Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66
67 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69
70 #else
71
72 #define pgprintk(x...) do { } while (0)
73 #define rmap_printk(x...) do { } while (0)
74
75 #endif
76
77 #ifdef MMU_DEBUG
78 static bool dbg = 0;
79 module_param(dbg, bool, 0644);
80 #endif
81
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x)                                                       \
86         if (!(x)) {                                                     \
87                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
88                        __FILE__, __LINE__, #x);                         \
89         }
90 #endif
91
92 #define PTE_PREFETCH_NUM                8
93
94 #define PT_FIRST_AVAIL_BITS_SHIFT 10
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
97 #define PT64_LEVEL_BITS 9
98
99 #define PT64_LEVEL_SHIFT(level) \
100                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101
102 #define PT64_INDEX(address, level)\
103         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106 #define PT32_LEVEL_BITS 10
107
108 #define PT32_LEVEL_SHIFT(level) \
109                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110
111 #define PT32_LVL_OFFSET_MASK(level) \
112         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT32_LEVEL_BITS))) - 1))
114
115 #define PT32_INDEX(address, level)\
116         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117
118
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124                                                 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                                 * PT64_LEVEL_BITS))) - 1))
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137                         | shadow_x_mask | shadow_nx_mask)
138
139 #define ACC_EXEC_MASK    1
140 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
141 #define ACC_USER_MASK    PT_USER_MASK
142 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143
144 #include <trace/events/kvm.h>
145
146 #define CREATE_TRACE_POINTS
147 #include "mmutrace.h"
148
149 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
154 /* make pte_list_desc fit well in cache line */
155 #define PTE_LIST_EXT 3
156
157 struct pte_list_desc {
158         u64 *sptes[PTE_LIST_EXT];
159         struct pte_list_desc *more;
160 };
161
162 struct kvm_shadow_walk_iterator {
163         u64 addr;
164         hpa_t shadow_addr;
165         u64 *sptep;
166         int level;
167         unsigned index;
168 };
169
170 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
171         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
172              shadow_walk_okay(&(_walker));                      \
173              shadow_walk_next(&(_walker)))
174
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
176         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
177              shadow_walk_okay(&(_walker)) &&                            \
178                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
179              __shadow_walk_next(&(_walker), spte))
180
181 static struct kmem_cache *pte_list_desc_cache;
182 static struct kmem_cache *mmu_page_header_cache;
183 static struct percpu_counter kvm_total_used_mmu_pages;
184
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
190 static u64 __read_mostly shadow_mmio_mask;
191
192 static void mmu_spte_set(u64 *sptep, u64 spte);
193 static void mmu_free_roots(struct kvm_vcpu *vcpu);
194
195 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196 {
197         shadow_mmio_mask = mmio_mask;
198 }
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200
201 /*
202  * the low bit of the generation number is always presumed to be zero.
203  * This disables mmio caching during memslot updates.  The concept is
204  * similar to a seqcount but instead of retrying the access we just punt
205  * and ignore the cache.
206  *
207  * spte bits 3-11 are used as bits 1-9 of the generation number,
208  * the bits 52-61 are used as bits 10-19 of the generation number.
209  */
210 #define MMIO_SPTE_GEN_LOW_SHIFT         2
211 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
212
213 #define MMIO_GEN_SHIFT                  20
214 #define MMIO_GEN_LOW_SHIFT              10
215 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
216 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
217
218 static u64 generation_mmio_spte_mask(unsigned int gen)
219 {
220         u64 mask;
221
222         WARN_ON(gen & ~MMIO_GEN_MASK);
223
224         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
225         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
226         return mask;
227 }
228
229 static unsigned int get_mmio_spte_generation(u64 spte)
230 {
231         unsigned int gen;
232
233         spte &= ~shadow_mmio_mask;
234
235         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
236         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
237         return gen;
238 }
239
240 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
241 {
242         return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
243 }
244
245 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
246                            unsigned access)
247 {
248         unsigned int gen = kvm_current_mmio_generation(kvm);
249         u64 mask = generation_mmio_spte_mask(gen);
250
251         access &= ACC_WRITE_MASK | ACC_USER_MASK;
252         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
253
254         trace_mark_mmio_spte(sptep, gfn, access, gen);
255         mmu_spte_set(sptep, mask);
256 }
257
258 static bool is_mmio_spte(u64 spte)
259 {
260         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
261 }
262
263 static gfn_t get_mmio_spte_gfn(u64 spte)
264 {
265         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
266         return (spte & ~mask) >> PAGE_SHIFT;
267 }
268
269 static unsigned get_mmio_spte_access(u64 spte)
270 {
271         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
272         return (spte & ~mask) & ~PAGE_MASK;
273 }
274
275 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
276                           pfn_t pfn, unsigned access)
277 {
278         if (unlikely(is_noslot_pfn(pfn))) {
279                 mark_mmio_spte(kvm, sptep, gfn, access);
280                 return true;
281         }
282
283         return false;
284 }
285
286 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
287 {
288         unsigned int kvm_gen, spte_gen;
289
290         kvm_gen = kvm_current_mmio_generation(kvm);
291         spte_gen = get_mmio_spte_generation(spte);
292
293         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
294         return likely(kvm_gen == spte_gen);
295 }
296
297 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
298                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
299 {
300         shadow_user_mask = user_mask;
301         shadow_accessed_mask = accessed_mask;
302         shadow_dirty_mask = dirty_mask;
303         shadow_nx_mask = nx_mask;
304         shadow_x_mask = x_mask;
305 }
306 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
307
308 static int is_cpuid_PSE36(void)
309 {
310         return 1;
311 }
312
313 static int is_nx(struct kvm_vcpu *vcpu)
314 {
315         return vcpu->arch.efer & EFER_NX;
316 }
317
318 static int is_shadow_present_pte(u64 pte)
319 {
320         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
321 }
322
323 static int is_large_pte(u64 pte)
324 {
325         return pte & PT_PAGE_SIZE_MASK;
326 }
327
328 static int is_rmap_spte(u64 pte)
329 {
330         return is_shadow_present_pte(pte);
331 }
332
333 static int is_last_spte(u64 pte, int level)
334 {
335         if (level == PT_PAGE_TABLE_LEVEL)
336                 return 1;
337         if (is_large_pte(pte))
338                 return 1;
339         return 0;
340 }
341
342 static pfn_t spte_to_pfn(u64 pte)
343 {
344         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
345 }
346
347 static gfn_t pse36_gfn_delta(u32 gpte)
348 {
349         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
350
351         return (gpte & PT32_DIR_PSE36_MASK) << shift;
352 }
353
354 #ifdef CONFIG_X86_64
355 static void __set_spte(u64 *sptep, u64 spte)
356 {
357         *sptep = spte;
358 }
359
360 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
361 {
362         *sptep = spte;
363 }
364
365 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
366 {
367         return xchg(sptep, spte);
368 }
369
370 static u64 __get_spte_lockless(u64 *sptep)
371 {
372         return ACCESS_ONCE(*sptep);
373 }
374
375 static bool __check_direct_spte_mmio_pf(u64 spte)
376 {
377         /* It is valid if the spte is zapped. */
378         return spte == 0ull;
379 }
380 #else
381 union split_spte {
382         struct {
383                 u32 spte_low;
384                 u32 spte_high;
385         };
386         u64 spte;
387 };
388
389 static void count_spte_clear(u64 *sptep, u64 spte)
390 {
391         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
392
393         if (is_shadow_present_pte(spte))
394                 return;
395
396         /* Ensure the spte is completely set before we increase the count */
397         smp_wmb();
398         sp->clear_spte_count++;
399 }
400
401 static void __set_spte(u64 *sptep, u64 spte)
402 {
403         union split_spte *ssptep, sspte;
404
405         ssptep = (union split_spte *)sptep;
406         sspte = (union split_spte)spte;
407
408         ssptep->spte_high = sspte.spte_high;
409
410         /*
411          * If we map the spte from nonpresent to present, We should store
412          * the high bits firstly, then set present bit, so cpu can not
413          * fetch this spte while we are setting the spte.
414          */
415         smp_wmb();
416
417         ssptep->spte_low = sspte.spte_low;
418 }
419
420 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
421 {
422         union split_spte *ssptep, sspte;
423
424         ssptep = (union split_spte *)sptep;
425         sspte = (union split_spte)spte;
426
427         ssptep->spte_low = sspte.spte_low;
428
429         /*
430          * If we map the spte from present to nonpresent, we should clear
431          * present bit firstly to avoid vcpu fetch the old high bits.
432          */
433         smp_wmb();
434
435         ssptep->spte_high = sspte.spte_high;
436         count_spte_clear(sptep, spte);
437 }
438
439 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
440 {
441         union split_spte *ssptep, sspte, orig;
442
443         ssptep = (union split_spte *)sptep;
444         sspte = (union split_spte)spte;
445
446         /* xchg acts as a barrier before the setting of the high bits */
447         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
448         orig.spte_high = ssptep->spte_high;
449         ssptep->spte_high = sspte.spte_high;
450         count_spte_clear(sptep, spte);
451
452         return orig.spte;
453 }
454
455 /*
456  * The idea using the light way get the spte on x86_32 guest is from
457  * gup_get_pte(arch/x86/mm/gup.c).
458  *
459  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
460  * coalesces them and we are running out of the MMU lock.  Therefore
461  * we need to protect against in-progress updates of the spte.
462  *
463  * Reading the spte while an update is in progress may get the old value
464  * for the high part of the spte.  The race is fine for a present->non-present
465  * change (because the high part of the spte is ignored for non-present spte),
466  * but for a present->present change we must reread the spte.
467  *
468  * All such changes are done in two steps (present->non-present and
469  * non-present->present), hence it is enough to count the number of
470  * present->non-present updates: if it changed while reading the spte,
471  * we might have hit the race.  This is done using clear_spte_count.
472  */
473 static u64 __get_spte_lockless(u64 *sptep)
474 {
475         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
476         union split_spte spte, *orig = (union split_spte *)sptep;
477         int count;
478
479 retry:
480         count = sp->clear_spte_count;
481         smp_rmb();
482
483         spte.spte_low = orig->spte_low;
484         smp_rmb();
485
486         spte.spte_high = orig->spte_high;
487         smp_rmb();
488
489         if (unlikely(spte.spte_low != orig->spte_low ||
490               count != sp->clear_spte_count))
491                 goto retry;
492
493         return spte.spte;
494 }
495
496 static bool __check_direct_spte_mmio_pf(u64 spte)
497 {
498         union split_spte sspte = (union split_spte)spte;
499         u32 high_mmio_mask = shadow_mmio_mask >> 32;
500
501         /* It is valid if the spte is zapped. */
502         if (spte == 0ull)
503                 return true;
504
505         /* It is valid if the spte is being zapped. */
506         if (sspte.spte_low == 0ull &&
507             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
508                 return true;
509
510         return false;
511 }
512 #endif
513
514 static bool spte_is_locklessly_modifiable(u64 spte)
515 {
516         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
517                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
518 }
519
520 static bool spte_has_volatile_bits(u64 spte)
521 {
522         /*
523          * Always atomicly update spte if it can be updated
524          * out of mmu-lock, it can ensure dirty bit is not lost,
525          * also, it can help us to get a stable is_writable_pte()
526          * to ensure tlb flush is not missed.
527          */
528         if (spte_is_locklessly_modifiable(spte))
529                 return true;
530
531         if (!shadow_accessed_mask)
532                 return false;
533
534         if (!is_shadow_present_pte(spte))
535                 return false;
536
537         if ((spte & shadow_accessed_mask) &&
538               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
539                 return false;
540
541         return true;
542 }
543
544 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
545 {
546         return (old_spte & bit_mask) && !(new_spte & bit_mask);
547 }
548
549 /* Rules for using mmu_spte_set:
550  * Set the sptep from nonpresent to present.
