Merge commit 'perf/core' into perf/hw-breakpoint
[cascardo/linux.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <trace/events/power.h>
13 #include <asm/system.h>
14 #include <asm/apic.h>
15 #include <asm/syscalls.h>
16 #include <asm/idle.h>
17 #include <asm/uaccess.h>
18 #include <asm/i387.h>
19 #include <asm/ds.h>
20 #include <asm/debugreg.h>
21 #include <asm/hw_breakpoint.h>
22
23 unsigned long idle_halt;
24 EXPORT_SYMBOL(idle_halt);
25 unsigned long idle_nomwait;
26 EXPORT_SYMBOL(idle_nomwait);
27
28 struct kmem_cache *task_xstate_cachep;
29
30 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
31 {
32         *dst = *src;
33         if (src->thread.xstate) {
34                 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
35                                                       GFP_KERNEL);
36                 if (!dst->thread.xstate)
37                         return -ENOMEM;
38                 WARN_ON((unsigned long)dst->thread.xstate & 15);
39                 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
40         }
41         return 0;
42 }
43
44 void free_thread_xstate(struct task_struct *tsk)
45 {
46         if (tsk->thread.xstate) {
47                 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
48                 tsk->thread.xstate = NULL;
49         }
50         if (unlikely(test_tsk_thread_flag(tsk, TIF_DEBUG)))
51                 flush_thread_hw_breakpoint(tsk);
52
53         WARN(tsk->thread.ds_ctx, "leaking DS context\n");
54 }
55
56 void free_thread_info(struct thread_info *ti)
57 {
58         free_thread_xstate(ti->task);
59         free_pages((unsigned long)ti, get_order(THREAD_SIZE));
60 }
61
62 void arch_task_cache_init(void)
63 {
64         task_xstate_cachep =
65                 kmem_cache_create("task_xstate", xstate_size,
66                                   __alignof__(union thread_xstate),
67                                   SLAB_PANIC | SLAB_NOTRACK, NULL);
68 }
69
70 /*
71  * Free current thread data structures etc..
72  */
73 void exit_thread(void)
74 {
75         struct task_struct *me = current;
76         struct thread_struct *t = &me->thread;
77         unsigned long *bp = t->io_bitmap_ptr;
78
79         if (bp) {
80                 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
81
82                 t->io_bitmap_ptr = NULL;
83                 clear_thread_flag(TIF_IO_BITMAP);
84                 /*
85                  * Careful, clear this in the TSS too:
86                  */
87                 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
88                 t->io_bitmap_max = 0;
89                 put_cpu();
90                 kfree(bp);
91         }
92 }
93
94 void flush_thread(void)
95 {
96         struct task_struct *tsk = current;
97
98 #ifdef CONFIG_X86_64
99         if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
100                 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
101                 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
102                         clear_tsk_thread_flag(tsk, TIF_IA32);
103                 } else {
104                         set_tsk_thread_flag(tsk, TIF_IA32);
105                         current_thread_info()->status |= TS_COMPAT;
106                 }
107         }
108 #endif
109
110         clear_tsk_thread_flag(tsk, TIF_DEBUG);
111
112         if (unlikely(test_tsk_thread_flag(tsk, TIF_DEBUG)))
113                 flush_thread_hw_breakpoint(tsk);
114         memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
115         /*
116          * Forget coprocessor state..
117          */
118         tsk->fpu_counter = 0;
119         clear_fpu(tsk);
120         clear_used_math();
121 }
122
123 static void hard_disable_TSC(void)
124 {
125         write_cr4(read_cr4() | X86_CR4_TSD);
126 }
127
128 void disable_TSC(void)
129 {
130         preempt_disable();
131         if (!test_and_set_thread_flag(TIF_NOTSC))
132                 /*
133                  * Must flip the CPU state synchronously with
134                  * TIF_NOTSC in the current running context.
135                  */
136                 hard_disable_TSC();
137         preempt_enable();
138 }
139
140 static void hard_enable_TSC(void)
141 {
142         write_cr4(read_cr4() & ~X86_CR4_TSD);
143 }
144
145 static void enable_TSC(void)
146 {
147         preempt_disable();
148         if (test_and_clear_thread_flag(TIF_NOTSC))
149                 /*
150                  * Must flip the CPU state synchronously with
151                  * TIF_NOTSC in the current running context.
