C(OP_PREFETCH) ] = {
442                 [ C(RESULT_ACCESS) ] = 0x0,
443                 [ C(RESULT_MISS)   ] = 0x0,
444         },
445  },
446  [ C(L1I ) ] = {
447         [ C(OP_READ) ] = {
448                 [ C(RESULT_ACCESS) ] = 0x0,
449                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
450         },
451         [ C(OP_WRITE) ] = {
452                 [ C(RESULT_ACCESS) ] = -1,
453                 [ C(RESULT_MISS)   ] = -1,
454         },
455         [ C(OP_PREFETCH) ] = {
456                 [ C(RESULT_ACCESS) ] = 0x0,
457                 [ C(RESULT_MISS)   ] = 0x0,
458         },
459  },
460  [ C(LL  ) ] = {
461         [ C(OP_READ) ] = {
462                 /* OFFCORE_RESPONSE:ALL_DATA_RD|ALL_CODE_RD */
463                 [ C(RESULT_ACCESS) ] = 0x1b7,
464                 /* OFFCORE_RESPONSE:ALL_DATA_RD|ALL_CODE_RD|SUPPLIER_NONE|
465                    L3_MISS|ANY_SNOOP */
466                 [ C(RESULT_MISS)   ] = 0x1b7,
467         },
468         [ C(OP_WRITE) ] = {
469                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE:ALL_RFO */
470                 /* OFFCORE_RESPONSE:ALL_RFO|SUPPLIER_NONE|L3_MISS|ANY_SNOOP */
471                 [ C(RESULT_MISS)   ] = 0x1b7,
472         },
473         [ C(OP_PREFETCH) ] = {
474                 [ C(RESULT_ACCESS) ] = 0x0,
475                 [ C(RESULT_MISS)   ] = 0x0,
476         },
477  },
478  [ C(DTLB) ] = {
479         [ C(OP_READ) ] = {
480                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
481                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
482         },
483         [ C(OP_WRITE) ] = {
484                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
485                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
486         },
487         [ C(OP_PREFETCH) ] = {
488                 [ C(RESULT_ACCESS) ] = 0x0,
489                 [ C(RESULT_MISS)   ] = 0x0,
490         },
491  },
492  [ C(ITLB) ] = {
493         [ C(OP_READ) ] = {
494                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
495                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
496         },
497         [ C(OP_WRITE) ] = {
498                 [ C(RESULT_ACCESS) ] = -1,
499                 [ C(RESULT_MISS)   ] = -1,
500         },
501         [ C(OP_PREFETCH) ] = {
502                 [ C(RESULT_ACCESS) ] = -1,
503                 [ C(RESULT_MISS)   ] = -1,
504         },
505  },
506  [ C(BPU ) ] = {
507         [ C(OP_READ) ] = {
508                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
509                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
510         },
511         [ C(OP_WRITE) ] = {
512                 [ C(RESULT_ACCESS) ] = -1,
513                 [ C(RESULT_MISS)   ] = -1,
514         },
515         [ C(OP_PREFETCH) ] = {
516                 [ C(RESULT_ACCESS) ] = -1,
517                 [ C(RESULT_MISS)   ] = -1,
518         },
519  },
520 };
521
522 static __initconst const u64 hsw_hw_cache_extra_regs
523                                 [PERF_COUNT_HW_CACHE_MAX]
524                                 [PERF_COUNT_HW_CACHE_OP_MAX]
525                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
526 {
527  [ C(LL  ) ] = {
528         [ C(OP_READ) ] = {
529                 /* OFFCORE_RESPONSE:ALL_DATA_RD|ALL_CODE_RD */
530                 [ C(RESULT_ACCESS) ] = 0x2d5,
531                 /* OFFCORE_RESPONSE:ALL_DATA_RD|ALL_CODE_RD|SUPPLIER_NONE|
532                    L3_MISS|ANY_SNOOP */
533                 [ C(RESULT_MISS)   ] = 0x3fbc0202d5ull,
534         },
535         [ C(OP_WRITE) ] = {
536                 [ C(RESULT_ACCESS) ] = 0x122,   /* OFFCORE_RESPONSE:ALL_RFO */
537                 /* OFFCORE_RESPONSE:ALL_RFO|SUPPLIER_NONE|L3_MISS|ANY_SNOOP */
538                 [ C(RESULT_MISS)   ] = 0x3fbc020122ull,
539         },
540         [ C(OP_PREFETCH) ] = {
541                 [ C(RESULT_ACCESS) ] = 0x0,
542                 [ C(RESULT_MISS)   ] = 0x0,
543         },
544  },
545 };
546
547 static __initconst const u64 westmere_hw_cache_event_ids
548                                 [PERF_COUNT_HW_CACHE_MAX]
549                                 [PERF_COUNT_HW_CACHE_OP_MAX]
550                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
551 {
552  [ C(L1D) ] = {
553         [ C(OP_READ) ] = {
554                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
555                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
556         },
557         [ C(OP_WRITE) ] = {
558                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
559                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
560         },
561         [ C(OP_PREFETCH) ] = {
562                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
563                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
564         },
565  },
566  [ C(L1I ) ] = {
567         [ C(OP_READ) ] = {
568                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
569                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
570         },
571         [ C(OP_WRITE) ] = {
572                 [ C(RESULT_ACCESS) ] = -1,
573                 [ C(RESULT_MISS)   ] = -1,
574         },
575         [ C(OP_PREFETCH) ] = {
576                 [ C(RESULT_ACCESS) ] = 0x0,
577                 [ C(RESULT_MISS)   ] = 0x0,
578         },
579  },
580  [ C(LL  ) ] = {
581         [ C(OP_READ) ] = {
582                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
583                 [ C(RESULT_ACCESS) ] = 0x01b7,
584                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
585                 [ C(RESULT_MISS)   ] = 0x01b7,
586         },
587         /*
588          * Use RFO, not WRITEBACK, because a write miss would typically occur
589          * on RFO.
590          */
591         [ C(OP_WRITE) ] = {
592                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
593                 [ C(RESULT_ACCESS) ] = 0x01b7,
594                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
595                 [ C(RESULT_MISS)   ] = 0x01b7,
596         },
597         [ C(OP_PREFETCH) ] = {
598                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
599                 [ C(RESULT_ACCESS) ] = 0x01b7,
600                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
601                 [ C(RESULT_MISS)   ] = 0x01b7,
602         },
603  },
604  [ C(DTLB) ] = {
605         [ C(OP_READ) ] = {
606                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
607                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
608         },
609         [ C(OP_WRITE) ] = {
610                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
611                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
612         },
613         [ C(OP_PREFETCH) ] = {
614                 [ C(RESULT_ACCESS) ] = 0x0,
615                 [ C(RESULT_MISS)   ] = 0x0,
616         },
617  },
618  [ C(ITLB) ] = {
619         [ C(OP_READ) ] = {
620                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
621                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
622         },
623         [ C(OP_WRITE) ] = {
624                 [ C(RESULT_ACCESS) ] = -1,
625                 [ C(RESULT_MISS)   ] = -1,
626         },
627         [ C(OP_PREFETCH) ] = {
628                 [ C(RESULT_ACCESS) ] = -1,
629                 [ C(RESULT_MISS)   ] = -1,
630         },
631  },
632  [ C(BPU ) ] = {
633         [ C(OP_READ) ] = {
634                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
635                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
636         },
637         [ C(OP_WRITE) ] = {
638                 [ C(RESULT_ACCESS) ] = -1,
639                 [ C(RESULT_MISS)   ] = -1,
640         },
641         [ C(OP_PREFETCH) ] = {
642                 [ C(RESULT_ACCESS) ] = -1,
643                 [ C(RESULT_MISS)   ] = -1,
644         },
645  },
646  [ C(NODE) ] = {
647         [ C(OP_READ) ] = {
648                 [ C(RESULT_ACCESS) ] = 0x01b7,
649                 [ C(RESULT_MISS)   ] = 0x01b7,
650         },
651         [ C(OP_WRITE) ] = {
652                 [ C(RESULT_ACCESS) ] = 0x01b7,
653                 [ C(RESULT_MISS)   ] = 0x01b7,
654         },
655         [ C(OP_PREFETCH) ] = {
656                 [ C(RESULT_ACCESS) ] = 0x01b7,
657                 [ C(RESULT_MISS)   ] = 0x01b7,
658         },
659  },
660 };
661
662 /*
663  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
664  * See IA32 SDM Vol 3B 30.6.1.3
665  */
666
667 #define NHM_DMND_DATA_RD        (1 << 0)
668 #define NHM_DMND_RFO            (1 << 1)
669 #define NHM_DMND_IFETCH         (1 << 2)
670 #define NHM_DMND_WB             (1 << 3)
671 #define NHM_PF_DATA_RD          (1 << 4)
672 #define NHM_PF_DATA_RFO         (1 << 5)
673 #define NHM_PF_IFETCH           (1 << 6)
674 #define NHM_OFFCORE_OTHER       (1 << 7)
675 #define NHM_UNCORE_HIT          (1 << 8)
676 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
677 #define NHM_OTHER_CORE_HITM     (1 << 10)
678                                 /* reserved */
679 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
680 #define NHM_REMOTE_DRAM         (1 << 13)
681 #define NHM_LOCAL_DRAM          (1 << 14)
682 #define NHM_NON_DRAM            (1 << 15)
683
684 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
685 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
686
687 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
688 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
689 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
690
691 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
692 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
693 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
694
695 static __initconst const u64 nehalem_hw_cache_extra_regs
696                                 [PERF_COUNT_HW_CACHE_MAX]
697                                 [PERF_COUNT_HW_CACHE_OP_MAX]
698                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
699 {
700  [ C(LL  ) ] = {
701         [ C(OP_READ) ] = {
702                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
703                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
704         },
705         [ C(OP_WRITE) ] = {
706                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
707                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
708         },
709         [ C(OP_PREFETCH) ] = {
710                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
711                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
712         },
713  },
714  [ C(NODE) ] = {
715         [ C(OP_READ) ] = {
716                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
717                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
718         },
719         [ C(OP_WRITE) ] = {
720                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
721                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
722         },
723         [ C(OP_PREFETCH) ] = {
724                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
725                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
726         },
727  },
728 };
729
730 static __initconst const u64 nehalem_hw_cache_event_ids
731                                 [PERF_COUNT_HW_CACHE_MAX]
732                                 [PERF_COUNT_HW_CACHE_OP_MAX]
733                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
734 {
735  [ C(L1D) ] = {
736         [ C(OP_READ) ] = {
737                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
738                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
739         },
740         [ C(OP_WRITE) ] = {
741                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
742                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
743         },
744         [ C(OP_PREFETCH) ] = {
745                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
746                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
747         },
748  },
749  [ C(L1I ) ] = {
750         [ C(OP_READ) ] = {
751                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
752                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
753         },
754         [ C(OP_WRITE) ] = {
755                 [ C(RESULT_ACCESS) ] = -1,
756                 [ C(RESULT_MISS)   ] = -1,
757         },
758         [ C(OP_PREFETCH) ] = {
759                 [ C(RESULT_ACCESS) ] = 0x0,
760                 [ C(RESULT_MISS)   ] = 0x0,
761         },
762  },
763  [ C(LL  ) ] = {
764         [ C(OP_READ) ] = {
765                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
766                 [ C(RESULT_ACCESS) ] = 0x01b7,
767                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
768                 [ C(RESULT_MISS)   ] = 0x01b7,
769         },
770         /*
771          * Use RFO, not WRITEBACK, because a write miss would typically occur
772          * on RFO.
