Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma
[cascardo/linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20
21 #include <asm/init.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/debugreg.h>
26 #include <asm/kexec-bzimage64.h>
27
28 #ifdef CONFIG_KEXEC_FILE
29 static struct kexec_file_ops *kexec_file_loaders[] = {
30                 &kexec_bzImage64_ops,
31 };
32 #endif
33
34 static void free_transition_pgtable(struct kimage *image)
35 {
36         free_page((unsigned long)image->arch.pud);
37         free_page((unsigned long)image->arch.pmd);
38         free_page((unsigned long)image->arch.pte);
39 }
40
41 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
42 {
43         pud_t *pud;
44         pmd_t *pmd;
45         pte_t *pte;
46         unsigned long vaddr, paddr;
47         int result = -ENOMEM;
48
49         vaddr = (unsigned long)relocate_kernel;
50         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
51         pgd += pgd_index(vaddr);
52         if (!pgd_present(*pgd)) {
53                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
54                 if (!pud)
55                         goto err;
56                 image->arch.pud = pud;
57                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
58         }
59         pud = pud_offset(pgd, vaddr);
60         if (!pud_present(*pud)) {
61                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
62                 if (!pmd)
63                         goto err;
64                 image->arch.pmd = pmd;
65                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
66         }
67         pmd = pmd_offset(pud, vaddr);
68         if (!pmd_present(*pmd)) {
69                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
70                 if (!pte)
71                         goto err;
72                 image->arch.pte = pte;
73                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
74         }
75         pte = pte_offset_kernel(pmd, vaddr);
76         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
77         return 0;
78 err:
79         free_transition_pgtable(image);
80         return result;
81 }
82
83 static void *alloc_pgt_page(void *data)
84 {
85         struct kimage *image = (struct kimage *)data;
86         struct page *page;
87         void *p = NULL;
88
89         page = kimage_alloc_control_pages(image, 0);
90         if (page) {
91                 p = page_address(page);
92                 clear_page(p);
93         }
94
95         return p;
96 }
97
98 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
99 {
100         struct x86_mapping_info info = {
101                 .alloc_pgt_page = alloc_pgt_page,
102                 .context        = image,
103                 .pmd_flag       = __PAGE_KERNEL_LARGE_EXEC,
104         };
105         unsigned long mstart, mend;
106         pgd_t *level4p;
107         int result;
108         int i;
109
110         level4p = (pgd_t *)__va(start_pgtable);
111         clear_page(level4p);
112         for (i = 0; i < nr_pfn_mapped; i++) {
113                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
114                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
115
116                 result = kernel_ident_mapping_init(&info,
117                                                  level4p, mstart, mend);
118                 if (result)
119                         return result;
120         }
121
122         /*
123          * segments's mem ranges could be outside 0 ~ max_pfn,
124          * for example when jump back to original kernel from kexeced kernel.
125          * or first kernel is booted with user mem map, and second kernel
126          * could be loaded out of that range.
