spi/imx: Use dev_name() for request_irq() to distinguish SPIs
[cascardo/linux.git] / arch / x86 / kernel / i387.c
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *      Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <linux/module.h>
9 #include <linux/regset.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12
13 #include <asm/sigcontext.h>
14 #include <asm/processor.h>
15 #include <asm/math_emu.h>
16 #include <asm/uaccess.h>
17 #include <asm/ptrace.h>
18 #include <asm/i387.h>
19 #include <asm/fpu-internal.h>
20 #include <asm/user.h>
21
22 /*
23  * Were we in an interrupt that interrupted kernel mode?
24  *
25  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
26  * pair does nothing at all: the thread must not have fpu (so
27  * that we don't try to save the FPU state), and TS must
28  * be set (so that the clts/stts pair does nothing that is
29  * visible in the interrupted kernel thread).
30  *
31  * Except for the eagerfpu case when we return 1 unless we've already
32  * been eager and saved the state in kernel_fpu_begin().
33  */
34 static inline bool interrupted_kernel_fpu_idle(void)
35 {
36         if (use_eager_fpu())
37                 return __thread_has_fpu(current);
38
39         return !__thread_has_fpu(current) &&
40                 (read_cr0() & X86_CR0_TS);
41 }
42
43 /*
44  * Were we in user mode (or vm86 mode) when we were
45  * interrupted?
46  *
47  * Doing kernel_fpu_begin/end() is ok if we are running
48  * in an interrupt context from user mode - we'll just
49  * save the FPU state as required.
50  */
51 static inline bool interrupted_user_mode(void)
52 {
53         struct pt_regs *regs = get_irq_regs();
54         return regs && user_mode_vm(regs);
55 }
56
57 /*
58  * Can we use the FPU in kernel mode with the
59  * whole "kernel_fpu_begin/end()" sequence?
60  *
61  * It's always ok in process context (ie "not interrupt")
62  * but it is sometimes ok even from an irq.
63  */
64 bool irq_fpu_usable(void)
65 {
66         return !in_interrupt() ||
67                 interrupted_user_mode() ||
68                 interrupted_kernel_fpu_idle();
69 }
70 EXPORT_SYMBOL(irq_fpu_usable);
71
72 void __kernel_fpu_begin(void)
73 {
74         struct task_struct *me = current;
75
76         if (__thread_has_fpu(me)) {
77                 __thread_clear_has_fpu(me);
78                 __save_init_fpu(me);
79                 /* We do 'stts()' in __kernel_fpu_end() */
80         } else if (!use_eager_fpu()) {
81                 this_cpu_write(fpu_owner_task, NULL);
82                 clts();
83         }
84 }
85 EXPORT_SYMBOL(__kernel_fpu_begin);
86
87 void __kernel_fpu_end(void)
88 {
89         if (use_eager_fpu())
90                 math_state_restore();
91         else
92                 stts();
93 }
94 EXPORT_SYMBOL(__kernel_fpu_end);
95
96 void unlazy_fpu(struct task_struct *tsk)
97 {
98         preempt_disable();
99         if (__thread_has_fpu(tsk)) {
100                 __save_init_fpu(tsk);
101                 __thread_fpu_end(tsk);
102         } else
103                 tsk->thread.fpu_counter = 0;
104         preempt_enable();
105 }
106 EXPORT_SYMBOL(unlazy_fpu);
107
108 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
109 unsigned int xstate_size;
110 EXPORT_SYMBOL_GPL(xstate_size);
111 static struct i387_fxsave_struct fx_scratch;
112
113 static void mxcsr_feature_mask_init(void)
114 {
115         unsigned long mask = 0;
116
117         if (cpu_has_fxsr) {
118                 memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
119                 asm volatile("fxsave %0" : "+m" (fx_scratch));
120                 mask = fx_scratch.mxcsr_mask;
121                 if (mask == 0)
122                         mask = 0x0000ffbf;
123         }
124         mxcsr_feature_mask &= mask;
125 }
126
127 static void init_thread_xstate(void)
128 {
129         /*
130          * Note that xstate_size might be overwriten later during
131          * xsave_init().
132          */
133
134         if (!cpu_has_fpu) {
135                 /*
136                  * Disable xsave as we do not support it if i387
137                  * emulation is enabled.
138                  */
139                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
140                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
141                 xstate_size = sizeof(struct i387_soft_struct);
142                 return;
143         }
144
145         if (cpu_has_fxsr)
146                 xstate_size = sizeof(struct i387_fxsave_struct);
147         else
148                 xstate_size = sizeof(struct i387_fsave_struct);
149 }
150
151 /*
152  * Called at bootup to set up the initial FPU state that is later cloned
153  * into all processes.