773          */
774         [ C(OP_WRITE) ] = {
775                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
776                 [ C(RESULT_ACCESS) ] = 0x01b7,
777                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
778                 [ C(RESULT_MISS)   ] = 0x01b7,
779         },
780         [ C(OP_PREFETCH) ] = {
781                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
782                 [ C(RESULT_ACCESS) ] = 0x01b7,
783                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
784                 [ C(RESULT_MISS)   ] = 0x01b7,
785         },
786  },
787  [ C(DTLB) ] = {
788         [ C(OP_READ) ] = {
789                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
790                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
791         },
792         [ C(OP_WRITE) ] = {
793                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
794                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
795         },
796         [ C(OP_PREFETCH) ] = {
797                 [ C(RESULT_ACCESS) ] = 0x0,
798                 [ C(RESULT_MISS)   ] = 0x0,
799         },
800  },
801  [ C(ITLB) ] = {
802         [ C(OP_READ) ] = {
803                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
804                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
805         },
806         [ C(OP_WRITE) ] = {
807                 [ C(RESULT_ACCESS) ] = -1,
808                 [ C(RESULT_MISS)   ] = -1,
809         },
810         [ C(OP_PREFETCH) ] = {
811                 [ C(RESULT_ACCESS) ] = -1,
812                 [ C(RESULT_MISS)   ] = -1,
813         },
814  },
815  [ C(BPU ) ] = {
816         [ C(OP_READ) ] = {
817                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
818                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
819         },
820         [ C(OP_WRITE) ] = {
821                 [ C(RESULT_ACCESS) ] = -1,
822                 [ C(RESULT_MISS)   ] = -1,
823         },
824         [ C(OP_PREFETCH) ] = {
825                 [ C(RESULT_ACCESS) ] = -1,
826                 [ C(RESULT_MISS)   ] = -1,
827         },
828  },
829  [ C(NODE) ] = {
830         [ C(OP_READ) ] = {
831                 [ C(RESULT_ACCESS) ] = 0x01b7,
832                 [ C(RESULT_MISS)   ] = 0x01b7,
833         },
834         [ C(OP_WRITE) ] = {
835                 [ C(RESULT_ACCESS) ] = 0x01b7,
836                 [ C(RESULT_MISS)   ] = 0x01b7,
837         },
838         [ C(OP_PREFETCH) ] = {
839                 [ C(RESULT_ACCESS) ] = 0x01b7,
840                 [ C(RESULT_MISS)   ] = 0x01b7,
841         },
842  },
843 };
844
845 static __initconst const u64 core2_hw_cache_event_ids
846                                 [PERF_COUNT_HW_CACHE_MAX]
847                                 [PERF_COUNT_HW_CACHE_OP_MAX]
848                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
849 {
850  [ C(L1D) ] = {
851         [ C(OP_READ) ] = {
852                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
853                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
854         },
855         [ C(OP_WRITE) ] = {
856                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
857                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
858         },
859         [ C(OP_PREFETCH) ] = {
860                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
861                 [ C(RESULT_MISS)   ] = 0,
862         },
863  },
864  [ C(L1I ) ] = {
865         [ C(OP_READ) ] = {
866                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
867                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
868         },
869         [ C(OP_WRITE) ] = {
870                 [ C(RESULT_ACCESS) ] = -1,
871                 [ C(RESULT_MISS)   ] = -1,
872         },
873         [ C(OP_PREFETCH) ] = {
874                 [ C(RESULT_ACCESS) ] = 0,
875                 [ C(RESULT_MISS)   ] = 0,
876         },
877  },
878  [ C(LL  ) ] = {
879         [ C(OP_READ) ] = {
880                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
881                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
882         },
883         [ C(OP_WRITE) ] = {
884                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
885                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
886         },
887         [ C(OP_PREFETCH) ] = {
888                 [ C(RESULT_ACCESS) ] = 0,
889                 [ C(RESULT_MISS)   ] = 0,
890         },
891  },
892  [ C(DTLB) ] = {
893         [ C(OP_READ) ] = {
894                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
895                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
896         },
897         [ C(OP_WRITE) ] = {
898                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
899                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
900         },
901         [ C(OP_PREFETCH) ] = {
902                 [ C(RESULT_ACCESS) ] = 0,
903                 [ C(RESULT_MISS)   ] = 0,
904         },
905  },
906  [ C(ITLB) ] = {
907         [ C(OP_READ) ] = {
908                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
909                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
910         },
911         [ C(OP_WRITE) ] = {
912                 [ C(RESULT_ACCESS) ] = -1,
913                 [ C(RESULT_MISS)   ] = -1,
914         },
915         [ C(OP_PREFETCH) ] = {
916                 [ C(RESULT_ACCESS) ] = -1,
917                 [ C(RESULT_MISS)   ] = -1,
918         },
919  },
920  [ C(BPU ) ] = {
921         [ C(OP_READ) ] = {
922                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
923                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
924         },
925         [ C(OP_WRITE) ] = {
926                 [ C(RESULT_ACCESS) ] = -1,
927                 [ C(RESULT_MISS)   ] = -1,
928         },
929         [ C(OP_PREFETCH) ] = {
930                 [ C(RESULT_ACCESS) ] = -1,
931                 [ C(RESULT_MISS)   ] = -1,
932         },
933  },
934 };
935
936 static __initconst const u64 atom_hw_cache_event_ids
937                                 [PERF_COUNT_HW_CACHE_MAX]
938                                 [PERF_COUNT_HW_CACHE_OP_MAX]
939                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
940 {
941  [ C(L1D) ] = {
942         [ C(OP_READ) ] = {
943                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
944                 [ C(RESULT_MISS)   ] = 0,
945         },
946         [ C(OP_WRITE) ] = {
947                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
948                 [ C(RESULT_MISS)   ] = 0,
949         },
950         [ C(OP_PREFETCH) ] = {
951                 [ C(RESULT_ACCESS) ] = 0x0,
952                 [ C(RESULT_MISS)   ] = 0,
953         },
954  },
955  [ C(L1I ) ] = {
956         [ C(OP_READ) ] = {
957                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
958                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
959         },
960         [ C(OP_WRITE) ] = {
961                 [ C(RESULT_ACCESS) ] = -1,
962                 [ C(RESULT_MISS)   ] = -1,
963         },
964         [ C(OP_PREFETCH) ] = {
965                 [ C(RESULT_ACCESS) ] = 0,
966                 [ C(RESULT_MISS)   ] = 0,
967         },
968  },
969  [ C(LL  ) ] = {
970         [ C(OP_READ) ] = {
971                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
972                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
973         },
974         [ C(OP_WRITE) ] = {
975                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
976                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
977         },
978         [ C(OP_PREFETCH) ] = {
979                 [ C(RESULT_ACCESS) ] = 0,
980                 [ C(RESULT_MISS)   ] = 0,
981         },
982  },
983  [ C(DTLB) ] = {
984         [ C(OP_READ) ] = {
985                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
986                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
987         },
988         [ C(OP_WRITE) ] = {
989                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
990                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
991         },
992         [ C(OP_PREFETCH) ] = {
993                 [ C(RESULT_ACCESS) ] = 0,
994                 [ C(RESULT_MISS)   ] = 0,
995         },
996  },
997  [ C(ITLB) ] = {
998         [ C(OP_READ) ] = {
999                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1000                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1001         },
1002         [ C(OP_WRITE) ] = {
1003                 [ C(RESULT_ACCESS) ] = -1,
1004                 [ C(RESULT_MISS)   ] = -1,
1005         },
1006         [ C(OP_PREFETCH) ] = {
1007                 [ C(RESULT_ACCESS) ] = -1,
1008                 [ C(RESULT_MISS)   ] = -1,
1009         },
1010  },
1011  [ C(BPU ) ] = {
1012         [ C(OP_READ) ] = {
