ASoC: max98371 Remove duplicate entry in max98371_reg
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47  * When setting this variable to true it enables Two-Dimensional-Paging
48  * where the hardware walks 2 page tables:
49  * 1. the guest-virtual to guest-physical
50  * 2. while doing 1. it walks guest-physical to host-physical
51  * If the hardware supports that we don't need to do shadow paging.
52  */
53 bool tdp_enabled = false;
54
55 enum {
56         AUDIT_PRE_PAGE_FAULT,
57         AUDIT_POST_PAGE_FAULT,
58         AUDIT_PRE_PTE_WRITE,
59         AUDIT_POST_PTE_WRITE,
60         AUDIT_PRE_SYNC,
61         AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM                8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100                                                 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111                                                 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114                                                 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121                                             * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124                         | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK    1
127 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
128 #define ACC_USER_MASK    PT_USER_MASK
129 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145         u64 *sptes[PTE_LIST_EXT];
146         struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150         u64 addr;
151         hpa_t shadow_addr;
152         u64 *sptep;
153         int level;
154         unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
158         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
159              shadow_walk_okay(&(_walker));                      \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
164              shadow_walk_okay(&(_walker)) &&                            \
165                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
166              __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178
179 static void mmu_spte_set(u64 *sptep, u64 spte);
180 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 {
184         shadow_mmio_mask = mmio_mask;
185 }
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188 /*
189  * the low bit of the generation number is always presumed to be zero.
190  * This disables mmio caching during memslot updates.  The concept is
191  * similar to a seqcount but instead of retrying the access we just punt
192  * and ignore the cache.
193  *
194  * spte bits 3-11 are used as bits 1-9 of the generation number,
195  * the bits 52-61 are used as bits 10-19 of the generation number.
196  */
197 #define MMIO_SPTE_GEN_LOW_SHIFT         2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
199
200 #define MMIO_GEN_SHIFT                  20
201 #define MMIO_GEN_LOW_SHIFT              10
202 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
204
205 static u64 generation_mmio_spte_mask(unsigned int gen)
206 {
207         u64 mask;
208
209         WARN_ON(gen & ~MMIO_GEN_MASK);
210
211         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213         return mask;
214 }
215
216 static unsigned int get_mmio_spte_generation(u64 spte)
217 {
218         unsigned int gen;
219
220         spte &= ~shadow_mmio_mask;
221
222         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224         return gen;
225 }
226
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 {
229         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233                            unsigned access)
234 {
235         unsigned int gen = kvm_current_mmio_generation(vcpu);
236         u64 mask = generation_mmio_spte_mask(gen);
237
238         access &= ACC_WRITE_MASK | ACC_USER_MASK;
239         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241         trace_mark_mmio_spte(sptep, gfn, access, gen);
242         mmu_spte_set(sptep, mask);
243 }
244
245 static bool is_mmio_spte(u64 spte)
246 {
247         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248 }
249
250 static gfn_t get_mmio_spte_gfn(u64 spte)
251 {
252         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253         return (spte & ~mask) >> PAGE_SHIFT;
254 }
255
256 static unsigned get_mmio_spte_access(u64 spte)
257 {
258         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259         return (spte & ~mask) & ~PAGE_MASK;
260 }
261
262 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263                           kvm_pfn_t pfn, unsigned access)
264 {
265         if (unlikely(is_noslot_pfn(pfn))) {
266                 mark_mmio_spte(vcpu, sptep, gfn, access);
267                 return true;
268         }
269
270         return false;
271 }
272
273 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 {
275         unsigned int kvm_gen, spte_gen;
276
277         kvm_gen = kvm_current_mmio_generation(vcpu);
278         spte_gen = get_mmio_spte_generation(spte);
279
280         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281         return likely(kvm_gen == spte_gen);
282 }
283
284 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 {
287         shadow_user_mask = user_mask;
288         shadow_accessed_mask = accessed_mask;
289         shadow_dirty_mask = dirty_mask;
290         shadow_nx_mask = nx_mask;
291         shadow_x_mask = x_mask;
292 }
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295 static int is_cpuid_PSE36(void)
296 {
297         return 1;
298 }
299
300 static int is_nx(struct kvm_vcpu *vcpu)
301 {
302         return vcpu->arch.efer & EFER_NX;
303 }
304
305 static int is_shadow_present_pte(u64 pte)
306 {
307         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 }
309
310 static int is_large_pte(u64 pte)
311 {
312         return pte & PT_PAGE_SIZE_MASK;
313 }
314
315 static int is_last_spte(u64 pte, int level)
316 {
317         if (level == PT_PAGE_TABLE_LEVEL)
318                 return 1;
319         if (is_large_pte(pte))
320                 return 1;
321         return 0;
322 }
323
324 static kvm_pfn_t spte_to_pfn(u64 pte)
325 {
326         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 }
328
329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333         return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339         *sptep = spte;
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344         *sptep = spte;
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349         return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354         return ACCESS_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358         struct {
359                 u32 spte_low;
360                 u32 spte_high;
361         };
362         u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
368
369         if (is_shadow_present_pte(spte))
370                 return;
371
372         /* Ensure the spte is completely set before we increase the count */
373         smp_wmb();
374         sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379         union split_spte *ssptep, sspte;
380
381         ssptep = (union split_spte *)sptep;
382         sspte = (union split_spte)spte;
383
384         ssptep->spte_high = sspte.spte_high;
385
386         /*
387          * If we map the spte from nonpresent to present, We should store
388          * the high bits firstly, then set present bit, so cpu can not
389          * fetch this spte while we are setting the spte.
390          */
391         smp_wmb();
392
393         ssptep->spte_low = sspte.spte_low;
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398         union split_spte *ssptep, sspte;
399
400         ssptep = (union split_spte *)sptep;
401         sspte = (union split_spte)spte;
402
403         ssptep->spte_low = sspte.spte_low;
404
405         /*
406          * If we map the spte from present to nonpresent, we should clear
407          * present bit firstly to avoid vcpu fetch the old high bits.
408          */
409         smp_wmb();
410
411         ssptep->spte_high = sspte.spte_high;
412         count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417         union split_spte *ssptep, sspte, orig;
418
419         ssptep = (union split_spte *)sptep;
420         sspte = (union split_spte)spte;
421
422         /* xchg acts as a barrier before the setting of the high bits */
423         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424         orig.spte_high = ssptep->spte_high;
425         ssptep->spte_high = sspte.spte_high;
426         count_spte_clear(sptep, spte);
427
428         return orig.spte;
429 }
430
431 /*
432  * The idea using the light way get the spte on x86_32 guest is from
433  * gup_get_pte(arch/x86/mm/gup.c).
434  *
435  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436  * coalesces them and we are running out of the MMU lock.  Therefore
437  * we need to protect against in-progress updates of the spte.
438  *
439  * Reading the spte while an update is in progress may get the old value
440  * for the high part of the spte.  The race is fine for a present->non-present
441  * change (because the high part of the spte is ignored for non-present spte),
442  * but for a present->present change we must reread the spte.
443  *
444  * All such changes are done in two steps (present->non-present and
445  * non-present->present), hence it is enough to count the number of
446  * present->non-present updates: if it changed while reading the spte,
447  * we might have hit the race.  This is done using clear_spte_count.
448  */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
452         union split_spte spte, *orig = (union split_spte *)sptep;
453         int count;
454
455 retry:
456         count = sp->clear_spte_count;
457         smp_rmb();
458
459         spte.spte_low = orig->spte_low;
460         smp_rmb();
461
462         spte.spte_high = orig->spte_high;
463         smp_rmb();
464
465         if (unlikely(spte.spte_low != orig->spte_low ||
466               count != sp->clear_spte_count))
467                 goto retry;
468
469         return spte.spte;
470 }
471 #endif
472
473 static bool spte_is_locklessly_modifiable(u64 spte)
474 {
475         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 }
478
479 static bool spte_has_volatile_bits(u64 spte)
480 {
481         /*
482          * Always atomically update spte if it can be updated
483          * out of mmu-lock, it can ensure dirty bit is not lost,
484          * also, it can help us to get a stable is_writable_pte()
485          * to ensure tlb flush is not missed.
486          */
487         if (spte_is_locklessly_modifiable(spte))
488                 return true;
489
490         if (!shadow_accessed_mask)
491                 return false;
492
493         if (!is_shadow_present_pte(spte))
494                 return false;
495
496         if ((spte & shadow_accessed_mask) &&
497               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498                 return false;
499
500         return true;
501 }
502
503 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504 {
505         return (old_spte & bit_mask) && !(new_spte & bit_mask);
506 }
507
508 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509 {
510         return (old_spte & bit_mask) != (new_spte & bit_mask);
511 }
512
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521         WARN_ON(is_shadow_present_pte(*sptep));
522         __set_spte(sptep, new_spte);
523 }
524
525 /* Rules for using mmu_spte_update:
526  * Update the state bits, it means the mapped pfn is not changged.
527  *
528  * Whenever we overwrite a writable spte with a read-only one we
529  * should flush remote TLBs. Otherwise rmap_write_protect
530  * will find a read-only spte, even though the writable spte
531  * might be cached on a CPU's TLB, the return value indicates this
532  * case.
533  */
534 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535 {
536         u64 old_spte = *sptep;
537         bool ret = false;
538
539         WARN_ON(!is_shadow_present_pte(new_spte));
540
541         if (!is_shadow_present_pte(old_spte)) {
542                 mmu_spte_set(sptep, new_spte);
543                 return ret;
544         }
545
546         if (!spte_has_volatile_bits(old_spte))
547                 __update_clear_spte_fast(sptep, new_spte);
548         else
549                 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551         /*
552          * For the spte updated out of mmu-lock is safe, since
553          * we always atomically update it, see the comments in
554          * spte_has_volatile_bits().
555          */
556         if (spte_is_locklessly_modifiable(old_spte) &&
557               !is_writable_pte(new_spte))
558                 ret = true;
559
560         if (!shadow_accessed_mask)
561                 return ret;
562
563         /*
564          * Flush TLB when accessed/dirty bits are changed in the page tables,
565          * to guarantee consistency between TLB and page tables.
566          */
567         if (spte_is_bit_changed(old_spte, new_spte,
568                                 shadow_accessed_mask | shadow_dirty_mask))
569                 ret = true;
570
571         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575
576         return ret;
577 }
578
579 /*
580  * Rules for using mmu_spte_clear_track_bits:
581  * It sets the sptep from present to nonpresent, and track the
582  * state bits, it is used to clear the last level sptep.
583  */
584 static int mmu_spte_clear_track_bits(u64 *sptep)
585 {
586         kvm_pfn_t pfn;
587         u64 old_spte = *sptep;
588
589         if (!spte_has_volatile_bits(old_spte))
590                 __update_clear_spte_fast(sptep, 0ull);
591         else
592                 old_spte = __update_clear_spte_slow(sptep, 0ull);
593
594         if (!is_shadow_present_pte(old_spte))
595                 return 0;
596
597         pfn = spte_to_pfn(old_spte);
598
599         /*
600          * KVM does not hold the refcount of the page used by
601          * kvm mmu, before reclaiming the page, we should
602          * unmap it from mmu first.
603          */
604         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605
606         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607                 kvm_set_pfn_accessed(pfn);
608         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609                 kvm_set_pfn_dirty(pfn);
610         return 1;
611 }
612
613 /*
614  * Rules for using mmu_spte_clear_no_track:
615  * Directly clear spte without caring the state bits of sptep,
616  * it is used to set the upper level spte.
617  */
618 static void mmu_spte_clear_no_track(u64 *sptep)
619 {
620         __update_clear_spte_fast(sptep, 0ull);
621 }
622
623 static u64 mmu_spte_get_lockless(u64 *sptep)
624 {
625         return __get_spte_lockless(sptep);
626 }
627
628 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629 {
630         /*
631          * Prevent page table teardown by making any free-er wait during
632          * kvm_flush_remote_tlbs() IPI to all active vcpus.
633          */
634         local_irq_disable();
635
636         /*
637          * Make sure a following spte read is not reordered ahead of the write
638          * to vcpu->mode.
639          */
640         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
641 }
642
643 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644 {
645         /*
646          * Make sure the write to vcpu->mode is not reordered in front of
647          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
648          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649          */
650         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
651         local_irq_enable();
652 }
653
654 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
655                                   struct kmem_cache *base_cache, int min)
656 {
657         void *obj;
658
659         if (cache->nobjs >= min)
660                 return 0;
661         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
662                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
663                 if (!obj)
664                         return -ENOMEM;
665                 cache->objects[cache->nobjs++] = obj;
666         }
667         return 0;
668 }
669
670 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
671 {
672         return cache->nobjs;
673 }
674
675 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
676                                   struct kmem_cache *cache)
677 {
678         while (mc->nobjs)
679                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
680 }
681
682 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
683                                        int min)
684 {
685         void *page;
686
687         if (cache->nobjs >= min)
688                 return 0;
689         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690                 page = (void *)__get_free_page(GFP_KERNEL);
691                 if (!page)
692                         return -ENOMEM;
693                 cache->objects[cache->nobjs++] = page;
694         }
695         return 0;
696 }
697
698 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
699 {
700         while (mc->nobjs)
701                 free_page((unsigned long)mc->objects[--mc->nobjs]);
702 }
703
704 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
705 {
706         int r;
707
708         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
709                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
710         if (r)
711                 goto out;
712         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
713         if (r)
714                 goto out;
715         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
716                                    mmu_page_header_cache, 4);
717 out:
718         return r;
719 }
720
721 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
722 {
723         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
724                                 pte_list_desc_cache);
725         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
726         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
727                                 mmu_page_header_cache);
728 }
729
730 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
731 {
732         void *p;
733
734         BUG_ON(!mc->nobjs);
735         p = mc->objects[--mc->nobjs];
736         return p;
737 }
738
739 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
740 {
741         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
742 }
743
744 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
745 {
746         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
747 }
748
749 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
750 {
751         if (!sp->role.direct)
752                 return sp->gfns[index];
753
754         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
755 }
756
757 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
758 {
759         if (sp->role.direct)
760                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
761         else
762                 sp->gfns[index] = gfn;
763 }
764
765 /*
766  * Return the pointer to the large page information for a given gfn,
767  * handling slots that are not large page aligned.
768  */
769 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
770                                               struct kvm_memory_slot *slot,
771                                               int level)
772 {
773         unsigned long idx;
774
775         idx = gfn_to_index(gfn, slot->base_gfn, level);
776         return &slot->arch.lpage_info[level - 2][idx];
777 }
778
779 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
780                                             gfn_t gfn, int count)
781 {
782         struct kvm_lpage_info *linfo;
783         int i;
784
785         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
786                 linfo = lpage_info_slot(gfn, slot, i);
787                 linfo->disallow_lpage += count;
788                 WARN_ON(linfo->disallow_lpage < 0);
789         }
790 }
791
792 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
793 {
794         update_gfn_disallow_lpage_count(slot, gfn, 1);
795 }
796
797 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
798 {
799         update_gfn_disallow_lpage_count(slot, gfn, -1);
800 }
801
802 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803 {
804         struct kvm_memslots *slots;
805         struct kvm_memory_slot *slot;
806         gfn_t gfn;
807
808         kvm->arch.indirect_shadow_pages++;
809         gfn = sp->gfn;
810         slots = kvm_memslots_for_spte_role(kvm, sp->role);
811         slot = __gfn_to_memslot(slots, gfn);
812
813         /* the non-leaf shadow pages are keeping readonly. */
814         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
815                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
816                                                     KVM_PAGE_TRACK_WRITE);
817
818         kvm_mmu_gfn_disallow_lpage(slot, gfn);
819 }
820
821 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
822 {
823         struct kvm_memslots *slots;
824         struct kvm_memory_slot *slot;
825         gfn_t gfn;
826
827         kvm->arch.indirect_shadow_pages--;
828         gfn = sp->gfn;
829         slots = kvm_memslots_for_spte_role(kvm, sp->role);
830         slot = __gfn_to_memslot(slots, gfn);
831         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
832                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
833                                                        KVM_PAGE_TRACK_WRITE);
834
835         kvm_mmu_gfn_allow_lpage(slot, gfn);
836 }
837
838 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
839                                           struct kvm_memory_slot *slot)
840 {
841         struct kvm_lpage_info *linfo;
842
843         if (slot) {
844                 linfo = lpage_info_slot(gfn, slot, level);
845                 return !!linfo->disallow_lpage;
846         }
847
848         return true;
849 }
850
851 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
852                                         int level)
853 {
854         struct kvm_memory_slot *slot;
855
856         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
857         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
858 }
859
860 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
861 {
862         unsigned long page_size;
863         int i, ret = 0;
864
865         page_size = kvm_host_page_size(kvm, gfn);
866
867         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
868                 if (page_size >= KVM_HPAGE_SIZE(i))
869                         ret = i;
870                 else
871                         break;
872         }
873
874         return ret;
875 }
876
877 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
878                                           bool no_dirty_log)
879 {
880         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
881                 return false;
882         if (no_dirty_log && slot->dirty_bitmap)
883                 return false;
884
885         return true;
886 }
887
888 static struct kvm_memory_slot *
889 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
890                             bool no_dirty_log)
891 {
892         struct kvm_memory_slot *slot;
893
894         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
895         if (!memslot_valid_for_gpte(slot, no_dirty_log))
896                 slot = NULL;
897
898         return slot;
899 }
900
901 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
902                          bool *force_pt_level)
903 {
904         int host_level, level, max_level;
905         struct kvm_memory_slot *slot;
906
907         if (unlikely(*force_pt_level))
908                 return PT_PAGE_TABLE_LEVEL;
909
910         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
911         *force_pt_level = !memslot_valid_for_gpte(slot, true);
912         if (unlikely(*force_pt_level))
913                 return PT_PAGE_TABLE_LEVEL;
914
915         host_level = host_mapping_level(vcpu->kvm, large_gfn);
916
917         if (host_level == PT_PAGE_TABLE_LEVEL)
918                 return host_level;
919
920         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
921
922         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
923                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
924                         break;
925
926         return level - 1;
927 }
928
929 /*
930  * About rmap_head encoding:
931  *
932  * If the bit zero of rmap_head->val is clear, then it points to the only spte
933  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
934  * pte_list_desc containing more mappings.