127          */
128         for (i = 0; i < image->nr_segments; i++) {
129                 mstart = image->segment[i].mem;
130                 mend   = mstart + image->segment[i].memsz;
131
132                 result = kernel_ident_mapping_init(&info,
133                                                  level4p, mstart, mend);
134
135                 if (result)
136                         return result;
137         }
138
139         return init_transition_pgtable(image, level4p);
140 }
141
142 static void set_idt(void *newidt, u16 limit)
143 {
144         struct desc_ptr curidt;
145
146         /* x86-64 supports unaliged loads & stores */
147         curidt.size    = limit;
148         curidt.address = (unsigned long)newidt;
149
150         __asm__ __volatile__ (
151                 "lidtq %0\n"
152                 : : "m" (curidt)
153                 );
154 };
155
156
157 static void set_gdt(void *newgdt, u16 limit)
158 {
159         struct desc_ptr curgdt;
160
161         /* x86-64 supports unaligned loads & stores */
162         curgdt.size    = limit;
163         curgdt.address = (unsigned long)newgdt;
164
165         __asm__ __volatile__ (
166                 "lgdtq %0\n"
167                 : : "m" (curgdt)
168                 );
169 };
170
171 static void load_segments(void)
172 {
173         __asm__ __volatile__ (
174                 "\tmovl %0,%%ds\n"
175                 "\tmovl %0,%%es\n"
176                 "\tmovl %0,%%ss\n"
177                 "\tmovl %0,%%fs\n"
178                 "\tmovl %0,%%gs\n"
179                 : : "a" (__KERNEL_DS) : "memory"
180                 );
181 }
182
183 #ifdef CONFIG_KEXEC_FILE
184 /* Update purgatory as needed after various image segments have been prepared */
185 static int arch_update_purgatory(struct kimage *image)
186 {
187         int ret = 0;
188
189         if (!image->file_mode)
190                 return 0;
191
192         /* Setup copying of backup region */
193         if (image->type == KEXEC_TYPE_CRASH) {
194                 ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
195                                 &image->arch.backup_load_addr,
196                                 sizeof(image->arch.backup_load_addr), 0);
197                 if (ret)
198                         return ret;
199
200                 ret = kexec_purgatory_get_set_symbol(image, "backup_src",
201                                 &image->arch.backup_src_start,
202                                 sizeof(image->arch.backup_src_start), 0);
203                 if (ret)
204                         return ret;
205
206                 ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
207                                 &image->arch.backup_src_sz,
208                                 sizeof(image->arch.backup_src_sz), 0);
209                 if (ret)
210                         return ret;
211         }
212
213         return ret;
214 }
215 #else /* !CONFIG_KEXEC_FILE */
216 static inline int arch_update_purgatory(struct kimage *image)
217 {
218         return 0;
219 }
220 #endif /* CONFIG_KEXEC_FILE */
221
222 int machine_kexec_prepare(struct kimage *image)
223 {
224         unsigned long start_pgtable;
225         int result;
226
227         /* Calculate the offsets */
228         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
229
230         /* Setup the identity mapped 64bit page table */
231         result = init_pgtable(image, start_pgtable);
232         if (result)
233                 return result;
234
235         /* update purgatory as needed */
236         result = arch_update_purgatory(image);
237         if (result)
238                 return result;
239
240         return 0;
241 }
242
243 void machine_kexec_cleanup(struct kimage *image)
244 {
245         free_transition_pgtable(image);
246 }
247
248 /*
249  * Do not allocate memory (or fail in any way) in machine_kexec().
250  * We are past the point of no return, committed to rebooting now.
251  */
252 void machine_kexec(struct kimage *image)
253 {
254         unsigned long page_list[PAGES_NR];
255         void *control_page;
256         int save_ftrace_enabled;
257
258 #ifdef CONFIG_KEXEC_JUMP
259         if (image->preserve_context)
260                 save_processor_state();
261 #endif
262
263         save_ftrace_enabled = __ftrace_enabled_save();
264
265         /* Interrupts aren't acceptable while we reboot */
266         local_irq_disable();
267         hw_breakpoint_disable();
268
269         if (image->preserve_context) {
270 #ifdef CONFIG_X86_IO_APIC
271                 /*
272                  * We need to put APICs in legacy mode so that we can
273                  * get timer interrupts in second kernel. kexec/kdump
274                  * paths already have calls to disable_IO_APIC() in
275                  * one form or other. kexec jump path also need
276                  * one.
277                  */
278                 disable_IO_APIC();
279 #endif
280         }
281
282         control_page = page_address(image->control_code_page) + PAGE_SIZE;
283         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
284
285         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
286         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
287         page_list[PA_TABLE_PAGE] =
288           (unsigned long)__pa(page_address(image->control_code_page));
289
290         if (image->type == KEXEC_TYPE_DEFAULT)
291                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
292                                                 << PAGE_SHIFT);
293
294         /*
295          * The segment registers are funny things, they have both a
296          * visible and an invisible part.  Whenever the visible part is
297          * set to a specific selector, the invisible part is loaded
298          * with from a table in memory.  At no other time is the
299          * descriptor table in memory accessed.