152                  */
153                 hard_enable_TSC();
154         preempt_enable();
155 }
156
157 int get_tsc_mode(unsigned long adr)
158 {
159         unsigned int val;
160
161         if (test_thread_flag(TIF_NOTSC))
162                 val = PR_TSC_SIGSEGV;
163         else
164                 val = PR_TSC_ENABLE;
165
166         return put_user(val, (unsigned int __user *)adr);
167 }
168
169 int set_tsc_mode(unsigned int val)
170 {
171         if (val == PR_TSC_SIGSEGV)
172                 disable_TSC();
173         else if (val == PR_TSC_ENABLE)
174                 enable_TSC();
175         else
176                 return -EINVAL;
177
178         return 0;
179 }
180
181 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
182                       struct tss_struct *tss)
183 {
184         struct thread_struct *prev, *next;
185
186         prev = &prev_p->thread;
187         next = &next_p->thread;
188
189         if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
190             test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
191                 ds_switch_to(prev_p, next_p);
192         else if (next->debugctlmsr != prev->debugctlmsr)
193                 update_debugctlmsr(next->debugctlmsr);
194
195         if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
196             test_tsk_thread_flag(next_p, TIF_NOTSC)) {
197                 /* prev and next are different */
198                 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
199                         hard_disable_TSC();
200                 else
201                         hard_enable_TSC();
202         }
203
204         if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
205                 /*
206                  * Copy the relevant range of the IO bitmap.
207                  * Normally this is 128 bytes or less:
208                  */
209                 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
210                        max(prev->io_bitmap_max, next->io_bitmap_max));
211         } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
212                 /*
213                  * Clear any possible leftover bits:
214                  */
215                 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
216         }
217 }
218
219 int sys_fork(struct pt_regs *regs)
220 {
221         return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
222 }
223
224 /*
225  * This is trivial, and on the face of it looks like it
226  * could equally well be done in user mode.
227  *
228  * Not so, for quite unobvious reasons - register pressure.
229  * In user mode vfork() cannot have a stack frame, and if
230  * done by calling the "clone()" system call directly, you
231  * do not have enough call-clobbered registers to hold all
232  * the information you need.
233  */
234 int sys_vfork(struct pt_regs *regs)
235 {
236         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
237                        NULL, NULL);
238 }
239
240
241 /*
242  * Idle related variables and functions
243  */
244 unsigned long boot_option_idle_override = 0;
245 EXPORT_SYMBOL(boot_option_idle_override);
246
247 /*
248  * Powermanagement idle function, if any..
249  */
250 void (*pm_idle)(void);
251 EXPORT_SYMBOL(pm_idle);
252
253 #ifdef CONFIG_X86_32
254 /*
255  * This halt magic was a workaround for ancient floppy DMA
256  * wreckage. It should be safe to remove.
257  */
258 static int hlt_counter;
259 void disable_hlt(void)
260 {
261         hlt_counter++;
262 }
263 EXPORT_SYMBOL(disable_hlt);
264
265 void enable_hlt(void)
266 {
267         hlt_counter--;
268 }
269 EXPORT_SYMBOL(enable_hlt);
270
271 static inline int hlt_use_halt(void)
272 {
273         return (!hlt_counter && boot_cpu_data.hlt_works_ok);
274 }
275 #else
276 static inline int hlt_use_halt(void)
277 {
278         return 1;
279 }
280 #endif
281
282 /*
283  * We use this if we don't have any better
284  * idle routine..
285  */
286 void default_idle(void)
287 {
288         if (hlt_use_halt()) {
289                 trace_power_start(POWER_CSTATE, 1);
290                 current_thread_info()->status &= ~TS_POLLING;
291                 /*
292                  * TS_POLLING-cleared state must be visible before we
293                  * test NEED_RESCHED:
294                  */
295                 smp_mb();
296
297                 if (!need_resched())
298                         safe_halt();    /* enables interrupts racelessly */
299                 else
300                         local_irq_enable();
301                 current_thread_info()->status |= TS_POLLING;
302         } else {
303                 local_irq_enable();
304                 /* loop is done by the caller */
305                 cpu_relax();
306         }
307 }
308 #ifdef CONFIG_APM_MODULE
309 EXPORT_SYMBOL(default_idle);
310 #endif
311
312 void stop_this_cpu(void *dummy)
313 {
314         local_irq_disable();
315         /*
316          * Remove this CPU:
317          */
318         set_cpu_online(smp_processor_id(), false);
319         disable_local_APIC();
320
321         for (;;) {
322                 if (hlt_works(smp_processor_id()))
323                         halt();
324         }
325 }
326
327 static void do_nothing(void *unused)
328 {
329 }
330
331 /*
332  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
333  * pm_idle and update to new pm_idle value. Required while changing pm_idle
334  * handler on SMP systems.