935  */
936
937 /*
938  * Returns the number of pointers in the rmap chain, not counting the new one.
939  */
940 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
941                         struct kvm_rmap_head *rmap_head)
942 {
943         struct pte_list_desc *desc;
944         int i, count = 0;
945
946         if (!rmap_head->val) {
947                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
948                 rmap_head->val = (unsigned long)spte;
949         } else if (!(rmap_head->val & 1)) {
950                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
951                 desc = mmu_alloc_pte_list_desc(vcpu);
952                 desc->sptes[0] = (u64 *)rmap_head->val;
953                 desc->sptes[1] = spte;
954                 rmap_head->val = (unsigned long)desc | 1;
955                 ++count;
956         } else {
957                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
958                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
959                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
960                         desc = desc->more;
961                         count += PTE_LIST_EXT;
962                 }
963                 if (desc->sptes[PTE_LIST_EXT-1]) {
964                         desc->more = mmu_alloc_pte_list_desc(vcpu);
965                         desc = desc->more;
966                 }
967                 for (i = 0; desc->sptes[i]; ++i)
968                         ++count;
969                 desc->sptes[i] = spte;
970         }
971         return count;
972 }
973
974 static void
975 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
976                            struct pte_list_desc *desc, int i,
977                            struct pte_list_desc *prev_desc)
978 {
979         int j;
980
981         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
982                 ;
983         desc->sptes[i] = desc->sptes[j];
984         desc->sptes[j] = NULL;
985         if (j != 0)
986                 return;
987         if (!prev_desc && !desc->more)
988                 rmap_head->val = (unsigned long)desc->sptes[0];
989         else
990                 if (prev_desc)
991                         prev_desc->more = desc->more;
992                 else
993                         rmap_head->val = (unsigned long)desc->more | 1;
994         mmu_free_pte_list_desc(desc);
995 }
996
997 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
998 {
999         struct pte_list_desc *desc;
1000         struct pte_list_desc *prev_desc;
1001         int i;
1002
1003         if (!rmap_head->val) {
1004                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1005                 BUG();
1006         } else if (!(rmap_head->val & 1)) {
1007                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1008                 if ((u64 *)rmap_head->val != spte) {
1009                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1010                         BUG();
1011                 }
1012                 rmap_head->val = 0;
1013         } else {
1014                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1015                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1016                 prev_desc = NULL;
1017                 while (desc) {
1018                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1019                                 if (desc->sptes[i] == spte) {
1020                                         pte_list_desc_remove_entry(rmap_head,
1021                                                         desc, i, prev_desc);
1022                                         return;
1023                                 }
1024                         }
1025                         prev_desc = desc;
1026                         desc = desc->more;
1027                 }
1028                 pr_err("pte_list_remove: %p many->many\n", spte);
1029                 BUG();
1030         }
1031 }
1032
1033 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1034                                            struct kvm_memory_slot *slot)
1035 {
1036         unsigned long idx;
1037
1038         idx = gfn_to_index(gfn, slot->base_gfn, level);
1039         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1040 }
1041
1042 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1043                                          struct kvm_mmu_page *sp)
1044 {
1045         struct kvm_memslots *slots;
1046         struct kvm_memory_slot *slot;
1047
1048         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1049         slot = __gfn_to_memslot(slots, gfn);
1050         return __gfn_to_rmap(gfn, sp->role.level, slot);
1051 }
1052
1053 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1054 {
1055         struct kvm_mmu_memory_cache *cache;
1056
1057         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1058         return mmu_memory_cache_free_objects(cache);
1059 }
1060
1061 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1062 {
1063         struct kvm_mmu_page *sp;
1064         struct kvm_rmap_head *rmap_head;
1065
1066         sp = page_header(__pa(spte));
1067         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1068         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1069         return pte_list_add(vcpu, spte, rmap_head);
1070 }
1071
1072 static void rmap_remove(struct kvm *kvm, u64 *spte)
1073 {
1074         struct kvm_mmu_page *sp;
1075         gfn_t gfn;
1076         struct kvm_rmap_head *rmap_head;
1077
1078         sp = page_header(__pa(spte));
1079         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1080         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1081         pte_list_remove(spte, rmap_head);
1082 }
1083
1084 /*
1085  * Used by the following functions to iterate through the sptes linked by a
1086  * rmap.  All fields are private and not assumed to be used outside.
1087  */
1088 struct rmap_iterator {
1089         /* private fields */
1090         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1091         int pos;                        /* index of the sptep */
1092 };
1093
1094 /*
1095  * Iteration must be started by this function.  This should also be used after
1096  * removing/dropping sptes from the rmap link because in such cases the
1097  * information in the itererator may not be valid.
1098  *
1099  * Returns sptep if found, NULL otherwise.
1100  */
1101 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1102                            struct rmap_iterator *iter)
1103 {
1104         u64 *sptep;
1105
1106         if (!rmap_head->val)
1107                 return NULL;
1108
1109         if (!(rmap_head->val & 1)) {
1110                 iter->desc = NULL;
1111                 sptep = (u64 *)rmap_head->val;
1112                 goto out;
1113         }
1114
1115         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1116         iter->pos = 0;
1117         sptep = iter->desc->sptes[iter->pos];
1118 out:
1119         BUG_ON(!is_shadow_present_pte(*sptep));
1120         return sptep;
1121 }
1122
1123 /*
1124  * Must be used with a valid iterator: e.g. after rmap_get_first().
1125  *
1126  * Returns sptep if found, NULL otherwise.
1127  */
1128 static u64 *rmap_get_next(struct rmap_iterator *iter)
1129 {
1130         u64 *sptep;
1131
1132         if (iter->desc) {
1133                 if (iter->pos < PTE_LIST_EXT - 1) {
1134                         ++iter->pos;
1135                         sptep = iter->desc->sptes[iter->pos];
1136                         if (sptep)
1137                                 goto out;
1138                 }
1139
1140                 iter->desc = iter->desc->more;
1141
1142                 if (iter->desc) {
1143                         iter->pos = 0;
1144                         /* desc->sptes[0] cannot be NULL */
1145                         sptep = iter->desc->sptes[iter->pos];
1146                         goto out;
1147                 }
1148         }
1149
1150         return NULL;
1151 out:
1152         BUG_ON(!is_shadow_present_pte(*sptep));
1153         return sptep;
1154 }
1155
1156 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1157         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1158              _spte_; _spte_ = rmap_get_next(_iter_))
1159
1160 static void drop_spte(struct kvm *kvm, u64 *sptep)
1161 {
1162         if (mmu_spte_clear_track_bits(sptep))
1163                 rmap_remove(kvm, sptep);
1164 }
1165
1166
1167 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1168 {
1169         if (is_large_pte(*sptep)) {
1170                 WARN_ON(page_header(__pa(sptep))->role.level ==
1171                         PT_PAGE_TABLE_LEVEL);
1172                 drop_spte(kvm, sptep);
1173                 --kvm->stat.lpages;
1174                 return true;
1175         }
1176
1177         return false;
1178 }
1179
1180 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1181 {
1182         if (__drop_large_spte(vcpu->kvm, sptep))
1183                 kvm_flush_remote_tlbs(vcpu->kvm);
1184 }
1185
1186 /*
1187  * Write-protect on the specified @sptep, @pt_protect indicates whether
1188  * spte write-protection is caused by protecting shadow page table.
1189  *
1190  * Note: write protection is difference between dirty logging and spte
1191  * protection:
1192  * - for dirty logging, the spte can be set to writable at anytime if
1193  *   its dirty bitmap is properly set.
1194  * - for spte protection, the spte can be writable only after unsync-ing
1195  *   shadow page.
1196  *
1197  * Return true if tlb need be flushed.
1198  */
1199 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1200 {
1201         u64 spte = *sptep;
1202
1203         if (!is_writable_pte(spte) &&
1204               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1205                 return false;
1206
1207         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1208
1209         if (pt_protect)
1210                 spte &= ~SPTE_MMU_WRITEABLE;
1211         spte = spte & ~PT_WRITABLE_MASK;
1212
1213         return mmu_spte_update(sptep, spte);
1214 }
1215
1216 static bool __rmap_write_protect(struct kvm *kvm,
1217                                  struct kvm_rmap_head *rmap_head,
1218                                  bool pt_protect)
1219 {
1220         u64 *sptep;
1221         struct rmap_iterator iter;
1222         bool flush = false;
1223
1224         for_each_rmap_spte(rmap_head, &iter, sptep)
1225                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1226
1227         return flush;
1228 }
1229
1230 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1231 {
1232         u64 spte = *sptep;
1233
1234         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1235
1236         spte &= ~shadow_dirty_mask;
1237
1238         return mmu_spte_update(sptep, spte);
1239 }
1240
1241 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1242 {
1243         u64 *sptep;
1244         struct rmap_iterator iter;
1245         bool flush = false;
1246
1247         for_each_rmap_spte(rmap_head, &iter, sptep)
1248                 flush |= spte_clear_dirty(kvm, sptep);
1249
1250         return flush;
1251 }
1252
1253 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1254 {
1255         u64 spte = *sptep;
1256
1257         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1258
1259         spte |= shadow_dirty_mask;
1260
1261         return mmu_spte_update(sptep, spte);
1262 }
1263
1264 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1265 {
1266         u64 *sptep;
1267         struct rmap_iterator iter;
1268         bool flush = false;
1269
1270         for_each_rmap_spte(rmap_head, &iter, sptep)
1271                 flush |= spte_set_dirty(kvm, sptep);
1272
1273         return flush;
1274 }
1275
1276 /**
1277  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1278  * @kvm: kvm instance
1279  * @slot: slot to protect
1280  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1281  * @mask: indicates which pages we should protect
1282  *
1283  * Used when we do not need to care about huge page mappings: e.g. during dirty
1284  * logging we do not have any such mappings.
1285  */
1286 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1287                                      struct kvm_memory_slot *slot,
1288                                      gfn_t gfn_offset, unsigned long mask)
1289 {
1290         struct kvm_rmap_head *rmap_head;
1291
1292         while (mask) {
1293                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1294                                           PT_PAGE_TABLE_LEVEL, slot);
1295                 __rmap_write_protect(kvm, rmap_head, false);
1296
1297                 /* clear the first set bit */
1298                 mask &= mask - 1;
1299         }
1300 }
1301
1302 /**
1303  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1304  * @kvm: kvm instance
1305  * @slot: slot to clear D-bit
1306  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1307  * @mask: indicates which pages we should clear D-bit
1308  *
1309  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1310  */
1311 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1312                                      struct kvm_memory_slot *slot,
1313                                      gfn_t gfn_offset, unsigned long mask)
1314 {
1315         struct kvm_rmap_head *rmap_head;
1316
1317         while (mask) {
1318                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1319                                           PT_PAGE_TABLE_LEVEL, slot);
1320                 __rmap_clear_dirty(kvm, rmap_head);
1321
1322                 /* clear the first set bit */
1323                 mask &= mask - 1;
1324         }
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1327
1328 /**
1329  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1330  * PT level pages.
1331  *
1332  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1333  * enable dirty logging for them.
1334  *
1335  * Used when we do not need to care about huge page mappings: e.g. during dirty
1336  * logging we do not have any such mappings.
1337  */
1338 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1339                                 struct kvm_memory_slot *slot,
1340                                 gfn_t gfn_offset, unsigned long mask)
1341 {
1342         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1343                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1344                                 mask);
1345         else
1346                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1347 }
1348
1349 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1350                                     struct kvm_memory_slot *slot, u64 gfn)
1351 {
1352         struct kvm_rmap_head *rmap_head;
1353         int i;
1354         bool write_protected = false;
1355
1356         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1357                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1358                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1359         }
1360
1361         return write_protected;
1362 }
1363
1364 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1365 {
1366         struct kvm_memory_slot *slot;
1367
1368         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1369         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1370 }
1371
1372 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1373 {
1374         u64 *sptep;
1375         struct rmap_iterator iter;
1376         bool flush = false;
1377
1378         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1379                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1380
1381                 drop_spte(kvm, sptep);
1382                 flush = true;
1383         }
1384
1385         return flush;
1386 }
1387
1388 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1389                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1390                            unsigned long data)
1391 {
1392         return kvm_zap_rmapp(kvm, rmap_head);
1393 }
1394
1395 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1396                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1397                              unsigned long data)
1398 {
1399         u64 *sptep;
1400         struct rmap_iterator iter;
1401         int need_flush = 0;
1402         u64 new_spte;
1403         pte_t *ptep = (pte_t *)data;
1404         kvm_pfn_t new_pfn;
1405
1406         WARN_ON(pte_huge(*ptep));
1407         new_pfn = pte_pfn(*ptep);
1408
1409 restart:
1410         for_each_rmap_spte(rmap_head, &iter, sptep) {
1411                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1412                              sptep, *sptep, gfn, level);
1413
1414                 need_flush = 1;
1415
1416                 if (pte_write(*ptep)) {
1417                         drop_spte(kvm, sptep);
1418                         goto restart;
1419                 } else {
1420                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1421                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1422
1423                         new_spte &= ~PT_WRITABLE_MASK;
1424                         new_spte &= ~SPTE_HOST_WRITEABLE;
1425                         new_spte &= ~shadow_accessed_mask;
1426
1427                         mmu_spte_clear_track_bits(sptep);
1428                         mmu_spte_set(sptep, new_spte);
1429                 }
1430         }
1431
1432         if (need_flush)
1433                 kvm_flush_remote_tlbs(kvm);
1434
1435         return 0;
1436 }
1437
1438 struct slot_rmap_walk_iterator {
1439         /* input fields. */
1440         struct kvm_memory_slot *slot;
1441         gfn_t start_gfn;
1442         gfn_t end_gfn;
1443         int start_level;
1444         int end_level;
1445
1446         /* output fields. */
1447         gfn_t gfn;
1448         struct kvm_rmap_head *rmap;
1449         int level;
1450
1451         /* private field. */
1452         struct kvm_rmap_head *end_rmap;
1453 };
1454
1455 static void
1456 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1457 {
1458         iterator->level = level;
1459         iterator->gfn = iterator->start_gfn;
1460         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1461         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1462                                            iterator->slot);
1463 }
1464
1465 static void
1466 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1467                     struct kvm_memory_slot *slot, int start_level,
1468                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1469 {
1470         iterator->slot = slot;
1471         iterator->start_level = start_level;
1472         iterator->end_level = end_level;
1473         iterator->start_gfn = start_gfn;
1474         iterator->end_gfn = end_gfn;
1475
1476         rmap_walk_init_level(iterator, iterator->start_level);
1477 }
1478
1479 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1480 {
1481         return !!iterator->rmap;
1482 }
1483
1484 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1485 {
1486         if (++iterator->rmap <= iterator->end_rmap) {
1487                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1488                 return;
1489         }
1490
1491         if (++iterator->level > iterator->end_level) {
1492                 iterator->rmap = NULL;
1493                 return;
1494         }
1495
1496         rmap_walk_init_level(iterator, iterator->level);
1497 }
1498
1499 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1500            _start_gfn, _end_gfn, _iter_)                                \
1501         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1502                                  _end_level_, _start_gfn, _end_gfn);    \
1503              slot_rmap_walk_okay(_iter_);                               \
1504              slot_rmap_walk_next(_iter_))
1505
1506 static int kvm_handle_hva_range(struct kvm *kvm,
1507                                 unsigned long start,
1508                                 unsigned long end,
1509                                 unsigned long data,
1510                                 int (*handler)(struct kvm *kvm,
1511                                                struct kvm_rmap_head *rmap_head,
1512                                                struct kvm_memory_slot *slot,
1513                                                gfn_t gfn,
1514                                                int level,
1515                                                unsigned long data))
1516 {
1517         struct kvm_memslots *slots;
1518         struct kvm_memory_slot *memslot;
1519         struct slot_rmap_walk_iterator iterator;
1520         int ret = 0;
1521         int i;
1522
1523         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1524                 slots = __kvm_memslots(kvm, i);
1525                 kvm_for_each_memslot(memslot, slots) {
1526                         unsigned long hva_start, hva_end;
1527                         gfn_t gfn_start, gfn_end;
1528
1529                         hva_start = max(start, memslot->userspace_addr);
1530                         hva_end = min(end, memslot->userspace_addr +
1531                                       (memslot->npages << PAGE_SHIFT));
1532                         if (hva_start >= hva_end)
1533                                 continue;
1534                         /*
1535                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1536                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1537                          */
1538                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1539                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1540
1541                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1542                                                  PT_MAX_HUGEPAGE_LEVEL,
1543                                                  gfn_start, gfn_end - 1,
1544                                                  &iterator)
1545                                 ret |= handler(kvm, iterator.rmap, memslot,
1546                                                iterator.gfn, iterator.level, data);
1547                 }
1548         }
1549
1550         return ret;
1551 }
1552
1553 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1554                           unsigned long data,
1555                           int (*handler)(struct kvm *kvm,
1556                                          struct kvm_rmap_head *rmap_head,
1557                                          struct kvm_memory_slot *slot,
1558                                          gfn_t gfn, int level,
1559                                          unsigned long data))
1560 {
1561         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1562 }
1563
1564 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1565 {
1566         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1567 }
1568
1569 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1570 {
1571         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1572 }
1573
1574 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1575 {
1576         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1577 }
1578
1579 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1580                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1581                          unsigned long data)
1582 {
1583         u64 *sptep;
1584         struct rmap_iterator uninitialized_var(iter);
1585         int young = 0;
1586
1587         BUG_ON(!shadow_accessed_mask);
1588
1589         for_each_rmap_spte(rmap_head, &iter, sptep) {
1590                 if (*sptep & shadow_accessed_mask) {
1591                         young = 1;
1592                         clear_bit((ffs(shadow_accessed_mask) - 1),
1593                                  (unsigned long *)sptep);
1594                 }
1595         }
1596
1597         trace_kvm_age_page(gfn, level, slot, young);
1598         return young;
1599 }
1600
1601 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1602                               struct kvm_memory_slot *slot, gfn_t gfn,
1603                               int level, unsigned long data)
1604 {
1605         u64 *sptep;
1606         struct rmap_iterator iter;
1607         int young = 0;
1608
1609         /*
1610          * If there's no access bit in the secondary pte set by the
1611          * hardware it's up to gup-fast/gup to set the access bit in
1612          * the primary pte or in the page structure.
