8b04018e5d1f0732f1d1c3cf3ad092352d1409d6
[cascardo/linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20
21 #include <asm/init.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/debugreg.h>
26 #include <asm/kexec-bzimage64.h>
27
28 static struct kexec_file_ops *kexec_file_loaders[] = {
29                 &kexec_bzImage64_ops,
30 };
31
32 static void free_transition_pgtable(struct kimage *image)
33 {
34         free_page((unsigned long)image->arch.pud);
35         free_page((unsigned long)image->arch.pmd);
36         free_page((unsigned long)image->arch.pte);
37 }
38
39 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
40 {
41         pud_t *pud;
42         pmd_t *pmd;
43         pte_t *pte;
44         unsigned long vaddr, paddr;
45         int result = -ENOMEM;
46
47         vaddr = (unsigned long)relocate_kernel;
48         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
49         pgd += pgd_index(vaddr);
50         if (!pgd_present(*pgd)) {
51                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
52                 if (!pud)
53                         goto err;
54                 image->arch.pud = pud;
55                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
56         }
57         pud = pud_offset(pgd, vaddr);
58         if (!pud_present(*pud)) {
59                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
60                 if (!pmd)
61                         goto err;
62                 image->arch.pmd = pmd;
63                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
64         }
65         pmd = pmd_offset(pud, vaddr);
66         if (!pmd_present(*pmd)) {
67                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
68                 if (!pte)
69                         goto err;
70                 image->arch.pte = pte;
71                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
72         }
73         pte = pte_offset_kernel(pmd, vaddr);
74         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
75         return 0;
76 err:
77         free_transition_pgtable(image);
78         return result;
79 }
80
81 static void *alloc_pgt_page(void *data)
82 {
83         struct kimage *image = (struct kimage *)data;
84         struct page *page;
85         void *p = NULL;
86
87         page = kimage_alloc_control_pages(image, 0);
88         if (page) {
89                 p = page_address(page);
90                 clear_page(p);
91         }
92
93         return p;
94 }
95
96 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
97 {
98         struct x86_mapping_info info = {
99                 .alloc_pgt_page = alloc_pgt_page,
100                 .context        = image,
101                 .pmd_flag       = __PAGE_KERNEL_LARGE_EXEC,
102         };
103         unsigned long mstart, mend;
104         pgd_t *level4p;
105         int result;
106         int i;
107
108         level4p = (pgd_t *)__va(start_pgtable);
109         clear_page(level4p);
110         for (i = 0; i < nr_pfn_mapped; i++) {
111                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
112                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
113
114                 result = kernel_ident_mapping_init(&info,
115                                                  level4p, mstart, mend);
116                 if (result)
117                         return result;
118         }
119
120         /*
121          * segments's mem ranges could be outside 0 ~ max_pfn,
122          * for example when jump back to original kernel from kexeced kernel.
123          * or first kernel is booted with user mem map, and second kernel
124          * could be loaded out of that range.
125          */
126         for (i = 0; i < image->nr_segments; i++) {
127                 mstart = image->segment[i].mem;
128                 mend   = mstart + image->segment[i].memsz;
129
130                 result = kernel_ident_mapping_init(&info,
131                                                  level4p, mstart, mend);
132
133                 if (result)
134                         return result;
135         }
136
137         return init_transition_pgtable(image, level4p);
138 }
139
140 static void set_idt(void *newidt, u16 limit)
141 {
142         struct desc_ptr curidt;
143
144         /* x86-64 supports unaliged loads & stores */
145         curidt.size    = limit;
146         curidt.address = (unsigned long)newidt;
147
148         __asm__ __volatile__ (
149                 "lidtq %0\n"
150                 : : "m" (curidt)
151                 );
152 };
153
154
155 static void set_gdt(void *newgdt, u16 limit)
156 {
157         struct desc_ptr curgdt;
158
159         /* x86-64 supports unaligned loads & stores */
160         curgdt.size    = limit;
161         curgdt.address = (unsigned long)newgdt;
162
163         __asm__ __volatile__ (
164                 "lgdtq %0\n"
165                 : : "m" (curgdt)
166                 );
167 };
168
169 static void load_segments(void)
170 {
171         __asm__ __volatile__ (
172                 "\tmovl %0,%%ds\n"
173                 "\tmovl %0,%%es\n"
174                 "\tmovl %0,%%ss\n"
175                 "\tmovl %0,%%fs\n"
176                 "\tmovl %0,%%gs\n"
177                 : : "a" (__KERNEL_DS) : "memory"
178                 );
179 }
180
181 /* Update purgatory as needed after various image segments have been prepared */
182 static int arch_update_purgatory(struct kimage *image)
183 {
184         int ret = 0;
185
186         if (!image->file_mode)
187                 return 0;
188
189         /* Setup copying of backup region */
190         if (image->type == KEXEC_TYPE_CRASH) {
191                 ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
192                                 &image->arch.backup_load_addr,
193                                 sizeof(image->arch.backup_load_addr), 0);
194                 if (ret)
195                         return ret;
196
197                 ret = kexec_purgatory_get_set_symbol(image, "backup_src",
198                                 &image->arch.backup_src_start,
199                                 sizeof(image->arch.backup_src_start), 0);
200                 if (ret)
201                         return ret;
202
203                 ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
204                                 &image->arch.backup_src_sz,
205                                 sizeof(image->arch.backup_src_sz), 0);
206                 if (ret)
207                         return ret;
208         }
209
210         return ret;
211 }
212
213 int machine_kexec_prepare(struct kimage *image)
214 {
215         unsigned long start_pgtable;
216         int result;
217
218         /* Calculate the offsets */
219         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
220
221         /* Setup the identity mapped 64bit page table */
222         result = init_pgtable(image, start_pgtable);
223         if (result)
224                 return result;
225
226         /* update purgatory as needed */
227         result = arch_update_purgatory(image);
228         if (result)
229                 return result;
230
231         return 0;
232 }
233
234 void machine_kexec_cleanup(struct kimage *image)
235 {
236         free_transition_pgtable(image);
237 }
238
239 /*
240  * Do not allocate memory (or fail in any way) in machine_kexec().
