Merge tag 'v3.15-rc5' into next
[cascardo/linux.git] / arch / x86 / kernel / kvmclock.c
1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/memblock.h>
27
28 #include <asm/x86_init.h>
29 #include <asm/reboot.h>
30
31 static int kvmclock = 1;
32 static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
33 static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
34
35 static int parse_no_kvmclock(char *arg)
36 {
37         kvmclock = 0;
38         return 0;
39 }
40 early_param("no-kvmclock", parse_no_kvmclock);
41
42 /* The hypervisor will put information about time periodically here */
43 static struct pvclock_vsyscall_time_info *hv_clock;
44 static struct pvclock_wall_clock wall_clock;
45
46 /*
47  * The wallclock is the time of day when we booted. Since then, some time may
48  * have elapsed since the hypervisor wrote the data. So we try to account for
49  * that with system time
50  */
51 static void kvm_get_wallclock(struct timespec *now)
52 {
53         struct pvclock_vcpu_time_info *vcpu_time;
54         int low, high;
55         int cpu;
56
57         low = (int)__pa_symbol(&wall_clock);
58         high = ((u64)__pa_symbol(&wall_clock) >> 32);
59
60         native_write_msr(msr_kvm_wall_clock, low, high);
61
62         preempt_disable();
63         cpu = smp_processor_id();
64
65         vcpu_time = &hv_clock[cpu].pvti;
66         pvclock_read_wallclock(&wall_clock, vcpu_time, now);
67
68         preempt_enable();
69 }
70
71 static int kvm_set_wallclock(const struct timespec *now)
72 {
73         return -1;
74 }
75
76 static cycle_t kvm_clock_read(void)
77 {
78         struct pvclock_vcpu_time_info *src;
79         cycle_t ret;
80         int cpu;
81
82         preempt_disable_notrace();
83         cpu = smp_processor_id();
84         src = &hv_clock[cpu].pvti;
85         ret = pvclock_clocksource_read(src);
86         preempt_enable_notrace();
87         return ret;
88 }
89
90 static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
91 {
92         return kvm_clock_read();
93 }
94
95 /*
96  * If we don't do that, there is the possibility that the guest
97  * will calibrate under heavy load - thus, getting a lower lpj -
98  * and execute the delays themselves without load. This is wrong,
99  * because no delay loop can finish beforehand.
100  * Any heuristics is subject to fail, because ultimately, a large
101  * poll of guests can be running and trouble each other. So we preset
102  * lpj here
103  */
104 static unsigned long kvm_get_tsc_khz(void)
105 {
106         struct pvclock_vcpu_time_info *src;
107         int cpu;
108         unsigned long tsc_khz;
109
110         preempt_disable();
111         cpu = smp_processor_id();
112         src = &hv_clock[cpu].pvti;
113         tsc_khz = pvclock_tsc_khz(src);
114         preempt_enable();
115         return tsc_khz;
116 }
117
118 static void kvm_get_preset_lpj(void)
119 {
120         unsigned long khz;
121         u64 lpj;
122
123         khz = kvm_get_tsc_khz();
124
125         lpj = ((u64)khz * 1000);
126         do_div(lpj, HZ);
127         preset_lpj = lpj;
128 }
129
130 bool kvm_check_and_clear_guest_paused(void)
131 {
132         bool ret = false;
133         struct pvclock_vcpu_time_info *src;
134         int cpu = smp_processor_id();
135
136         if (!hv_clock)
137                 return ret;
138
139         src = &hv_clock[cpu].pvti;
140         if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
141                 src->flags &= ~PVCLOCK_GUEST_STOPPED;
142                 pvclock_touch_watchdogs();
143                 ret = true;
144         }
145
146         return ret;
147 }
148
149 static struct clocksource kvm_clock = {
150         .name = "kvm-clock",
151         .read = kvm_clock_get_cycles,
152         .rating = 400,
153         .mask = CLOCKSOURCE_MASK(64),
154         .flags = CLOCK_SOURCE_IS_CONTINUOUS,
155 };
156
157 int kvm_register_clock(char *txt)
158 {
159         int cpu = smp_processor_id();
160         int low, high, ret;
161         struct pvclock_vcpu_time_info *src;
162
163         if (!hv_clock)
164                 return 0;
165
166         src = &hv_clock[cpu].pvti;
167         low = (int)slow_virt_to_phys(src) | 1;
168         high = ((u64)slow_virt_to_phys(src) >> 32);
169         ret = native_write_msr_safe(msr_kvm_system_time, low, high);
170         printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
171                cpu, high, low, txt);
172
173         return ret;
174 }
175
176 static void kvm_save_sched_clock_state(void)
177 {
178 }
179
180 static void kvm_restore_sched_clock_state(void)
181 {
182         kvm_register_clock("primary cpu clock, resume");
183 }
184
185 #ifdef CONFIG_X86_LOCAL_APIC
186 static void kvm_setup_secondary_clock(void)
187 {
188         /*
189          * Now that the first cpu already had this clocksource initialized,
190          * we shouldn't fail.