1613          */
1614         if (!shadow_accessed_mask)
1615                 goto out;
1616
1617         for_each_rmap_spte(rmap_head, &iter, sptep) {
1618                 if (*sptep & shadow_accessed_mask) {
1619                         young = 1;
1620                         break;
1621                 }
1622         }
1623 out:
1624         return young;
1625 }
1626
1627 #define RMAP_RECYCLE_THRESHOLD 1000
1628
1629 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1630 {
1631         struct kvm_rmap_head *rmap_head;
1632         struct kvm_mmu_page *sp;
1633
1634         sp = page_header(__pa(spte));
1635
1636         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1637
1638         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1639         kvm_flush_remote_tlbs(vcpu->kvm);
1640 }
1641
1642 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1643 {
1644         /*
1645          * In case of absence of EPT Access and Dirty Bits supports,
1646          * emulate the accessed bit for EPT, by checking if this page has
1647          * an EPT mapping, and clearing it if it does. On the next access,
1648          * a new EPT mapping will be established.
1649          * This has some overhead, but not as much as the cost of swapping
1650          * out actively used pages or breaking up actively used hugepages.
1651          */
1652         if (!shadow_accessed_mask) {
1653                 /*
1654                  * We are holding the kvm->mmu_lock, and we are blowing up
1655                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1656                  * This is correct as long as we don't decouple the mmu_lock
1657                  * protected regions (like invalidate_range_start|end does).
1658                  */
1659                 kvm->mmu_notifier_seq++;
1660                 return kvm_handle_hva_range(kvm, start, end, 0,
1661                                             kvm_unmap_rmapp);
1662         }
1663
1664         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1665 }
1666
1667 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1668 {
1669         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1670 }
1671
1672 #ifdef MMU_DEBUG
1673 static int is_empty_shadow_page(u64 *spt)
1674 {
1675         u64 *pos;
1676         u64 *end;
1677
1678         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1679                 if (is_shadow_present_pte(*pos)) {
1680                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1681                                pos, *pos);
1682                         return 0;
1683                 }
1684         return 1;
1685 }
1686 #endif
1687
1688 /*
1689  * This value is the sum of all of the kvm instances's
1690  * kvm->arch.n_used_mmu_pages values.  We need a global,
1691  * aggregate version in order to make the slab shrinker
1692  * faster
1693  */
1694 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1695 {
1696         kvm->arch.n_used_mmu_pages += nr;
1697         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1698 }
1699
1700 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1701 {
1702         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1703         hlist_del(&sp->hash_link);
1704         list_del(&sp->link);
1705         free_page((unsigned long)sp->spt);
1706         if (!sp->role.direct)
1707                 free_page((unsigned long)sp->gfns);
1708         kmem_cache_free(mmu_page_header_cache, sp);
1709 }
1710
1711 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1712 {
1713         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1714 }
1715
1716 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1717                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1718 {
1719         if (!parent_pte)
1720                 return;
1721
1722         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1723 }
1724
1725 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1726                                        u64 *parent_pte)
1727 {
1728         pte_list_remove(parent_pte, &sp->parent_ptes);
1729 }
1730
1731 static void drop_parent_pte(struct kvm_mmu_page *sp,
1732                             u64 *parent_pte)
1733 {
1734         mmu_page_remove_parent_pte(sp, parent_pte);
1735         mmu_spte_clear_no_track(parent_pte);
1736 }
1737
1738 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1739 {
1740         struct kvm_mmu_page *sp;
1741
1742         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1743         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1744         if (!direct)
1745                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1746         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1747
1748         /*
1749          * The active_mmu_pages list is the FIFO list, do not move the
1750          * page until it is zapped. kvm_zap_obsolete_pages depends on
1751          * this feature. See the comments in kvm_zap_obsolete_pages().
1752          */
1753         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1754         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1755         return sp;
1756 }
1757
1758 static void mark_unsync(u64 *spte);
1759 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1760 {
1761         u64 *sptep;
1762         struct rmap_iterator iter;
1763
1764         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1765                 mark_unsync(sptep);
1766         }
1767 }
1768
1769 static void mark_unsync(u64 *spte)
1770 {
1771         struct kvm_mmu_page *sp;
1772         unsigned int index;
1773
1774         sp = page_header(__pa(spte));
1775         index = spte - sp->spt;
1776         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1777                 return;
1778         if (sp->unsync_children++)
1779                 return;
1780         kvm_mmu_mark_parents_unsync(sp);
1781 }
1782
1783 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1784                                struct kvm_mmu_page *sp)
1785 {
1786         return 0;
1787 }
1788
1789 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1790 {
1791 }
1792
1793 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1794                                  struct kvm_mmu_page *sp, u64 *spte,
1795                                  const void *pte)
1796 {
1797         WARN_ON(1);
1798 }
1799
1800 #define KVM_PAGE_ARRAY_NR 16
1801
1802 struct kvm_mmu_pages {
1803         struct mmu_page_and_offset {
1804                 struct kvm_mmu_page *sp;
1805                 unsigned int idx;
1806         } page[KVM_PAGE_ARRAY_NR];
1807         unsigned int nr;
1808 };
1809
1810 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1811                          int idx)
1812 {
1813         int i;
1814
1815         if (sp->unsync)
1816                 for (i=0; i < pvec->nr; i++)
1817                         if (pvec->page[i].sp == sp)
1818                                 return 0;
1819
1820         pvec->page[pvec->nr].sp = sp;
1821         pvec->page[pvec->nr].idx = idx;
1822         pvec->nr++;
1823         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1824 }
1825
1826 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1827 {
1828         --sp->unsync_children;
1829         WARN_ON((int)sp->unsync_children < 0);
1830         __clear_bit(idx, sp->unsync_child_bitmap);
1831 }
1832
1833 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1834                            struct kvm_mmu_pages *pvec)
1835 {
1836         int i, ret, nr_unsync_leaf = 0;
1837
1838         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1839                 struct kvm_mmu_page *child;
1840                 u64 ent = sp->spt[i];
1841
1842                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1843                         clear_unsync_child_bit(sp, i);
1844                         continue;
1845                 }
1846
1847                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1848
1849                 if (child->unsync_children) {
1850                         if (mmu_pages_add(pvec, child, i))
1851                                 return -ENOSPC;
1852
1853                         ret = __mmu_unsync_walk(child, pvec);
1854                         if (!ret) {
1855                                 clear_unsync_child_bit(sp, i);
1856                                 continue;
1857                         } else if (ret > 0) {
1858                                 nr_unsync_leaf += ret;
1859                         } else
1860                                 return ret;
1861                 } else if (child->unsync) {
1862                         nr_unsync_leaf++;
1863                         if (mmu_pages_add(pvec, child, i))
1864                                 return -ENOSPC;
1865                 } else
1866                         clear_unsync_child_bit(sp, i);
1867         }
1868
1869         return nr_unsync_leaf;
1870 }
1871
1872 #define INVALID_INDEX (-1)
1873
1874 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1875                            struct kvm_mmu_pages *pvec)
1876 {
1877         pvec->nr = 0;
1878         if (!sp->unsync_children)
1879                 return 0;
1880
1881         mmu_pages_add(pvec, sp, INVALID_INDEX);
1882         return __mmu_unsync_walk(sp, pvec);
1883 }
1884
1885 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1886 {
1887         WARN_ON(!sp->unsync);
1888         trace_kvm_mmu_sync_page(sp);
1889         sp->unsync = 0;
1890         --kvm->stat.mmu_unsync;
1891 }
1892
1893 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1894                                     struct list_head *invalid_list);
1895 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1896                                     struct list_head *invalid_list);
1897
1898 /*
1899  * NOTE: we should pay more attention on the zapped-obsolete page
1900  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1901  * since it has been deleted from active_mmu_pages but still can be found
1902  * at hast list.
1903  *
1904  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1905  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1906  * all the obsolete pages.
1907  */
1908 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1909         hlist_for_each_entry(_sp,                                       \
1910           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1911                 if ((_sp)->gfn != (_gfn)) {} else
1912
1913 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1914         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1915                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1916
1917 /* @sp->gfn should be write-protected at the call site */
1918 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1919                             struct list_head *invalid_list)
1920 {
1921         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1922                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1923                 return false;
1924         }
1925
1926         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1927                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1928                 return false;
1929         }
1930
1931         return true;
1932 }
1933
1934 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1935                                  struct list_head *invalid_list,
1936                                  bool remote_flush, bool local_flush)
1937 {
1938         if (!list_empty(invalid_list)) {
1939                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1940                 return;
1941         }
1942
1943         if (remote_flush)
1944                 kvm_flush_remote_tlbs(vcpu->kvm);
1945         else if (local_flush)
1946                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1947 }
1948
1949 #ifdef CONFIG_KVM_MMU_AUDIT
1950 #include "mmu_audit.c"
1951 #else
1952 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1953 static void mmu_audit_disable(void) { }
1954 #endif
1955
1956 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1957                          struct list_head *invalid_list)
1958 {
1959         kvm_unlink_unsync_page(vcpu->kvm, sp);
1960         return __kvm_sync_page(vcpu, sp, invalid_list);
1961 }
1962
1963 /* @gfn should be write-protected at the call site */
1964 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1965                            struct list_head *invalid_list)
1966 {
1967         struct kvm_mmu_page *s;
1968         bool ret = false;
1969
1970         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1971                 if (!s->unsync)
1972                         continue;
1973
1974                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1975                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1976         }
1977
1978         return ret;
1979 }
1980
1981 struct mmu_page_path {
1982         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1983         unsigned int idx[PT64_ROOT_LEVEL];
1984 };
1985
1986 #define for_each_sp(pvec, sp, parents, i)                       \
1987                 for (i = mmu_pages_first(&pvec, &parents);      \
1988                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1989                         i = mmu_pages_next(&pvec, &parents, i))
1990
1991 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1992                           struct mmu_page_path *parents,
1993                           int i)
1994 {
1995         int n;
1996
1997         for (n = i+1; n < pvec->nr; n++) {
1998                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1999                 unsigned idx = pvec->page[n].idx;
2000                 int level = sp->role.level;
2001
2002                 parents->idx[level-1] = idx;
2003                 if (level == PT_PAGE_TABLE_LEVEL)
2004                         break;
2005
2006                 parents->parent[level-2] = sp;
2007         }
2008
2009         return n;
2010 }
2011
2012 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2013                            struct mmu_page_path *parents)
2014 {
2015         struct kvm_mmu_page *sp;
2016         int level;
2017
2018         if (pvec->nr == 0)
2019                 return 0;
2020
2021         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2022
2023         sp = pvec->page[0].sp;
2024         level = sp->role.level;
2025         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2026
2027         parents->parent[level-2] = sp;
2028
2029         /* Also set up a sentinel.  Further entries in pvec are all
2030          * children of sp, so this element is never overwritten.
2031          */
2032         parents->parent[level-1] = NULL;
2033         return mmu_pages_next(pvec, parents, 0);
2034 }
2035
2036 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2037 {
2038         struct kvm_mmu_page *sp;
2039         unsigned int level = 0;
2040
2041         do {
2042                 unsigned int idx = parents->idx[level];
2043                 sp = parents->parent[level];
2044                 if (!sp)
2045                         return;
2046
2047                 WARN_ON(idx == INVALID_INDEX);
2048                 clear_unsync_child_bit(sp, idx);
2049                 level++;
2050         } while (!sp->unsync_children);
2051 }
2052
2053 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2054                               struct kvm_mmu_page *parent)
2055 {
2056         int i;
2057         struct kvm_mmu_page *sp;
2058         struct mmu_page_path parents;
2059         struct kvm_mmu_pages pages;
2060         LIST_HEAD(invalid_list);
2061         bool flush = false;
2062
2063         while (mmu_unsync_walk(parent, &pages)) {
2064                 bool protected = false;
2065
2066                 for_each_sp(pages, sp, parents, i)
2067                         protected |= rmap_write_protect(vcpu, sp->gfn);
2068
2069                 if (protected) {
2070                         kvm_flush_remote_tlbs(vcpu->kvm);
2071                         flush = false;
2072                 }
2073
2074                 for_each_sp(pages, sp, parents, i) {
2075                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2076                         mmu_pages_clear_parents(&parents);
2077                 }
2078                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2079                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2080                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2081                         flush = false;
2082                 }
2083         }
2084
2085         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2086 }
2087
2088 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2089 {
2090         atomic_set(&sp->write_flooding_count,  0);
2091 }
2092
2093 static void clear_sp_write_flooding_count(u64 *spte)
2094 {
2095         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2096
2097         __clear_sp_write_flooding_count(sp);
2098 }
2099
2100 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2101 {
2102         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2103 }
2104
2105 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2106                                              gfn_t gfn,
2107                                              gva_t gaddr,
2108                                              unsigned level,
2109                                              int direct,
2110                                              unsigned access)
2111 {
2112         union kvm_mmu_page_role role;
2113         unsigned quadrant;
2114         struct kvm_mmu_page *sp;
2115         bool need_sync = false;
2116         bool flush = false;
2117         LIST_HEAD(invalid_list);
2118
2119         role = vcpu->arch.mmu.base_role;
2120         role.level = level;
2121         role.direct = direct;
2122         if (role.direct)
2123                 role.cr4_pae = 0;
2124         role.access = access;
2125         if (!vcpu->arch.mmu.direct_map
2126             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2127                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2128                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2129                 role.quadrant = quadrant;
2130         }
2131         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2132                 if (is_obsolete_sp(vcpu->kvm, sp))
2133                         continue;
2134
2135                 if (!need_sync && sp->unsync)
2136                         need_sync = true;
2137
2138                 if (sp->role.word != role.word)
2139                         continue;
2140
2141                 if (sp->unsync) {
2142                         /* The page is good, but __kvm_sync_page might still end
2143                          * up zapping it.  If so, break in order to rebuild it.