551  * Note: the sptep being assigned *must* be either not present
552  * or in a state where the hardware will not attempt to update
553  * the spte.
554  */
555 static void mmu_spte_set(u64 *sptep, u64 new_spte)
556 {
557         WARN_ON(is_shadow_present_pte(*sptep));
558         __set_spte(sptep, new_spte);
559 }
560
561 /* Rules for using mmu_spte_update:
562  * Update the state bits, it means the mapped pfn is not changged.
563  *
564  * Whenever we overwrite a writable spte with a read-only one we
565  * should flush remote TLBs. Otherwise rmap_write_protect
566  * will find a read-only spte, even though the writable spte
567  * might be cached on a CPU's TLB, the return value indicates this
568  * case.
569  */
570 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
571 {
572         u64 old_spte = *sptep;
573         bool ret = false;
574
575         WARN_ON(!is_rmap_spte(new_spte));
576
577         if (!is_shadow_present_pte(old_spte)) {
578                 mmu_spte_set(sptep, new_spte);
579                 return ret;
580         }
581
582         if (!spte_has_volatile_bits(old_spte))
583                 __update_clear_spte_fast(sptep, new_spte);
584         else
585                 old_spte = __update_clear_spte_slow(sptep, new_spte);
586
587         /*
588          * For the spte updated out of mmu-lock is safe, since
589          * we always atomicly update it, see the comments in
590          * spte_has_volatile_bits().
591          */
592         if (spte_is_locklessly_modifiable(old_spte) &&
593               !is_writable_pte(new_spte))
594                 ret = true;
595
596         if (!shadow_accessed_mask)
597                 return ret;
598
599         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
600                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
601         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
602                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
603
604         return ret;
605 }
606
607 /*
608  * Rules for using mmu_spte_clear_track_bits:
609  * It sets the sptep from present to nonpresent, and track the
610  * state bits, it is used to clear the last level sptep.
611  */
612 static int mmu_spte_clear_track_bits(u64 *sptep)
613 {
614         pfn_t pfn;
615         u64 old_spte = *sptep;
616
617         if (!spte_has_volatile_bits(old_spte))
618                 __update_clear_spte_fast(sptep, 0ull);
619         else
620                 old_spte = __update_clear_spte_slow(sptep, 0ull);
621
622         if (!is_rmap_spte(old_spte))
623                 return 0;
624
625         pfn = spte_to_pfn(old_spte);
626
627         /*
628          * KVM does not hold the refcount of the page used by
629          * kvm mmu, before reclaiming the page, we should
630          * unmap it from mmu first.
631          */
632         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
633
634         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
635                 kvm_set_pfn_accessed(pfn);
636         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
637                 kvm_set_pfn_dirty(pfn);
638         return 1;
639 }
640
641 /*
642  * Rules for using mmu_spte_clear_no_track:
643  * Directly clear spte without caring the state bits of sptep,
644  * it is used to set the upper level spte.
645  */
646 static void mmu_spte_clear_no_track(u64 *sptep)
647 {
648         __update_clear_spte_fast(sptep, 0ull);
649 }
650
651 static u64 mmu_spte_get_lockless(u64 *sptep)
652 {
653         return __get_spte_lockless(sptep);
654 }
655
656 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
657 {
658         /*
659          * Prevent page table teardown by making any free-er wait during
660          * kvm_flush_remote_tlbs() IPI to all active vcpus.
661          */
662         local_irq_disable();
663         vcpu->mode = READING_SHADOW_PAGE_TABLES;
664         /*
665          * Make sure a following spte read is not reordered ahead of the write
666          * to vcpu->mode.
667          */
668         smp_mb();
669 }
670
671 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
672 {
673         /*
674          * Make sure the write to vcpu->mode is not reordered in front of
675          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
676          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
677          */
678         smp_mb();
679         vcpu->mode = OUTSIDE_GUEST_MODE;
680         local_irq_enable();
681 }
682
683 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
684                                   struct kmem_cache *base_cache, int min)
685 {
686         void *obj;
687
688         if (cache->nobjs >= min)
689                 return 0;
690         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
692                 if (!obj)
693                         return -ENOMEM;
694                 cache->objects[cache->nobjs++] = obj;
695         }
696         return 0;
697 }
698
699 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
700 {
701         return cache->nobjs;
702 }
703
704 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
705                                   struct kmem_cache *cache)
706 {
707         while (mc->nobjs)
708                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
709 }
710
711 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
712                                        int min)
713 {
714         void *page;
715
716         if (cache->nobjs >= min)
717                 return 0;
718         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
719                 page = (void *)__get_free_page(GFP_KERNEL);
720                 if (!page)
721                         return -ENOMEM;
722                 cache->objects[cache->nobjs++] = page;
723         }
724         return 0;
725 }
726
727 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
728 {
729         while (mc->nobjs)
730                 free_page((unsigned long)mc->objects[--mc->nobjs]);
731 }
732
733 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
734 {
735         int r;
736
737         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
738                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
739         if (r)
740                 goto out;
741         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
742         if (r)
743                 goto out;
744         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
745                                    mmu_page_header_cache, 4);
746 out:
747         return r;
748 }
749
750 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
751 {
752         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
753                                 pte_list_desc_cache);
754         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
755         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
756                                 mmu_page_header_cache);
757 }
758
759 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
760 {
761         void *p;
762
763         BUG_ON(!mc->nobjs);
764         p = mc->objects[--mc->nobjs];
765         return p;
766 }
767
768 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
769 {
770         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
771 }
772
773 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
774 {
775         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
776 }
777
778 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
779 {
780         if (!sp->role.direct)
781                 return sp->gfns[index];
782
783         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
784 }
785
786 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
787 {
788         if (sp->role.direct)
789                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
790         else
791                 sp->gfns[index] = gfn;
792 }
793
794 /*
795  * Return the pointer to the large page information for a given gfn,
796  * handling slots that are not large page aligned.
797  */
798 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
799                                               struct kvm_memory_slot *slot,
800                                               int level)
801 {
802         unsigned long idx;
803
804         idx = gfn_to_index(gfn, slot->base_gfn, level);
805         return &slot->arch.lpage_info[level - 2][idx];
806 }
807
808 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
809 {
810         struct kvm_memory_slot *slot;
811         struct kvm_lpage_info *linfo;
812         int i;
813
814         slot = gfn_to_memslot(kvm, gfn);
815         for (i = PT_DIRECTORY_LEVEL;
816              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
817                 linfo = lpage_info_slot(gfn, slot, i);
818                 linfo->write_count += 1;
819         }
820         kvm->arch.indirect_shadow_pages++;
821 }
822
823 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
824 {
825         struct kvm_memory_slot *slot;
826         struct kvm_lpage_info *linfo;
827         int i;
828
829         slot = gfn_to_memslot(kvm, gfn);
830         for (i = PT_DIRECTORY_LEVEL;
831              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
832                 linfo = lpage_info_slot(gfn, slot, i);
833                 linfo->write_count -= 1;
834                 WARN_ON(linfo->write_count < 0);
835         }
836         kvm->arch.indirect_shadow_pages--;
837 }
838
839 static int has_wrprotected_page(struct kvm *kvm,
840                                 gfn_t gfn,
841                                 int level)
842 {
843         struct kvm_memory_slot *slot;
844         struct kvm_lpage_info *linfo;
845
846         slot = gfn_to_memslot(kvm, gfn);
847         if (slot) {
848                 linfo = lpage_info_slot(gfn, slot, level);
849                 return linfo->write_count;
850         }
851
852         return 1;
853 }
854
855 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
856 {
857         unsigned long page_size;
858         int i, ret = 0;
859
860         page_size = kvm_host_page_size(kvm, gfn);
861
862         for (i = PT_PAGE_TABLE_LEVEL;
863              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
864                 if (page_size >= KVM_HPAGE_SIZE(i))
865                         ret = i;
866                 else
867                         break;
868         }
869
870         return ret;
871 }
872
873 static struct kvm_memory_slot *
874 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
875                             bool no_dirty_log)
876 {
877         struct kvm_memory_slot *slot;
878
879         slot = gfn_to_memslot(vcpu->kvm, gfn);
880         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
881               (no_dirty_log && slot->dirty_bitmap))
882                 slot = NULL;
883
884         return slot;
885 }
886
887 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
888 {
889         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
890 }
891
892 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
893 {
894         int host_level, level, max_level;
895
896         host_level = host_mapping_level(vcpu->kvm, large_gfn);
897
898         if (host_level == PT_PAGE_TABLE_LEVEL)
899                 return host_level;
900
901         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
902
903         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
904                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
905                         break;
906
907         return level - 1;
908 }
909
910 /*
911  * Pte mapping structures:
912  *
913  * If pte_list bit zero is zero, then pte_list point to the spte.
914  *
915  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
916  * pte_list_desc containing more mappings.
917  *
918  * Returns the number of pte entries before the spte was added or zero if
919  * the spte was not added.
920  *
921  */
922 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
923                         unsigned long *pte_list)
924 {
925         struct pte_list_desc *desc;
926         int i, count = 0;
927
928         if (!*pte_list) {
929                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
930                 *pte_list = (unsigned long)spte;
931         } else if (!(*pte_list & 1)) {
932                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
933                 desc = mmu_alloc_pte_list_desc(vcpu);
934                 desc->sptes[0] = (u64 *)*pte_list;
935                 desc->sptes[1] = spte;
936                 *pte_list = (unsigned long)desc | 1;
937                 ++count;
938         } else {
939                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
940                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
941                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
942                         desc = desc->more;
943                         count += PTE_LIST_EXT;
944                 }
945                 if (desc->sptes[PTE_LIST_EXT-1]) {
946                         desc->more = mmu_alloc_pte_list_desc(vcpu);
947                         desc = desc->more;
948                 }
949                 for (i = 0; desc->sptes[i]; ++i)
950                         ++count;
951                 desc->sptes[i] = spte;
952         }
953         return count;
954 }
955
956 static void
957 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
958                            int i, struct pte_list_desc *prev_desc)
959 {
960         int j;
961
962         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
963                 ;
964         desc->sptes[i] = desc->sptes[j];
965         desc->sptes[j] = NULL;
966         if (j != 0)
967                 return;
968         if (!prev_desc && !desc->more)
969                 *pte_list = (unsigned long)desc->sptes[0];
970         else
971                 if (prev_desc)
972                         prev_desc->more = desc->more;
973                 else
974                         *pte_list = (unsigned long)desc->more | 1;
975         mmu_free_pte_list_desc(desc);
976 }
977
978 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
979 {
980         struct pte_list_desc *desc;
981         struct pte_list_desc *prev_desc;
982         int i;
983
984         if (!*pte_list) {
985                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
986                 BUG();
987         } else if (!(*pte_list & 1)) {
988                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
989                 if ((u64 *)*pte_list != spte) {
990                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
991                         BUG();
992                 }
993                 *pte_list = 0;
994         } else {
995                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
996                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
997                 prev_desc = NULL;
998                 while (desc) {
999                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1000                                 if (desc->sptes[i] == spte) {
1001                                         pte_list_desc_remove_entry(pte_list,
1002                                                                desc, i,
1003                                                                prev_desc);
1004                                         return;
1005                                 }
1006                         prev_desc = desc;
1007                         desc = desc->more;
1008                 }
1009                 pr_err("pte_list_remove: %p many->many\n", spte);
1010                 BUG();
1011         }
1012 }
1013
1014 typedef void (*pte_list_walk_fn) (u64 *spte);
1015 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1016 {
1017         struct pte_list_desc *desc;
1018         int i;
1019
1020         if (!*pte_list)
1021                 return;
1022
1023         if (!(*pte_list & 1))
1024                 return fn((u64 *)*pte_list);
1025
1026         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1027         while (desc) {
1028                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1029                         fn(desc->sptes[i]);
1030                 desc = desc->more;
1031         }
1032 }
1033
1034 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1035                                     struct kvm_memory_slot *slot)
1036 {
1037         unsigned long idx;
1038
1039         idx = gfn_to_index(gfn, slot->base_gfn, level);
1040         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1041 }
1042
1043 /*
1044  * Take gfn and return the reverse mapping to it.