154  */
155
156 void fpu_init(void)
157 {
158         unsigned long cr0;
159         unsigned long cr4_mask = 0;
160
161 #ifndef CONFIG_MATH_EMULATION
162         if (!cpu_has_fpu) {
163                 pr_emerg("No FPU found and no math emulation present\n");
164                 pr_emerg("Giving up\n");
165                 for (;;)
166                         asm volatile("hlt");
167         }
168 #endif
169         if (cpu_has_fxsr)
170                 cr4_mask |= X86_CR4_OSFXSR;
171         if (cpu_has_xmm)
172                 cr4_mask |= X86_CR4_OSXMMEXCPT;
173         if (cr4_mask)
174                 set_in_cr4(cr4_mask);
175
176         cr0 = read_cr0();
177         cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
178         if (!cpu_has_fpu)
179                 cr0 |= X86_CR0_EM;
180         write_cr0(cr0);
181
182         /*
183          * init_thread_xstate is only called once to avoid overriding
184          * xstate_size during boot time or during CPU hotplug.
185          */
186         if (xstate_size == 0)
187                 init_thread_xstate();
188
189         mxcsr_feature_mask_init();
190         xsave_init();
191         eager_fpu_init();
192 }
193
194 void fpu_finit(struct fpu *fpu)
195 {
196         if (!cpu_has_fpu) {
197                 finit_soft_fpu(&fpu->state->soft);
198                 return;
199         }
200
201         if (cpu_has_fxsr) {
202                 fx_finit(&fpu->state->fxsave);
203         } else {
204                 struct i387_fsave_struct *fp = &fpu->state->fsave;
205                 memset(fp, 0, xstate_size);
206                 fp->cwd = 0xffff037fu;
207                 fp->swd = 0xffff0000u;
208                 fp->twd = 0xffffffffu;
209                 fp->fos = 0xffff0000u;
210         }
211 }
212 EXPORT_SYMBOL_GPL(fpu_finit);
213
214 /*
215  * The _current_ task is using the FPU for the first time
216  * so initialize it and set the mxcsr to its default
217  * value at reset if we support XMM instructions and then
218  * remember the current task has used the FPU.
219  */
220 int init_fpu(struct task_struct *tsk)
221 {
222         int ret;
223
224         if (tsk_used_math(tsk)) {
225                 if (cpu_has_fpu && tsk == current)
226                         unlazy_fpu(tsk);
227                 tsk->thread.fpu.last_cpu = ~0;
228                 return 0;
229         }
230
231         /*
232          * Memory allocation at the first usage of the FPU and other state.
233          */
234         ret = fpu_alloc(&tsk->thread.fpu);
235         if (ret)
236                 return ret;
237
238         fpu_finit(&tsk->thread.fpu);
239
240         set_stopped_child_used_math(tsk);
241         return 0;
242 }
243 EXPORT_SYMBOL_GPL(init_fpu);
244
245 /*
246  * The xstateregs_active() routine is the same as the fpregs_active() routine,
247  * as the "regset->n" for the xstate regset will be updated based on the feature
248  * capabilites supported by the xsave.
249  */
250 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
251 {
252         return tsk_used_math(target) ? regset->n : 0;
253 }
254
255 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
256 {
257         return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
258 }
259
260 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
261                 unsigned int pos, unsigned int count,
262                 void *kbuf, void __user *ubuf)
263 {
264         int ret;
265
266         if (!cpu_has_fxsr)
267                 return -ENODEV;
268
269         ret = init_fpu(target);
270         if (ret)
271                 return ret;
272
273         sanitize_i387_state(target);
274
275         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
276                                    &target->thread.fpu.state->fxsave, 0, -1);
277 }
278
279 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
280                 unsigned int pos, unsigned int count,
281                 const void *kbuf, const void __user *ubuf)
282 {
283         int ret;
284
285         if (!cpu_has_fxsr)
286                 return -ENODEV;
287
288         ret = init_fpu(target);
289         if (ret)
290                 return ret;
291
292         sanitize_i387_state(target);
293
294         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
295                                  &target->thread.fpu.state->fxsave, 0, -1);
296
297         /*
298          * mxcsr reserved bits must be masked to zero for security reasons.
299          */
300         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
301
302         /*
303          * update the header bits in the xsave header, indicating the
304          * presence of FP and SSE state.