2144                          */
2145                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2146                                 break;
2147
2148                         WARN_ON(!list_empty(&invalid_list));
2149                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2150                 }
2151
2152                 if (sp->unsync_children)
2153                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2154
2155                 __clear_sp_write_flooding_count(sp);
2156                 trace_kvm_mmu_get_page(sp, false);
2157                 return sp;
2158         }
2159
2160         ++vcpu->kvm->stat.mmu_cache_miss;
2161
2162         sp = kvm_mmu_alloc_page(vcpu, direct);
2163
2164         sp->gfn = gfn;
2165         sp->role = role;
2166         hlist_add_head(&sp->hash_link,
2167                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2168         if (!direct) {
2169                 /*
2170                  * we should do write protection before syncing pages
2171                  * otherwise the content of the synced shadow page may
2172                  * be inconsistent with guest page table.
2173                  */
2174                 account_shadowed(vcpu->kvm, sp);
2175                 if (level == PT_PAGE_TABLE_LEVEL &&
2176                       rmap_write_protect(vcpu, gfn))
2177                         kvm_flush_remote_tlbs(vcpu->kvm);
2178
2179                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2180                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2181         }
2182         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2183         clear_page(sp->spt);
2184         trace_kvm_mmu_get_page(sp, true);
2185
2186         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2187         return sp;
2188 }
2189
2190 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2191                              struct kvm_vcpu *vcpu, u64 addr)
2192 {
2193         iterator->addr = addr;
2194         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2195         iterator->level = vcpu->arch.mmu.shadow_root_level;
2196
2197         if (iterator->level == PT64_ROOT_LEVEL &&
2198             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2199             !vcpu->arch.mmu.direct_map)
2200                 --iterator->level;
2201
2202         if (iterator->level == PT32E_ROOT_LEVEL) {
2203                 iterator->shadow_addr
2204                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2205                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2206                 --iterator->level;
2207                 if (!iterator->shadow_addr)
2208                         iterator->level = 0;
2209         }
2210 }
2211
2212 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2213 {
2214         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2215                 return false;
2216
2217         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2218         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2219         return true;
2220 }
2221
2222 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2223                                u64 spte)
2224 {
2225         if (is_last_spte(spte, iterator->level)) {
2226                 iterator->level = 0;
2227                 return;
2228         }
2229
2230         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2231         --iterator->level;
2232 }
2233
2234 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2235 {
2236         return __shadow_walk_next(iterator, *iterator->sptep);
2237 }
2238
2239 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2240                              struct kvm_mmu_page *sp)
2241 {
2242         u64 spte;
2243
2244         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2245                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2246
2247         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2248                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2249
2250         mmu_spte_set(sptep, spte);
2251
2252         mmu_page_add_parent_pte(vcpu, sp, sptep);
2253
2254         if (sp->unsync_children || sp->unsync)
2255                 mark_unsync(sptep);
2256 }
2257
2258 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2259                                    unsigned direct_access)
2260 {
2261         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2262                 struct kvm_mmu_page *child;
2263
2264                 /*
2265                  * For the direct sp, if the guest pte's dirty bit
2266                  * changed form clean to dirty, it will corrupt the
2267                  * sp's access: allow writable in the read-only sp,
2268                  * so we should update the spte at this point to get
2269                  * a new sp with the correct access.
2270                  */
2271                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2272                 if (child->role.access == direct_access)
2273                         return;
2274
2275                 drop_parent_pte(child, sptep);
2276                 kvm_flush_remote_tlbs(vcpu->kvm);
2277         }
2278 }
2279
2280 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2281                              u64 *spte)
2282 {
2283         u64 pte;
2284         struct kvm_mmu_page *child;
2285
2286         pte = *spte;
2287         if (is_shadow_present_pte(pte)) {
2288                 if (is_last_spte(pte, sp->role.level)) {
2289                         drop_spte(kvm, spte);
2290                         if (is_large_pte(pte))
2291                                 --kvm->stat.lpages;
2292                 } else {
2293                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2294                         drop_parent_pte(child, spte);
2295                 }
2296                 return true;
2297         }
2298
2299         if (is_mmio_spte(pte))
2300                 mmu_spte_clear_no_track(spte);
2301
2302         return false;
2303 }
2304
2305 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2306                                          struct kvm_mmu_page *sp)
2307 {
2308         unsigned i;
2309
2310         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2311                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2312 }
2313
2314 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2315 {
2316         u64 *sptep;
2317         struct rmap_iterator iter;
2318
2319         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2320                 drop_parent_pte(sp, sptep);
2321 }
2322
2323 static int mmu_zap_unsync_children(struct kvm *kvm,
2324                                    struct kvm_mmu_page *parent,
2325                                    struct list_head *invalid_list)
2326 {
2327         int i, zapped = 0;
2328         struct mmu_page_path parents;
2329         struct kvm_mmu_pages pages;
2330
2331         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2332                 return 0;
2333
2334         while (mmu_unsync_walk(parent, &pages)) {
2335                 struct kvm_mmu_page *sp;
2336
2337                 for_each_sp(pages, sp, parents, i) {
2338                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2339                         mmu_pages_clear_parents(&parents);
2340                         zapped++;
2341                 }
2342         }
2343
2344         return zapped;
2345 }
2346
2347 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2348                                     struct list_head *invalid_list)
2349 {
2350         int ret;
2351
2352         trace_kvm_mmu_prepare_zap_page(sp);
2353         ++kvm->stat.mmu_shadow_zapped;
2354         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2355         kvm_mmu_page_unlink_children(kvm, sp);
2356         kvm_mmu_unlink_parents(kvm, sp);
2357
2358         if (!sp->role.invalid && !sp->role.direct)
2359                 unaccount_shadowed(kvm, sp);
2360
2361         if (sp->unsync)
2362                 kvm_unlink_unsync_page(kvm, sp);
2363         if (!sp->root_count) {
2364                 /* Count self */
2365                 ret++;
2366                 list_move(&sp->link, invalid_list);
2367                 kvm_mod_used_mmu_pages(kvm, -1);
2368         } else {
2369                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2370
2371                 /*
2372                  * The obsolete pages can not be used on any vcpus.
2373                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2374                  */
2375                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2376                         kvm_reload_remote_mmus(kvm);
2377         }
2378
2379         sp->role.invalid = 1;
2380         return ret;
2381 }
2382
2383 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2384                                     struct list_head *invalid_list)
2385 {
2386         struct kvm_mmu_page *sp, *nsp;
2387
2388         if (list_empty(invalid_list))
2389                 return;
2390
2391         /*
2392          * We need to make sure everyone sees our modifications to
2393          * the page tables and see changes to vcpu->mode here. The barrier
2394          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2395          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2396          *
2397          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2398          * guest mode and/or lockless shadow page table walks.
2399          */
2400         kvm_flush_remote_tlbs(kvm);
2401
2402         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2403                 WARN_ON(!sp->role.invalid || sp->root_count);
2404                 kvm_mmu_free_page(sp);
2405         }
2406 }
2407
2408 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2409                                         struct list_head *invalid_list)
2410 {
2411         struct kvm_mmu_page *sp;
2412
2413         if (list_empty(&kvm->arch.active_mmu_pages))
2414                 return false;
2415
2416         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2417                              struct kvm_mmu_page, link);
2418         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2419
2420         return true;
2421 }
2422
2423 /*
2424  * Changing the number of mmu pages allocated to the vm
2425  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2426  */
2427 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2428 {
2429         LIST_HEAD(invalid_list);
2430
2431         spin_lock(&kvm->mmu_lock);
2432
2433         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2434                 /* Need to free some mmu pages to achieve the goal. */
2435                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2436                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2437                                 break;
2438
2439                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2440                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2441         }
2442
2443         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2444
2445         spin_unlock(&kvm->mmu_lock);
2446 }
2447
2448 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2449 {
2450         struct kvm_mmu_page *sp;
2451         LIST_HEAD(invalid_list);
2452         int r;
2453
2454         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2455         r = 0;
2456         spin_lock(&kvm->mmu_lock);
2457         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2458                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2459                          sp->role.word);
2460                 r = 1;
2461                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2462         }
2463         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2464         spin_unlock(&kvm->mmu_lock);
2465
2466         return r;
2467 }
2468 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2469
2470 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2471 {
2472         trace_kvm_mmu_unsync_page(sp);
2473         ++vcpu->kvm->stat.mmu_unsync;
2474         sp->unsync = 1;
2475
2476         kvm_mmu_mark_parents_unsync(sp);
2477 }
2478
2479 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2480                                    bool can_unsync)
2481 {
2482         struct kvm_mmu_page *sp;
2483
2484         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2485                 return true;
2486
2487         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2488                 if (!can_unsync)
2489                         return true;
2490
2491                 if (sp->unsync)
2492                         continue;
2493
2494                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2495                 kvm_unsync_page(vcpu, sp);
2496         }
2497
2498         return false;
2499 }
2500
2501 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2502 {
2503         if (pfn_valid(pfn))
2504                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2505
2506         return true;
2507 }
2508
2509 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2510                     unsigned pte_access, int level,
2511                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2512                     bool can_unsync, bool host_writable)
2513 {
2514         u64 spte;
2515         int ret = 0;
2516
2517         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2518                 return 0;
2519
2520         spte = PT_PRESENT_MASK;
2521         if (!speculative)
2522                 spte |= shadow_accessed_mask;
2523
2524         if (pte_access & ACC_EXEC_MASK)
2525                 spte |= shadow_x_mask;
2526         else
2527                 spte |= shadow_nx_mask;
2528
2529         if (pte_access & ACC_USER_MASK)
2530                 spte |= shadow_user_mask;
2531
2532         if (level > PT_PAGE_TABLE_LEVEL)
2533                 spte |= PT_PAGE_SIZE_MASK;
2534         if (tdp_enabled)
2535                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2536                         kvm_is_mmio_pfn(pfn));
2537
2538         if (host_writable)
2539                 spte |= SPTE_HOST_WRITEABLE;
2540         else
2541                 pte_access &= ~ACC_WRITE_MASK;
2542
2543         spte |= (u64)pfn << PAGE_SHIFT;
2544
2545         if (pte_access & ACC_WRITE_MASK) {
2546
2547                 /*
2548                  * Other vcpu creates new sp in the window between
2549                  * mapping_level() and acquiring mmu-lock. We can
2550                  * allow guest to retry the access, the mapping can
2551                  * be fixed if guest refault.
2552                  */
2553                 if (level > PT_PAGE_TABLE_LEVEL &&
2554                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2555                         goto done;
2556
2557                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2558
2559                 /*
2560                  * Optimization: for pte sync, if spte was writable the hash
2561                  * lookup is unnecessary (and expensive). Write protection
2562                  * is responsibility of mmu_get_page / kvm_sync_page.
2563                  * Same reasoning can be applied to dirty page accounting.
2564                  */
2565                 if (!can_unsync && is_writable_pte(*sptep))
2566                         goto set_pte;
2567
2568                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2569                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2570                                  __func__, gfn);
2571                         ret = 1;
2572                         pte_access &= ~ACC_WRITE_MASK;
2573                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2574                 }
2575         }
2576
2577         if (pte_access & ACC_WRITE_MASK) {
2578                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2579                 spte |= shadow_dirty_mask;
2580         }
2581
2582 set_pte:
2583         if (mmu_spte_update(sptep, spte))
2584                 kvm_flush_remote_tlbs(vcpu->kvm);
2585 done:
2586         return ret;
2587 }
2588
2589 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2590                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2591                          bool speculative, bool host_writable)
2592 {
2593         int was_rmapped = 0;
2594         int rmap_count;
2595         bool emulate = false;
2596
2597         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2598                  *sptep, write_fault, gfn);
2599
2600         if (is_shadow_present_pte(*sptep)) {
2601                 /*
2602                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2603                  * the parent of the now unreachable PTE.
2604                  */
2605                 if (level > PT_PAGE_TABLE_LEVEL &&
2606                     !is_large_pte(*sptep)) {
2607                         struct kvm_mmu_page *child;
2608                         u64 pte = *sptep;
2609
2610                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2611                         drop_parent_pte(child, sptep);
2612                         kvm_flush_remote_tlbs(vcpu->kvm);
2613                 } else if (pfn != spte_to_pfn(*sptep)) {
2614                         pgprintk("hfn old %llx new %llx\n",
2615                                  spte_to_pfn(*sptep), pfn);
2616                         drop_spte(vcpu->kvm, sptep);
2617                         kvm_flush_remote_tlbs(vcpu->kvm);
2618                 } else
2619                         was_rmapped = 1;
2620         }
2621
2622         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2623               true, host_writable)) {
2624                 if (write_fault)
2625                         emulate = true;
2626                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2627         }
2628
2629         if (unlikely(is_mmio_spte(*sptep)))
2630                 emulate = true;
2631
2632         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2633         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2634                  is_large_pte(*sptep)? "2MB" : "4kB",
2635                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2636                  *sptep, sptep);
2637         if (!was_rmapped && is_large_pte(*sptep))
2638                 ++vcpu->kvm->stat.lpages;
2639
2640         if (is_shadow_present_pte(*sptep)) {
2641                 if (!was_rmapped) {
2642                         rmap_count = rmap_add(vcpu, sptep, gfn);
2643                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2644                                 rmap_recycle(vcpu, sptep, gfn);
2645                 }
2646         }
2647
2648         kvm_release_pfn_clean(pfn);
2649
2650         return emulate;
2651 }
2652
2653 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2654                                      bool no_dirty_log)
2655 {
2656         struct kvm_memory_slot *slot;
2657
2658         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2659         if (!slot)
2660                 return KVM_PFN_ERR_FAULT;
2661
2662         return gfn_to_pfn_memslot_atomic(slot, gfn);
2663 }
2664
2665 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2666                                     struct kvm_mmu_page *sp,
2667                                     u64 *start, u64 *end)
2668 {
2669         struct page *pages[PTE_PREFETCH_NUM];
2670         struct kvm_memory_slot *slot;
2671         unsigned access = sp->role.access;
2672         int i, ret;
2673         gfn_t gfn;
2674
2675         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2676         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2677         if (!slot)
2678                 return -1;
2679
2680         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2681         if (ret <= 0)
2682                 return -1;
2683
2684         for (i = 0; i < ret; i++, gfn++, start++)
2685                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2686                              page_to_pfn(pages[i]), true, true);
2687
2688         return 0;
2689 }
2690
2691 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2692                                   struct kvm_mmu_page *sp, u64 *sptep)
2693 {
2694         u64 *spte, *start = NULL;
2695         int i;
2696
2697         WARN_ON(!sp->role.direct);
2698
2699         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2700         spte = sp->spt + i;
2701
2702         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2703                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2704                         if (!start)
2705                                 continue;
2706                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2707                                 break;
2708                         start = NULL;
2709                 } else if (!start)
2710                         start = spte;
2711         }
2712 }
2713
2714 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2715 {
2716         struct kvm_mmu_page *sp;
2717
2718         /*
2719          * Since it's no accessed bit on EPT, it's no way to
2720          * distinguish between actually accessed translations
2721          * and prefetched, so disable pte prefetch if EPT is
2722          * enabled.
2723          */
2724         if (!shadow_accessed_mask)
2725                 return;
2726
2727         sp = page_header(__pa(sptep));
2728         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2729                 return;
2730
2731         __direct_pte_prefetch(vcpu, sp, sptep);
2732 }
2733
2734 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2735                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2736 {
2737         struct kvm_shadow_walk_iterator iterator;
2738         struct kvm_mmu_page *sp;
2739         int emulate = 0;
2740         gfn_t pseudo_gfn;
2741
2742         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2743                 return 0;
2744
2745         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2746                 if (iterator.level == level) {
2747                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2748                                                write, level, gfn, pfn, prefault,
2749                                                map_writable);
2750                         direct_pte_prefetch(vcpu, iterator.sptep);
2751                         ++vcpu->stat.pf_fixed;
2752                         break;
2753                 }
2754
2755                 drop_large_spte(vcpu, iterator.sptep);
2756                 if (!is_shadow_present_pte(*iterator.sptep)) {
2757                         u64 base_addr = iterator.addr;
2758
2759                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2760                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2761                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2762                                               iterator.level - 1, 1, ACC_ALL);
2763
2764                         link_shadow_page(vcpu, iterator.sptep, sp);
2765                 }
2766         }
2767         return emulate;
2768 }
2769
2770 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2771 {
2772         siginfo_t info;
2773
2774         info.si_signo   = SIGBUS;
2775         info.si_errno   = 0;
2776         info.si_code    = BUS_MCEERR_AR;
2777         info.si_addr    = (void __user *)address;
2778         info.si_addr_lsb = PAGE_SHIFT;
2779
2780         send_sig_info(SIGBUS, &info, tsk);
2781 }
2782
2783 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2784 {
2785         /*
2786          * Do not cache the mmio info caused by writing the readonly gfn
2787          * into the spte otherwise read access on readonly gfn also can
2788          * caused mmio page fault and treat it as mmio access.