1045  */
1046 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1047 {
1048         struct kvm_memory_slot *slot;
1049
1050         slot = gfn_to_memslot(kvm, gfn);
1051         return __gfn_to_rmap(gfn, level, slot);
1052 }
1053
1054 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055 {
1056         struct kvm_mmu_memory_cache *cache;
1057
1058         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059         return mmu_memory_cache_free_objects(cache);
1060 }
1061
1062 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063 {
1064         struct kvm_mmu_page *sp;
1065         unsigned long *rmapp;
1066
1067         sp = page_header(__pa(spte));
1068         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1070         return pte_list_add(vcpu, spte, rmapp);
1071 }
1072
1073 static void rmap_remove(struct kvm *kvm, u64 *spte)
1074 {
1075         struct kvm_mmu_page *sp;
1076         gfn_t gfn;
1077         unsigned long *rmapp;
1078
1079         sp = page_header(__pa(spte));
1080         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1082         pte_list_remove(spte, rmapp);
1083 }
1084
1085 /*
1086  * Used by the following functions to iterate through the sptes linked by a
1087  * rmap.  All fields are private and not assumed to be used outside.
1088  */
1089 struct rmap_iterator {
1090         /* private fields */
1091         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1092         int pos;                        /* index of the sptep */
1093 };
1094
1095 /*
1096  * Iteration must be started by this function.  This should also be used after
1097  * removing/dropping sptes from the rmap link because in such cases the
1098  * information in the itererator may not be valid.
1099  *
1100  * Returns sptep if found, NULL otherwise.
1101  */
1102 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1103 {
1104         if (!rmap)
1105                 return NULL;
1106
1107         if (!(rmap & 1)) {
1108                 iter->desc = NULL;
1109                 return (u64 *)rmap;
1110         }
1111
1112         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1113         iter->pos = 0;
1114         return iter->desc->sptes[iter->pos];
1115 }
1116
1117 /*
1118  * Must be used with a valid iterator: e.g. after rmap_get_first().
1119  *
1120  * Returns sptep if found, NULL otherwise.
1121  */
1122 static u64 *rmap_get_next(struct rmap_iterator *iter)
1123 {
1124         if (iter->desc) {
1125                 if (iter->pos < PTE_LIST_EXT - 1) {
1126                         u64 *sptep;
1127
1128                         ++iter->pos;
1129                         sptep = iter->desc->sptes[iter->pos];
1130                         if (sptep)
1131                                 return sptep;
1132                 }
1133
1134                 iter->desc = iter->desc->more;
1135
1136                 if (iter->desc) {
1137                         iter->pos = 0;
1138                         /* desc->sptes[0] cannot be NULL */
1139                         return iter->desc->sptes[iter->pos];
1140                 }
1141         }
1142
1143         return NULL;
1144 }
1145
1146 static void drop_spte(struct kvm *kvm, u64 *sptep)
1147 {
1148         if (mmu_spte_clear_track_bits(sptep))
1149                 rmap_remove(kvm, sptep);
1150 }
1151
1152
1153 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1154 {
1155         if (is_large_pte(*sptep)) {
1156                 WARN_ON(page_header(__pa(sptep))->role.level ==
1157                         PT_PAGE_TABLE_LEVEL);
1158                 drop_spte(kvm, sptep);
1159                 --kvm->stat.lpages;
1160                 return true;
1161         }
1162
1163         return false;
1164 }
1165
1166 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1167 {
1168         if (__drop_large_spte(vcpu->kvm, sptep))
1169                 kvm_flush_remote_tlbs(vcpu->kvm);
1170 }
1171
1172 /*
1173  * Write-protect on the specified @sptep, @pt_protect indicates whether
1174  * spte write-protection is caused by protecting shadow page table.
1175  *
1176  * Note: write protection is difference between dirty logging and spte
1177  * protection:
1178  * - for dirty logging, the spte can be set to writable at anytime if
1179  *   its dirty bitmap is properly set.
1180  * - for spte protection, the spte can be writable only after unsync-ing
1181  *   shadow page.
1182  *
1183  * Return true if tlb need be flushed.
1184  */
1185 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1186 {
1187         u64 spte = *sptep;
1188
1189         if (!is_writable_pte(spte) &&
1190               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1191                 return false;
1192
1193         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1194
1195         if (pt_protect)
1196                 spte &= ~SPTE_MMU_WRITEABLE;
1197         spte = spte & ~PT_WRITABLE_MASK;
1198
1199         return mmu_spte_update(sptep, spte);
1200 }
1201
1202 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1203                                  bool pt_protect)
1204 {
1205         u64 *sptep;
1206         struct rmap_iterator iter;
1207         bool flush = false;
1208
1209         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1210                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1211
1212                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1213                 sptep = rmap_get_next(&iter);
1214         }
1215
1216         return flush;
1217 }
1218
1219 /**
1220  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1221  * @kvm: kvm instance
1222  * @slot: slot to protect
1223  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1224  * @mask: indicates which pages we should protect
1225  *
1226  * Used when we do not need to care about huge page mappings: e.g. during dirty
1227  * logging we do not have any such mappings.
1228  */
1229 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1230                                      struct kvm_memory_slot *slot,
1231                                      gfn_t gfn_offset, unsigned long mask)
1232 {
1233         unsigned long *rmapp;
1234
1235         while (mask) {
1236                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1237                                       PT_PAGE_TABLE_LEVEL, slot);
1238                 __rmap_write_protect(kvm, rmapp, false);
1239
1240                 /* clear the first set bit */
1241                 mask &= mask - 1;
1242         }
1243 }
1244
1245 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1246 {
1247         struct kvm_memory_slot *slot;
1248         unsigned long *rmapp;
1249         int i;
1250         bool write_protected = false;
1251
1252         slot = gfn_to_memslot(kvm, gfn);
1253
1254         for (i = PT_PAGE_TABLE_LEVEL;
1255              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1256                 rmapp = __gfn_to_rmap(gfn, i, slot);
1257                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1258         }
1259
1260         return write_protected;
1261 }
1262
1263 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1264                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1265                            unsigned long data)
1266 {
1267         u64 *sptep;
1268         struct rmap_iterator iter;
1269         int need_tlb_flush = 0;
1270
1271         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1272                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1273                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1274                              sptep, *sptep, gfn, level);
1275
1276                 drop_spte(kvm, sptep);
1277                 need_tlb_flush = 1;
1278         }
1279
1280         return need_tlb_flush;
1281 }
1282
1283 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1284                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1285                              unsigned long data)
1286 {
1287         u64 *sptep;
1288         struct rmap_iterator iter;
1289         int need_flush = 0;
1290         u64 new_spte;
1291         pte_t *ptep = (pte_t *)data;
1292         pfn_t new_pfn;
1293
1294         WARN_ON(pte_huge(*ptep));
1295         new_pfn = pte_pfn(*ptep);
1296
1297         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1298                 BUG_ON(!is_shadow_present_pte(*sptep));
1299                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1300                              sptep, *sptep, gfn, level);
1301
1302                 need_flush = 1;
1303
1304                 if (pte_write(*ptep)) {
1305                         drop_spte(kvm, sptep);
1306                         sptep = rmap_get_first(*rmapp, &iter);
1307                 } else {
1308                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1309                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1310
1311                         new_spte &= ~PT_WRITABLE_MASK;
1312                         new_spte &= ~SPTE_HOST_WRITEABLE;
1313                         new_spte &= ~shadow_accessed_mask;
1314
1315                         mmu_spte_clear_track_bits(sptep);
1316                         mmu_spte_set(sptep, new_spte);
1317                         sptep = rmap_get_next(&iter);
1318                 }
1319         }
1320
1321         if (need_flush)
1322                 kvm_flush_remote_tlbs(kvm);
1323
1324         return 0;
1325 }
1326
1327 static int kvm_handle_hva_range(struct kvm *kvm,
1328                                 unsigned long start,
1329                                 unsigned long end,
1330                                 unsigned long data,
1331                                 int (*handler)(struct kvm *kvm,
1332                                                unsigned long *rmapp,
1333                                                struct kvm_memory_slot *slot,
1334                                                gfn_t gfn,
1335                                                int level,
1336                                                unsigned long data))
1337 {
1338         int j;
1339         int ret = 0;
1340         struct kvm_memslots *slots;
1341         struct kvm_memory_slot *memslot;
1342
1343         slots = kvm_memslots(kvm);
1344
1345         kvm_for_each_memslot(memslot, slots) {
1346                 unsigned long hva_start, hva_end;
1347                 gfn_t gfn_start, gfn_end;
1348
1349                 hva_start = max(start, memslot->userspace_addr);
1350                 hva_end = min(end, memslot->userspace_addr +
1351                                         (memslot->npages << PAGE_SHIFT));
1352                 if (hva_start >= hva_end)
1353                         continue;
1354                 /*
1355                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1356                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1357                  */
1358                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1359                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1360
1361                 for (j = PT_PAGE_TABLE_LEVEL;
1362                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1363                         unsigned long idx, idx_end;
1364                         unsigned long *rmapp;
1365                         gfn_t gfn = gfn_start;
1366
1367                         /*
1368                          * {idx(page_j) | page_j intersects with
1369                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1370                          */
1371                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1372                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1373
1374                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1375
1376                         for (; idx <= idx_end;
1377                                ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1378                                 ret |= handler(kvm, rmapp++, memslot,
1379                                                gfn, j, data);
1380                 }
1381         }
1382
1383         return ret;
1384 }
1385
1386 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1387                           unsigned long data,
1388                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1389                                          struct kvm_memory_slot *slot,
1390                                          gfn_t gfn, int level,
1391                                          unsigned long data))
1392 {
1393         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1394 }
1395
1396 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1397 {
1398         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1399 }
1400
1401 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1402 {
1403         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1404 }
1405
1406 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1407 {
1408         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1409 }
1410
1411 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1412                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1413                          unsigned long data)
1414 {
1415         u64 *sptep;
1416         struct rmap_iterator uninitialized_var(iter);
1417         int young = 0;
1418
1419         BUG_ON(!shadow_accessed_mask);
1420
1421         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1422              sptep = rmap_get_next(&iter)) {
1423                 BUG_ON(!is_shadow_present_pte(*sptep));
1424
1425                 if (*sptep & shadow_accessed_mask) {
1426                         young = 1;
1427                         clear_bit((ffs(shadow_accessed_mask) - 1),
1428                                  (unsigned long *)sptep);
1429                 }
1430         }
1431         trace_kvm_age_page(gfn, level, slot, young);
1432         return young;
1433 }
1434
1435 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1436                               struct kvm_memory_slot *slot, gfn_t gfn,
1437                               int level, unsigned long data)
1438 {
1439         u64 *sptep;
1440         struct rmap_iterator iter;
1441         int young = 0;
1442
1443         /*
1444          * If there's no access bit in the secondary pte set by the
1445          * hardware it's up to gup-fast/gup to set the access bit in
1446          * the primary pte or in the page structure.