1013                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1014                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1015         },
1016         [ C(OP_WRITE) ] = {
1017                 [ C(RESULT_ACCESS) ] = -1,
1018                 [ C(RESULT_MISS)   ] = -1,
1019         },
1020         [ C(OP_PREFETCH) ] = {
1021                 [ C(RESULT_ACCESS) ] = -1,
1022                 [ C(RESULT_MISS)   ] = -1,
1023         },
1024  },
1025 };
1026
1027 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1028 {
1029         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1030         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1031         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
1032         EVENT_EXTRA_END
1033 };
1034
1035 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1036 #define SLM_DMND_WRITE          SNB_DMND_RFO
1037 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1038
1039 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1040 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1041 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1042
1043 static __initconst const u64 slm_hw_cache_extra_regs
1044                                 [PERF_COUNT_HW_CACHE_MAX]
1045                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1046                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1047 {
1048  [ C(LL  ) ] = {
1049         [ C(OP_READ) ] = {
1050                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1051                 [ C(RESULT_MISS)   ] = SLM_DMND_READ|SLM_LLC_MISS,
1052         },
1053         [ C(OP_WRITE) ] = {
1054                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1055                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1056         },
1057         [ C(OP_PREFETCH) ] = {
1058                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1059                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1060         },
1061  },
1062 };
1063
1064 static __initconst const u64 slm_hw_cache_event_ids
1065                                 [PERF_COUNT_HW_CACHE_MAX]
1066                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1067                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1068 {
1069  [ C(L1D) ] = {
1070         [ C(OP_READ) ] = {
1071                 [ C(RESULT_ACCESS) ] = 0,
1072                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1073         },
1074         [ C(OP_WRITE) ] = {
1075                 [ C(RESULT_ACCESS) ] = 0,
1076                 [ C(RESULT_MISS)   ] = 0,
1077         },
1078         [ C(OP_PREFETCH) ] = {
1079                 [ C(RESULT_ACCESS) ] = 0,
1080                 [ C(RESULT_MISS)   ] = 0,
1081         },
1082  },
1083  [ C(L1I ) ] = {
1084         [ C(OP_READ) ] = {
1085                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1086                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1087         },
1088         [ C(OP_WRITE) ] = {
1089                 [ C(RESULT_ACCESS) ] = -1,
1090                 [ C(RESULT_MISS)   ] = -1,
1091         },
1092         [ C(OP_PREFETCH) ] = {
1093                 [ C(RESULT_ACCESS) ] = 0,
1094                 [ C(RESULT_MISS)   ] = 0,
1095         },
1096  },
1097  [ C(LL  ) ] = {
1098         [ C(OP_READ) ] = {
1099                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1100                 [ C(RESULT_ACCESS) ] = 0x01b7,
1101                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1102                 [ C(RESULT_MISS)   ] = 0x01b7,
1103         },
1104         [ C(OP_WRITE) ] = {
1105                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1106                 [ C(RESULT_ACCESS) ] = 0x01b7,
1107                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1108                 [ C(RESULT_MISS)   ] = 0x01b7,
1109         },
1110         [ C(OP_PREFETCH) ] = {
1111                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1112                 [ C(RESULT_ACCESS) ] = 0x01b7,
1113                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1114                 [ C(RESULT_MISS)   ] = 0x01b7,
1115         },
1116  },
1117  [ C(DTLB) ] = {
1118         [ C(OP_READ) ] = {
1119                 [ C(RESULT_ACCESS) ] = 0,
1120                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1121         },
1122         [ C(OP_WRITE) ] = {
1123                 [ C(RESULT_ACCESS) ] = 0,
1124                 [ C(RESULT_MISS)   ] = 0,
1125         },
1126         [ C(OP_PREFETCH) ] = {
1127                 [ C(RESULT_ACCESS) ] = 0,
1128                 [ C(RESULT_MISS)   ] = 0,
1129         },
1130  },
1131  [ C(ITLB) ] = {
1132         [ C(OP_READ) ] = {
1133                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1134                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES */
1135         },
1136         [ C(OP_WRITE) ] = {
1137                 [ C(RESULT_ACCESS) ] = -1,
1138                 [ C(RESULT_MISS)   ] = -1,
1139         },
1140         [ C(OP_PREFETCH) ] = {
1141                 [ C(RESULT_ACCESS) ] = -1,
1142                 [ C(RESULT_MISS)   ] = -1,
1143         },
1144  },
1145  [ C(BPU ) ] = {
1146         [ C(OP_READ) ] = {
1147                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1148                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1149         },
1150         [ C(OP_WRITE) ] = {
1151                 [ C(RESULT_ACCESS) ] = -1,
1152                 [ C(RESULT_MISS)   ] = -1,
1153         },
1154         [ C(OP_PREFETCH) ] = {
1155                 [ C(RESULT_ACCESS) ] = -1,
1156                 [ C(RESULT_MISS)   ] = -1,
1157         },
1158  },
1159 };
1160
1161 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
1162 {
1163         /* user explicitly requested branch sampling */
1164         if (has_branch_stack(event))
1165                 return true;
1166
1167         /* implicit branch sampling to correct PEBS skid */
1168         if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
1169             x86_pmu.intel_cap.pebs_format < 2)
1170                 return true;
1171
1172         return false;
1173 }
1174
1175 static void intel_pmu_disable_all(void)
1176 {
1177         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1178
1179         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1180
1181         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1182                 intel_pmu_disable_bts();
1183
1184         intel_pmu_pebs_disable_all();
1185         intel_pmu_lbr_disable_all();
1186 }
1187
1188 static void intel_pmu_enable_all(int added)
1189 {
1190         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1191
1192         intel_pmu_pebs_enable_all();
1193         intel_pmu_lbr_enable_all();
1194         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1195                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1196
1197         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1198                 struct perf_event *event =
1199                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1200
1201                 if (WARN_ON_ONCE(!event))
1202                         return;
1203
1204                 intel_pmu_enable_bts(event->hw.config);
1205         }
1206 }
1207
1208 /*
1209  * Workaround for:
1210  *   Intel Errata AAK100 (model 26)
1211  *   Intel Errata AAP53  (model 30)
1212  *   Intel Errata BD53   (model 44)
1213  *
1214  * The official story:
1215  *   These chips need to be 'reset' when adding counters by programming the
1216  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1217  *   in sequence on the same PMC or on different PMCs.
1218  *
1219  * In practise it appears some of these events do in fact count, and
1220  * we need to programm all 4 events.
1221  */
1222 static void intel_pmu_nhm_workaround(void)
1223 {
1224         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1225         static const unsigned long nhm_magic[4] = {
1226                 0x4300B5,
1227                 0x4300D2,
1228                 0x4300B1,
1229                 0x4300B1
1230         };
1231         struct perf_event *event;
1232         int i;
1233
1234         /*
1235          * The Errata requires below steps:
1236          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1237          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1238          *    the corresponding PMCx;
1239          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1240          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1241          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1242          */
1243
1244         /*
1245          * The real steps we choose are a little different from above.
1246          * A) To reduce MSR operations, we don't run step 1) as they
1247          *    are already cleared before this function is called;
1248          * B) Call x86_perf_event_update to save PMCx before configuring
1249          *    PERFEVTSELx with magic number;
1250          * C) With step 5), we do clear only when the PERFEVTSELx is
1251          *    not used currently.