2789          * Return 1 to tell kvm to emulate it.
2790          */
2791         if (pfn == KVM_PFN_ERR_RO_FAULT)
2792                 return 1;
2793
2794         if (pfn == KVM_PFN_ERR_HWPOISON) {
2795                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2796                 return 0;
2797         }
2798
2799         return -EFAULT;
2800 }
2801
2802 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2803                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2804                                         int *levelp)
2805 {
2806         kvm_pfn_t pfn = *pfnp;
2807         gfn_t gfn = *gfnp;
2808         int level = *levelp;
2809
2810         /*
2811          * Check if it's a transparent hugepage. If this would be an
2812          * hugetlbfs page, level wouldn't be set to
2813          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2814          * here.
2815          */
2816         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2817             level == PT_PAGE_TABLE_LEVEL &&
2818             PageTransCompound(pfn_to_page(pfn)) &&
2819             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2820                 unsigned long mask;
2821                 /*
2822                  * mmu_notifier_retry was successful and we hold the
2823                  * mmu_lock here, so the pmd can't become splitting
2824                  * from under us, and in turn
2825                  * __split_huge_page_refcount() can't run from under
2826                  * us and we can safely transfer the refcount from
2827                  * PG_tail to PG_head as we switch the pfn to tail to
2828                  * head.
2829                  */
2830                 *levelp = level = PT_DIRECTORY_LEVEL;
2831                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2832                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2833                 if (pfn & mask) {
2834                         gfn &= ~mask;
2835                         *gfnp = gfn;
2836                         kvm_release_pfn_clean(pfn);
2837                         pfn &= ~mask;
2838                         kvm_get_pfn(pfn);
2839                         *pfnp = pfn;
2840                 }
2841         }
2842 }
2843
2844 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2845                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2846 {
2847         /* The pfn is invalid, report the error! */
2848         if (unlikely(is_error_pfn(pfn))) {
2849                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2850                 return true;
2851         }
2852
2853         if (unlikely(is_noslot_pfn(pfn)))
2854                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2855
2856         return false;
2857 }
2858
2859 static bool page_fault_can_be_fast(u32 error_code)
2860 {
2861         /*
2862          * Do not fix the mmio spte with invalid generation number which
2863          * need to be updated by slow page fault path.
2864          */
2865         if (unlikely(error_code & PFERR_RSVD_MASK))
2866                 return false;
2867
2868         /*
2869          * #PF can be fast only if the shadow page table is present and it
2870          * is caused by write-protect, that means we just need change the
2871          * W bit of the spte which can be done out of mmu-lock.
2872          */
2873         if (!(error_code & PFERR_PRESENT_MASK) ||
2874               !(error_code & PFERR_WRITE_MASK))
2875                 return false;
2876
2877         return true;
2878 }
2879
2880 static bool
2881 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2882                         u64 *sptep, u64 spte)
2883 {
2884         gfn_t gfn;
2885
2886         WARN_ON(!sp->role.direct);
2887
2888         /*
2889          * The gfn of direct spte is stable since it is calculated
2890          * by sp->gfn.
2891          */
2892         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2893
2894         /*
2895          * Theoretically we could also set dirty bit (and flush TLB) here in
2896          * order to eliminate unnecessary PML logging. See comments in
2897          * set_spte. But fast_page_fault is very unlikely to happen with PML
2898          * enabled, so we do not do this. This might result in the same GPA
2899          * to be logged in PML buffer again when the write really happens, and
2900          * eventually to be called by mark_page_dirty twice. But it's also no
2901          * harm. This also avoids the TLB flush needed after setting dirty bit
2902          * so non-PML cases won't be impacted.
2903          *
2904          * Compare with set_spte where instead shadow_dirty_mask is set.
2905          */
2906         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2907                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2908
2909         return true;
2910 }
2911
2912 /*
2913  * Return value:
2914  * - true: let the vcpu to access on the same address again.
2915  * - false: let the real page fault path to fix it.
2916  */
2917 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2918                             u32 error_code)
2919 {
2920         struct kvm_shadow_walk_iterator iterator;
2921         struct kvm_mmu_page *sp;
2922         bool ret = false;
2923         u64 spte = 0ull;
2924
2925         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2926                 return false;
2927
2928         if (!page_fault_can_be_fast(error_code))
2929                 return false;
2930
2931         walk_shadow_page_lockless_begin(vcpu);
2932         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2933                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2934                         break;
2935
2936         /*
2937          * If the mapping has been changed, let the vcpu fault on the
2938          * same address again.
2939          */
2940         if (!is_shadow_present_pte(spte)) {
2941                 ret = true;
2942                 goto exit;
2943         }
2944
2945         sp = page_header(__pa(iterator.sptep));
2946         if (!is_last_spte(spte, sp->role.level))
2947                 goto exit;
2948
2949         /*
2950          * Check if it is a spurious fault caused by TLB lazily flushed.
2951          *
2952          * Need not check the access of upper level table entries since
2953          * they are always ACC_ALL.
2954          */
2955          if (is_writable_pte(spte)) {
2956                 ret = true;
2957                 goto exit;
2958         }
2959
2960         /*
2961          * Currently, to simplify the code, only the spte write-protected
2962          * by dirty-log can be fast fixed.
2963          */
2964         if (!spte_is_locklessly_modifiable(spte))
2965                 goto exit;
2966
2967         /*
2968          * Do not fix write-permission on the large spte since we only dirty
2969          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2970          * that means other pages are missed if its slot is dirty-logged.
2971          *
2972          * Instead, we let the slow page fault path create a normal spte to
2973          * fix the access.
2974          *
2975          * See the comments in kvm_arch_commit_memory_region().
2976          */
2977         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2978                 goto exit;
2979
2980         /*
2981          * Currently, fast page fault only works for direct mapping since
2982          * the gfn is not stable for indirect shadow page.
2983          * See Documentation/virtual/kvm/locking.txt to get more detail.
2984          */
2985         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2986 exit:
2987         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2988                               spte, ret);
2989         walk_shadow_page_lockless_end(vcpu);
2990
2991         return ret;
2992 }
2993
2994 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2995                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2996 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2997
2998 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2999                          gfn_t gfn, bool prefault)
3000 {
3001         int r;
3002         int level;
3003         bool force_pt_level = false;
3004         kvm_pfn_t pfn;
3005         unsigned long mmu_seq;
3006         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3007
3008         level = mapping_level(vcpu, gfn, &force_pt_level);
3009         if (likely(!force_pt_level)) {
3010                 /*
3011                  * This path builds a PAE pagetable - so we can map
3012                  * 2mb pages at maximum. Therefore check if the level
3013                  * is larger than that.
3014                  */
3015                 if (level > PT_DIRECTORY_LEVEL)
3016                         level = PT_DIRECTORY_LEVEL;
3017
3018                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3019         }
3020
3021         if (fast_page_fault(vcpu, v, level, error_code))
3022                 return 0;
3023
3024         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3025         smp_rmb();
3026
3027         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3028                 return 0;
3029
3030         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3031                 return r;
3032
3033         spin_lock(&vcpu->kvm->mmu_lock);
3034         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3035                 goto out_unlock;
3036         make_mmu_pages_available(vcpu);
3037         if (likely(!force_pt_level))
3038                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3039         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3040         spin_unlock(&vcpu->kvm->mmu_lock);
3041
3042         return r;
3043
3044 out_unlock:
3045         spin_unlock(&vcpu->kvm->mmu_lock);
3046         kvm_release_pfn_clean(pfn);
3047         return 0;
3048 }
3049
3050
3051 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3052 {
3053         int i;
3054         struct kvm_mmu_page *sp;
3055         LIST_HEAD(invalid_list);
3056
3057         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3058                 return;
3059
3060         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3061             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3062              vcpu->arch.mmu.direct_map)) {
3063                 hpa_t root = vcpu->arch.mmu.root_hpa;
3064
3065                 spin_lock(&vcpu->kvm->mmu_lock);
3066                 sp = page_header(root);
3067                 --sp->root_count;
3068                 if (!sp->root_count && sp->role.invalid) {
3069                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3070                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3071                 }
3072                 spin_unlock(&vcpu->kvm->mmu_lock);
3073                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3074                 return;
3075         }
3076
3077         spin_lock(&vcpu->kvm->mmu_lock);
3078         for (i = 0; i < 4; ++i) {
3079                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3080
3081                 if (root) {
3082                         root &= PT64_BASE_ADDR_MASK;
3083                         sp = page_header(root);
3084                         --sp->root_count;
3085                         if (!sp->root_count && sp->role.invalid)
3086                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3087                                                          &invalid_list);
3088                 }
3089                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3090         }
3091         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3092         spin_unlock(&vcpu->kvm->mmu_lock);
3093         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3094 }
3095
3096 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3097 {
3098         int ret = 0;
3099
3100         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3101                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3102                 ret = 1;
3103         }
3104
3105         return ret;
3106 }
3107
3108 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3109 {
3110         struct kvm_mmu_page *sp;
3111         unsigned i;
3112
3113         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3114                 spin_lock(&vcpu->kvm->mmu_lock);
3115                 make_mmu_pages_available(vcpu);
3116                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3117                 ++sp->root_count;
3118                 spin_unlock(&vcpu->kvm->mmu_lock);
3119                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3120         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3121                 for (i = 0; i < 4; ++i) {
3122                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3123
3124                         MMU_WARN_ON(VALID_PAGE(root));
3125                         spin_lock(&vcpu->kvm->mmu_lock);
3126                         make_mmu_pages_available(vcpu);
3127                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3128                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3129                         root = __pa(sp->spt);
3130                         ++sp->root_count;
3131                         spin_unlock(&vcpu->kvm->mmu_lock);
3132                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3133                 }
3134                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3135         } else
3136                 BUG();
3137
3138         return 0;
3139 }
3140
3141 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3142 {
3143         struct kvm_mmu_page *sp;
3144         u64 pdptr, pm_mask;
3145         gfn_t root_gfn;
3146         int i;
3147
3148         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3149
3150         if (mmu_check_root(vcpu, root_gfn))
3151                 return 1;
3152
3153         /*
3154          * Do we shadow a long mode page table? If so we need to
3155          * write-protect the guests page table root.
3156          */
3157         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3158                 hpa_t root = vcpu->arch.mmu.root_hpa;
3159
3160                 MMU_WARN_ON(VALID_PAGE(root));
3161
3162                 spin_lock(&vcpu->kvm->mmu_lock);
3163                 make_mmu_pages_available(vcpu);
3164                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3165                                       0, ACC_ALL);
3166                 root = __pa(sp->spt);
3167                 ++sp->root_count;
3168                 spin_unlock(&vcpu->kvm->mmu_lock);
3169                 vcpu->arch.mmu.root_hpa = root;
3170                 return 0;
3171         }
3172
3173         /*
3174          * We shadow a 32 bit page table. This may be a legacy 2-level
3175          * or a PAE 3-level page table. In either case we need to be aware that
3176          * the shadow page table may be a PAE or a long mode page table.
3177          */
3178         pm_mask = PT_PRESENT_MASK;
3179         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3180                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3181
3182         for (i = 0; i < 4; ++i) {
3183                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3184
3185                 MMU_WARN_ON(VALID_PAGE(root));
3186                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3187                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3188                         if (!is_present_gpte(pdptr)) {
3189                                 vcpu->arch.mmu.pae_root[i] = 0;
3190                                 continue;
3191                         }
3192                         root_gfn = pdptr >> PAGE_SHIFT;
3193                         if (mmu_check_root(vcpu, root_gfn))
3194                                 return 1;
3195                 }
3196                 spin_lock(&vcpu->kvm->mmu_lock);
3197                 make_mmu_pages_available(vcpu);
3198                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3199                                       0, ACC_ALL);
3200                 root = __pa(sp->spt);
3201                 ++sp->root_count;
3202                 spin_unlock(&vcpu->kvm->mmu_lock);
3203
3204                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3205         }
3206         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3207
3208         /*
3209          * If we shadow a 32 bit page table with a long mode page
3210          * table we enter this path.
3211          */
3212         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3213                 if (vcpu->arch.mmu.lm_root == NULL) {
3214                         /*
3215                          * The additional page necessary for this is only
3216                          * allocated on demand.
3217                          */
3218
3219                         u64 *lm_root;
3220
3221                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3222                         if (lm_root == NULL)
3223                                 return 1;
3224
3225                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3226
3227                         vcpu->arch.mmu.lm_root = lm_root;
3228                 }
3229
3230                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3231         }
3232
3233         return 0;
3234 }
3235
3236 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3237 {
3238         if (vcpu->arch.mmu.direct_map)
3239                 return mmu_alloc_direct_roots(vcpu);
3240         else
3241                 return mmu_alloc_shadow_roots(vcpu);
3242 }
3243
3244 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3245 {
3246         int i;
3247         struct kvm_mmu_page *sp;
3248
3249         if (vcpu->arch.mmu.direct_map)
3250                 return;
3251
3252         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3253                 return;
3254
3255         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3256         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3257         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3258                 hpa_t root = vcpu->arch.mmu.root_hpa;
3259                 sp = page_header(root);
3260                 mmu_sync_children(vcpu, sp);
3261                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3262                 return;
3263         }
3264         for (i = 0; i < 4; ++i) {
3265                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3266
3267                 if (root && VALID_PAGE(root)) {
3268                         root &= PT64_BASE_ADDR_MASK;
3269                         sp = page_header(root);
3270                         mmu_sync_children(vcpu, sp);
3271                 }
3272         }
3273         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3274 }
3275
3276 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3277 {
3278         spin_lock(&vcpu->kvm->mmu_lock);
3279         mmu_sync_roots(vcpu);
3280         spin_unlock(&vcpu->kvm->mmu_lock);
3281 }
3282 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3283
3284 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3285                                   u32 access, struct x86_exception *exception)
3286 {
3287         if (exception)
3288                 exception->error_code = 0;
3289         return vaddr;
3290 }
3291
3292 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3293                                          u32 access,
3294                                          struct x86_exception *exception)
3295 {
3296         if (exception)
3297                 exception->error_code = 0;
3298         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3299 }
3300
3301 static bool
3302 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3303 {
3304         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3305
3306         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3307                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3308 }
3309
3310 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3311 {
3312         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3313 }
3314
3315 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3316 {
3317         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3318 }
3319
3320 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3321 {
3322         if (direct)
3323                 return vcpu_match_mmio_gpa(vcpu, addr);
3324
3325         return vcpu_match_mmio_gva(vcpu, addr);
3326 }
3327
3328 /* return true if reserved bit is detected on spte. */
3329 static bool
3330 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3331 {
3332         struct kvm_shadow_walk_iterator iterator;
3333         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3334         int root, leaf;
3335         bool reserved = false;
3336
3337         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3338                 goto exit;
3339
3340         walk_shadow_page_lockless_begin(vcpu);
3341
3342         for (shadow_walk_init(&iterator, vcpu, addr),
3343                  leaf = root = iterator.level;
3344              shadow_walk_okay(&iterator);
3345              __shadow_walk_next(&iterator, spte)) {
3346                 spte = mmu_spte_get_lockless(iterator.sptep);
3347
3348                 sptes[leaf - 1] = spte;
3349                 leaf--;
3350
3351                 if (!is_shadow_present_pte(spte))
3352                         break;
3353
3354                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3355                                                     iterator.level);
3356         }
3357
3358         walk_shadow_page_lockless_end(vcpu);
3359
3360         if (reserved) {
3361                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3362                        __func__, addr);
3363                 while (root > leaf) {
3364                         pr_err("------ spte 0x%llx level %d.\n",
3365                                sptes[root - 1], root);
3366                         root--;
3367                 }
3368         }
3369 exit:
3370         *sptep = spte;
3371         return reserved;
3372 }
3373
3374 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3375 {
3376         u64 spte;
3377         bool reserved;
3378
3379         if (mmio_info_in_cache(vcpu, addr, direct))
3380                 return RET_MMIO_PF_EMULATE;
3381
3382         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3383         if (WARN_ON(reserved))
3384                 return RET_MMIO_PF_BUG;
3385
3386         if (is_mmio_spte(spte)) {
3387                 gfn_t gfn = get_mmio_spte_gfn(spte);
3388                 unsigned access = get_mmio_spte_access(spte);
3389
3390                 if (!check_mmio_spte(vcpu, spte))
3391                         return RET_MMIO_PF_INVALID;
3392
3393                 if (direct)
3394                         addr = 0;
3395
3396                 trace_handle_mmio_page_fault(addr, gfn, access);
3397                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3398                 return RET_MMIO_PF_EMULATE;
3399         }
3400
3401         /*
3402          * If the page table is zapped by other cpus, let CPU fault again on
3403          * the address.