305          */
306         if (cpu_has_xsave)
307                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
308
309         return ret;
310 }
311
312 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
313                 unsigned int pos, unsigned int count,
314                 void *kbuf, void __user *ubuf)
315 {
316         int ret;
317
318         if (!cpu_has_xsave)
319                 return -ENODEV;
320
321         ret = init_fpu(target);
322         if (ret)
323                 return ret;
324
325         /*
326          * Copy the 48bytes defined by the software first into the xstate
327          * memory layout in the thread struct, so that we can copy the entire
328          * xstateregs to the user using one user_regset_copyout().
329          */
330         memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
331                xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
332
333         /*
334          * Copy the xstate memory layout.
335          */
336         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
337                                   &target->thread.fpu.state->xsave, 0, -1);
338         return ret;
339 }
340
341 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
342                   unsigned int pos, unsigned int count,
343                   const void *kbuf, const void __user *ubuf)
344 {
345         int ret;
346         struct xsave_hdr_struct *xsave_hdr;
347
348         if (!cpu_has_xsave)
349                 return -ENODEV;
350
351         ret = init_fpu(target);
352         if (ret)
353                 return ret;
354
355         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
356                                  &target->thread.fpu.state->xsave, 0, -1);
357
358         /*
359          * mxcsr reserved bits must be masked to zero for security reasons.
360          */
361         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
362
363         xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
364
365         xsave_hdr->xstate_bv &= pcntxt_mask;
366         /*
367          * These bits must be zero.
368          */
369         xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0;
370
371         return ret;
372 }
373
374 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
375
376 /*
377  * FPU tag word conversions.
378  */
379
380 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
381 {
382         unsigned int tmp; /* to avoid 16 bit prefixes in the code */
383
384         /* Transform each pair of bits into 01 (valid) or 00 (empty) */
385         tmp = ~twd;
386         tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
387         /* and move the valid bits to the lower byte. */
388         tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
389         tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
390         tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
391
392         return tmp;
393 }
394
395 #define FPREG_ADDR(f, n)        ((void *)&(f)->st_space + (n) * 16)
396 #define FP_EXP_TAG_VALID        0
397 #define FP_EXP_TAG_ZERO         1
398 #define FP_EXP_TAG_SPECIAL      2
399 #define FP_EXP_TAG_EMPTY        3
400
401 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
402 {
403         struct _fpxreg *st;
404         u32 tos = (fxsave->swd >> 11) & 7;
405         u32 twd = (unsigned long) fxsave->twd;
406         u32 tag;
407         u32 ret = 0xffff0000u;
408         int i;
409
410         for (i = 0; i < 8; i++, twd >>= 1) {
411                 if (twd & 0x1) {
412                         st = FPREG_ADDR(fxsave, (i - tos) & 7);
413
414                         switch (st->exponent & 0x7fff) {
415                         case 0x7fff:
416                                 tag = FP_EXP_TAG_SPECIAL;
417                                 break;
418                         case 0x0000:
419                                 if (!st->significand[0] &&
420                                     !st->significand[1] &&
421                                     !st->significand[2] &&
422                                     !st->significand[3])
423                                         tag = FP_EXP_TAG_ZERO;
424                                 else
425                                         tag = FP_EXP_TAG_SPECIAL;
426                                 break;
427                         default:
428                                 if (st->significand[3] & 0x8000)
429                                         tag = FP_EXP_TAG_VALID;
430                                 else
431                                         tag = FP_EXP_TAG_SPECIAL;
432                                 break;
433                         }
434                 } else {
435                         tag = FP_EXP_TAG_EMPTY;
436                 }
437                 ret |= tag << (2 * i);
438         }
439         return ret;
440 }
441
442 /*
443  * FXSR floating point environment conversions.
444  */
445
446 void
447 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
448 {
449         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
450         struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
451         struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
452         int i;
453
454         env->cwd = fxsave->cwd | 0xffff0000u;
455         env->swd = fxsave->swd | 0xffff0000u;
456         env->twd = twd_fxsr_to_i387(fxsave);
457
458 #ifdef CONFIG_X86_64
459         env->fip = fxsave->rip;
460         env->foo = fxsave->rdp;
461         /*
462          * should be actually ds/cs at fpu exception time, but
463          * that information is not available in 64bit mode.