1252          * D) Call x86_perf_event_set_period to restore PMCx;
1253          */
1254
1255         /* We always operate 4 pairs of PERF Counters */
1256         for (i = 0; i < 4; i++) {
1257                 event = cpuc->events[i];
1258                 if (event)
1259                         x86_perf_event_update(event);
1260         }
1261
1262         for (i = 0; i < 4; i++) {
1263                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1264                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1265         }
1266
1267         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1268         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1269
1270         for (i = 0; i < 4; i++) {
1271                 event = cpuc->events[i];
1272
1273                 if (event) {
1274                         x86_perf_event_set_period(event);
1275                         __x86_pmu_enable_event(&event->hw,
1276                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1277                 } else
1278                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1279         }
1280 }
1281
1282 static void intel_pmu_nhm_enable_all(int added)
1283 {
1284         if (added)
1285                 intel_pmu_nhm_workaround();
1286         intel_pmu_enable_all(added);
1287 }
1288
1289 static inline u64 intel_pmu_get_status(void)
1290 {
1291         u64 status;
1292
1293         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1294
1295         return status;
1296 }
1297
1298 static inline void intel_pmu_ack_status(u64 ack)
1299 {
1300         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1301 }
1302
1303 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1304 {
1305         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1306         u64 ctrl_val, mask;
1307
1308         mask = 0xfULL << (idx * 4);
1309
1310         rdmsrl(hwc->config_base, ctrl_val);
1311         ctrl_val &= ~mask;
1312         wrmsrl(hwc->config_base, ctrl_val);
1313 }
1314
1315 static inline bool event_is_checkpointed(struct perf_event *event)
1316 {
1317         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1318 }
1319
1320 static void intel_pmu_disable_event(struct perf_event *event)
1321 {
1322         struct hw_perf_event *hwc = &event->hw;
1323         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1324
1325         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1326                 intel_pmu_disable_bts();
1327                 intel_pmu_drain_bts_buffer();
1328                 return;
1329         }
1330
1331         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1332         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1333         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1334
1335         /*
1336          * must disable before any actual event
1337          * because any event may be combined with LBR
1338          */
1339         if (intel_pmu_needs_lbr_smpl(event))
1340                 intel_pmu_lbr_disable(event);
1341
1342         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1343                 intel_pmu_disable_fixed(hwc);
1344                 return;
1345         }
1346
1347         x86_pmu_disable_event(event);
1348
1349         if (unlikely(event->attr.precise_ip))
1350                 intel_pmu_pebs_disable(event);
1351 }
1352
1353 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1354 {
1355         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1356         u64 ctrl_val, bits, mask;
1357
1358         /*
1359          * Enable IRQ generation (0x8),
1360          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1361          * if requested:
1362          */
1363         bits = 0x8ULL;
1364         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1365                 bits |= 0x2;
1366         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1367                 bits |= 0x1;
1368
1369         /*
1370          * ANY bit is supported in v3 and up
1371          */
1372         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1373                 bits |= 0x4;
1374
1375         bits <<= (idx * 4);
1376         mask = 0xfULL << (idx * 4);
1377
1378         rdmsrl(hwc->config_base, ctrl_val);
1379         ctrl_val &= ~mask;
1380         ctrl_val |= bits;
1381         wrmsrl(hwc->config_base, ctrl_val);
1382 }
1383
1384 static void intel_pmu_enable_event(struct perf_event *event)
1385 {
1386         struct hw_perf_event *hwc = &event->hw;
1387         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1388
1389         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1390                 if (!__this_cpu_read(cpu_hw_events.enabled))
1391                         return;
1392
1393                 intel_pmu_enable_bts(hwc->config);
1394                 return;
1395         }
1396         /*
1397          * must enabled before any actual event
1398          * because any event may be combined with LBR
1399          */
1400         if (intel_pmu_needs_lbr_smpl(event))
1401                 intel_pmu_lbr_enable(event);
1402
1403         if (event->attr.exclude_host)
1404                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1405         if (event->attr.exclude_guest)
1406                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1407
1408         if (unlikely(event_is_checkpointed(event)))
1409                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1410
1411         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1412                 intel_pmu_enable_fixed(hwc);
1413                 return;
1414         }
1415
1416         if (unlikely(event->attr.precise_ip))
1417                 intel_pmu_pebs_enable(event);
1418
1419         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1420 }
1421
1422 /*
1423  * Save and restart an expired event. Called by NMI contexts,
1424  * so it has to be careful about preempting normal event ops:
1425  */
1426 int intel_pmu_save_and_restart(struct perf_event *event)
1427 {
1428         x86_perf_event_update(event);
1429         /*
1430          * For a checkpointed counter always reset back to 0.  This
1431          * avoids a situation where the counter overflows, aborts the
1432          * transaction and is then set back to shortly before the
1433          * overflow, and overflows and aborts again.
1434          */
1435         if (unlikely(event_is_checkpointed(event))) {
1436                 /* No race with NMIs because the counter should not be armed */
1437                 wrmsrl(event->hw.event_base, 0);
1438                 local64_set(&event->hw.prev_count, 0);
1439         }
1440         return x86_perf_event_set_period(event);
1441 }
1442
1443 static void intel_pmu_reset(void)
1444 {
1445         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1446         unsigned long flags;
1447         int idx;
1448
1449         if (!x86_pmu.num_counters)
1450                 return;
1451
1452         local_irq_save(flags);
1453
1454         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1455
1456         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1457                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1458                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1459         }
1460         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1461                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1462
1463         if (ds)
1464                 ds->bts_index = ds->bts_buffer_base;
1465
1466         local_irq_restore(flags);
1467 }
1468
1469 /*
1470  * This handler is triggered by the local APIC, so the APIC IRQ handling
1471  * rules apply:
1472  */
1473 static int intel_pmu_handle_irq(struct pt_regs *regs)
1474 {
1475         struct perf_sample_data data;
1476         struct cpu_hw_events *cpuc;
1477         int bit, loops;
1478         u64 status;
1479         int handled;
1480
1481         cpuc = this_cpu_ptr(&cpu_hw_events);
1482
1483         /*
1484          * No known reason to not always do late ACK,
1485          * but just in case do it opt-in.
1486          */
1487         if (!x86_pmu.late_ack)
1488                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1489         intel_pmu_disable_all();
1490         handled = intel_pmu_drain_bts_buffer();
1491         status = intel_pmu_get_status();
1492         if (!status)
1493                 goto done;
1494
1495         loops = 0;
1496 again:
1497         intel_pmu_ack_status(status);
1498         if (++loops > 100) {
1499                 static bool warned = false;
1500                 if (!warned) {
1501                         WARN(1, "perfevents: irq loop stuck!\n");
1502                         perf_event_print_debug();
1503                         warned = true;
1504                 }
1505                 intel_pmu_reset();
1506                 goto done;
1507         }
1508
1509         inc_irq_stat(apic_perf_irqs);
1510
1511         intel_pmu_lbr_read();
1512
1513         /*
1514          * CondChgd bit 63 doesn't mean any overflow status. Ignore
1515          * and clear the bit.
1516          */
1517         if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1518                 if (!status)
1519                         goto done;
1520         }
1521
1522         /*
1523          * PEBS overflow sets bit 62 in the global status register
1524          */
1525         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1526                 handled++;
1527                 x86_pmu.drain_pebs(regs);
1528         }
1529
1530         /*
1531          * Checkpointed counters can lead to 'spurious' PMIs because the
1532          * rollback caused by the PMI will have cleared the overflow status
1533          * bit. Therefore always force probe these counters.
1534          */
1535         status |= cpuc->intel_cp_status;
1536
1537         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1538                 struct perf_event *event = cpuc->events[bit];
1539
1540                 handled++;
1541
1542                 if (!test_bit(bit, cpuc->active_mask))
1543                         continue;
1544
1545                 if (!intel_pmu_save_and_restart(event))
1546                         continue;
1547
1548                 perf_sample_data_init(&data, 0, event->hw.last_period);
1549
1550                 if (has_branch_stack(event))
1551                         data.br_stack = &cpuc->lbr_stack;
1552
1553                 if (perf_event_overflow(event, &data, regs))
1554                         x86_pmu_stop(event, 0);
1555         }
1556
1557         /*
1558          * Repeat if there is more work to be done:
1559          */
1560         status = intel_pmu_get_status();
1561         if (status)
1562                 goto again;
1563
1564 done:
1565         intel_pmu_enable_all(0);
1566         /*
1567          * Only unmask the NMI after the overflow counters
1568          * have been reset. This avoids spurious NMIs on
1569          * Haswell CPUs.
1570          */
1571         if (x86_pmu.late_ack)
1572                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1573         return handled;
1574 }
1575
1576 static struct event_constraint *
1577 intel_bts_constraints(struct perf_event *event)
1578 {
1579         struct hw_perf_event *hwc = &event->hw;
1580         unsigned int hw_event, bts_event;
1581
1582         if (event->attr.freq)
1583                 return NULL;
1584
1585         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1586         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1587
1588         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1589                 return &bts_constraint;
1590
1591         return NULL;
1592 }
1593
1594 static int intel_alt_er(int idx)
1595 {
1596         if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1597                 return idx;
1598
1599         if (idx == EXTRA_REG_RSP_0)
1600                 return EXTRA_REG_RSP_1;
1601
1602         if (idx == EXTRA_REG_RSP_1)
1603                 return EXTRA_REG_RSP_0;
1604
1605         return idx;
1606 }
1607
1608 static void intel_fixup_er(struct perf_event *event, int idx)
1609 {
1610         event->hw.extra_reg.idx = idx;
1611
1612         if (idx == EXTRA_REG_RSP_0) {
1613                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1614                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1615                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1616         } else if (idx == EXTRA_REG_RSP_1) {
1617                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1618                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1619                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1620         }
1621 }
1622
1623 /*
1624  * manage allocation of shared extra msr for certain events
1625  *
1626  * sharing can be:
1627  * per-cpu: to be shared between the various events on a single PMU
1628  * per-core: per-cpu + shared by HT threads
1629  */
1630 static struct event_constraint *
1631 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1632                                    struct perf_event *event,
1633                                    struct hw_perf_event_extra *reg)
1634 {
1635         struct event_constraint *c = &emptyconstraint;
1636         struct er_account *era;
1637         unsigned long flags;
1638         int idx = reg->idx;
1639
1640         /*
1641          * reg->alloc can be set due to existing state, so for fake cpuc we
1642          * need to ignore this, otherwise we might fail to allocate proper fake
1643          * state for this extra reg constraint. Also see the comment below.