1447          */
1448         if (!shadow_accessed_mask)
1449                 goto out;
1450
1451         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1452              sptep = rmap_get_next(&iter)) {
1453                 BUG_ON(!is_shadow_present_pte(*sptep));
1454
1455                 if (*sptep & shadow_accessed_mask) {
1456                         young = 1;
1457                         break;
1458                 }
1459         }
1460 out:
1461         return young;
1462 }
1463
1464 #define RMAP_RECYCLE_THRESHOLD 1000
1465
1466 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1467 {
1468         unsigned long *rmapp;
1469         struct kvm_mmu_page *sp;
1470
1471         sp = page_header(__pa(spte));
1472
1473         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1474
1475         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1476         kvm_flush_remote_tlbs(vcpu->kvm);
1477 }
1478
1479 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1480 {
1481         /*
1482          * In case of absence of EPT Access and Dirty Bits supports,
1483          * emulate the accessed bit for EPT, by checking if this page has
1484          * an EPT mapping, and clearing it if it does. On the next access,
1485          * a new EPT mapping will be established.
1486          * This has some overhead, but not as much as the cost of swapping
1487          * out actively used pages or breaking up actively used hugepages.
1488          */
1489         if (!shadow_accessed_mask) {
1490                 /*
1491                  * We are holding the kvm->mmu_lock, and we are blowing up
1492                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1493                  * This is correct as long as we don't decouple the mmu_lock
1494                  * protected regions (like invalidate_range_start|end does).
1495                  */
1496                 kvm->mmu_notifier_seq++;
1497                 return kvm_handle_hva_range(kvm, start, end, 0,
1498                                             kvm_unmap_rmapp);
1499         }
1500
1501         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1502 }
1503
1504 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1505 {
1506         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1507 }
1508
1509 #ifdef MMU_DEBUG
1510 static int is_empty_shadow_page(u64 *spt)
1511 {
1512         u64 *pos;
1513         u64 *end;
1514
1515         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1516                 if (is_shadow_present_pte(*pos)) {
1517                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1518                                pos, *pos);
1519                         return 0;
1520                 }
1521         return 1;
1522 }
1523 #endif
1524
1525 /*
1526  * This value is the sum of all of the kvm instances's
1527  * kvm->arch.n_used_mmu_pages values.  We need a global,
1528  * aggregate version in order to make the slab shrinker
1529  * faster
1530  */
1531 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1532 {
1533         kvm->arch.n_used_mmu_pages += nr;
1534         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1535 }
1536
1537 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1538 {
1539         ASSERT(is_empty_shadow_page(sp->spt));
1540         hlist_del(&sp->hash_link);
1541         list_del(&sp->link);
1542         free_page((unsigned long)sp->spt);
1543         if (!sp->role.direct)
1544                 free_page((unsigned long)sp->gfns);
1545         kmem_cache_free(mmu_page_header_cache, sp);
1546 }
1547
1548 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1549 {
1550         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1551 }
1552
1553 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1554                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1555 {
1556         if (!parent_pte)
1557                 return;
1558
1559         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1560 }
1561
1562 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1563                                        u64 *parent_pte)
1564 {
1565         pte_list_remove(parent_pte, &sp->parent_ptes);
1566 }
1567
1568 static void drop_parent_pte(struct kvm_mmu_page *sp,
1569                             u64 *parent_pte)
1570 {
1571         mmu_page_remove_parent_pte(sp, parent_pte);
1572         mmu_spte_clear_no_track(parent_pte);
1573 }
1574
1575 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1576                                                u64 *parent_pte, int direct)
1577 {
1578         struct kvm_mmu_page *sp;
1579
1580         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1581         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1582         if (!direct)
1583                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1584         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1585
1586         /*
1587          * The active_mmu_pages list is the FIFO list, do not move the
1588          * page until it is zapped. kvm_zap_obsolete_pages depends on
1589          * this feature. See the comments in kvm_zap_obsolete_pages().
1590          */
1591         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1592         sp->parent_ptes = 0;
1593         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1594         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1595         return sp;
1596 }
1597
1598 static void mark_unsync(u64 *spte);
1599 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1600 {
1601         pte_list_walk(&sp->parent_ptes, mark_unsync);
1602 }
1603
1604 static void mark_unsync(u64 *spte)
1605 {
1606         struct kvm_mmu_page *sp;
1607         unsigned int index;
1608
1609         sp = page_header(__pa(spte));
1610         index = spte - sp->spt;
1611         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1612                 return;
1613         if (sp->unsync_children++)
1614                 return;
1615         kvm_mmu_mark_parents_unsync(sp);
1616 }
1617
1618 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1619                                struct kvm_mmu_page *sp)
1620 {
1621         return 1;
1622 }
1623
1624 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1625 {
1626 }
1627
1628 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1629                                  struct kvm_mmu_page *sp, u64 *spte,
1630                                  const void *pte)
1631 {
1632         WARN_ON(1);
1633 }
1634
1635 #define KVM_PAGE_ARRAY_NR 16
1636
1637 struct kvm_mmu_pages {
1638         struct mmu_page_and_offset {
1639                 struct kvm_mmu_page *sp;
1640                 unsigned int idx;
1641         } page[KVM_PAGE_ARRAY_NR];
1642         unsigned int nr;
1643 };
1644
1645 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1646                          int idx)
1647 {
1648         int i;
1649
1650         if (sp->unsync)
1651                 for (i=0; i < pvec->nr; i++)
1652                         if (pvec->page[i].sp == sp)
1653                                 return 0;
1654
1655         pvec->page[pvec->nr].sp = sp;
1656         pvec->page[pvec->nr].idx = idx;
1657         pvec->nr++;
1658         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1659 }
1660
1661 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1662                            struct kvm_mmu_pages *pvec)
1663 {
1664         int i, ret, nr_unsync_leaf = 0;
1665
1666         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1667                 struct kvm_mmu_page *child;
1668                 u64 ent = sp->spt[i];
1669
1670                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1671                         goto clear_child_bitmap;
1672
1673                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1674
1675                 if (child->unsync_children) {
1676                         if (mmu_pages_add(pvec, child, i))
1677                                 return -ENOSPC;
1678
1679                         ret = __mmu_unsync_walk(child, pvec);
1680                         if (!ret)
1681                                 goto clear_child_bitmap;
1682                         else if (ret > 0)
1683                                 nr_unsync_leaf += ret;
1684                         else
1685                                 return ret;
1686                 } else if (child->unsync) {
1687                         nr_unsync_leaf++;
1688                         if (mmu_pages_add(pvec, child, i))
1689                                 return -ENOSPC;
1690                 } else
1691                          goto clear_child_bitmap;
1692
1693                 continue;
1694
1695 clear_child_bitmap:
1696                 __clear_bit(i, sp->unsync_child_bitmap);
1697                 sp->unsync_children--;
1698                 WARN_ON((int)sp->unsync_children < 0);
1699         }
1700
1701
1702         return nr_unsync_leaf;
1703 }
1704
1705 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1706                            struct kvm_mmu_pages *pvec)
1707 {
1708         if (!sp->unsync_children)
1709                 return 0;
1710
1711         mmu_pages_add(pvec, sp, 0);
1712         return __mmu_unsync_walk(sp, pvec);
1713 }
1714
1715 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1716 {
1717         WARN_ON(!sp->unsync);
1718         trace_kvm_mmu_sync_page(sp);
1719         sp->unsync = 0;
1720         --kvm->stat.mmu_unsync;
1721 }
1722
1723 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1724                                     struct list_head *invalid_list);
1725 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1726                                     struct list_head *invalid_list);
1727
1728 /*
1729  * NOTE: we should pay more attention on the zapped-obsolete page
1730  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1731  * since it has been deleted from active_mmu_pages but still can be found
1732  * at hast list.
1733  *
1734  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1735  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1736  * all the obsolete pages.
1737  */
1738 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1739         hlist_for_each_entry(_sp,                                       \
1740           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1741                 if ((_sp)->gfn != (_gfn)) {} else
1742
1743 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1744         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1745                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1746
1747 /* @sp->gfn should be write-protected at the call site */
1748 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1749                            struct list_head *invalid_list, bool clear_unsync)
1750 {
1751         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1752                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1753                 return 1;
1754         }
1755
1756         if (clear_unsync)
1757                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1758
1759         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1760                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1761                 return 1;
1762         }
1763
1764         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1765         return 0;
1766 }
1767
1768 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1769                                    struct kvm_mmu_page *sp)
1770 {
1771         LIST_HEAD(invalid_list);
1772         int ret;
1773
1774         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1775         if (ret)
1776                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1777
1778         return ret;
1779 }
1780
1781 #ifdef CONFIG_KVM_MMU_AUDIT
1782 #include "mmu_audit.c"
1783 #else
1784 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1785 static void mmu_audit_disable(void) { }
1786 #endif
1787
1788 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1789                          struct list_head *invalid_list)
1790 {
1791         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1792 }
1793
1794 /* @gfn should be write-protected at the call site */
1795 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1796 {
1797         struct kvm_mmu_page *s;
1798         LIST_HEAD(invalid_list);
1799         bool flush = false;
1800
1801         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1802                 if (!s->unsync)
1803                         continue;
1804
1805                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1806                 kvm_unlink_unsync_page(vcpu->kvm, s);
1807                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1808                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1809                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1810                         continue;
1811                 }
1812                 flush = true;
1813         }
1814
1815         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1816         if (flush)
1817                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1818 }
1819
1820 struct mmu_page_path {
1821         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1822         unsigned int idx[PT64_ROOT_LEVEL-1];
1823 };
1824
1825 #define for_each_sp(pvec, sp, parents, i)                       \
1826                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1827                         sp = pvec.page[i].sp;                   \
1828                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1829                         i = mmu_pages_next(&pvec, &parents, i))
1830
1831 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1832                           struct mmu_page_path *parents,
1833                           int i)
1834 {
1835         int n;
1836
1837         for (n = i+1; n < pvec->nr; n++) {