3404          */
3405         return RET_MMIO_PF_RETRY;
3406 }
3407 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3408
3409 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3410                                          u32 error_code, gfn_t gfn)
3411 {
3412         if (unlikely(error_code & PFERR_RSVD_MASK))
3413                 return false;
3414
3415         if (!(error_code & PFERR_PRESENT_MASK) ||
3416               !(error_code & PFERR_WRITE_MASK))
3417                 return false;
3418
3419         /*
3420          * guest is writing the page which is write tracked which can
3421          * not be fixed by page fault handler.
3422          */
3423         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3424                 return true;
3425
3426         return false;
3427 }
3428
3429 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3430 {
3431         struct kvm_shadow_walk_iterator iterator;
3432         u64 spte;
3433
3434         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3435                 return;
3436
3437         walk_shadow_page_lockless_begin(vcpu);
3438         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3439                 clear_sp_write_flooding_count(iterator.sptep);
3440                 if (!is_shadow_present_pte(spte))
3441                         break;
3442         }
3443         walk_shadow_page_lockless_end(vcpu);
3444 }
3445
3446 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3447                                 u32 error_code, bool prefault)
3448 {
3449         gfn_t gfn = gva >> PAGE_SHIFT;
3450         int r;
3451
3452         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3453
3454         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3455                 return 1;
3456
3457         r = mmu_topup_memory_caches(vcpu);
3458         if (r)
3459                 return r;
3460
3461         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3462
3463
3464         return nonpaging_map(vcpu, gva & PAGE_MASK,
3465                              error_code, gfn, prefault);
3466 }
3467
3468 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3469 {
3470         struct kvm_arch_async_pf arch;
3471
3472         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3473         arch.gfn = gfn;
3474         arch.direct_map = vcpu->arch.mmu.direct_map;
3475         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3476
3477         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3478 }
3479
3480 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3481 {
3482         if (unlikely(!lapic_in_kernel(vcpu) ||
3483                      kvm_event_needs_reinjection(vcpu)))
3484                 return false;
3485
3486         return kvm_x86_ops->interrupt_allowed(vcpu);
3487 }
3488
3489 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3490                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3491 {
3492         struct kvm_memory_slot *slot;
3493         bool async;
3494
3495         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3496         async = false;
3497         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3498         if (!async)
3499                 return false; /* *pfn has correct page already */
3500
3501         if (!prefault && can_do_async_pf(vcpu)) {
3502                 trace_kvm_try_async_get_page(gva, gfn);
3503                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3504                         trace_kvm_async_pf_doublefault(gva, gfn);
3505                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3506                         return true;
3507                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3508                         return true;
3509         }
3510
3511         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3512         return false;
3513 }
3514
3515 static bool
3516 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3517 {
3518         int page_num = KVM_PAGES_PER_HPAGE(level);
3519
3520         gfn &= ~(page_num - 1);
3521
3522         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3523 }
3524
3525 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3526                           bool prefault)
3527 {
3528         kvm_pfn_t pfn;
3529         int r;
3530         int level;
3531         bool force_pt_level;
3532         gfn_t gfn = gpa >> PAGE_SHIFT;
3533         unsigned long mmu_seq;
3534         int write = error_code & PFERR_WRITE_MASK;
3535         bool map_writable;
3536
3537         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3538
3539         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3540                 return 1;
3541
3542         r = mmu_topup_memory_caches(vcpu);
3543         if (r)
3544                 return r;
3545
3546         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3547                                                            PT_DIRECTORY_LEVEL);
3548         level = mapping_level(vcpu, gfn, &force_pt_level);
3549         if (likely(!force_pt_level)) {
3550                 if (level > PT_DIRECTORY_LEVEL &&
3551                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3552                         level = PT_DIRECTORY_LEVEL;
3553                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3554         }
3555
3556         if (fast_page_fault(vcpu, gpa, level, error_code))
3557                 return 0;
3558
3559         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3560         smp_rmb();
3561
3562         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3563                 return 0;
3564
3565         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3566                 return r;
3567
3568         spin_lock(&vcpu->kvm->mmu_lock);
3569         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3570                 goto out_unlock;
3571         make_mmu_pages_available(vcpu);
3572         if (likely(!force_pt_level))
3573                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3574         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3575         spin_unlock(&vcpu->kvm->mmu_lock);
3576
3577         return r;
3578
3579 out_unlock:
3580         spin_unlock(&vcpu->kvm->mmu_lock);
3581         kvm_release_pfn_clean(pfn);
3582         return 0;
3583 }
3584
3585 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3586                                    struct kvm_mmu *context)
3587 {
3588         context->page_fault = nonpaging_page_fault;
3589         context->gva_to_gpa = nonpaging_gva_to_gpa;
3590         context->sync_page = nonpaging_sync_page;
3591         context->invlpg = nonpaging_invlpg;
3592         context->update_pte = nonpaging_update_pte;
3593         context->root_level = 0;
3594         context->shadow_root_level = PT32E_ROOT_LEVEL;
3595         context->root_hpa = INVALID_PAGE;
3596         context->direct_map = true;
3597         context->nx = false;
3598 }
3599
3600 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3601 {
3602         mmu_free_roots(vcpu);
3603 }
3604
3605 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3606 {
3607         return kvm_read_cr3(vcpu);
3608 }
3609
3610 static void inject_page_fault(struct kvm_vcpu *vcpu,
3611                               struct x86_exception *fault)
3612 {
3613         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3614 }
3615
3616 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3617                            unsigned access, int *nr_present)
3618 {
3619         if (unlikely(is_mmio_spte(*sptep))) {
3620                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3621                         mmu_spte_clear_no_track(sptep);
3622                         return true;
3623                 }
3624
3625                 (*nr_present)++;
3626                 mark_mmio_spte(vcpu, sptep, gfn, access);
3627                 return true;
3628         }
3629
3630         return false;
3631 }
3632
3633 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3634                                 unsigned level, unsigned gpte)
3635 {
3636         /*
3637          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3638          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3639          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3640          */
3641         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3642
3643         /*
3644          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3645          * If it is clear, there are no large pages at this level, so clear
3646          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3647          */
3648         gpte &= level - mmu->last_nonleaf_level;
3649
3650         return gpte & PT_PAGE_SIZE_MASK;
3651 }
3652
3653 #define PTTYPE_EPT 18 /* arbitrary */
3654 #define PTTYPE PTTYPE_EPT
3655 #include "paging_tmpl.h"
3656 #undef PTTYPE
3657
3658 #define PTTYPE 64
3659 #include "paging_tmpl.h"
3660 #undef PTTYPE
3661
3662 #define PTTYPE 32
3663 #include "paging_tmpl.h"
3664 #undef PTTYPE
3665
3666 static void
3667 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3668                         struct rsvd_bits_validate *rsvd_check,
3669                         int maxphyaddr, int level, bool nx, bool gbpages,
3670                         bool pse, bool amd)
3671 {
3672         u64 exb_bit_rsvd = 0;
3673         u64 gbpages_bit_rsvd = 0;
3674         u64 nonleaf_bit8_rsvd = 0;
3675
3676         rsvd_check->bad_mt_xwr = 0;
3677
3678         if (!nx)
3679                 exb_bit_rsvd = rsvd_bits(63, 63);
3680         if (!gbpages)
3681                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3682
3683         /*
3684          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3685          * leaf entries) on AMD CPUs only.
3686          */
3687         if (amd)
3688                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3689
3690         switch (level) {
3691         case PT32_ROOT_LEVEL:
3692                 /* no rsvd bits for 2 level 4K page table entries */
3693                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3694                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3695                 rsvd_check->rsvd_bits_mask[1][0] =
3696                         rsvd_check->rsvd_bits_mask[0][0];
3697
3698                 if (!pse) {
3699                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3700                         break;
3701                 }
3702
3703                 if (is_cpuid_PSE36())
3704                         /* 36bits PSE 4MB page */
3705                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3706                 else
3707                         /* 32 bits PSE 4MB page */
3708                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3709                 break;
3710         case PT32E_ROOT_LEVEL:
3711                 rsvd_check->rsvd_bits_mask[0][2] =
3712                         rsvd_bits(maxphyaddr, 63) |
3713                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3714                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3715                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3716                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3717                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3718                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3719                         rsvd_bits(maxphyaddr, 62) |
3720                         rsvd_bits(13, 20);              /* large page */
3721                 rsvd_check->rsvd_bits_mask[1][0] =
3722                         rsvd_check->rsvd_bits_mask[0][0];
3723                 break;
3724         case PT64_ROOT_LEVEL:
3725                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3726                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3727                         rsvd_bits(maxphyaddr, 51);
3728                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3729                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3730                         rsvd_bits(maxphyaddr, 51);
3731                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3732                         rsvd_bits(maxphyaddr, 51);
3733                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3734                         rsvd_bits(maxphyaddr, 51);
3735                 rsvd_check->rsvd_bits_mask[1][3] =
3736                         rsvd_check->rsvd_bits_mask[0][3];
3737                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3738                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3739                         rsvd_bits(13, 29);
3740                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3741                         rsvd_bits(maxphyaddr, 51) |
3742                         rsvd_bits(13, 20);              /* large page */
3743                 rsvd_check->rsvd_bits_mask[1][0] =
3744                         rsvd_check->rsvd_bits_mask[0][0];
3745                 break;
3746         }
3747 }
3748
3749 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3750                                   struct kvm_mmu *context)
3751 {
3752         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3753                                 cpuid_maxphyaddr(vcpu), context->root_level,
3754                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3755                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3756 }
3757
3758 static void
3759 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3760                             int maxphyaddr, bool execonly)
3761 {
3762         u64 bad_mt_xwr;
3763
3764         rsvd_check->rsvd_bits_mask[0][3] =
3765                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3766         rsvd_check->rsvd_bits_mask[0][2] =
3767                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3768         rsvd_check->rsvd_bits_mask[0][1] =
3769                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3770         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3771
3772         /* large page */
3773         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3774         rsvd_check->rsvd_bits_mask[1][2] =
3775                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3776         rsvd_check->rsvd_bits_mask[1][1] =
3777                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3778         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3779
3780         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3781         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3782         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3783         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3784         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3785         if (!execonly) {
3786                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3787                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3788         }
3789         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3790 }
3791
3792 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3793                 struct kvm_mmu *context, bool execonly)
3794 {
3795         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3796                                     cpuid_maxphyaddr(vcpu), execonly);
3797 }
3798
3799 /*
3800  * the page table on host is the shadow page table for the page
3801  * table in guest or amd nested guest, its mmu features completely
3802  * follow the features in guest.
3803  */
3804 void
3805 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3806 {
3807         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3808
3809         /*
3810          * Passing "true" to the last argument is okay; it adds a check
3811          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3812          */
3813         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3814                                 boot_cpu_data.x86_phys_bits,
3815                                 context->shadow_root_level, uses_nx,
3816                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3817                                 true);
3818 }
3819 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3820
3821 static inline bool boot_cpu_is_amd(void)
3822 {
3823         WARN_ON_ONCE(!tdp_enabled);
3824         return shadow_x_mask == 0;
3825 }
3826
3827 /*
3828  * the direct page table on host, use as much mmu features as
3829  * possible, however, kvm currently does not do execution-protection.
3830  */
3831 static void
3832 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3833                                 struct kvm_mmu *context)
3834 {
3835         if (boot_cpu_is_amd())
3836                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3837                                         boot_cpu_data.x86_phys_bits,
3838                                         context->shadow_root_level, false,
3839                                         cpu_has_gbpages, true, true);
3840         else
3841                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3842                                             boot_cpu_data.x86_phys_bits,
3843                                             false);
3844
3845 }
3846
3847 /*
3848  * as the comments in reset_shadow_zero_bits_mask() except it
3849  * is the shadow page table for intel nested guest.
3850  */
3851 static void
3852 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3853                                 struct kvm_mmu *context, bool execonly)
3854 {
3855         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3856                                     boot_cpu_data.x86_phys_bits, execonly);
3857 }
3858
3859 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3860                                       struct kvm_mmu *mmu, bool ept)
3861 {
3862         unsigned bit, byte, pfec;
3863         u8 map;
3864         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3865
3866         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3867         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3868         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3869                 pfec = byte << 1;
3870                 map = 0;
3871                 wf = pfec & PFERR_WRITE_MASK;
3872                 uf = pfec & PFERR_USER_MASK;
3873                 ff = pfec & PFERR_FETCH_MASK;
3874                 /*
3875                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3876                  * subject to SMAP restrictions, and cleared otherwise. The
3877                  * bit is only meaningful if the SMAP bit is set in CR4.
3878                  */
3879                 smapf = !(pfec & PFERR_RSVD_MASK);
3880                 for (bit = 0; bit < 8; ++bit) {
3881                         x = bit & ACC_EXEC_MASK;
3882                         w = bit & ACC_WRITE_MASK;
3883                         u = bit & ACC_USER_MASK;
3884
3885                         if (!ept) {
3886                                 /* Not really needed: !nx will cause pte.nx to fault */
3887                                 x |= !mmu->nx;
3888                                 /* Allow supervisor writes if !cr0.wp */
3889                                 w |= !is_write_protection(vcpu) && !uf;
3890                                 /* Disallow supervisor fetches of user code if cr4.smep */
3891                                 x &= !(cr4_smep && u && !uf);
3892
3893                                 /*
3894                                  * SMAP:kernel-mode data accesses from user-mode
3895                                  * mappings should fault. A fault is considered
3896                                  * as a SMAP violation if all of the following
3897                                  * conditions are ture:
3898                                  *   - X86_CR4_SMAP is set in CR4
3899                                  *   - An user page is accessed
3900                                  *   - Page fault in kernel mode
3901                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3902                                  *
3903                                  *   Here, we cover the first three conditions.
3904                                  *   The fourth is computed dynamically in
3905                                  *   permission_fault() and is in smapf.
3906                                  *
3907                                  *   Also, SMAP does not affect instruction
3908                                  *   fetches, add the !ff check here to make it
3909                                  *   clearer.
3910                                  */
3911                                 smap = cr4_smap && u && !uf && !ff;
3912                         } else
3913                                 /* Not really needed: no U/S accesses on ept  */
3914                                 u = 1;
3915
3916                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3917                                 (smapf && smap);
3918                         map |= fault << bit;
3919                 }
3920                 mmu->permissions[byte] = map;
3921         }
3922 }
3923
3924 /*
3925 * PKU is an additional mechanism by which the paging controls access to
3926 * user-mode addresses based on the value in the PKRU register.  Protection
3927 * key violations are reported through a bit in the page fault error code.
3928 * Unlike other bits of the error code, the PK bit is not known at the
3929 * call site of e.g. gva_to_gpa; it must be computed directly in
3930 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3931 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3932 *
3933 * In particular the following conditions come from the error code, the
3934 * page tables and the machine state:
3935 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3936 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3937 * - PK is always zero if U=0 in the page tables
3938 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3939 *
3940 * The PKRU bitmask caches the result of these four conditions.  The error
3941 * code (minus the P bit) and the page table's U bit form an index into the
3942 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
3943 * with the two bits of the PKRU register corresponding to the protection key.
3944 * For the first three conditions above the bits will be 00, thus masking
3945 * away both AD and WD.  For all reads or if the last condition holds, WD
3946 * only will be masked away.