1644          */
1645         if (reg->alloc && !cpuc->is_fake)
1646                 return NULL; /* call x86_get_event_constraint() */
1647
1648 again:
1649         era = &cpuc->shared_regs->regs[idx];
1650         /*
1651          * we use spin_lock_irqsave() to avoid lockdep issues when
1652          * passing a fake cpuc
1653          */
1654         raw_spin_lock_irqsave(&era->lock, flags);
1655
1656         if (!atomic_read(&era->ref) || era->config == reg->config) {
1657
1658                 /*
1659                  * If its a fake cpuc -- as per validate_{group,event}() we
1660                  * shouldn't touch event state and we can avoid doing so
1661                  * since both will only call get_event_constraints() once
1662                  * on each event, this avoids the need for reg->alloc.
1663                  *
1664                  * Not doing the ER fixup will only result in era->reg being
1665                  * wrong, but since we won't actually try and program hardware
1666                  * this isn't a problem either.
1667                  */
1668                 if (!cpuc->is_fake) {
1669                         if (idx != reg->idx)
1670                                 intel_fixup_er(event, idx);
1671
1672                         /*
1673                          * x86_schedule_events() can call get_event_constraints()
1674                          * multiple times on events in the case of incremental
1675                          * scheduling(). reg->alloc ensures we only do the ER
1676                          * allocation once.
1677                          */
1678                         reg->alloc = 1;
1679                 }
1680
1681                 /* lock in msr value */
1682                 era->config = reg->config;
1683                 era->reg = reg->reg;
1684
1685                 /* one more user */
1686                 atomic_inc(&era->ref);
1687
1688                 /*
1689                  * need to call x86_get_event_constraint()
1690                  * to check if associated event has constraints
1691                  */
1692                 c = NULL;
1693         } else {
1694                 idx = intel_alt_er(idx);
1695                 if (idx != reg->idx) {
1696                         raw_spin_unlock_irqrestore(&era->lock, flags);
1697                         goto again;
1698                 }
1699         }
1700         raw_spin_unlock_irqrestore(&era->lock, flags);
1701
1702         return c;
1703 }
1704
1705 static void
1706 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1707                                    struct hw_perf_event_extra *reg)
1708 {
1709         struct er_account *era;
1710
1711         /*
1712          * Only put constraint if extra reg was actually allocated. Also takes
1713          * care of event which do not use an extra shared reg.
1714          *
1715          * Also, if this is a fake cpuc we shouldn't touch any event state
1716          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1717          * either since it'll be thrown out.
1718          */
1719         if (!reg->alloc || cpuc->is_fake)
1720                 return;
1721
1722         era = &cpuc->shared_regs->regs[reg->idx];
1723
1724         /* one fewer user */
1725         atomic_dec(&era->ref);
1726
1727         /* allocate again next time */
1728         reg->alloc = 0;
1729 }
1730
1731 static struct event_constraint *
1732 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1733                               struct perf_event *event)
1734 {
1735         struct event_constraint *c = NULL, *d;
1736         struct hw_perf_event_extra *xreg, *breg;
1737
1738         xreg = &event->hw.extra_reg;
1739         if (xreg->idx != EXTRA_REG_NONE) {
1740                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1741                 if (c == &emptyconstraint)
1742                         return c;
1743         }
1744         breg = &event->hw.branch_reg;
1745         if (breg->idx != EXTRA_REG_NONE) {
1746                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1747                 if (d == &emptyconstraint) {
1748                         __intel_shared_reg_put_constraints(cpuc, xreg);
1749                         c = d;
1750                 }
1751         }
1752         return c;
1753 }
1754
1755 struct event_constraint *
1756 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1757 {
1758         struct event_constraint *c;
1759
1760         if (x86_pmu.event_constraints) {
1761                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1762                         if ((event->hw.config & c->cmask) == c->code) {
1763                                 event->hw.flags |= c->flags;
1764                                 return c;
1765                         }
1766                 }
1767         }
1768
1769         return &unconstrained;
1770 }
1771
1772 static struct event_constraint *
1773 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1774 {
1775         struct event_constraint *c;
1776
1777         c = intel_bts_constraints(event);
1778         if (c)
1779                 return c;
1780
1781         c = intel_pebs_constraints(event);
1782         if (c)
1783                 return c;
1784
1785         c = intel_shared_regs_constraints(cpuc, event);
1786         if (c)
1787                 return c;
1788
1789         return x86_get_event_constraints(cpuc, event);
1790 }
1791
1792 static void
1793 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1794                                         struct perf_event *event)
1795 {
1796         struct hw_perf_event_extra *reg;
1797
1798         reg = &event->hw.extra_reg;
1799         if (reg->idx != EXTRA_REG_NONE)
1800                 __intel_shared_reg_put_constraints(cpuc, reg);
1801
1802         reg = &event->hw.branch_reg;
1803         if (reg->idx != EXTRA_REG_NONE)
1804                 __intel_shared_reg_put_constraints(cpuc, reg);
1805 }
1806
1807 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1808                                         struct perf_event *event)
1809 {
1810         intel_put_shared_regs_event_constraints(cpuc, event);
1811 }
1812
1813 static void intel_pebs_aliases_core2(struct perf_event *event)
1814 {
1815         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1816                 /*
1817                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1818                  * (0x003c) so that we can use it with PEBS.
1819                  *
1820                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1821                  * PEBS capable. However we can use INST_RETIRED.ANY_P
1822                  * (0x00c0), which is a PEBS capable event, to get the same
1823                  * count.
1824                  *
1825                  * INST_RETIRED.ANY_P counts the number of cycles that retires
1826                  * CNTMASK instructions. By setting CNTMASK to a value (16)
1827                  * larger than the maximum number of instructions that can be
1828                  * retired per cycle (4) and then inverting the condition, we
1829                  * count all cycles that retire 16 or less instructions, which
1830                  * is every cycle.
1831                  *
1832                  * Thereby we gain a PEBS capable cycle counter.
1833                  */
1834                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1835
1836                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1837                 event->hw.config = alt_config;
1838         }
1839 }
1840
1841 static void intel_pebs_aliases_snb(struct perf_event *event)
1842 {
1843         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1844                 /*
1845                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1846                  * (0x003c) so that we can use it with PEBS.
1847                  *
1848                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1849                  * PEBS capable. However we can use UOPS_RETIRED.ALL
1850                  * (0x01c2), which is a PEBS capable event, to get the same
1851                  * count.
1852                  *
1853                  * UOPS_RETIRED.ALL counts the number of cycles that retires
1854                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1855                  * larger than the maximum number of micro-ops that can be
1856                  * retired per cycle (4) and then inverting the condition, we
1857                  * count all cycles that retire 16 or less micro-ops, which
1858                  * is every cycle.
1859                  *
1860                  * Thereby we gain a PEBS capable cycle counter.
1861                  */
1862                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1863
1864                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1865                 event->hw.config = alt_config;
1866         }
1867 }
1868
1869 static int intel_pmu_hw_config(struct perf_event *event)
1870 {
1871         int ret = x86_pmu_hw_config(event);
1872
1873         if (ret)
1874                 return ret;
1875
1876         if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1877                 x86_pmu.pebs_aliases(event);
1878
1879         if (intel_pmu_needs_lbr_smpl(event)) {
1880                 ret = intel_pmu_setup_lbr_filter(event);
1881                 if (ret)
1882                         return ret;
1883         }
1884
1885         if (event->attr.type != PERF_TYPE_RAW)
1886                 return 0;
1887
1888         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1889                 return 0;
1890
1891         if (x86_pmu.version < 3)
1892                 return -EINVAL;
1893
1894         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1895                 return -EACCES;
1896
1897         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1898
1899         return 0;
1900 }
1901
1902 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1903 {
1904         if (x86_pmu.guest_get_msrs)
1905                 return x86_pmu.guest_get_msrs(nr);
1906         *nr = 0;
1907         return NULL;
1908 }
1909 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1910
1911 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1912 {
1913         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1914         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1915
1916         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1917         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1918         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1919         /*
1920          * If PMU counter has PEBS enabled it is not enough to disable counter
1921          * on a guest entry since PEBS memory write can overshoot guest entry
1922          * and corrupt guest memory. Disabling PEBS solves the problem.