1838                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1839
1840                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1841                         parents->idx[0] = pvec->page[n].idx;
1842                         return n;
1843                 }
1844
1845                 parents->parent[sp->role.level-2] = sp;
1846                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1847         }
1848
1849         return n;
1850 }
1851
1852 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1853 {
1854         struct kvm_mmu_page *sp;
1855         unsigned int level = 0;
1856
1857         do {
1858                 unsigned int idx = parents->idx[level];
1859
1860                 sp = parents->parent[level];
1861                 if (!sp)
1862                         return;
1863
1864                 --sp->unsync_children;
1865                 WARN_ON((int)sp->unsync_children < 0);
1866                 __clear_bit(idx, sp->unsync_child_bitmap);
1867                 level++;
1868         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1869 }
1870
1871 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1872                                struct mmu_page_path *parents,
1873                                struct kvm_mmu_pages *pvec)
1874 {
1875         parents->parent[parent->role.level-1] = NULL;
1876         pvec->nr = 0;
1877 }
1878
1879 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1880                               struct kvm_mmu_page *parent)
1881 {
1882         int i;
1883         struct kvm_mmu_page *sp;
1884         struct mmu_page_path parents;
1885         struct kvm_mmu_pages pages;
1886         LIST_HEAD(invalid_list);
1887
1888         kvm_mmu_pages_init(parent, &parents, &pages);
1889         while (mmu_unsync_walk(parent, &pages)) {
1890                 bool protected = false;
1891
1892                 for_each_sp(pages, sp, parents, i)
1893                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1894
1895                 if (protected)
1896                         kvm_flush_remote_tlbs(vcpu->kvm);
1897
1898                 for_each_sp(pages, sp, parents, i) {
1899                         kvm_sync_page(vcpu, sp, &invalid_list);
1900                         mmu_pages_clear_parents(&parents);
1901                 }
1902                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1903                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1904                 kvm_mmu_pages_init(parent, &parents, &pages);
1905         }
1906 }
1907
1908 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1909 {
1910         int i;
1911
1912         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1913                 sp->spt[i] = 0ull;
1914 }
1915
1916 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1917 {
1918         sp->write_flooding_count = 0;
1919 }
1920
1921 static void clear_sp_write_flooding_count(u64 *spte)
1922 {
1923         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1924
1925         __clear_sp_write_flooding_count(sp);
1926 }
1927
1928 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1929 {
1930         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1931 }
1932
1933 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1934                                              gfn_t gfn,
1935                                              gva_t gaddr,
1936                                              unsigned level,
1937                                              int direct,
1938                                              unsigned access,
1939                                              u64 *parent_pte)
1940 {
1941         union kvm_mmu_page_role role;
1942         unsigned quadrant;
1943         struct kvm_mmu_page *sp;
1944         bool need_sync = false;
1945
1946         role = vcpu->arch.mmu.base_role;
1947         role.level = level;
1948         role.direct = direct;
1949         if (role.direct)
1950                 role.cr4_pae = 0;
1951         role.access = access;
1952         if (!vcpu->arch.mmu.direct_map
1953             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1954                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1955                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1956                 role.quadrant = quadrant;
1957         }
1958         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1959                 if (is_obsolete_sp(vcpu->kvm, sp))
1960                         continue;
1961
1962                 if (!need_sync && sp->unsync)
1963                         need_sync = true;
1964
1965                 if (sp->role.word != role.word)
1966                         continue;
1967
1968                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1969                         break;
1970
1971                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1972                 if (sp->unsync_children) {
1973                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1974                         kvm_mmu_mark_parents_unsync(sp);
1975                 } else if (sp->unsync)
1976                         kvm_mmu_mark_parents_unsync(sp);
1977
1978                 __clear_sp_write_flooding_count(sp);
1979                 trace_kvm_mmu_get_page(sp, false);
1980                 return sp;
1981         }
1982         ++vcpu->kvm->stat.mmu_cache_miss;
1983         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1984         if (!sp)
1985                 return sp;
1986         sp->gfn = gfn;
1987         sp->role = role;
1988         hlist_add_head(&sp->hash_link,
1989                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1990         if (!direct) {
1991                 if (rmap_write_protect(vcpu->kvm, gfn))
1992                         kvm_flush_remote_tlbs(vcpu->kvm);
1993                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1994                         kvm_sync_pages(vcpu, gfn);
1995
1996                 account_shadowed(vcpu->kvm, gfn);
1997         }
1998         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1999         init_shadow_page_table(sp);
2000         trace_kvm_mmu_get_page(sp, true);
2001         return sp;
2002 }
2003
2004 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2005                              struct kvm_vcpu *vcpu, u64 addr)
2006 {
2007         iterator->addr = addr;
2008         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2009         iterator->level = vcpu->arch.mmu.shadow_root_level;
2010
2011         if (iterator->level == PT64_ROOT_LEVEL &&
2012             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2013             !vcpu->arch.mmu.direct_map)
2014                 --iterator->level;
2015
2016         if (iterator->level == PT32E_ROOT_LEVEL) {
2017                 iterator->shadow_addr
2018                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2019                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2020                 --iterator->level;
2021                 if (!iterator->shadow_addr)
2022                         iterator->level = 0;
2023         }
2024 }
2025
2026 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2027 {
2028         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2029                 return false;
2030
2031         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2032         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2033         return true;
2034 }
2035
2036 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2037                                u64 spte)
2038 {
2039         if (is_last_spte(spte, iterator->level)) {
2040                 iterator->level = 0;
2041                 return;
2042         }
2043
2044         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2045         --iterator->level;
2046 }
2047
2048 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2049 {
2050         return __shadow_walk_next(iterator, *iterator->sptep);
2051 }
2052
2053 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2054 {
2055         u64 spte;
2056
2057         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2058                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2059
2060         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2061                shadow_user_mask | shadow_x_mask;
2062
2063         if (accessed)
2064                 spte |= shadow_accessed_mask;
2065
2066         mmu_spte_set(sptep, spte);
2067 }
2068
2069 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2070                                    unsigned direct_access)
2071 {
2072         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2073                 struct kvm_mmu_page *child;
2074
2075                 /*
2076                  * For the direct sp, if the guest pte's dirty bit
2077                  * changed form clean to dirty, it will corrupt the
2078                  * sp's access: allow writable in the read-only sp,
2079                  * so we should update the spte at this point to get
2080                  * a new sp with the correct access.
2081                  */
2082                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2083                 if (child->role.access == direct_access)
2084                         return;
2085
2086                 drop_parent_pte(child, sptep);
2087                 kvm_flush_remote_tlbs(vcpu->kvm);
2088         }
2089 }
2090
2091 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2092                              u64 *spte)
2093 {
2094         u64 pte;
2095         struct kvm_mmu_page *child;
2096
2097         pte = *spte;
2098         if (is_shadow_present_pte(pte)) {
2099                 if (is_last_spte(pte, sp->role.level)) {
2100                         drop_spte(kvm, spte);
2101                         if (is_large_pte(pte))
2102                                 --kvm->stat.lpages;
2103                 } else {
2104                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2105                         drop_parent_pte(child, spte);
2106                 }
2107                 return true;
2108         }
2109
2110         if (is_mmio_spte(pte))
2111                 mmu_spte_clear_no_track(spte);
2112
2113         return false;
2114 }
2115
2116 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2117                                          struct kvm_mmu_page *sp)
2118 {
2119         unsigned i;
2120
2121         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2122                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2123 }
2124
2125 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2126 {
2127         mmu_page_remove_parent_pte(sp, parent_pte);
2128 }
2129
2130 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2131 {
2132         u64 *sptep;
2133         struct rmap_iterator iter;
2134
2135         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2136                 drop_parent_pte(sp, sptep);
2137 }
2138
2139 static int mmu_zap_unsync_children(struct kvm *kvm,
2140                                    struct kvm_mmu_page *parent,
2141                                    struct list_head *invalid_list)
2142 {
2143         int i, zapped = 0;
2144         struct mmu_page_path parents;
2145         struct kvm_mmu_pages pages;
2146
2147         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2148                 return 0;
2149
2150         kvm_mmu_pages_init(parent, &parents, &pages);
2151         while (mmu_unsync_walk(parent, &pages)) {
2152                 struct kvm_mmu_page *sp;
2153
2154                 for_each_sp(pages, sp, parents, i) {
2155                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2156                         mmu_pages_clear_parents(&parents);
2157                         zapped++;
2158                 }
2159                 kvm_mmu_pages_init(parent, &parents, &pages);
2160         }
2161
2162         return zapped;
2163 }
2164
2165 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2166                                     struct list_head *invalid_list)
2167 {
2168         int ret;
2169
2170         trace_kvm_mmu_prepare_zap_page(sp);
2171         ++kvm->stat.mmu_shadow_zapped;
2172         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2173         kvm_mmu_page_unlink_children(kvm, sp);
2174         kvm_mmu_unlink_parents(kvm, sp);
2175
2176         if (!sp->role.invalid && !sp->role.direct)
2177                 unaccount_shadowed(kvm, sp->gfn);
2178
2179         if (sp->unsync)
2180                 kvm_unlink_unsync_page(kvm, sp);
2181         if (!sp->root_count) {
2182                 /* Count self */
2183                 ret++;
2184                 list_move(&sp->link, invalid_list);
2185                 kvm_mod_used_mmu_pages(kvm, -1);
2186         } else {
2187                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2188
2189                 /*
2190                  * The obsolete pages can not be used on any vcpus.
2191                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2192                  */
2193                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2194                         kvm_reload_remote_mmus(kvm);
2195         }
2196
2197         sp->role.invalid = 1;
2198         return ret;
2199 }
2200
2201 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2202                                     struct list_head *invalid_list)
2203 {
2204         struct kvm_mmu_page *sp, *nsp;
2205
2206         if (list_empty(invalid_list))
2207                 return;
2208
2209         /*
2210          * wmb: make sure everyone sees our modifications to the page tables
2211          * rmb: make sure we see changes to vcpu->mode
2212          */
2213         smp_mb();
2214
2215         /*
2216          * Wait for all vcpus to exit guest mode and/or lockless shadow
2217          * page table walks.