3947 */
3948 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3949                                 bool ept)
3950 {
3951         unsigned bit;
3952         bool wp;
3953
3954         if (ept) {
3955                 mmu->pkru_mask = 0;
3956                 return;
3957         }
3958
3959         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3960         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3961                 mmu->pkru_mask = 0;
3962                 return;
3963         }
3964
3965         wp = is_write_protection(vcpu);
3966
3967         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3968                 unsigned pfec, pkey_bits;
3969                 bool check_pkey, check_write, ff, uf, wf, pte_user;
3970
3971                 pfec = bit << 1;
3972                 ff = pfec & PFERR_FETCH_MASK;
3973                 uf = pfec & PFERR_USER_MASK;
3974                 wf = pfec & PFERR_WRITE_MASK;
3975
3976                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3977                 pte_user = pfec & PFERR_RSVD_MASK;
3978
3979                 /*
3980                  * Only need to check the access which is not an
3981                  * instruction fetch and is to a user page.
3982                  */
3983                 check_pkey = (!ff && pte_user);
3984                 /*
3985                  * write access is controlled by PKRU if it is a
3986                  * user access or CR0.WP = 1.
3987                  */
3988                 check_write = check_pkey && wf && (uf || wp);
3989
3990                 /* PKRU.AD stops both read and write access. */
3991                 pkey_bits = !!check_pkey;
3992                 /* PKRU.WD stops write access. */
3993                 pkey_bits |= (!!check_write) << 1;
3994
3995                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
3996         }
3997 }
3998
3999 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4000 {
4001         unsigned root_level = mmu->root_level;
4002
4003         mmu->last_nonleaf_level = root_level;
4004         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4005                 mmu->last_nonleaf_level++;
4006 }
4007
4008 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4009                                          struct kvm_mmu *context,
4010                                          int level)
4011 {
4012         context->nx = is_nx(vcpu);
4013         context->root_level = level;
4014
4015         reset_rsvds_bits_mask(vcpu, context);
4016         update_permission_bitmask(vcpu, context, false);
4017         update_pkru_bitmask(vcpu, context, false);
4018         update_last_nonleaf_level(vcpu, context);
4019
4020         MMU_WARN_ON(!is_pae(vcpu));
4021         context->page_fault = paging64_page_fault;
4022         context->gva_to_gpa = paging64_gva_to_gpa;
4023         context->sync_page = paging64_sync_page;
4024         context->invlpg = paging64_invlpg;
4025         context->update_pte = paging64_update_pte;
4026         context->shadow_root_level = level;
4027         context->root_hpa = INVALID_PAGE;
4028         context->direct_map = false;
4029 }
4030
4031 static void paging64_init_context(struct kvm_vcpu *vcpu,
4032                                   struct kvm_mmu *context)
4033 {
4034         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4035 }
4036
4037 static void paging32_init_context(struct kvm_vcpu *vcpu,
4038                                   struct kvm_mmu *context)
4039 {
4040         context->nx = false;
4041         context->root_level = PT32_ROOT_LEVEL;
4042
4043         reset_rsvds_bits_mask(vcpu, context);
4044         update_permission_bitmask(vcpu, context, false);
4045         update_pkru_bitmask(vcpu, context, false);
4046         update_last_nonleaf_level(vcpu, context);
4047
4048         context->page_fault = paging32_page_fault;
4049         context->gva_to_gpa = paging32_gva_to_gpa;
4050         context->sync_page = paging32_sync_page;
4051         context->invlpg = paging32_invlpg;
4052         context->update_pte = paging32_update_pte;
4053         context->shadow_root_level = PT32E_ROOT_LEVEL;
4054         context->root_hpa = INVALID_PAGE;
4055         context->direct_map = false;
4056 }
4057
4058 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4059                                    struct kvm_mmu *context)
4060 {
4061         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4062 }
4063
4064 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4065 {
4066         struct kvm_mmu *context = &vcpu->arch.mmu;
4067
4068         context->base_role.word = 0;
4069         context->base_role.smm = is_smm(vcpu);
4070         context->page_fault = tdp_page_fault;
4071         context->sync_page = nonpaging_sync_page;
4072         context->invlpg = nonpaging_invlpg;
4073         context->update_pte = nonpaging_update_pte;
4074         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4075         context->root_hpa = INVALID_PAGE;
4076         context->direct_map = true;
4077         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4078         context->get_cr3 = get_cr3;
4079         context->get_pdptr = kvm_pdptr_read;
4080         context->inject_page_fault = kvm_inject_page_fault;
4081
4082         if (!is_paging(vcpu)) {
4083                 context->nx = false;
4084                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4085                 context->root_level = 0;
4086         } else if (is_long_mode(vcpu)) {
4087                 context->nx = is_nx(vcpu);
4088                 context->root_level = PT64_ROOT_LEVEL;
4089                 reset_rsvds_bits_mask(vcpu, context);
4090                 context->gva_to_gpa = paging64_gva_to_gpa;
4091         } else if (is_pae(vcpu)) {
4092                 context->nx = is_nx(vcpu);
4093                 context->root_level = PT32E_ROOT_LEVEL;
4094                 reset_rsvds_bits_mask(vcpu, context);
4095                 context->gva_to_gpa = paging64_gva_to_gpa;
4096         } else {
4097                 context->nx = false;
4098                 context->root_level = PT32_ROOT_LEVEL;
4099                 reset_rsvds_bits_mask(vcpu, context);
4100                 context->gva_to_gpa = paging32_gva_to_gpa;
4101         }
4102
4103         update_permission_bitmask(vcpu, context, false);
4104         update_pkru_bitmask(vcpu, context, false);
4105         update_last_nonleaf_level(vcpu, context);
4106         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4107 }
4108
4109 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4110 {
4111         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4112         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4113         struct kvm_mmu *context = &vcpu->arch.mmu;
4114
4115         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4116
4117         if (!is_paging(vcpu))
4118                 nonpaging_init_context(vcpu, context);
4119         else if (is_long_mode(vcpu))
4120                 paging64_init_context(vcpu, context);
4121         else if (is_pae(vcpu))
4122                 paging32E_init_context(vcpu, context);
4123         else
4124                 paging32_init_context(vcpu, context);
4125
4126         context->base_role.nxe = is_nx(vcpu);
4127         context->base_role.cr4_pae = !!is_pae(vcpu);
4128         context->base_role.cr0_wp  = is_write_protection(vcpu);
4129         context->base_role.smep_andnot_wp
4130                 = smep && !is_write_protection(vcpu);
4131         context->base_role.smap_andnot_wp
4132                 = smap && !is_write_protection(vcpu);
4133         context->base_role.smm = is_smm(vcpu);
4134         reset_shadow_zero_bits_mask(vcpu, context);
4135 }
4136 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4137
4138 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4139 {
4140         struct kvm_mmu *context = &vcpu->arch.mmu;
4141
4142         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4143
4144         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4145
4146         context->nx = true;
4147         context->page_fault = ept_page_fault;
4148         context->gva_to_gpa = ept_gva_to_gpa;
4149         context->sync_page = ept_sync_page;
4150         context->invlpg = ept_invlpg;
4151         context->update_pte = ept_update_pte;
4152         context->root_level = context->shadow_root_level;
4153         context->root_hpa = INVALID_PAGE;
4154         context->direct_map = false;
4155
4156         update_permission_bitmask(vcpu, context, true);
4157         update_pkru_bitmask(vcpu, context, true);
4158         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4159         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4160 }
4161 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4162
4163 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4164 {
4165         struct kvm_mmu *context = &vcpu->arch.mmu;
4166
4167         kvm_init_shadow_mmu(vcpu);
4168         context->set_cr3           = kvm_x86_ops->set_cr3;
4169         context->get_cr3           = get_cr3;
4170         context->get_pdptr         = kvm_pdptr_read;
4171         context->inject_page_fault = kvm_inject_page_fault;
4172 }
4173
4174 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4175 {
4176         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4177
4178         g_context->get_cr3           = get_cr3;
4179         g_context->get_pdptr         = kvm_pdptr_read;
4180         g_context->inject_page_fault = kvm_inject_page_fault;
4181
4182         /*
4183          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4184          * L1's nested page tables (e.g. EPT12). The nested translation
4185          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4186          * L2's page tables as the first level of translation and L1's
4187          * nested page tables as the second level of translation. Basically
4188          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4189          */
4190         if (!is_paging(vcpu)) {
4191                 g_context->nx = false;
4192                 g_context->root_level = 0;
4193                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4194         } else if (is_long_mode(vcpu)) {
4195                 g_context->nx = is_nx(vcpu);
4196                 g_context->root_level = PT64_ROOT_LEVEL;
4197                 reset_rsvds_bits_mask(vcpu, g_context);
4198                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4199         } else if (is_pae(vcpu)) {
4200                 g_context->nx = is_nx(vcpu);
4201                 g_context->root_level = PT32E_ROOT_LEVEL;
4202                 reset_rsvds_bits_mask(vcpu, g_context);
4203                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4204         } else {
4205                 g_context->nx = false;
4206                 g_context->root_level = PT32_ROOT_LEVEL;
4207                 reset_rsvds_bits_mask(vcpu, g_context);
4208                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4209         }
4210
4211         update_permission_bitmask(vcpu, g_context, false);
4212         update_pkru_bitmask(vcpu, g_context, false);
4213         update_last_nonleaf_level(vcpu, g_context);
4214 }
4215
4216 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4217 {
4218         if (mmu_is_nested(vcpu))
4219                 init_kvm_nested_mmu(vcpu);
4220         else if (tdp_enabled)
4221                 init_kvm_tdp_mmu(vcpu);
4222         else
4223                 init_kvm_softmmu(vcpu);
4224 }
4225
4226 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4227 {
4228         kvm_mmu_unload(vcpu);
4229         init_kvm_mmu(vcpu);
4230 }
4231 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4232
4233 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4234 {
4235         int r;
4236
4237         r = mmu_topup_memory_caches(vcpu);
4238         if (r)
4239                 goto out;
4240         r = mmu_alloc_roots(vcpu);
4241         kvm_mmu_sync_roots(vcpu);
4242         if (r)
4243                 goto out;
4244         /* set_cr3() should ensure TLB has been flushed */
4245         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4246 out:
4247         return r;
4248 }
4249 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4250
4251 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4252 {
4253         mmu_free_roots(vcpu);
4254         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4255 }
4256 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4257
4258 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4259                                   struct kvm_mmu_page *sp, u64 *spte,
4260                                   const void *new)
4261 {
4262         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4263                 ++vcpu->kvm->stat.mmu_pde_zapped;
4264                 return;
4265         }
4266
4267         ++vcpu->kvm->stat.mmu_pte_updated;
4268         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4269 }
4270
4271 static bool need_remote_flush(u64 old, u64 new)
4272 {
4273         if (!is_shadow_present_pte(old))
4274                 return false;
4275         if (!is_shadow_present_pte(new))
4276                 return true;
4277         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4278                 return true;
4279         old ^= shadow_nx_mask;
4280         new ^= shadow_nx_mask;
4281         return (old & ~new & PT64_PERM_MASK) != 0;
4282 }
4283
4284 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4285                                     const u8 *new, int *bytes)
4286 {
4287         u64 gentry;
4288         int r;
4289
4290         /*
4291          * Assume that the pte write on a page table of the same type
4292          * as the current vcpu paging mode since we update the sptes only
4293          * when they have the same mode.
4294          */
4295         if (is_pae(vcpu) && *bytes == 4) {
4296                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4297                 *gpa &= ~(gpa_t)7;
4298                 *bytes = 8;
4299                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4300                 if (r)
4301                         gentry = 0;
4302                 new = (const u8 *)&gentry;
4303         }
4304
4305         switch (*bytes) {
4306         case 4:
4307                 gentry = *(const u32 *)new;
4308                 break;
4309         case 8:
4310                 gentry = *(const u64 *)new;
4311                 break;
4312         default:
4313                 gentry = 0;
4314                 break;
4315         }
4316
4317         return gentry;
4318 }
4319
4320 /*
4321  * If we're seeing too many writes to a page, it may no longer be a page table,
4322  * or we may be forking, in which case it is better to unmap the page.
4323  */
4324 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4325 {
4326         /*
4327          * Skip write-flooding detected for the sp whose level is 1, because
4328          * it can become unsync, then the guest page is not write-protected.
4329          */
4330         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4331                 return false;
4332
4333         atomic_inc(&sp->write_flooding_count);
4334         return atomic_read(&sp->write_flooding_count) >= 3;
4335 }
4336
4337 /*
4338  * Misaligned accesses are too much trouble to fix up; also, they usually
4339  * indicate a page is not used as a page table.
4340  */
4341 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4342                                     int bytes)
4343 {
4344         unsigned offset, pte_size, misaligned;
4345
4346         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4347                  gpa, bytes, sp->role.word);
4348
4349         offset = offset_in_page(gpa);
4350         pte_size = sp->role.cr4_pae ? 8 : 4;
4351
4352         /*
4353          * Sometimes, the OS only writes the last one bytes to update status
4354          * bits, for example, in linux, andb instruction is used in clear_bit().
4355          */
4356         if (!(offset & (pte_size - 1)) && bytes == 1)
4357                 return false;
4358
4359         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4360         misaligned |= bytes < 4;
4361
4362         return misaligned;
4363 }
4364
4365 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4366 {
4367         unsigned page_offset, quadrant;
4368         u64 *spte;
4369         int level;
4370
4371         page_offset = offset_in_page(gpa);
4372         level = sp->role.level;
4373         *nspte = 1;
4374         if (!sp->role.cr4_pae) {
4375                 page_offset <<= 1;      /* 32->64 */
4376                 /*
4377                  * A 32-bit pde maps 4MB while the shadow pdes map
4378                  * only 2MB.  So we need to double the offset again
4379                  * and zap two pdes instead of one.
4380                  */
4381                 if (level == PT32_ROOT_LEVEL) {
4382                         page_offset &= ~7; /* kill rounding error */
4383                         page_offset <<= 1;
4384                         *nspte = 2;
4385                 }
4386                 quadrant = page_offset >> PAGE_SHIFT;
4387                 page_offset &= ~PAGE_MASK;
4388                 if (quadrant != sp->role.quadrant)
4389                         return NULL;
4390         }
4391
4392         spte = &sp->spt[page_offset / sizeof(*spte)];
4393         return spte;
4394 }
4395
4396 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4397                               const u8 *new, int bytes)
4398 {
4399         gfn_t gfn = gpa >> PAGE_SHIFT;
4400         struct kvm_mmu_page *sp;
4401         LIST_HEAD(invalid_list);
4402         u64 entry, gentry, *spte;
4403         int npte;
4404         bool remote_flush, local_flush;
4405         union kvm_mmu_page_role mask = { };
4406
4407         mask.cr0_wp = 1;
4408         mask.cr4_pae = 1;
4409         mask.nxe = 1;
4410         mask.smep_andnot_wp = 1;
4411         mask.smap_andnot_wp = 1;
4412         mask.smm = 1;
4413
4414         /*
4415          * If we don't have indirect shadow pages, it means no page is
4416          * write-protected, so we can exit simply.
4417          */
4418         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4419                 return;
4420
4421         remote_flush = local_flush = false;
4422
4423         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4424
4425         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4426
4427         /*
4428          * No need to care whether allocation memory is successful
4429          * or not since pte prefetch is skiped if it does not have
4430          * enough objects in the cache.