464          */
465         env->fcs = task_pt_regs(tsk)->cs;
466         if (tsk == current) {
467                 savesegment(ds, env->fos);
468         } else {
469                 env->fos = tsk->thread.ds;
470         }
471         env->fos |= 0xffff0000;
472 #else
473         env->fip = fxsave->fip;
474         env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
475         env->foo = fxsave->foo;
476         env->fos = fxsave->fos;
477 #endif
478
479         for (i = 0; i < 8; ++i)
480                 memcpy(&to[i], &from[i], sizeof(to[0]));
481 }
482
483 void convert_to_fxsr(struct task_struct *tsk,
484                      const struct user_i387_ia32_struct *env)
485
486 {
487         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
488         struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
489         struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
490         int i;
491
492         fxsave->cwd = env->cwd;
493         fxsave->swd = env->swd;
494         fxsave->twd = twd_i387_to_fxsr(env->twd);
495         fxsave->fop = (u16) ((u32) env->fcs >> 16);
496 #ifdef CONFIG_X86_64
497         fxsave->rip = env->fip;
498         fxsave->rdp = env->foo;
499         /* cs and ds ignored */
500 #else
501         fxsave->fip = env->fip;
502         fxsave->fcs = (env->fcs & 0xffff);
503         fxsave->foo = env->foo;
504         fxsave->fos = env->fos;
505 #endif
506
507         for (i = 0; i < 8; ++i)
508                 memcpy(&to[i], &from[i], sizeof(from[0]));
509 }
510
511 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
512                unsigned int pos, unsigned int count,
513                void *kbuf, void __user *ubuf)
514 {
515         struct user_i387_ia32_struct env;
516         int ret;
517
518         ret = init_fpu(target);
519         if (ret)
520                 return ret;
521
522         if (!static_cpu_has(X86_FEATURE_FPU))
523                 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
524
525         if (!cpu_has_fxsr)
526                 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
527                                            &target->thread.fpu.state->fsave, 0,
528                                            -1);
529
530         sanitize_i387_state(target);
531
532         if (kbuf && pos == 0 && count == sizeof(env)) {
533                 convert_from_fxsr(kbuf, target);
534                 return 0;
535         }
536
537         convert_from_fxsr(&env, target);
538
539         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
540 }
541
542 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
543                unsigned int pos, unsigned int count,
544                const void *kbuf, const void __user *ubuf)
545 {
546         struct user_i387_ia32_struct env;
547         int ret;
548
549         ret = init_fpu(target);
550         if (ret)
551                 return ret;
552
553         sanitize_i387_state(target);
554
555         if (!static_cpu_has(X86_FEATURE_FPU))
556                 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
557
558         if (!cpu_has_fxsr)
559                 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
560                                           &target->thread.fpu.state->fsave, 0,
561                                           -1);
562
563         if (pos > 0 || count < sizeof(env))
564                 convert_from_fxsr(&env, target);
565
566         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
567         if (!ret)
568                 convert_to_fxsr(target, &env);
569
570         /*
571          * update the header bit in the xsave header, indicating the
572          * presence of FP.
573          */
574         if (cpu_has_xsave)
575                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
576         return ret;
577 }
578
579 /*
580  * FPU state for core dumps.
581  * This is only used for a.out dumps now.
582  * It is declared generically using elf_fpregset_t (which is
583  * struct user_i387_struct) but is in fact only used for 32-bit
584  * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
585  */
586 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
587 {
588         struct task_struct *tsk = current;
589         int fpvalid;
590
591         fpvalid = !!used_math();
592         if (fpvalid)
593                 fpvalid = !fpregs_get(tsk, NULL,
594                                       0, sizeof(struct user_i387_ia32_struct),
595                                       fpu, NULL);
596
597         return fpvalid;
598 }
599 EXPORT_SYMBOL(dump_fpu);
600
601 #endif  /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
602
603 static int __init no_387(char *s)
604 {
605         setup_clear_cpu_cap(X86_FEATURE_FPU);
606         return 1;
607 }
608
609 __setup("no387", no_387);
610
611 void fpu_detect(struct cpuinfo_x86 *c)
612 {
613         unsigned long cr0;
614         u16 fsw, fcw;
615
616         fsw = fcw = 0xffff;
617
618         cr0 = read_cr0();
619         cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
620         write_cr0(cr0);
621
622         asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
623                      : "+m" (fsw), "+m" (fcw));
624
625         if (fsw == 0 && (fcw & 0x103f) == 0x003f)
626                 set_cpu_cap(c, X86_FEATURE_FPU);
627         else
628                 clear_cpu_cap(c, X86_FEATURE_FPU);
629
630         /* The final cr0 value is set in fpu_init() */
631 }