2218          */
2219         kvm_flush_remote_tlbs(kvm);
2220
2221         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2222                 WARN_ON(!sp->role.invalid || sp->root_count);
2223                 kvm_mmu_free_page(sp);
2224         }
2225 }
2226
2227 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2228                                         struct list_head *invalid_list)
2229 {
2230         struct kvm_mmu_page *sp;
2231
2232         if (list_empty(&kvm->arch.active_mmu_pages))
2233                 return false;
2234
2235         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2236                         struct kvm_mmu_page, link);
2237         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2238
2239         return true;
2240 }
2241
2242 /*
2243  * Changing the number of mmu pages allocated to the vm
2244  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2245  */
2246 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2247 {
2248         LIST_HEAD(invalid_list);
2249
2250         spin_lock(&kvm->mmu_lock);
2251
2252         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2253                 /* Need to free some mmu pages to achieve the goal. */
2254                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2255                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2256                                 break;
2257
2258                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2259                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2260         }
2261
2262         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2263
2264         spin_unlock(&kvm->mmu_lock);
2265 }
2266
2267 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2268 {
2269         struct kvm_mmu_page *sp;
2270         LIST_HEAD(invalid_list);
2271         int r;
2272
2273         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2274         r = 0;
2275         spin_lock(&kvm->mmu_lock);
2276         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2277                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2278                          sp->role.word);
2279                 r = 1;
2280                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2281         }
2282         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2283         spin_unlock(&kvm->mmu_lock);
2284
2285         return r;
2286 }
2287 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2288
2289 /*
2290  * The function is based on mtrr_type_lookup() in
2291  * arch/x86/kernel/cpu/mtrr/generic.c
2292  */
2293 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2294                          u64 start, u64 end)
2295 {
2296         int i;
2297         u64 base, mask;
2298         u8 prev_match, curr_match;
2299         int num_var_ranges = KVM_NR_VAR_MTRR;
2300
2301         if (!mtrr_state->enabled)
2302                 return 0xFF;
2303
2304         /* Make end inclusive end, instead of exclusive */
2305         end--;
2306
2307         /* Look in fixed ranges. Just return the type as per start */
2308         if (mtrr_state->have_fixed && (start < 0x100000)) {
2309                 int idx;
2310
2311                 if (start < 0x80000) {
2312                         idx = 0;
2313                         idx += (start >> 16);
2314                         return mtrr_state->fixed_ranges[idx];
2315                 } else if (start < 0xC0000) {
2316                         idx = 1 * 8;
2317                         idx += ((start - 0x80000) >> 14);
2318                         return mtrr_state->fixed_ranges[idx];
2319                 } else if (start < 0x1000000) {
2320                         idx = 3 * 8;
2321                         idx += ((start - 0xC0000) >> 12);
2322                         return mtrr_state->fixed_ranges[idx];
2323                 }
2324         }
2325
2326         /*
2327          * Look in variable ranges
2328          * Look of multiple ranges matching this address and pick type
2329          * as per MTRR precedence
2330          */
2331         if (!(mtrr_state->enabled & 2))
2332                 return mtrr_state->def_type;
2333
2334         prev_match = 0xFF;
2335         for (i = 0; i < num_var_ranges; ++i) {
2336                 unsigned short start_state, end_state;
2337
2338                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2339                         continue;
2340
2341                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2342                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2343                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2344                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2345
2346                 start_state = ((start & mask) == (base & mask));
2347                 end_state = ((end & mask) == (base & mask));
2348                 if (start_state != end_state)
2349                         return 0xFE;
2350
2351                 if ((start & mask) != (base & mask))
2352                         continue;
2353
2354                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2355                 if (prev_match == 0xFF) {
2356                         prev_match = curr_match;
2357                         continue;
2358                 }
2359
2360                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2361                     curr_match == MTRR_TYPE_UNCACHABLE)
2362                         return MTRR_TYPE_UNCACHABLE;
2363
2364                 if ((prev_match == MTRR_TYPE_WRBACK &&
2365                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2366                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2367                      curr_match == MTRR_TYPE_WRBACK)) {
2368                         prev_match = MTRR_TYPE_WRTHROUGH;
2369                         curr_match = MTRR_TYPE_WRTHROUGH;
2370                 }
2371
2372                 if (prev_match != curr_match)
2373                         return MTRR_TYPE_UNCACHABLE;
2374         }
2375
2376         if (prev_match != 0xFF)
2377                 return prev_match;
2378
2379         return mtrr_state->def_type;
2380 }
2381
2382 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2383 {
2384         u8 mtrr;
2385
2386         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2387                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2388         if (mtrr == 0xfe || mtrr == 0xff)
2389                 mtrr = MTRR_TYPE_WRBACK;
2390         return mtrr;
2391 }
2392 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2393
2394 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2395 {
2396         trace_kvm_mmu_unsync_page(sp);
2397         ++vcpu->kvm->stat.mmu_unsync;
2398         sp->unsync = 1;
2399
2400         kvm_mmu_mark_parents_unsync(sp);
2401 }
2402
2403 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2404 {
2405         struct kvm_mmu_page *s;
2406
2407         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2408                 if (s->unsync)
2409                         continue;
2410                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2411                 __kvm_unsync_page(vcpu, s);
2412         }
2413 }
2414
2415 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2416                                   bool can_unsync)
2417 {
2418         struct kvm_mmu_page *s;
2419         bool need_unsync = false;
2420
2421         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2422                 if (!can_unsync)
2423                         return 1;
2424
2425                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2426                         return 1;
2427
2428                 if (!s->unsync)
2429                         need_unsync = true;
2430         }
2431         if (need_unsync)
2432                 kvm_unsync_pages(vcpu, gfn);
2433         return 0;
2434 }
2435
2436 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2437                     unsigned pte_access, int level,
2438                     gfn_t gfn, pfn_t pfn, bool speculative,
2439                     bool can_unsync, bool host_writable)
2440 {
2441         u64 spte;
2442         int ret = 0;
2443
2444         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2445                 return 0;
2446
2447         spte = PT_PRESENT_MASK;
2448         if (!speculative)
2449                 spte |= shadow_accessed_mask;
2450
2451         if (pte_access & ACC_EXEC_MASK)
2452                 spte |= shadow_x_mask;
2453         else
2454                 spte |= shadow_nx_mask;
2455
2456         if (pte_access & ACC_USER_MASK)
2457                 spte |= shadow_user_mask;
2458
2459         if (level > PT_PAGE_TABLE_LEVEL)
2460                 spte |= PT_PAGE_SIZE_MASK;
2461         if (tdp_enabled)
2462                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2463                         kvm_is_reserved_pfn(pfn));
2464
2465         if (host_writable)
2466                 spte |= SPTE_HOST_WRITEABLE;
2467         else
2468                 pte_access &= ~ACC_WRITE_MASK;
2469
2470         spte |= (u64)pfn << PAGE_SHIFT;
2471
2472         if (pte_access & ACC_WRITE_MASK) {
2473
2474                 /*
2475                  * Other vcpu creates new sp in the window between
2476                  * mapping_level() and acquiring mmu-lock. We can
2477                  * allow guest to retry the access, the mapping can
2478                  * be fixed if guest refault.
2479                  */
2480                 if (level > PT_PAGE_TABLE_LEVEL &&
2481                     has_wrprotected_page(vcpu->kvm, gfn, level))
2482                         goto done;
2483
2484                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2485
2486                 /*
2487                  * Optimization: for pte sync, if spte was writable the hash
2488                  * lookup is unnecessary (and expensive). Write protection
2489                  * is responsibility of mmu_get_page / kvm_sync_page.
2490                  * Same reasoning can be applied to dirty page accounting.
2491                  */
2492                 if (!can_unsync && is_writable_pte(*sptep))
2493                         goto set_pte;
2494
2495                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2496                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2497                                  __func__, gfn);
2498                         ret = 1;
2499                         pte_access &= ~ACC_WRITE_MASK;
2500                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2501                 }
2502         }
2503
2504         if (pte_access & ACC_WRITE_MASK)
2505                 mark_page_dirty(vcpu->kvm, gfn);
2506
2507 set_pte:
2508         if (mmu_spte_update(sptep, spte))
2509                 kvm_flush_remote_tlbs(vcpu->kvm);
2510 done:
2511         return ret;
2512 }
2513
2514 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2515                          unsigned pte_access, int write_fault, int *emulate,
2516                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2517                          bool host_writable)
2518 {
2519         int was_rmapped = 0;
2520         int rmap_count;
2521
2522         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2523                  *sptep, write_fault, gfn);
2524
2525         if (is_rmap_spte(*sptep)) {
2526                 /*
2527                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2528                  * the parent of the now unreachable PTE.
2529                  */
2530                 if (level > PT_PAGE_TABLE_LEVEL &&
2531                     !is_large_pte(*sptep)) {
2532                         struct kvm_mmu_page *child;
2533                         u64 pte = *sptep;
2534
2535                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2536                         drop_parent_pte(child, sptep);
2537                         kvm_flush_remote_tlbs(vcpu->kvm);
2538                 } else if (pfn != spte_to_pfn(*sptep)) {
2539                         pgprintk("hfn old %llx new %llx\n",
2540                                  spte_to_pfn(*sptep), pfn);
2541                         drop_spte(vcpu->kvm, sptep);
2542                         kvm_flush_remote_tlbs(vcpu->kvm);
2543                 } else
2544                         was_rmapped = 1;
2545         }
2546
2547         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2548               true, host_writable)) {
2549                 if (write_fault)
2550                         *emulate = 1;
2551                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2552         }
2553
2554         if (unlikely(is_mmio_spte(*sptep) && emulate))
2555                 *emulate = 1;
2556
2557         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2558         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2559                  is_large_pte(*sptep)? "2MB" : "4kB",
2560                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2561                  *sptep, sptep);
2562         if (!was_rmapped && is_large_pte(*sptep))
2563                 ++vcpu->kvm->stat.lpages;
2564
2565         if (is_shadow_present_pte(*sptep)) {
2566                 if (!was_rmapped) {
2567                         rmap_count = rmap_add(vcpu, sptep, gfn);
2568                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2569                                 rmap_recycle(vcpu, sptep, gfn);
2570                 }
2571         }
2572
2573         kvm_release_pfn_clean(pfn);
2574 }
2575
2576 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2577                                      bool no_dirty_log)
2578 {
2579         struct kvm_memory_slot *slot;
2580
2581         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2582         if (!slot)
2583                 return KVM_PFN_ERR_FAULT;
2584
2585         return gfn_to_pfn_memslot_atomic(slot, gfn);
2586 }
2587
2588 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2589                                     struct kvm_mmu_page *sp,
2590                                     u64 *start, u64 *end)
2591 {
2592         struct page *pages[PTE_PREFETCH_NUM];
2593         unsigned access = sp->role.access;
2594         int i, ret;
2595         gfn_t gfn;
2596
2597         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2598         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2599                 return -1;
2600
2601         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2602         if (ret <= 0)
2603                 return -1;
2604
2605         for (i = 0; i < ret; i++, gfn++, start++)
2606                 mmu_set_spte(vcpu, start, access, 0, NULL,
2607                              sp->role.level, gfn, page_to_pfn(pages[i]),
2608                              true, true);
2609
2610         return 0;
2611 }
2612
2613 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2614                                   struct kvm_mmu_page *sp, u64 *sptep)
2615 {
2616         u64 *spte, *start = NULL;
2617         int i;
2618
2619         WARN_ON(!sp->role.direct);
2620
2621         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2622         spte = sp->spt + i;
2623
2624         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2625                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2626                         if (!start)
2627                                 continue;
2628                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2629                                 break;
2630                         start = NULL;
2631                 } else if (!start)
2632                         start = spte;
2633         }
2634 }
2635
2636 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2637 {
2638         struct kvm_mmu_page *sp;
2639
2640         /*
2641          * Since it's no accessed bit on EPT, it's no way to
2642          * distinguish between actually accessed translations
2643          * and prefetched, so disable pte prefetch if EPT is
2644          * enabled.
2645          */
2646         if (!shadow_accessed_mask)
2647                 return;
2648
2649         sp = page_header(__pa(sptep));
2650         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2651                 return;
2652
2653         __direct_pte_prefetch(vcpu, sp, sptep);
2654 }
2655
2656 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2657                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2658                         bool prefault)
2659 {
2660         struct kvm_shadow_walk_iterator iterator;
2661         struct kvm_mmu_page *sp;
2662         int emulate = 0;
2663         gfn_t pseudo_gfn;
2664
2665         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2666                 return 0;
2667
2668         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2669                 if (iterator.level == level) {
2670                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2671                                      write, &emulate, level, gfn, pfn,
2672                                      prefault, map_writable);
2673                         direct_pte_prefetch(vcpu, iterator.sptep);
2674                         ++vcpu->stat.pf_fixed;
2675                         break;
2676                 }
2677
2678                 drop_large_spte(vcpu, iterator.sptep);
2679                 if (!is_shadow_present_pte(*iterator.sptep)) {
2680                         u64 base_addr = iterator.addr;
2681
2682                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2683                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2684                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2685                                               iterator.level - 1,
2686                                               1, ACC_ALL, iterator.sptep);
2687
2688                         link_shadow_page(iterator.sptep, sp, true);
2689                 }
2690         }
2691         return emulate;
2692 }
2693
2694 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2695 {
2696         siginfo_t info;
2697
2698         info.si_signo   = SIGBUS;
2699         info.si_errno   = 0;
2700         info.si_code    = BUS_MCEERR_AR;
2701         info.si_addr    = (void __user *)address;
2702         info.si_addr_lsb = PAGE_SHIFT;
2703
2704         send_sig_info(SIGBUS, &info, tsk);
2705 }
2706
2707 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2708 {
2709         /*
2710          * Do not cache the mmio info caused by writing the readonly gfn
2711          * into the spte otherwise read access on readonly gfn also can
2712          * caused mmio page fault and treat it as mmio access.
2713          * Return 1 to tell kvm to emulate it.
2714          */
2715         if (pfn == KVM_PFN_ERR_RO_FAULT)
2716                 return 1;
2717
2718         if (pfn == KVM_PFN_ERR_HWPOISON) {
2719                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2720                 return 0;
2721         }
2722
2723         return -EFAULT;
2724 }
2725
2726 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2727                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2728 {
2729         pfn_t pfn = *pfnp;
2730         gfn_t gfn = *gfnp;
2731         int level = *levelp;
2732
2733         /*
2734          * Check if it's a transparent hugepage. If this would be an
2735          * hugetlbfs page, level wouldn't be set to
2736          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2737          * here.