191          */
192         WARN_ON(kvm_register_clock("secondary cpu clock"));
193 }
194 #endif
195
196 /*
197  * After the clock is registered, the host will keep writing to the
198  * registered memory location. If the guest happens to shutdown, this memory
199  * won't be valid. In cases like kexec, in which you install a new kernel, this
200  * means a random memory location will be kept being written. So before any
201  * kind of shutdown from our side, we unregister the clock by writting anything
202  * that does not have the 'enable' bit set in the msr
203  */
204 #ifdef CONFIG_KEXEC
205 static void kvm_crash_shutdown(struct pt_regs *regs)
206 {
207         native_write_msr(msr_kvm_system_time, 0, 0);
208         kvm_disable_steal_time();
209         native_machine_crash_shutdown(regs);
210 }
211 #endif
212
213 static void kvm_shutdown(void)
214 {
215         native_write_msr(msr_kvm_system_time, 0, 0);
216         kvm_disable_steal_time();
217         native_machine_shutdown();
218 }
219
220 void __init kvmclock_init(void)
221 {
222         unsigned long mem;
223         int size;
224
225         size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
226
227         if (!kvm_para_available())
228                 return;
229
230         if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
231                 msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
232                 msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
233         } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
234                 return;
235
236         printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
237                 msr_kvm_system_time, msr_kvm_wall_clock);
238
239         mem = memblock_alloc(size, PAGE_SIZE);
240         if (!mem)
241                 return;
242         hv_clock = __va(mem);
243         memset(hv_clock, 0, size);
244
245         if (kvm_register_clock("primary cpu clock")) {
246                 hv_clock = NULL;
247                 memblock_free(mem, size);
248                 return;
249         }
250         pv_time_ops.sched_clock = kvm_clock_read;
251         x86_platform.calibrate_tsc = kvm_get_tsc_khz;
252         x86_platform.get_wallclock = kvm_get_wallclock;
253         x86_platform.set_wallclock = kvm_set_wallclock;
254 #ifdef CONFIG_X86_LOCAL_APIC
255         x86_cpuinit.early_percpu_clock_init =
256                 kvm_setup_secondary_clock;
257 #endif
258         x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
259         x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
260         machine_ops.shutdown  = kvm_shutdown;
261 #ifdef CONFIG_KEXEC
262         machine_ops.crash_shutdown  = kvm_crash_shutdown;
263 #endif
264         kvm_get_preset_lpj();
265         clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
266         pv_info.paravirt_enabled = 1;
267         pv_info.name = "KVM";
268
269         if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
270                 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
271 }
272
273 int __init kvm_setup_vsyscall_timeinfo(void)
274 {
275 #ifdef CONFIG_X86_64
276         int cpu;
277         int ret;
278         u8 flags;
279         struct pvclock_vcpu_time_info *vcpu_time;
280         unsigned int size;
281
282         if (!hv_clock)
283                 return 0;
284
285         size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
286
287         preempt_disable();
288         cpu = smp_processor_id();
289
290         vcpu_time = &hv_clock[cpu].pvti;
291         flags = pvclock_read_flags(vcpu_time);
292
293         if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
294                 preempt_enable();
295                 return 1;
296         }
297
298         if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
299                 preempt_enable();
300                 return ret;
301         }
302
303         preempt_enable();
304
305         kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
306 #endif
307         return 0;
308 }