300          *
301          * I take advantage of this here by force loading the
302          * segments, before I zap the gdt with an invalid value.
303          */
304         load_segments();
305         /*
306          * The gdt & idt are now invalid.
307          * If you want to load them you must set up your own idt & gdt.
308          */
309         set_gdt(phys_to_virt(0), 0);
310         set_idt(phys_to_virt(0), 0);
311
312         /* now call it */
313         image->start = relocate_kernel((unsigned long)image->head,
314                                        (unsigned long)page_list,
315                                        image->start,
316                                        image->preserve_context);
317
318 #ifdef CONFIG_KEXEC_JUMP
319         if (image->preserve_context)
320                 restore_processor_state();
321 #endif
322
323         __ftrace_enabled_restore(save_ftrace_enabled);
324 }
325
326 void arch_crash_save_vmcoreinfo(void)
327 {
328         VMCOREINFO_SYMBOL(phys_base);
329         VMCOREINFO_SYMBOL(init_level4_pgt);
330
331 #ifdef CONFIG_NUMA
332         VMCOREINFO_SYMBOL(node_data);
333         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
334 #endif
335         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
336                               (unsigned long)&_text - __START_KERNEL);
337 }
338
339 /* arch-dependent functionality related to kexec file-based syscall */
340
341 #ifdef CONFIG_KEXEC_FILE
342 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
343                                   unsigned long buf_len)
344 {
345         int i, ret = -ENOEXEC;
346         struct kexec_file_ops *fops;
347
348         for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
349                 fops = kexec_file_loaders[i];
350                 if (!fops || !fops->probe)
351                         continue;
352
353                 ret = fops->probe(buf, buf_len);
354                 if (!ret) {
355                         image->fops = fops;
356                         return ret;
357                 }
358         }
359
360         return ret;
361 }
362
363 void *arch_kexec_kernel_image_load(struct kimage *image)
364 {
365         vfree(image->arch.elf_headers);
366         image->arch.elf_headers = NULL;
367
368         if (!image->fops || !image->fops->load)
369                 return ERR_PTR(-ENOEXEC);
370
371         return image->fops->load(image, image->kernel_buf,
372                                  image->kernel_buf_len, image->initrd_buf,
373                                  image->initrd_buf_len, image->cmdline_buf,
374                                  image->cmdline_buf_len);
375 }
376
377 int arch_kimage_file_post_load_cleanup(struct kimage *image)
378 {
379         if (!image->fops || !image->fops->cleanup)
380                 return 0;
381
382         return image->fops->cleanup(image->image_loader_data);
383 }
384
385 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
386                                  unsigned long kernel_len)
387 {
388         if (!image->fops || !image->fops->verify_sig) {
389                 pr_debug("kernel loader does not support signature verification.");
390                 return -EKEYREJECTED;
391         }
392
393         return image->fops->verify_sig(kernel, kernel_len);
394 }
395
396 /*
397  * Apply purgatory relocations.
398  *
399  * ehdr: Pointer to elf headers
400  * sechdrs: Pointer to section headers.
401  * relsec: section index of SHT_RELA section.