2738          */
2739         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2740             level == PT_PAGE_TABLE_LEVEL &&
2741             PageTransCompound(pfn_to_page(pfn)) &&
2742             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2743                 unsigned long mask;
2744                 /*
2745                  * mmu_notifier_retry was successful and we hold the
2746                  * mmu_lock here, so the pmd can't become splitting
2747                  * from under us, and in turn
2748                  * __split_huge_page_refcount() can't run from under
2749                  * us and we can safely transfer the refcount from
2750                  * PG_tail to PG_head as we switch the pfn to tail to
2751                  * head.
2752                  */
2753                 *levelp = level = PT_DIRECTORY_LEVEL;
2754                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2755                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2756                 if (pfn & mask) {
2757                         gfn &= ~mask;
2758                         *gfnp = gfn;
2759                         kvm_release_pfn_clean(pfn);
2760                         pfn &= ~mask;
2761                         kvm_get_pfn(pfn);
2762                         *pfnp = pfn;
2763                 }
2764         }
2765 }
2766
2767 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2768                                 pfn_t pfn, unsigned access, int *ret_val)
2769 {
2770         bool ret = true;
2771
2772         /* The pfn is invalid, report the error! */
2773         if (unlikely(is_error_pfn(pfn))) {
2774                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2775                 goto exit;
2776         }
2777
2778         if (unlikely(is_noslot_pfn(pfn)))
2779                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2780
2781         ret = false;
2782 exit:
2783         return ret;
2784 }
2785
2786 static bool page_fault_can_be_fast(u32 error_code)
2787 {
2788         /*
2789          * Do not fix the mmio spte with invalid generation number which
2790          * need to be updated by slow page fault path.
2791          */
2792         if (unlikely(error_code & PFERR_RSVD_MASK))
2793                 return false;
2794
2795         /*
2796          * #PF can be fast only if the shadow page table is present and it
2797          * is caused by write-protect, that means we just need change the
2798          * W bit of the spte which can be done out of mmu-lock.
2799          */
2800         if (!(error_code & PFERR_PRESENT_MASK) ||
2801               !(error_code & PFERR_WRITE_MASK))
2802                 return false;
2803
2804         return true;
2805 }
2806
2807 static bool
2808 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2809                         u64 *sptep, u64 spte)
2810 {
2811         gfn_t gfn;
2812
2813         WARN_ON(!sp->role.direct);
2814
2815         /*
2816          * The gfn of direct spte is stable since it is calculated
2817          * by sp->gfn.
2818          */
2819         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2820
2821         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2822                 mark_page_dirty(vcpu->kvm, gfn);
2823
2824         return true;
2825 }
2826
2827 /*
2828  * Return value:
2829  * - true: let the vcpu to access on the same address again.
2830  * - false: let the real page fault path to fix it.
2831  */
2832 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2833                             u32 error_code)
2834 {
2835         struct kvm_shadow_walk_iterator iterator;
2836         struct kvm_mmu_page *sp;
2837         bool ret = false;
2838         u64 spte = 0ull;
2839
2840         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2841                 return false;
2842
2843         if (!page_fault_can_be_fast(error_code))
2844                 return false;
2845
2846         walk_shadow_page_lockless_begin(vcpu);
2847         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2848                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2849                         break;
2850
2851         /*
2852          * If the mapping has been changed, let the vcpu fault on the
2853          * same address again.
2854          */
2855         if (!is_rmap_spte(spte)) {
2856                 ret = true;
2857                 goto exit;
2858         }
2859
2860         sp = page_header(__pa(iterator.sptep));
2861         if (!is_last_spte(spte, sp->role.level))
2862                 goto exit;
2863
2864         /*
2865          * Check if it is a spurious fault caused by TLB lazily flushed.
2866          *
2867          * Need not check the access of upper level table entries since
2868          * they are always ACC_ALL.
2869          */
2870          if (is_writable_pte(spte)) {
2871                 ret = true;
2872                 goto exit;
2873         }
2874
2875         /*
2876          * Currently, to simplify the code, only the spte write-protected
2877          * by dirty-log can be fast fixed.
2878          */
2879         if (!spte_is_locklessly_modifiable(spte))
2880                 goto exit;
2881
2882         /*
2883          * Do not fix write-permission on the large spte since we only dirty
2884          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2885          * that means other pages are missed if its slot is dirty-logged.
2886          *
2887          * Instead, we let the slow page fault path create a normal spte to
2888          * fix the access.
2889          *
2890          * See the comments in kvm_arch_commit_memory_region().
2891          */
2892         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2893                 goto exit;
2894
2895         /*
2896          * Currently, fast page fault only works for direct mapping since
2897          * the gfn is not stable for indirect shadow page.
2898          * See Documentation/virtual/kvm/locking.txt to get more detail.
2899          */
2900         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2901 exit:
2902         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2903                               spte, ret);
2904         walk_shadow_page_lockless_end(vcpu);
2905
2906         return ret;
2907 }
2908
2909 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2910                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2911 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2912
2913 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2914                          gfn_t gfn, bool prefault)
2915 {
2916         int r;
2917         int level;
2918         int force_pt_level;
2919         pfn_t pfn;
2920         unsigned long mmu_seq;
2921         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2922
2923         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2924         if (likely(!force_pt_level)) {
2925                 level = mapping_level(vcpu, gfn);
2926                 /*
2927                  * This path builds a PAE pagetable - so we can map
2928                  * 2mb pages at maximum. Therefore check if the level
2929                  * is larger than that.
2930                  */
2931                 if (level > PT_DIRECTORY_LEVEL)
2932                         level = PT_DIRECTORY_LEVEL;
2933
2934                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2935         } else
2936                 level = PT_PAGE_TABLE_LEVEL;
2937
2938         if (fast_page_fault(vcpu, v, level, error_code))
2939                 return 0;
2940
2941         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2942         smp_rmb();
2943
2944         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2945                 return 0;
2946
2947         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2948                 return r;
2949
2950         spin_lock(&vcpu->kvm->mmu_lock);
2951         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2952                 goto out_unlock;
2953         make_mmu_pages_available(vcpu);
2954         if (likely(!force_pt_level))
2955                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2956         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2957                          prefault);
2958         spin_unlock(&vcpu->kvm->mmu_lock);
2959
2960
2961         return r;
2962
2963 out_unlock:
2964         spin_unlock(&vcpu->kvm->mmu_lock);
2965         kvm_release_pfn_clean(pfn);
2966         return 0;
2967 }
2968
2969
2970 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2971 {
2972         int i;
2973         struct kvm_mmu_page *sp;
2974         LIST_HEAD(invalid_list);
2975
2976         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2977                 return;
2978
2979         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2980             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2981              vcpu->arch.mmu.direct_map)) {
2982                 hpa_t root = vcpu->arch.mmu.root_hpa;
2983
2984                 spin_lock(&vcpu->kvm->mmu_lock);
2985                 sp = page_header(root);
2986                 --sp->root_count;
2987                 if (!sp->root_count && sp->role.invalid) {
2988                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2989                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2990                 }
2991                 spin_unlock(&vcpu->kvm->mmu_lock);
2992                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2993                 return;
2994         }
2995
2996         spin_lock(&vcpu->kvm->mmu_lock);
2997         for (i = 0; i < 4; ++i) {
2998                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2999
3000                 if (root) {
3001                         root &= PT64_BASE_ADDR_MASK;
3002                         sp = page_header(root);
3003                         --sp->root_count;
3004                         if (!sp->root_count && sp->role.invalid)
3005                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3006                                                          &invalid_list);
3007                 }
3008                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3009         }
3010         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3011         spin_unlock(&vcpu->kvm->mmu_lock);
3012         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3013 }
3014
3015 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3016 {
3017         int ret = 0;
3018
3019         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3020                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3021                 ret = 1;
3022         }
3023
3024         return ret;
3025 }
3026
3027 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3028 {
3029         struct kvm_mmu_page *sp;
3030         unsigned i;
3031
3032         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3033                 spin_lock(&vcpu->kvm->mmu_lock);
3034                 make_mmu_pages_available(vcpu);
3035                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3036                                       1, ACC_ALL, NULL);
3037                 ++sp->root_count;
3038                 spin_unlock(&vcpu->kvm->mmu_lock);
3039                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3040         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3041                 for (i = 0; i < 4; ++i) {
3042                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3043
3044                         ASSERT(!VALID_PAGE(root));
3045                         spin_lock(&vcpu->kvm->mmu_lock);
3046                         make_mmu_pages_available(vcpu);
3047                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3048                                               i << 30,
3049                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3050                                               NULL);
3051                         root = __pa(sp->spt);
3052                         ++sp->root_count;
3053                         spin_unlock(&vcpu->kvm->mmu_lock);
3054                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3055                 }
3056                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3057         } else
3058                 BUG();
3059
3060         return 0;
3061 }
3062
3063 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3064 {
3065         struct kvm_mmu_page *sp;
3066         u64 pdptr, pm_mask;
3067         gfn_t root_gfn;
3068         int i;
3069
3070         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3071
3072         if (mmu_check_root(vcpu, root_gfn))
3073                 return 1;
3074
3075         /*
3076          * Do we shadow a long mode page table? If so we need to
3077          * write-protect the guests page table root.
3078          */
3079         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3080                 hpa_t root = vcpu->arch.mmu.root_hpa;
3081
3082                 ASSERT(!VALID_PAGE(root));
3083
3084                 spin_lock(&vcpu->kvm->mmu_lock);
3085                 make_mmu_pages_available(vcpu);
3086                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3087                                       0, ACC_ALL, NULL);
3088                 root = __pa(sp->spt);
3089                 ++sp->root_count;
3090                 spin_unlock(&vcpu->kvm->mmu_lock);
3091                 vcpu->arch.mmu.root_hpa = root;
3092                 return 0;
3093         }
3094
3095         /*
3096          * We shadow a 32 bit page table. This may be a legacy 2-level
3097          * or a PAE 3-level page table. In either case we need to be aware that
3098          * the shadow page table may be a PAE or a long mode page table.
3099          */
3100         pm_mask = PT_PRESENT_MASK;
3101         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3102                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3103
3104         for (i = 0; i < 4; ++i) {
3105                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3106
3107                 ASSERT(!VALID_PAGE(root));
3108                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3109                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3110                         if (!is_present_gpte(pdptr)) {
3111                                 vcpu->arch.mmu.pae_root[i] = 0;
3112                                 continue;
3113                         }
3114                         root_gfn = pdptr >> PAGE_SHIFT;
3115                         if (mmu_check_root(vcpu, root_gfn))
3116                                 return 1;
3117                 }
3118                 spin_lock(&vcpu->kvm->mmu_lock);
3119                 make_mmu_pages_available(vcpu);
3120                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3121                                       PT32_ROOT_LEVEL, 0,
3122                                       ACC_ALL, NULL);
3123                 root = __pa(sp->spt);
3124                 ++sp->root_count;
3125                 spin_unlock(&vcpu->kvm->mmu_lock);
3126
3127                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3128         }
3129         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3130
3131         /*
3132          * If we shadow a 32 bit page table with a long mode page
3133          * table we enter this path.
3134          */
3135         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3136                 if (vcpu->arch.mmu.lm_root == NULL) {
3137                         /*
3138                          * The additional page necessary for this is only
3139                          * allocated on demand.