1923          */
1924         arr[1].msr = MSR_IA32_PEBS_ENABLE;
1925         arr[1].host = cpuc->pebs_enabled;
1926         arr[1].guest = 0;
1927
1928         *nr = 2;
1929         return arr;
1930 }
1931
1932 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1933 {
1934         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1935         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1936         int idx;
1937
1938         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1939                 struct perf_event *event = cpuc->events[idx];
1940
1941                 arr[idx].msr = x86_pmu_config_addr(idx);
1942                 arr[idx].host = arr[idx].guest = 0;
1943
1944                 if (!test_bit(idx, cpuc->active_mask))
1945                         continue;
1946
1947                 arr[idx].host = arr[idx].guest =
1948                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1949
1950                 if (event->attr.exclude_host)
1951                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1952                 else if (event->attr.exclude_guest)
1953                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1954         }
1955
1956         *nr = x86_pmu.num_counters;
1957         return arr;
1958 }
1959
1960 static void core_pmu_enable_event(struct perf_event *event)
1961 {
1962         if (!event->attr.exclude_host)
1963                 x86_pmu_enable_event(event);
1964 }
1965
1966 static void core_pmu_enable_all(int added)
1967 {
1968         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1969         int idx;
1970
1971         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1972                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1973
1974                 if (!test_bit(idx, cpuc->active_mask) ||
1975                                 cpuc->events[idx]->attr.exclude_host)
1976                         continue;
1977
1978                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1979         }
1980 }
1981
1982 static int hsw_hw_config(struct perf_event *event)
1983 {
1984         int ret = intel_pmu_hw_config(event);
1985
1986         if (ret)
1987                 return ret;
1988         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
1989                 return 0;
1990         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
1991
1992         /*
1993          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
1994          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
1995          * this combination.
1996          */
1997         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
1998              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
1999               event->attr.precise_ip > 0))
2000                 return -EOPNOTSUPP;
2001
2002         if (event_is_checkpointed(event)) {
2003                 /*
2004                  * Sampling of checkpointed events can cause situations where
2005                  * the CPU constantly aborts because of a overflow, which is
2006                  * then checkpointed back and ignored. Forbid checkpointing
2007                  * for sampling.
2008                  *
2009                  * But still allow a long sampling period, so that perf stat
2010                  * from KVM works.
2011                  */
2012                 if (event->attr.sample_period > 0 &&
2013                     event->attr.sample_period < 0x7fffffff)
2014                         return -EOPNOTSUPP;
2015         }
2016         return 0;
2017 }
2018
2019 static struct event_constraint counter2_constraint =
2020                         EVENT_CONSTRAINT(0, 0x4, 0);
2021
2022 static struct event_constraint *
2023 hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
2024 {
2025         struct event_constraint *c = intel_get_event_constraints(cpuc, event);
2026
2027         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2028         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2029                 if (c->idxmsk64 & (1U << 2))
2030                         return &counter2_constraint;
2031                 return &emptyconstraint;
2032         }
2033
2034         return c;
2035 }
2036
2037 /*
2038  * Broadwell:
2039  * The INST_RETIRED.ALL period always needs to have lowest
2040  * 6bits cleared (BDM57). It shall not use a period smaller
2041  * than 100 (BDM11). We combine the two to enforce
2042  * a min-period of 128.
2043  */
2044 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2045 {
2046         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2047                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
2048                 if (left < 128)
2049                         left = 128;
2050                 left &= ~0x3fu;
2051         }
2052         return left;
2053 }
2054
2055 PMU_FORMAT_ATTR(event,  "config:0-7"    );
2056 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
2057 PMU_FORMAT_ATTR(edge,   "config:18"     );
2058 PMU_FORMAT_ATTR(pc,     "config:19"     );
2059 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
2060 PMU_FORMAT_ATTR(inv,    "config:23"     );
2061 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
2062 PMU_FORMAT_ATTR(in_tx,  "config:32");
2063 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2064
2065 static struct attribute *intel_arch_formats_attr[] = {
2066         &format_attr_event.attr,
2067         &format_attr_umask.attr,
2068         &format_attr_edge.attr,
2069         &format_attr_pc.attr,
2070         &format_attr_inv.attr,
2071         &format_attr_cmask.attr,
2072         NULL,
2073 };
2074
2075 ssize_t intel_event_sysfs_show(char *page, u64 config)
2076 {
2077         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2078
2079         return x86_event_sysfs_show(page, config, event);
2080 }
2081
2082 static __initconst const struct x86_pmu core_pmu = {
2083         .name                   = "core",
2084         .handle_irq             = x86_pmu_handle_irq,
2085         .disable_all            = x86_pmu_disable_all,
2086         .enable_all             = core_pmu_enable_all,
2087         .enable                 = core_pmu_enable_event,
2088         .disable                = x86_pmu_disable_event,
2089         .hw_config              = x86_pmu_hw_config,
2090         .schedule_events        = x86_schedule_events,
2091         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2092         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2093         .event_map              = intel_pmu_event_map,
2094         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2095         .apic                   = 1,
2096         /*
2097          * Intel PMCs cannot be accessed sanely above 32 bit width,
2098          * so we install an artificial 1<<31 period regardless of
2099          * the generic event period:
2100          */
2101         .max_period             = (1ULL << 31) - 1,
2102         .get_event_constraints  = intel_get_event_constraints,
2103         .put_event_constraints  = intel_put_event_constraints,
2104         .event_constraints      = intel_core_event_constraints,
2105         .guest_get_msrs         = core_guest_get_msrs,
2106         .format_attrs           = intel_arch_formats_attr,
2107         .events_sysfs_show      = intel_event_sysfs_show,
2108 };
2109
2110 struct intel_shared_regs *allocate_shared_regs(int cpu)
2111 {
2112         struct intel_shared_regs *regs;
2113         int i;
2114
2115         regs = kzalloc_node(sizeof(struct intel_shared_regs),
2116                             GFP_KERNEL, cpu_to_node(cpu));
2117         if (regs) {
2118                 /*
2119                  * initialize the locks to keep lockdep happy
2120                  */
2121                 for (i = 0; i < EXTRA_REG_MAX; i++)
2122                         raw_spin_lock_init(&regs->regs[i].lock);
2123
2124                 regs->core_id = -1;
2125         }
2126         return regs;
2127 }
2128
2129 static int intel_pmu_cpu_prepare(int cpu)
2130 {
2131         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2132
2133         if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
2134                 return NOTIFY_OK;
2135
2136         cpuc->shared_regs = allocate_shared_regs(cpu);
2137         if (!cpuc->shared_regs)
2138                 return NOTIFY_BAD;
2139
2140         return NOTIFY_OK;
2141 }
2142
2143 static void intel_pmu_cpu_starting(int cpu)
2144 {
2145         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2146         int core_id = topology_core_id(cpu);
2147         int i;
2148
2149         init_debug_store_on_cpu(cpu);
2150         /*
2151          * Deal with CPUs that don't clear their LBRs on power-up.
2152          */
2153         intel_pmu_lbr_reset();
2154
2155         cpuc->lbr_sel = NULL;
2156
2157         if (!cpuc->shared_regs)
2158                 return;
2159
2160         if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
2161                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2162                         struct intel_shared_regs *pc;
2163
2164                         pc = per_cpu(cpu_hw_events, i).shared_regs;
2165                         if (pc && pc->core_id == core_id) {
2166                                 cpuc->kfree_on_online = cpuc->shared_regs;
2167                                 cpuc->shared_regs = pc;
2168                                 break;
2169                         }
2170                 }
2171                 cpuc->shared_regs->core_id = core_id;
2172                 cpuc->shared_regs->refcnt++;
2173         }
2174
2175         if (x86_pmu.lbr_sel_map)
2176                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2177 }
2178
2179 static void intel_pmu_cpu_dying(int cpu)
2180 {
2181         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2182         struct intel_shared_regs *pc;
2183
2184         pc = cpuc->shared_regs;
2185         if (pc) {
2186                 if (pc->core_id == -1 || --pc->refcnt == 0)
2187                         kfree(pc);
2188                 cpuc->shared_regs = NULL;
2189         }
2190
2191         fini_debug_store_on_cpu(cpu);
2192 }
2193
2194 static void intel_pmu_flush_branch_stack(void)
2195 {
2196         /*
2197          * Intel LBR does not tag entries with the
2198          * PID of the current task, then we need to
2199          * flush it on ctxsw
2200          * For now, we simply reset it
2201          */
2202         if (x86_pmu.lbr_nr)
2203                 intel_pmu_lbr_reset();
2204 }
2205
2206 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2207
2208 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2209
2210 static struct attribute *intel_arch3_formats_attr[] = {
2211         &format_attr_event.attr,
2212         &format_attr_umask.attr,
2213         &format_attr_edge.attr,
2214         &format_attr_pc.attr,
2215         &format_attr_any.attr,
2216         &format_attr_inv.attr,
2217         &format_attr_cmask.attr,
2218         &format_attr_in_tx.attr,
2219         &format_attr_in_tx_cp.attr,
2220
2221         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2222         &format_attr_ldlat.attr, /* PEBS load latency */
2223         NULL,
2224 };
2225
2226 static __initconst const struct x86_pmu intel_pmu = {
2227         .name                   = "Intel",
2228         .handle_irq             = intel_pmu_handle_irq,
2229         .disable_all            = intel_pmu_disable_all,
2230         .enable_all             = intel_pmu_enable_all,
2231         .enable                 = intel_pmu_enable_event,
2232         .disable                = intel_pmu_disable_event,
2233         .hw_config              = intel_pmu_hw_config,
2234         .schedule_events        = x86_schedule_events,
2235         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2236         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2237         .event_map              = intel_pmu_event_map,
2238         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2239         .apic                   = 1,
2240         /*
2241          * Intel PMCs cannot be accessed sanely above 32 bit width,
2242          * so we install an artificial 1<<31 period regardless of
2243          * the generic event period:
2244          */
2245         .max_period             = (1ULL << 31) - 1,
2246         .get_event_constraints  = intel_get_event_constraints,
2247         .put_event_constraints  = intel_put_event_constraints,
2248         .pebs_aliases           = intel_pebs_aliases_core2,
2249
2250         .format_attrs           = intel_arch3_formats_attr,
2251         .events_sysfs_show      = intel_event_sysfs_show,
2252
2253         .cpu_prepare            = intel_pmu_cpu_prepare,
2254         .cpu_starting           = intel_pmu_cpu_starting,
2255         .cpu_dying              = intel_pmu_cpu_dying,
2256         .guest_get_msrs         = intel_guest_get_msrs,
2257         .flush_branch_stack     = intel_pmu_flush_branch_stack,
2258 };
2259
2260 static __init void intel_clovertown_quirk(void)
2261 {
2262         /*
2263          * PEBS is unreliable due to:
2264          *
2265          *   AJ67  - PEBS may experience CPL leaks
2266          *   AJ68  - PEBS PMI may be delayed by one event
2267          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2268          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2269          *
2270          * AJ67 could be worked around by restricting the OS/USR flags.