4431          */
4432         mmu_topup_memory_caches(vcpu);
4433
4434         spin_lock(&vcpu->kvm->mmu_lock);
4435         ++vcpu->kvm->stat.mmu_pte_write;
4436         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4437
4438         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4439                 if (detect_write_misaligned(sp, gpa, bytes) ||
4440                       detect_write_flooding(sp)) {
4441                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4442                         ++vcpu->kvm->stat.mmu_flooded;
4443                         continue;
4444                 }
4445
4446                 spte = get_written_sptes(sp, gpa, &npte);
4447                 if (!spte)
4448                         continue;
4449
4450                 local_flush = true;
4451                 while (npte--) {
4452                         entry = *spte;
4453                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4454                         if (gentry &&
4455                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4456                               & mask.word) && rmap_can_add(vcpu))
4457                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4458                         if (need_remote_flush(entry, *spte))
4459                                 remote_flush = true;
4460                         ++spte;
4461                 }
4462         }
4463         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4464         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4465         spin_unlock(&vcpu->kvm->mmu_lock);
4466 }
4467
4468 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4469 {
4470         gpa_t gpa;
4471         int r;
4472
4473         if (vcpu->arch.mmu.direct_map)
4474                 return 0;
4475
4476         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4477
4478         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4479
4480         return r;
4481 }
4482 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4483
4484 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4485 {
4486         LIST_HEAD(invalid_list);
4487
4488         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4489                 return;
4490
4491         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4492                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4493                         break;
4494
4495                 ++vcpu->kvm->stat.mmu_recycled;
4496         }
4497         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4498 }
4499
4500 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4501                        void *insn, int insn_len)
4502 {
4503         int r, emulation_type = EMULTYPE_RETRY;
4504         enum emulation_result er;
4505         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4506
4507         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4508                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4509                 if (r == RET_MMIO_PF_EMULATE) {
4510                         emulation_type = 0;
4511                         goto emulate;
4512                 }
4513                 if (r == RET_MMIO_PF_RETRY)
4514                         return 1;
4515                 if (r < 0)
4516                         return r;
4517         }
4518
4519         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4520         if (r < 0)
4521                 return r;
4522         if (!r)
4523                 return 1;
4524
4525         if (mmio_info_in_cache(vcpu, cr2, direct))
4526                 emulation_type = 0;
4527 emulate:
4528         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4529
4530         switch (er) {
4531         case EMULATE_DONE:
4532                 return 1;
4533         case EMULATE_USER_EXIT:
4534                 ++vcpu->stat.mmio_exits;
4535                 /* fall through */
4536         case EMULATE_FAIL:
4537                 return 0;
4538         default:
4539                 BUG();
4540         }
4541 }
4542 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4543
4544 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4545 {
4546         vcpu->arch.mmu.invlpg(vcpu, gva);
4547         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4548         ++vcpu->stat.invlpg;
4549 }
4550 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4551
4552 void kvm_enable_tdp(void)
4553 {
4554         tdp_enabled = true;
4555 }
4556 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4557
4558 void kvm_disable_tdp(void)
4559 {
4560         tdp_enabled = false;
4561 }
4562 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4563
4564 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4565 {
4566         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4567         if (vcpu->arch.mmu.lm_root != NULL)
4568                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4569 }
4570
4571 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4572 {
4573         struct page *page;
4574         int i;
4575
4576         /*
4577          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4578          * Therefore we need to allocate shadow page tables in the first
4579          * 4GB of memory, which happens to fit the DMA32 zone.
4580          */
4581         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4582         if (!page)
4583                 return -ENOMEM;
4584
4585         vcpu->arch.mmu.pae_root = page_address(page);
4586         for (i = 0; i < 4; ++i)
4587                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4588
4589         return 0;
4590 }
4591
4592 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4593 {
4594         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4595         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4596         vcpu->arch.mmu.translate_gpa = translate_gpa;
4597         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4598
4599         return alloc_mmu_pages(vcpu);
4600 }
4601
4602 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4603 {
4604         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4605
4606         init_kvm_mmu(vcpu);
4607 }
4608
4609 void kvm_mmu_init_vm(struct kvm *kvm)
4610 {
4611         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4612
4613         node->track_write = kvm_mmu_pte_write;
4614         kvm_page_track_register_notifier(kvm, node);
4615 }
4616
4617 void kvm_mmu_uninit_vm(struct kvm *kvm)
4618 {
4619         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4620
4621         kvm_page_track_unregister_notifier(kvm, node);
4622 }
4623
4624 /* The return value indicates if tlb flush on all vcpus is needed. */
4625 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4626
4627 /* The caller should hold mmu-lock before calling this function. */
4628 static bool
4629 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4630                         slot_level_handler fn, int start_level, int end_level,
4631                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4632 {
4633         struct slot_rmap_walk_iterator iterator;
4634         bool flush = false;
4635
4636         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4637                         end_gfn, &iterator) {
4638                 if (iterator.rmap)
4639                         flush |= fn(kvm, iterator.rmap);
4640
4641                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4642                         if (flush && lock_flush_tlb) {
4643                                 kvm_flush_remote_tlbs(kvm);
4644                                 flush = false;
4645                         }
4646                         cond_resched_lock(&kvm->mmu_lock);
4647                 }
4648         }
4649
4650         if (flush && lock_flush_tlb) {
4651                 kvm_flush_remote_tlbs(kvm);
4652                 flush = false;
4653         }
4654
4655         return flush;
4656 }
4657
4658 static bool
4659 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4660                   slot_level_handler fn, int start_level, int end_level,
4661                   bool lock_flush_tlb)
4662 {
4663         return slot_handle_level_range(kvm, memslot, fn, start_level,
4664                         end_level, memslot->base_gfn,
4665                         memslot->base_gfn + memslot->npages - 1,
4666                         lock_flush_tlb);
4667 }
4668
4669 static bool
4670 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4671                       slot_level_handler fn, bool lock_flush_tlb)
4672 {
4673         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4674                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4675 }
4676
4677 static bool
4678 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4679                         slot_level_handler fn, bool lock_flush_tlb)
4680 {
4681         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4682                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4683 }
4684
4685 static bool
4686 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4687                  slot_level_handler fn, bool lock_flush_tlb)
4688 {
4689         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4690                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4691 }
4692
4693 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4694 {
4695         struct kvm_memslots *slots;
4696         struct kvm_memory_slot *memslot;
4697         int i;
4698
4699         spin_lock(&kvm->mmu_lock);
4700         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4701                 slots = __kvm_memslots(kvm, i);
4702                 kvm_for_each_memslot(memslot, slots) {
4703                         gfn_t start, end;
4704
4705                         start = max(gfn_start, memslot->base_gfn);
4706                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4707                         if (start >= end)
4708                                 continue;
4709
4710                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4711                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4712                                                 start, end - 1, true);
4713                 }
4714         }
4715
4716         spin_unlock(&kvm->mmu_lock);
4717 }
4718
4719 static bool slot_rmap_write_protect(struct kvm *kvm,
4720                                     struct kvm_rmap_head *rmap_head)
4721 {
4722         return __rmap_write_protect(kvm, rmap_head, false);
4723 }
4724
4725 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4726                                       struct kvm_memory_slot *memslot)
4727 {
4728         bool flush;
4729
4730         spin_lock(&kvm->mmu_lock);
4731         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4732                                       false);
4733         spin_unlock(&kvm->mmu_lock);
4734
4735         /*
4736          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4737          * which do tlb flush out of mmu-lock should be serialized by
4738          * kvm->slots_lock otherwise tlb flush would be missed.
4739          */
4740         lockdep_assert_held(&kvm->slots_lock);
4741
4742         /*
4743          * We can flush all the TLBs out of the mmu lock without TLB
4744          * corruption since we just change the spte from writable to
4745          * readonly so that we only need to care the case of changing
4746          * spte from present to present (changing the spte from present
4747          * to nonpresent will flush all the TLBs immediately), in other
4748          * words, the only case we care is mmu_spte_update() where we
4749          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4750          * instead of PT_WRITABLE_MASK, that means it does not depend
4751          * on PT_WRITABLE_MASK anymore.
4752          */
4753         if (flush)
4754                 kvm_flush_remote_tlbs(kvm);
4755 }
4756
4757 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4758                                          struct kvm_rmap_head *rmap_head)
4759 {
4760         u64 *sptep;
4761         struct rmap_iterator iter;
4762         int need_tlb_flush = 0;
4763         kvm_pfn_t pfn;
4764         struct kvm_mmu_page *sp;
4765
4766 restart:
4767         for_each_rmap_spte(rmap_head, &iter, sptep) {
4768                 sp = page_header(__pa(sptep));
4769                 pfn = spte_to_pfn(*sptep);
4770
4771                 /*
4772                  * We cannot do huge page mapping for indirect shadow pages,
4773                  * which are found on the last rmap (level = 1) when not using
4774                  * tdp; such shadow pages are synced with the page table in
4775                  * the guest, and the guest page table is using 4K page size
4776                  * mapping if the indirect sp has level = 1.
4777                  */
4778                 if (sp->role.direct &&
4779                         !kvm_is_reserved_pfn(pfn) &&
4780                         PageTransCompound(pfn_to_page(pfn))) {
4781                         drop_spte(kvm, sptep);
4782                         need_tlb_flush = 1;
4783                         goto restart;
4784                 }
4785         }
4786
4787         return need_tlb_flush;
4788 }
4789
4790 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4791                                    const struct kvm_memory_slot *memslot)
4792 {
4793         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4794         spin_lock(&kvm->mmu_lock);
4795         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4796                          kvm_mmu_zap_collapsible_spte, true);
4797         spin_unlock(&kvm->mmu_lock);
4798 }
4799
4800 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4801                                    struct kvm_memory_slot *memslot)
4802 {
4803         bool flush;
4804
4805         spin_lock(&kvm->mmu_lock);
4806         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4807         spin_unlock(&kvm->mmu_lock);
4808
4809         lockdep_assert_held(&kvm->slots_lock);
4810
4811         /*
4812          * It's also safe to flush TLBs out of mmu lock here as currently this
4813          * function is only used for dirty logging, in which case flushing TLB
4814          * out of mmu lock also guarantees no dirty pages will be lost in
4815          * dirty_bitmap.
4816          */
4817         if (flush)
4818                 kvm_flush_remote_tlbs(kvm);
4819 }
4820 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4821
4822 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4823                                         struct kvm_memory_slot *memslot)
4824 {
4825         bool flush;
4826
4827         spin_lock(&kvm->mmu_lock);
4828         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4829                                         false);
4830         spin_unlock(&kvm->mmu_lock);
4831
4832         /* see kvm_mmu_slot_remove_write_access */
4833         lockdep_assert_held(&kvm->slots_lock);
4834
4835         if (flush)
4836                 kvm_flush_remote_tlbs(kvm);
4837 }
4838 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4839
4840 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4841                             struct kvm_memory_slot *memslot)
4842 {
4843         bool flush;
4844
4845         spin_lock(&kvm->mmu_lock);
4846         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4847         spin_unlock(&kvm->mmu_lock);
4848
4849         lockdep_assert_held(&kvm->slots_lock);
4850
4851         /* see kvm_mmu_slot_leaf_clear_dirty */
4852         if (flush)
4853                 kvm_flush_remote_tlbs(kvm);
4854 }
4855 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4856
4857 #define BATCH_ZAP_PAGES 10
4858 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4859 {
4860         struct kvm_mmu_page *sp, *node;
4861         int batch = 0;
4862
4863 restart:
4864         list_for_each_entry_safe_reverse(sp, node,
4865               &kvm->arch.active_mmu_pages, link) {
4866                 int ret;
4867
4868                 /*
4869                  * No obsolete page exists before new created page since
4870                  * active_mmu_pages is the FIFO list.
4871                  */
4872                 if (!is_obsolete_sp(kvm, sp))
4873                         break;
4874
4875                 /*
4876                  * Since we are reversely walking the list and the invalid
4877                  * list will be moved to the head, skip the invalid page
4878                  * can help us to avoid the infinity list walking.
4879                  */
4880                 if (sp->role.invalid)
4881                         continue;
4882
4883                 /*
4884                  * Need not flush tlb since we only zap the sp with invalid
4885                  * generation number.
4886                  */
4887                 if (batch >= BATCH_ZAP_PAGES &&
4888                       cond_resched_lock(&kvm->mmu_lock)) {
4889                         batch = 0;
4890                         goto restart;
4891                 }
4892
4893                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4894                                 &kvm->arch.zapped_obsolete_pages);
4895                 batch += ret;
4896
4897                 if (ret)
4898                         goto restart;
4899         }
4900
4901         /*
4902          * Should flush tlb before free page tables since lockless-walking
4903          * may use the pages.
4904          */
4905         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4906 }
4907
4908 /*
4909  * Fast invalidate all shadow pages and use lock-break technique
4910  * to zap obsolete pages.
4911  *
4912  * It's required when memslot is being deleted or VM is being
4913  * destroyed, in these cases, we should ensure that KVM MMU does
4914  * not use any resource of the being-deleted slot or all slots
4915  * after calling the function.
4916  */
4917 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4918 {
4919         spin_lock(&kvm->mmu_lock);
4920         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4921         kvm->arch.mmu_valid_gen++;
4922
4923         /*
4924          * Notify all vcpus to reload its shadow page table
4925          * and flush TLB. Then all vcpus will switch to new
4926          * shadow page table with the new mmu_valid_gen.
4927          *
4928          * Note: we should do this under the protection of
4929          * mmu-lock, otherwise, vcpu would purge shadow page
4930          * but miss tlb flush.
4931          */
4932         kvm_reload_remote_mmus(kvm);
4933
4934         kvm_zap_obsolete_pages(kvm);
4935         spin_unlock(&kvm->mmu_lock);
4936 }
4937
4938 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4939 {
4940         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4941 }
4942
4943 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4944 {
4945         /*
4946          * The very rare case: if the generation-number is round,
4947          * zap all shadow pages.
4948          */
4949         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4950                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4951                 kvm_mmu_invalidate_zap_all_pages(kvm);
4952         }
4953 }
4954
4955 static unsigned long
4956 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4957 {
4958         struct kvm *kvm;
4959         int nr_to_scan = sc->nr_to_scan;
4960         unsigned long freed = 0;
4961
4962         spin_lock(&kvm_lock);
4963
4964         list_for_each_entry(kvm, &vm_list, vm_list) {
4965                 int idx;
4966                 LIST_HEAD(invalid_list);
4967
4968                 /*
4969                  * Never scan more than sc->nr_to_scan VM instances.
4970                  * Will not hit this condition practically since we do not try
4971                  * to shrink more than one VM and it is very unlikely to see
4972                  * !n_used_mmu_pages so many times.
4973                  */
4974                 if (!nr_to_scan--)
4975                         break;
4976                 /*
4977                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4978                  * here. We may skip a VM instance errorneosly, but we do not
4979                  * want to shrink a VM that only started to populate its MMU
4980                  * anyway.
4981                  */
4982                 if (!kvm->arch.n_used_mmu_pages &&
4983                       !kvm_has_zapped_obsolete_pages(kvm))
4984                         continue;
4985
4986                 idx = srcu_read_lock(&kvm->srcu);
4987                 spin_lock(&kvm->mmu_lock);
4988
4989                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4990                         kvm_mmu_commit_zap_page(kvm,
4991                               &kvm->arch.zapped_obsolete_pages);
4992                         goto unlock;
4993                 }
4994
4995                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4996                         freed++;
4997                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4998
4999 unlock:
5000                 spin_unlock(&kvm->mmu_lock);
5001                 srcu_read_unlock(&kvm->srcu, idx);
5002
5003                 /*
5004                  * unfair on small ones
5005                  * per-vm shrinkers cry out
5006                  * sadness comes quickly
5007                  */
5008                 list_move_tail(&kvm->vm_list, &vm_list);
5009                 break;
5010         }
5011
5012         spin_unlock(&kvm_lock);
5013         return freed;
5014 }
5015
5016 static unsigned long
5017 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5018 {
5019         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5020 }
5021
5022 static struct shrinker mmu_shrinker = {
5023         .count_objects = mmu_shrink_count,
5024         .scan_objects = mmu_shrink_scan,
5025         .seeks = DEFAULT_SEEKS * 10,
5026 };
5027
5028 static void mmu_destroy_caches(void)
5029 {
5030         if (pte_list_desc_cache)
5031                 kmem_cache_destroy(pte_list_desc_cache);
5032         if (mmu_page_header_cache)
5033                 kmem_cache_destroy(mmu_page_header_cache);
5034 }
5035
5036 int kvm_mmu_module_init(void)
5037 {
5038         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5039                                             sizeof(struct pte_list_desc),
5040                                             0, 0, NULL);
5041         if (!pte_list_desc_cache)
5042                 goto nomem;
5043
5044         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5045                                                   sizeof(struct kvm_mmu_page),
5046                                                   0, 0, NULL);
5047         if (!mmu_page_header_cache)
5048                 goto nomem;
5049
5050         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5051                 goto nomem;
5052
5053         register_shrinker(&mmu_shrinker);
5054
5055         return 0;
5056
5057 nomem:
5058         mmu_destroy_caches();
5059         return -ENOMEM;
5060 }
5061
5062 /*
5063  * Caculate mmu pages needed for kvm.
5064  */
5065 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5066 {
5067         unsigned int nr_mmu_pages;
5068         unsigned int  nr_pages = 0;
5069         struct kvm_memslots *slots;
5070         struct kvm_memory_slot *memslot;
5071         int i;
5072
5073         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5074                 slots = __kvm_memslots(kvm, i);
5075
5076                 kvm_for_each_memslot(memslot, slots)
5077                         nr_pages += memslot->npages;
5078         }
5079
5080         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5081         nr_mmu_pages = max(nr_mmu_pages,
5082                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5083
5084         return nr_mmu_pages;
5085 }
5086
5087 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5088 {
5089         kvm_mmu_unload(vcpu);
5090         free_mmu_pages(vcpu);
5091         mmu_free_memory_caches(vcpu);
5092 }
5093
5094 void kvm_mmu_module_exit(void)
5095 {
5096         mmu_destroy_caches();
5097         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5098         unregister_shrinker(&mmu_shrinker);
5099         mmu_audit_disable();
5100 }