241  * We are past the point of no return, committed to rebooting now.
242  */
243 void machine_kexec(struct kimage *image)
244 {
245         unsigned long page_list[PAGES_NR];
246         void *control_page;
247         int save_ftrace_enabled;
248
249 #ifdef CONFIG_KEXEC_JUMP
250         if (image->preserve_context)
251                 save_processor_state();
252 #endif
253
254         save_ftrace_enabled = __ftrace_enabled_save();
255
256         /* Interrupts aren't acceptable while we reboot */
257         local_irq_disable();
258         hw_breakpoint_disable();
259
260         if (image->preserve_context) {
261 #ifdef CONFIG_X86_IO_APIC
262                 /*
263                  * We need to put APICs in legacy mode so that we can
264                  * get timer interrupts in second kernel. kexec/kdump
265                  * paths already have calls to disable_IO_APIC() in
266                  * one form or other. kexec jump path also need
267                  * one.
268                  */
269                 disable_IO_APIC();
270 #endif
271         }
272
273         control_page = page_address(image->control_code_page) + PAGE_SIZE;
274         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
275
276         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
277         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
278         page_list[PA_TABLE_PAGE] =
279           (unsigned long)__pa(page_address(image->control_code_page));
280
281         if (image->type == KEXEC_TYPE_DEFAULT)
282                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
283                                                 << PAGE_SHIFT);
284
285         /*
286          * The segment registers are funny things, they have both a
287          * visible and an invisible part.  Whenever the visible part is
288          * set to a specific selector, the invisible part is loaded
289          * with from a table in memory.  At no other time is the
290          * descriptor table in memory accessed.
291          *
292          * I take advantage of this here by force loading the
293          * segments, before I zap the gdt with an invalid value.
294          */
295         load_segments();
296         /*
297          * The gdt & idt are now invalid.
298          * If you want to load them you must set up your own idt & gdt.
299          */
300         set_gdt(phys_to_virt(0), 0);
301         set_idt(phys_to_virt(0), 0);
302
303         /* now call it */
304         image->start = relocate_kernel((unsigned long)image->head,
305                                        (unsigned long)page_list,
306                                        image->start,
307                                        image->preserve_context);
308
309 #ifdef CONFIG_KEXEC_JUMP
310         if (image->preserve_context)
311                 restore_processor_state();
312 #endif
313
314         __ftrace_enabled_restore(save_ftrace_enabled);
315 }
316
317 void arch_crash_save_vmcoreinfo(void)
318 {
319         VMCOREINFO_SYMBOL(phys_base);
320         VMCOREINFO_SYMBOL(init_level4_pgt);
321
322 #ifdef CONFIG_NUMA
323         VMCOREINFO_SYMBOL(node_data);
324         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
325 #endif
326         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
327                               (unsigned long)&_text - __START_KERNEL);
328 }
329
330 /* arch-dependent functionality related to kexec file-based syscall */
331
332 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
333                                   unsigned long buf_len)
334 {
335         int i, ret = -ENOEXEC;
336         struct kexec_file_ops *fops;
337
338         for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
339                 fops = kexec_file_loaders[i];
340                 if (!fops || !fops->probe)
341                         continue;
342
343                 ret = fops->probe(buf, buf_len);
344                 if (!ret) {
345                         image->fops = fops;
346                         return ret;
347                 }
348         }
349
350         return ret;
351 }
352
353 void *arch_kexec_kernel_image_load(struct kimage *image)
354 {
355         vfree(image->arch.elf_headers);
356         image->arch.elf_headers = NULL;
357
358         if (!image->fops || !image->fops->load)
359                 return ERR_PTR(-ENOEXEC);
360
361         return image->fops->load(image, image->kernel_buf,
362                                  image->kernel_buf_len, image->initrd_buf,
363                                  image->initrd_buf_len, image->cmdline_buf,
364                                  image->cmdline_buf_len);
365 }
366
367 int arch_kimage_file_post_load_cleanup(struct kimage *image)
368 {
369         if (!image->fops || !image->fops->cleanup)
370                 return 0;
371
372         return image->fops->cleanup(image->image_loader_data);
373 }
374
375 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
376                                  unsigned long kernel_len)
377 {
378         if (!image->fops || !image->fops->verify_sig) {
379                 pr_debug("kernel loader does not support signature verification.");
380                 return -EKEYREJECTED;
381         }
382
383         return image->fops->verify_sig(kernel, kernel_len);
384 }
385
386 /*
387  * Apply purgatory relocations.