2271          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2272          *
2273          * AJ106 could possibly be worked around by not allowing LBR
2274          *       usage from PEBS, including the fixup.
2275          * AJ68  could possibly be worked around by always programming
2276          *       a pebs_event_reset[0] value and coping with the lost events.
2277          *
2278          * But taken together it might just make sense to not enable PEBS on
2279          * these chips.
2280          */
2281         pr_warn("PEBS disabled due to CPU errata\n");
2282         x86_pmu.pebs = 0;
2283         x86_pmu.pebs_constraints = NULL;
2284 }
2285
2286 static int intel_snb_pebs_broken(int cpu)
2287 {
2288         u32 rev = UINT_MAX; /* default to broken for unknown models */
2289
2290         switch (cpu_data(cpu).x86_model) {
2291         case 42: /* SNB */
2292                 rev = 0x28;
2293                 break;
2294
2295         case 45: /* SNB-EP */
2296                 switch (cpu_data(cpu).x86_mask) {
2297                 case 6: rev = 0x618; break;
2298                 case 7: rev = 0x70c; break;
2299                 }
2300         }
2301
2302         return (cpu_data(cpu).microcode < rev);
2303 }
2304
2305 static void intel_snb_check_microcode(void)
2306 {
2307         int pebs_broken = 0;
2308         int cpu;
2309
2310         get_online_cpus();
2311         for_each_online_cpu(cpu) {
2312                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2313                         break;
2314         }
2315         put_online_cpus();
2316
2317         if (pebs_broken == x86_pmu.pebs_broken)
2318                 return;
2319
2320         /*
2321          * Serialized by the microcode lock..
2322          */
2323         if (x86_pmu.pebs_broken) {
2324                 pr_info("PEBS enabled due to microcode update\n");
2325                 x86_pmu.pebs_broken = 0;
2326         } else {
2327                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2328                 x86_pmu.pebs_broken = 1;
2329         }
2330 }
2331
2332 /*
2333  * Under certain circumstances, access certain MSR may cause #GP.
2334  * The function tests if the input MSR can be safely accessed.
2335  */
2336 static bool check_msr(unsigned long msr, u64 mask)
2337 {
2338         u64 val_old, val_new, val_tmp;
2339
2340         /*
2341          * Read the current value, change it and read it back to see if it
2342          * matches, this is needed to detect certain hardware emulators
2343          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2344          */
2345         if (rdmsrl_safe(msr, &val_old))
2346                 return false;
2347
2348         /*
2349          * Only change the bits which can be updated by wrmsrl.
2350          */
2351         val_tmp = val_old ^ mask;
2352         if (wrmsrl_safe(msr, val_tmp) ||
2353             rdmsrl_safe(msr, &val_new))
2354                 return false;
2355
2356         if (val_new != val_tmp)
2357                 return false;
2358
2359         /* Here it's sure that the MSR can be safely accessed.
2360          * Restore the old value and return.
2361          */
2362         wrmsrl(msr, val_old);
2363
2364         return true;
2365 }
2366
2367 static __init void intel_sandybridge_quirk(void)
2368 {
2369         x86_pmu.check_microcode = intel_snb_check_microcode;
2370         intel_snb_check_microcode();
2371 }
2372
2373 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2374         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2375         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2376         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2377         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2378         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2379         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2380         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2381 };
2382
2383 static __init void intel_arch_events_quirk(void)
2384 {
2385         int bit;
2386
2387         /* disable event that reported as not presend by cpuid */
2388         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2389                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2390                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2391                         intel_arch_events_map[bit].name);
2392         }
2393 }
2394
2395 static __init void intel_nehalem_quirk(void)
2396 {
2397         union cpuid10_ebx ebx;
2398
2399         ebx.full = x86_pmu.events_maskl;
2400         if (ebx.split.no_branch_misses_retired) {
2401                 /*
2402                  * Erratum AAJ80 detected, we work it around by using
2403                  * the BR_MISP_EXEC.ANY event. This will over-count
2404                  * branch-misses, but it's still much better than the
2405                  * architectural event which is often completely bogus:
2406                  */
2407                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2408                 ebx.split.no_branch_misses_retired = 0;
2409                 x86_pmu.events_maskl = ebx.full;
2410                 pr_info("CPU erratum AAJ80 worked around\n");
2411         }
2412 }
2413
2414 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
2415 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
2416
2417 /* Haswell special events */
2418 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
2419 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
2420 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
2421 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
2422 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
2423 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
2424 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
2425 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
2426 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
2427 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
2428 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
2429 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
2430
2431 static struct attribute *hsw_events_attrs[] = {
2432         EVENT_PTR(tx_start),
2433         EVENT_PTR(tx_commit),
2434         EVENT_PTR(tx_abort),
2435         EVENT_PTR(tx_capacity),
2436         EVENT_PTR(tx_conflict),
2437         EVENT_PTR(el_start),
2438         EVENT_PTR(el_commit),
2439         EVENT_PTR(el_abort),
2440         EVENT_PTR(el_capacity),
2441         EVENT_PTR(el_conflict),
2442         EVENT_PTR(cycles_t),
2443         EVENT_PTR(cycles_ct),
2444         EVENT_PTR(mem_ld_hsw),
2445         EVENT_PTR(mem_st_hsw),
2446         NULL
2447 };
2448
2449 __init int intel_pmu_init(void)
2450 {
2451         union cpuid10_edx edx;
2452         union cpuid10_eax eax;
2453         union cpuid10_ebx ebx;
2454         struct event_constraint *c;
2455         unsigned int unused;
2456         struct extra_reg *er;
2457         int version, i;
2458
2459         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2460                 switch (boot_cpu_data.x86) {
2461                 case 0x6:
2462                         return p6_pmu_init();
2463                 case 0xb:
2464                         return knc_pmu_init();
2465                 case 0xf:
2466                         return p4_pmu_init();
2467                 }
2468                 return -ENODEV;
2469         }
2470
2471         /*
2472          * Check whether the Architectural PerfMon supports
2473          * Branch Misses Retired hw_event or not.