402  *
403  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
404  */
405 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
406                                      Elf64_Shdr *sechdrs, unsigned int relsec)
407 {
408         unsigned int i;
409         Elf64_Rela *rel;
410         Elf64_Sym *sym;
411         void *location;
412         Elf64_Shdr *section, *symtabsec;
413         unsigned long address, sec_base, value;
414         const char *strtab, *name, *shstrtab;
415
416         /*
417          * ->sh_offset has been modified to keep the pointer to section
418          * contents in memory
419          */
420         rel = (void *)sechdrs[relsec].sh_offset;
421
422         /* Section to which relocations apply */
423         section = &sechdrs[sechdrs[relsec].sh_info];
424
425         pr_debug("Applying relocate section %u to %u\n", relsec,
426                  sechdrs[relsec].sh_info);
427
428         /* Associated symbol table */
429         symtabsec = &sechdrs[sechdrs[relsec].sh_link];
430
431         /* String table */
432         if (symtabsec->sh_link >= ehdr->e_shnum) {
433                 /* Invalid strtab section number */
434                 pr_err("Invalid string table section index %d\n",
435                        symtabsec->sh_link);
436                 return -ENOEXEC;
437         }
438
439         strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
440
441         /* section header string table */
442         shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
443
444         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
445
446                 /*
447                  * rel[i].r_offset contains byte offset from beginning
448                  * of section to the storage unit affected.
449                  *
450                  * This is location to update (->sh_offset). This is temporary
451                  * buffer where section is currently loaded. This will finally
452                  * be loaded to a different address later, pointed to by
453                  * ->sh_addr. kexec takes care of moving it
454                  *  (kexec_load_segment()).
455                  */
456                 location = (void *)(section->sh_offset + rel[i].r_offset);
457
458                 /* Final address of the location */
459                 address = section->sh_addr + rel[i].r_offset;
460
461                 /*
462                  * rel[i].r_info contains information about symbol table index
463                  * w.r.t which relocation must be made and type of relocation
464                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
465                  * these respectively.
466                  */
467                 sym = (Elf64_Sym *)symtabsec->sh_offset +
468                                 ELF64_R_SYM(rel[i].r_info);
469
470                 if (sym->st_name)
471                         name = strtab + sym->st_name;
472                 else
473                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
474
475                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
476                          name, sym->st_info, sym->st_shndx, sym->st_value,
477                          sym->st_size);
478
479                 if (sym->st_shndx == SHN_UNDEF) {
480                         pr_err("Undefined symbol: %s\n", name);
481                         return -ENOEXEC;
482                 }
483
484                 if (sym->st_shndx == SHN_COMMON) {
485                         pr_err("symbol '%s' in common section\n", name);
486                         return -ENOEXEC;
487                 }
488
489                 if (sym->st_shndx == SHN_ABS)
490                         sec_base = 0;
491                 else if (sym->st_shndx >= ehdr->e_shnum) {
492                         pr_err("Invalid section %d for symbol %s\n",
493                                sym->st_shndx, name);
494                         return -ENOEXEC;
495                 } else
496                         sec_base = sechdrs[sym->st_shndx].sh_addr;
497
498                 value = sym->st_value;
499                 value += sec_base;
500                 value += rel[i].r_addend;
501
502                 switch (ELF64_R_TYPE(rel[i].r_info)) {
503                 case R_X86_64_NONE:
504                         break;
505                 case R_X86_64_64:
506                         *(u64 *)location = value;
507                         break;
508                 case R_X86_64_32:
509                         *(u32 *)location = value;
510                         if (value != *(u32 *)location)
511                                 goto overflow;
512                         break;
513                 case R_X86_64_32S:
514                         *(s32 *)location = value;
515                         if ((s64)value != *(s32 *)location)
516                                 goto overflow;
517                         break;
518                 case R_X86_64_PC32:
519                         value -= (u64)address;
520                         *(u32 *)location = value;
521                         break;
522                 default:
523                         pr_err("Unknown rela relocation: %llu\n",
524                                ELF64_R_TYPE(rel[i].r_info));
525                         return -ENOEXEC;
526                 }
527         }
528         return 0;
529
530 overflow:
531         pr_err("Overflow in relocation type %d value 0x%lx\n",
532                (int)ELF64_R_TYPE(rel[i].r_info), value);
533         return -ENOEXEC;
534 }
535 #endif /* CONFIG_KEXEC_FILE */