388  *
389  * ehdr: Pointer to elf headers
390  * sechdrs: Pointer to section headers.
391  * relsec: section index of SHT_RELA section.
392  *
393  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
394  */
395 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
396                                      Elf64_Shdr *sechdrs, unsigned int relsec)
397 {
398         unsigned int i;
399         Elf64_Rela *rel;
400         Elf64_Sym *sym;
401         void *location;
402         Elf64_Shdr *section, *symtabsec;
403         unsigned long address, sec_base, value;
404         const char *strtab, *name, *shstrtab;
405
406         /*
407          * ->sh_offset has been modified to keep the pointer to section
408          * contents in memory
409          */
410         rel = (void *)sechdrs[relsec].sh_offset;
411
412         /* Section to which relocations apply */
413         section = &sechdrs[sechdrs[relsec].sh_info];
414
415         pr_debug("Applying relocate section %u to %u\n", relsec,
416                  sechdrs[relsec].sh_info);
417
418         /* Associated symbol table */
419         symtabsec = &sechdrs[sechdrs[relsec].sh_link];
420
421         /* String table */
422         if (symtabsec->sh_link >= ehdr->e_shnum) {
423                 /* Invalid strtab section number */
424                 pr_err("Invalid string table section index %d\n",
425                        symtabsec->sh_link);
426                 return -ENOEXEC;
427         }
428
429         strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
430
431         /* section header string table */
432         shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
433
434         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
435
436                 /*
437                  * rel[i].r_offset contains byte offset from beginning
438                  * of section to the storage unit affected.
439                  *
440                  * This is location to update (->sh_offset). This is temporary
441                  * buffer where section is currently loaded. This will finally
442                  * be loaded to a different address later, pointed to by
443                  * ->sh_addr. kexec takes care of moving it
444                  *  (kexec_load_segment()).
445                  */
446                 location = (void *)(section->sh_offset + rel[i].r_offset);
447
448                 /* Final address of the location */
449                 address = section->sh_addr + rel[i].r_offset;
450
451                 /*
452                  * rel[i].r_info contains information about symbol table index
453                  * w.r.t which relocation must be made and type of relocation
454                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
455                  * these respectively.
456                  */
457                 sym = (Elf64_Sym *)symtabsec->sh_offset +
458                                 ELF64_R_SYM(rel[i].r_info);
459
460                 if (sym->st_name)
461                         name = strtab + sym->st_name;
462                 else
463                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
464
465                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
466                          name, sym->st_info, sym->st_shndx, sym->st_value,
467                          sym->st_size);
468
469                 if (sym->st_shndx == SHN_UNDEF) {
470                         pr_err("Undefined symbol: %s\n", name);
471                         return -ENOEXEC;
472                 }
473
474                 if (sym->st_shndx == SHN_COMMON) {
475                         pr_err("symbol '%s' in common section\n", name);
476                         return -ENOEXEC;
477                 }
478
479                 if (sym->st_shndx == SHN_ABS)
480                         sec_base = 0;
481                 else if (sym->st_shndx >= ehdr->e_shnum) {
482                         pr_err("Invalid section %d for symbol %s\n",
483                                sym->st_shndx, name);
484                         return -ENOEXEC;
485                 } else
486                         sec_base = sechdrs[sym->st_shndx].sh_addr;
487
488                 value = sym->st_value;
489                 value += sec_base;
490                 value += rel[i].r_addend;
491
492                 switch (ELF64_R_TYPE(rel[i].r_info)) {
493                 case R_X86_64_NONE:
494                         break;
495                 case R_X86_64_64:
496                         *(u64 *)location = value;
497                         break;
498                 case R_X86_64_32:
499                         *(u32 *)location = value;
500                         if (value != *(u32 *)location)
501                                 goto overflow;
502                         break;
503                 case R_X86_64_32S:
504                         *(s32 *)location = value;
505                         if ((s64)value != *(s32 *)location)
506                                 goto overflow;
507                         break;
508                 case R_X86_64_PC32:
509                         value -= (u64)address;
510                         *(u32 *)location = value;
511                         break;
512                 default:
513                         pr_err("Unknown rela relocation: %llu\n",
514                                ELF64_R_TYPE(rel[i].r_info));
515                         return -ENOEXEC;
516                 }
517         }
518         return 0;
519
520 overflow:
521         pr_err("Overflow in relocation type %d value 0x%lx\n",
522                (int)ELF64_R_TYPE(rel[i].r_info), value);
523         return -ENOEXEC;
524 }