2474          */
2475         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2476         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2477                 return -ENODEV;
2478
2479         version = eax.split.version_id;
2480         if (version < 2)
2481                 x86_pmu = core_pmu;
2482         else
2483                 x86_pmu = intel_pmu;
2484
2485         x86_pmu.version                 = version;
2486         x86_pmu.num_counters            = eax.split.num_counters;
2487         x86_pmu.cntval_bits             = eax.split.bit_width;
2488         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
2489
2490         x86_pmu.events_maskl            = ebx.full;
2491         x86_pmu.events_mask_len         = eax.split.mask_length;
2492
2493         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
2494
2495         /*
2496          * Quirk: v2 perfmon does not report fixed-purpose events, so
2497          * assume at least 3 events:
2498          */
2499         if (version > 1)
2500                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2501
2502         if (boot_cpu_has(X86_FEATURE_PDCM)) {
2503                 u64 capabilities;
2504
2505                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
2506                 x86_pmu.intel_cap.capabilities = capabilities;
2507         }
2508
2509         intel_ds_init();
2510
2511         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
2512
2513         /*
2514          * Install the hw-cache-events table:
2515          */
2516         switch (boot_cpu_data.x86_model) {
2517         case 14: /* 65nm Core "Yonah" */
2518                 pr_cont("Core events, ");
2519                 break;
2520
2521         case 15: /* 65nm Core2 "Merom"          */
2522                 x86_add_quirk(intel_clovertown_quirk);
2523         case 22: /* 65nm Core2 "Merom-L"        */
2524         case 23: /* 45nm Core2 "Penryn"         */
2525         case 29: /* 45nm Core2 "Dunnington (MP) */
2526                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2527                        sizeof(hw_cache_event_ids));
2528
2529                 intel_pmu_lbr_init_core();
2530
2531                 x86_pmu.event_constraints = intel_core2_event_constraints;
2532                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2533                 pr_cont("Core2 events, ");
2534                 break;
2535
2536         case 30: /* 45nm Nehalem    */
2537         case 26: /* 45nm Nehalem-EP */
2538         case 46: /* 45nm Nehalem-EX */
2539                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2540                        sizeof(hw_cache_event_ids));
2541                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2542                        sizeof(hw_cache_extra_regs));
2543
2544                 intel_pmu_lbr_init_nhm();
2545
2546                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2547                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2548                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2549                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
2550
2551                 x86_pmu.cpu_events = nhm_events_attrs;
2552
2553                 /* UOPS_ISSUED.STALLED_CYCLES */
2554                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2555                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2556                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2557                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2558                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2559
2560                 x86_add_quirk(intel_nehalem_quirk);
2561
2562                 pr_cont("Nehalem events, ");
2563                 break;
2564
2565         case 28: /* 45nm Atom "Pineview"   */
2566         case 38: /* 45nm Atom "Lincroft"   */
2567         case 39: /* 32nm Atom "Penwell"    */
2568         case 53: /* 32nm Atom "Cloverview" */
2569         case 54: /* 32nm Atom "Cedarview"  */
2570                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2571                        sizeof(hw_cache_event_ids));
2572
2573                 intel_pmu_lbr_init_atom();
2574
2575                 x86_pmu.event_constraints = intel_gen_event_constraints;
2576                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2577                 pr_cont("Atom events, ");
2578                 break;
2579
2580         case 55: /* 22nm Atom "Silvermont"                */
2581         case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
2582                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
2583                         sizeof(hw_cache_event_ids));
2584                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
2585                        sizeof(hw_cache_extra_regs));
2586
2587                 intel_pmu_lbr_init_atom();
2588
2589                 x86_pmu.event_constraints = intel_slm_event_constraints;
2590                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
2591                 x86_pmu.extra_regs = intel_slm_extra_regs;
2592                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2593                 pr_cont("Silvermont events, ");
2594                 break;
2595
2596         case 37: /* 32nm Westmere    */
2597         case 44: /* 32nm Westmere-EP */
2598         case 47: /* 32nm Westmere-EX */
2599                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2600                        sizeof(hw_cache_event_ids));
2601                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2602                        sizeof(hw_cache_extra_regs));
2603
2604                 intel_pmu_lbr_init_nhm();
2605
2606                 x86_pmu.event_constraints = intel_westmere_event_constraints;
2607                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2608                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2609                 x86_pmu.extra_regs = intel_westmere_extra_regs;
2610                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2611
2612                 x86_pmu.cpu_events = nhm_events_attrs;
2613
2614                 /* UOPS_ISSUED.STALLED_CYCLES */
2615                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2616                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2617                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2618                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2619                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2620
2621                 pr_cont("Westmere events, ");
2622                 break;
2623
2624         case 42: /* 32nm SandyBridge         */
2625         case 45: /* 32nm SandyBridge-E/EN/EP */
2626                 x86_add_quirk(intel_sandybridge_quirk);
2627                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2628                        sizeof(hw_cache_event_ids));
2629                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2630                        sizeof(hw_cache_extra_regs));
2631
2632                 intel_pmu_lbr_init_snb();
2633
2634                 x86_pmu.event_constraints = intel_snb_event_constraints;
2635                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2636                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2637                 if (boot_cpu_data.x86_model == 45)
2638                         x86_pmu.extra_regs = intel_snbep_extra_regs;
2639                 else
2640                         x86_pmu.extra_regs = intel_snb_extra_regs;
2641                 /* all extra regs are per-cpu when HT is on */
2642                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2643                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2644
2645                 x86_pmu.cpu_events = snb_events_attrs;
2646
2647                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2648                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2649                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2650                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2651                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2652                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2653
2654                 pr_cont("SandyBridge events, ");
2655                 break;
2656
2657         case 58: /* 22nm IvyBridge       */
2658         case 62: /* 22nm IvyBridge-EP/EX */
2659                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2660                        sizeof(hw_cache_event_ids));
2661                 /* dTLB-load-misses on IVB is different than SNB */
2662                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
2663
2664                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2665                        sizeof(hw_cache_extra_regs));
2666
2667                 intel_pmu_lbr_init_snb();
2668
2669                 x86_pmu.event_constraints = intel_ivb_event_constraints;
2670                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2671                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2672                 if (boot_cpu_data.x86_model == 62)
2673                         x86_pmu.extra_regs = intel_snbep_extra_regs;
2674                 else
2675                         x86_pmu.extra_regs = intel_snb_extra_regs;
2676                 /* all extra regs are per-cpu when HT is on */
2677                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2678                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2679
2680                 x86_pmu.cpu_events = snb_events_attrs;
2681
2682                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2683                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2684                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2685
2686                 pr_cont("IvyBridge events, ");
2687                 break;
2688
2689
2690         case 60: /* 22nm Haswell Core */
2691         case 63: /* 22nm Haswell Server */
2692         case 69: /* 22nm Haswell ULT */
2693         case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
2694                 x86_pmu.late_ack = true;
2695                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2696                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2697
2698                 intel_pmu_lbr_init_snb();
2699
2700                 x86_pmu.event_constraints = intel_hsw_event_constraints;
2701                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2702                 x86_pmu.extra_regs = intel_snbep_extra_regs;
2703                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2704                 /* all extra regs are per-cpu when HT is on */
2705                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2706                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2707
2708                 x86_pmu.hw_config = hsw_hw_config;
2709                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
2710                 x86_pmu.cpu_events = hsw_events_attrs;
2711                 x86_pmu.lbr_double_abort = true;
2712                 pr_cont("Haswell events, ");
2713                 break;
2714
2715         case 61: /* 14nm Broadwell Core-M */
2716                 x86_pmu.late_ack = true;
2717                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2718                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2719
2720                 intel_pmu_lbr_init_snb();
2721
2722                 x86_pmu.event_constraints = intel_bdw_event_constraints;
2723                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2724                 x86_pmu.extra_regs = intel_snbep_extra_regs;
2725                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2726                 /* all extra regs are per-cpu when HT is on */
2727                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2728                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2729
2730                 x86_pmu.hw_config = hsw_hw_config;
2731                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
2732                 x86_pmu.cpu_events = hsw_events_attrs;
2733                 x86_pmu.limit_period = bdw_limit_period;
2734                 pr_cont("Broadwell events, ");
2735                 break;
2736
2737         default:
2738                 switch (x86_pmu.version) {
2739                 case 1:
2740                         x86_pmu.event_constraints = intel_v1_event_constraints;
2741                         pr_cont("generic architected perfmon v1, ");
2742                         break;
2743                 default:
2744                         /*
2745                          * default constraints for v2 and up
2746                          */
2747                         x86_pmu.event_constraints = intel_gen_event_constraints;
2748                         pr_cont("generic architected perfmon, ");
2749                         break;
2750                 }
2751         }
2752
2753         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2754                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2755                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2756                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2757         }
2758         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2759
2760         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2761                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2762                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2763                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2764         }
2765
2766         x86_pmu.intel_ctrl |=
2767                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2768
2769         if (x86_pmu.event_constraints) {
2770                 /*
2771                  * event on fixed counter2 (REF_CYCLES) only works on this
2772                  * counter, so do not extend mask to generic counters
2773                  */
2774                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2775                         if (c->cmask != FIXED_EVENT_FLAGS
2776                             || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2777                                 continue;
2778                         }
2779
2780                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2781                         c->weight += x86_pmu.num_counters;
2782                 }
2783         }
2784
2785         /*
2786          * Access LBR MSR may cause #GP under certain circumstances.
2787          * E.g. KVM doesn't support LBR MSR
2788          * Check all LBT MSR here.
2789          * Disable LBR access if any LBR MSRs can not be accessed.
2790          */
2791         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
2792                 x86_pmu.lbr_nr = 0;
2793         for (i = 0; i < x86_pmu.lbr_nr; i++) {
2794                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
2795                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
2796                         x86_pmu.lbr_nr = 0;
2797         }
2798
2799         /*
2800          * Access extra MSR may cause #GP under certain circumstances.
2801          * E.g. KVM doesn't support offcore event
2802          * Check all extra_regs here.
2803          */
2804         if (x86_pmu.extra_regs) {
2805                 for (er = x86_pmu.extra_regs; er->msr; er++) {
2806                         er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
2807                         /* Disable LBR select mapping */
2808                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
2809                                 x86_pmu.lbr_sel_map = NULL;
2810                 }
2811         }
2812
2813         /* Support full width counters using alternative MSR range */
2814         if (x86_pmu.intel_cap.full_width_write) {
2815                 x86_pmu.max_period = x86_pmu.cntval_mask;
2816                 x86_pmu.perfctr = MSR_IA32_PMC0;
2817                 pr_cont("full-width counters, ");
2818         }
2819
2820         return 0;
2821 }