335  *
336  * Caller must have changed pm_idle to the new value before the call. Old
337  * pm_idle value will not be used by any CPU after the return of this function.
338  */
339 void cpu_idle_wait(void)
340 {
341         smp_mb();
342         /* kick all the CPUs so that they exit out of pm_idle */
343         smp_call_function(do_nothing, NULL, 1);
344 }
345 EXPORT_SYMBOL_GPL(cpu_idle_wait);
346
347 /*
348  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
349  * which can obviate IPI to trigger checking of need_resched.
350  * We execute MONITOR against need_resched and enter optimized wait state
351  * through MWAIT. Whenever someone changes need_resched, we would be woken
352  * up from MWAIT (without an IPI).
353  *
354  * New with Core Duo processors, MWAIT can take some hints based on CPU
355  * capability.
356  */
357 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
358 {
359         trace_power_start(POWER_CSTATE, (ax>>4)+1);
360         if (!need_resched()) {
361                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
362                         clflush((void *)&current_thread_info()->flags);
363
364                 __monitor((void *)&current_thread_info()->flags, 0, 0);
365                 smp_mb();
366                 if (!need_resched())
367                         __mwait(ax, cx);
368         }
369 }
370
371 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
372 static void mwait_idle(void)
373 {
374         if (!need_resched()) {
375                 trace_power_start(POWER_CSTATE, 1);
376                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
377                         clflush((void *)&current_thread_info()->flags);
378
379                 __monitor((void *)&current_thread_info()->flags, 0, 0);
380                 smp_mb();
381                 if (!need_resched())
382                         __sti_mwait(0, 0);
383                 else
384                         local_irq_enable();
385         } else
386                 local_irq_enable();
387 }
388
389 /*
390  * On SMP it's slightly faster (but much more power-consuming!)
391  * to poll the ->work.need_resched flag instead of waiting for the
392  * cross-CPU IPI to arrive. Use this option with caution.
393  */
394 static void poll_idle(void)
395 {
396         trace_power_start(POWER_CSTATE, 0);
397         local_irq_enable();
398         while (!need_resched())
399                 cpu_relax();
400         trace_power_end(0);
401 }
402
403 /*
404  * mwait selection logic:
405  *
406  * It depends on the CPU. For AMD CPUs that support MWAIT this is
407  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
408  * then depend on a clock divisor and current Pstate of the core. If
409  * all cores of a processor are in halt state (C1) the processor can
410  * enter the C1E (C1 enhanced) state. If mwait is used this will never
411  * happen.
412  *
413  * idle=mwait overrides this decision and forces the usage of mwait.
414  */
415 static int __cpuinitdata force_mwait;
416
417 #define MWAIT_INFO                      0x05
418 #define MWAIT_ECX_EXTENDED_INFO         0x01
419 #define MWAIT_EDX_C1                    0xf0
420
421 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
422 {
423         u32 eax, ebx, ecx, edx;
424
425         if (force_mwait)
426                 return 1;
427
428         if (c->cpuid_level < MWAIT_INFO)
429                 return 0;
430
431         cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
432         /* Check, whether EDX has extended info about MWAIT */
433         if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
434                 return 1;
435
436         /*
437          * edx enumeratios MONITOR/MWAIT extensions. Check, whether
438          * C1  supports MWAIT
439          */
440         return (edx & MWAIT_EDX_C1);
441 }
442
443 /*
444  * Check for AMD CPUs, which have potentially C1E support
445  */
446 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
447 {
448         if (c->x86_vendor != X86_VENDOR_AMD)
449                 return 0;
450
451         if (c->x86 < 0x0F)
452                 return 0;
453
454         /* Family 0x0f models < rev F do not have C1E */
455         if (c->x86 == 0x0f && c->x86_model < 0x40)
456                 return 0;
457
458         return 1;
459 }
460
461 static cpumask_var_t c1e_mask;
462 static int c1e_detected;
463
464 void c1e_remove_cpu(int cpu)
465 {
466         if (c1e_mask != NULL)
467                 cpumask_clear_cpu(cpu, c1e_mask);
468 }
469
470 /*
471  * C1E aware idle routine. We check for C1E active in the interrupt
472  * pending message MSR. If we detect C1E, then we handle it the same
473  * way as C3 power states (local apic timer and TSC stop)
474  */
475 static void c1e_idle(void)
476 {
477         if (need_resched())
478                 return;
479
480         if (!c1e_detected) {
481                 u32 lo, hi;
482
483                 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
484                 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
485                         c1e_detected = 1;
486                         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
487                                 mark_tsc_unstable("TSC halt in AMD C1E");
488                         printk(KERN_INFO "System has AMD C1E enabled\n");
489                         set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
490                 }
491         }
492
493         if (c1e_detected) {
494                 int cpu = smp_processor_id();
495
496                 if (!cpumask_test_cpu(cpu, c1e_mask)) {
497                         cpumask_set_cpu(cpu, c1e_mask);
498                         /*
499                          * Force broadcast so ACPI can not interfere.
500                          */
501                         clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
502                                            &cpu);
503                         printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
504                                cpu);
505                 }
506                 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
507
508                 default_idle();
509
510                 /*
511                  * The switch back from broadcast mode needs to be
512                  * called with interrupts disabled.
513                  */
514                  local_irq_disable();
515                  clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
516                  local_irq_enable();
517         } else
518                 default_idle();
519 }
520
521 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
522 {
523 #ifdef CONFIG_SMP
524         if (pm_idle == poll_idle && smp_num_siblings > 1) {
525                 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
526                         " performance may degrade.\n");
527         }
528 #endif
529         if (pm_idle)
530                 return;
531
532         if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
533                 /*
534                  * One CPU supports mwait => All CPUs supports mwait
535                  */
536                 printk(KERN_INFO "using mwait in idle threads.\n");
537                 pm_idle = mwait_idle;
538         } else if (check_c1e_idle(c)) {
539                 printk(KERN_INFO "using C1E aware idle routine\n");
540                 pm_idle = c1e_idle;
541         } else
542                 pm_idle = default_idle;
543 }
544
545 void __init init_c1e_mask(void)
546 {
547         /* If we're using c1e_idle, we need to allocate c1e_mask. */
548         if (pm_idle == c1e_idle)
549                 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
550 }
551
552 static int __init idle_setup(char *str)
553 {
554         if (!str)
555                 return -EINVAL;
556
557         if (!strcmp(str, "poll")) {
558                 printk("using polling idle threads.\n");
559                 pm_idle = poll_idle;
560         } else if (!strcmp(str, "mwait"))
561                 force_mwait = 1;
562         else if (!strcmp(str, "halt")) {
563                 /*
564                  * When the boot option of idle=halt is added, halt is
565                  * forced to be used for CPU idle. In such case CPU C2/C3
566                  * won't be used again.
567                  * To continue to load the CPU idle driver, don't touch
568                  * the boot_option_idle_override.
569                  */
570                 pm_idle = default_idle;
571                 idle_halt = 1;
572                 return 0;
573         } else if (!strcmp(str, "nomwait")) {
574                 /*
575                  * If the boot option of "idle=nomwait" is added,
576                  * it means that mwait will be disabled for CPU C2/C3
577                  * states. In such case it won't touch the variable
578                  * of boot_option_idle_override.
579                  */
580                 idle_nomwait = 1;
581                 return 0;
582         } else
583                 return -1;
584
585         boot_option_idle_override = 1;
586         return 0;
587 }
588 early_param("idle", idle_setup);
589
590 unsigned long arch_align_stack(unsigned long sp)
591 {
592         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
593                 sp -= get_random_int() % 8192;
594         return sp & ~0xf;
595 }
596
597 unsigned long arch_randomize_brk(struct mm_struct *mm)
598 {
599         unsigned long range_end = mm->brk + 0x02000000;
600         return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
601 }
602