3140                          */
3141
3142                         u64 *lm_root;
3143
3144                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3145                         if (lm_root == NULL)
3146                                 return 1;
3147
3148                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3149
3150                         vcpu->arch.mmu.lm_root = lm_root;
3151                 }
3152
3153                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3154         }
3155
3156         return 0;
3157 }
3158
3159 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3160 {
3161         if (vcpu->arch.mmu.direct_map)
3162                 return mmu_alloc_direct_roots(vcpu);
3163         else
3164                 return mmu_alloc_shadow_roots(vcpu);
3165 }
3166
3167 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3168 {
3169         int i;
3170         struct kvm_mmu_page *sp;
3171
3172         if (vcpu->arch.mmu.direct_map)
3173                 return;
3174
3175         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3176                 return;
3177
3178         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3179         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3180         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3181                 hpa_t root = vcpu->arch.mmu.root_hpa;
3182                 sp = page_header(root);
3183                 mmu_sync_children(vcpu, sp);
3184                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3185                 return;
3186         }
3187         for (i = 0; i < 4; ++i) {
3188                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3189
3190                 if (root && VALID_PAGE(root)) {
3191                         root &= PT64_BASE_ADDR_MASK;
3192                         sp = page_header(root);
3193                         mmu_sync_children(vcpu, sp);
3194                 }
3195         }
3196         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3197 }
3198
3199 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3200 {
3201         spin_lock(&vcpu->kvm->mmu_lock);
3202         mmu_sync_roots(vcpu);
3203         spin_unlock(&vcpu->kvm->mmu_lock);
3204 }
3205 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3206
3207 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3208                                   u32 access, struct x86_exception *exception)
3209 {
3210         if (exception)
3211                 exception->error_code = 0;
3212         return vaddr;
3213 }
3214
3215 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3216                                          u32 access,
3217                                          struct x86_exception *exception)
3218 {
3219         if (exception)
3220                 exception->error_code = 0;
3221         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3222 }
3223
3224 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3225 {
3226         if (direct)
3227                 return vcpu_match_mmio_gpa(vcpu, addr);
3228
3229         return vcpu_match_mmio_gva(vcpu, addr);
3230 }
3231
3232
3233 /*
3234  * On direct hosts, the last spte is only allows two states
3235  * for mmio page fault:
3236  *   - It is the mmio spte
3237  *   - It is zapped or it is being zapped.
3238  *
3239  * This function completely checks the spte when the last spte
3240  * is not the mmio spte.
3241  */
3242 static bool check_direct_spte_mmio_pf(u64 spte)
3243 {
3244         return __check_direct_spte_mmio_pf(spte);
3245 }
3246
3247 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3248 {
3249         struct kvm_shadow_walk_iterator iterator;
3250         u64 spte = 0ull;
3251
3252         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3253                 return spte;
3254
3255         walk_shadow_page_lockless_begin(vcpu);
3256         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3257                 if (!is_shadow_present_pte(spte))
3258                         break;
3259         walk_shadow_page_lockless_end(vcpu);
3260
3261         return spte;
3262 }
3263
3264 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3265 {
3266         u64 spte;
3267
3268         if (quickly_check_mmio_pf(vcpu, addr, direct))
3269                 return RET_MMIO_PF_EMULATE;
3270
3271         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3272
3273         if (is_mmio_spte(spte)) {
3274                 gfn_t gfn = get_mmio_spte_gfn(spte);
3275                 unsigned access = get_mmio_spte_access(spte);
3276
3277                 if (!check_mmio_spte(vcpu->kvm, spte))
3278                         return RET_MMIO_PF_INVALID;
3279
3280                 if (direct)
3281                         addr = 0;
3282
3283                 trace_handle_mmio_page_fault(addr, gfn, access);
3284                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3285                 return RET_MMIO_PF_EMULATE;
3286         }
3287
3288         /*
3289          * It's ok if the gva is remapped by other cpus on shadow guest,
3290          * it's a BUG if the gfn is not a mmio page.
3291          */
3292         if (direct && !check_direct_spte_mmio_pf(spte))
3293                 return RET_MMIO_PF_BUG;
3294
3295         /*
3296          * If the page table is zapped by other cpus, let CPU fault again on
3297          * the address.
3298          */
3299         return RET_MMIO_PF_RETRY;
3300 }
3301 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3302
3303 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3304                                   u32 error_code, bool direct)
3305 {
3306         int ret;
3307
3308         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3309         WARN_ON(ret == RET_MMIO_PF_BUG);
3310         return ret;
3311 }
3312
3313 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3314                                 u32 error_code, bool prefault)
3315 {
3316         gfn_t gfn;
3317         int r;
3318
3319         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3320
3321         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3322                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3323
3324                 if (likely(r != RET_MMIO_PF_INVALID))
3325                         return r;
3326         }
3327
3328         r = mmu_topup_memory_caches(vcpu);
3329         if (r)
3330                 return r;
3331
3332         ASSERT(vcpu);
3333         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3334
3335         gfn = gva >> PAGE_SHIFT;
3336
3337         return nonpaging_map(vcpu, gva & PAGE_MASK,
3338                              error_code, gfn, prefault);
3339 }
3340
3341 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3342 {
3343         struct kvm_arch_async_pf arch;
3344
3345         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3346         arch.gfn = gfn;
3347         arch.direct_map = vcpu->arch.mmu.direct_map;
3348         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3349
3350         return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3351 }
3352
3353 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3354 {
3355         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3356                      kvm_event_needs_reinjection(vcpu)))
3357                 return false;
3358
3359         return kvm_x86_ops->interrupt_allowed(vcpu);
3360 }
3361
3362 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3363                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3364 {
3365         bool async;
3366
3367         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3368
3369         if (!async)
3370                 return false; /* *pfn has correct page already */
3371
3372         if (!prefault && can_do_async_pf(vcpu)) {
3373                 trace_kvm_try_async_get_page(gva, gfn);
3374                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3375                         trace_kvm_async_pf_doublefault(gva, gfn);
3376                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3377                         return true;
3378                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3379                         return true;
3380         }
3381
3382         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3383
3384         return false;
3385 }
3386
3387 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3388                           bool prefault)
3389 {
3390         pfn_t pfn;
3391         int r;
3392         int level;
3393         int force_pt_level;
3394         gfn_t gfn = gpa >> PAGE_SHIFT;
3395         unsigned long mmu_seq;
3396         int write = error_code & PFERR_WRITE_MASK;
3397         bool map_writable;
3398
3399         ASSERT(vcpu);
3400         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3401
3402         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3403                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3404
3405                 if (likely(r != RET_MMIO_PF_INVALID))
3406                         return r;
3407         }
3408
3409         r = mmu_topup_memory_caches(vcpu);
3410         if (r)
3411                 return r;
3412
3413         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3414         if (likely(!force_pt_level)) {
3415                 level = mapping_level(vcpu, gfn);
3416                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3417         } else
3418                 level = PT_PAGE_TABLE_LEVEL;
3419
3420         if (fast_page_fault(vcpu, gpa, level, error_code))
3421                 return 0;
3422
3423         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3424         smp_rmb();
3425
3426         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3427                 return 0;
3428
3429         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3430                 return r;
3431
3432         spin_lock(&vcpu->kvm->mmu_lock);
3433         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3434                 goto out_unlock;
3435         make_mmu_pages_available(vcpu);
3436         if (likely(!force_pt_level))
3437                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3438         r = __direct_map(vcpu, gpa, write, map_writable,
3439                          level, gfn, pfn, prefault);
3440         spin_unlock(&vcpu->kvm->mmu_lock);
3441
3442         return r;
3443
3444 out_unlock:
3445         spin_unlock(&vcpu->kvm->mmu_lock);
3446         kvm_release_pfn_clean(pfn);
3447         return 0;
3448 }
3449
3450 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3451                                    struct kvm_mmu *context)
3452 {
3453         context->page_fault = nonpaging_page_fault;
3454         context->gva_to_gpa = nonpaging_gva_to_gpa;
3455         context->sync_page = nonpaging_sync_page;
3456         context->invlpg = nonpaging_invlpg;
3457         context->update_pte = nonpaging_update_pte;
3458         context->root_level = 0;
3459         context->shadow_root_level = PT32E_ROOT_LEVEL;
3460         context->root_hpa = INVALID_PAGE;
3461         context->direct_map = true;
3462         context->nx = false;
3463 }
3464
3465 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3466 {
3467         mmu_free_roots(vcpu);
3468 }
3469
3470 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3471 {
3472         return kvm_read_cr3(vcpu);
3473 }
3474
3475 static void inject_page_fault(struct kvm_vcpu *vcpu,
3476                               struct x86_exception *fault)
3477 {
3478         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3479 }
3480
3481 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3482                            unsigned access, int *nr_present)
3483 {
3484         if (unlikely(is_mmio_spte(*sptep))) {
3485                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3486                         mmu_spte_clear_no_track(sptep);
3487                         return true;
3488                 }
3489
3490                 (*nr_present)++;
3491                 mark_mmio_spte(kvm, sptep, gfn, access);
3492                 return true;
3493         }
3494
3495         return false;
3496 }
3497
3498 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3499 {
3500         unsigned index;
3501
3502         index = level - 1;
3503         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3504         return mmu->last_pte_bitmap & (1 << index);
3505 }
3506
3507 #define PTTYPE_EPT 18 /* arbitrary */
3508 #define PTTYPE PTTYPE_EPT
3509 #include "paging_tmpl.h"
3510 #undef PTTYPE
3511
3512 #define PTTYPE 64
3513 #include "paging_tmpl.h"
3514 #undef PTTYPE
3515
3516 #define PTTYPE 32
3517 #include "paging_tmpl.h"
3518 #undef PTTYPE
3519
3520 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3521                                   struct kvm_mmu *context)
3522 {
3523         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3524         u64 exb_bit_rsvd = 0;
3525         u64 gbpages_bit_rsvd = 0;
3526         u64 nonleaf_bit8_rsvd = 0;
3527
3528         context->bad_mt_xwr = 0;
3529
3530         if (!context->nx)
3531                 exb_bit_rsvd = rsvd_bits(63, 63);
3532         if (!guest_cpuid_has_gbpages(vcpu))
3533                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3534
3535         /*
3536          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3537          * leaf entries) on AMD CPUs only.
3538          */
3539         if (guest_cpuid_is_amd(vcpu))
3540                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3541
3542         switch (context->root_level) {
3543         case PT32_ROOT_LEVEL:
3544                 /* no rsvd bits for 2 level 4K page table entries */
3545                 context->rsvd_bits_mask[0][1] = 0;
3546                 context->rsvd_bits_mask[0][0] = 0;
3547                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3548
3549                 if (!is_pse(vcpu)) {
3550                         context->rsvd_bits_mask[1][1] = 0;
3551                         break;
3552                 }
3553
3554                 if (is_cpuid_PSE36())
3555                         /* 36bits PSE 4MB page */
3556                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3557                 else
3558                         /* 32 bits PSE 4MB page */
3559                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3560                 break;
3561         case PT32E_ROOT_LEVEL:
3562                 context->rsvd_bits_mask[0][2] =
3563                         rsvd_bits(maxphyaddr, 63) |
3564                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3565                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3566                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3567                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3568                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3569                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3570                         rsvd_bits(maxphyaddr, 62) |
3571                         rsvd_bits(13, 20);              /* large page */
3572                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3573                 break;
3574         case PT64_ROOT_LEVEL:
3575                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3576                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3577                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3578                         nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3579                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3580                         rsvd_bits(maxphyaddr, 51);
3581                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3582                         rsvd_bits(maxphyaddr, 51);
3583                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3584                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3585                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3586                         rsvd_bits(13, 29);
3587                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3588                         rsvd_bits(maxphyaddr, 51) |
3589                         rsvd_bits(13, 20);              /* large page */
3590                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3591                 break;
3592         }
3593 }
3594
3595 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3596                 struct kvm_mmu *context, bool execonly)
3597 {
3598         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3599         int pte;
3600
3601         context->rsvd_bits_mask[0][3] =
3602                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3603         context->rsvd_bits_mask[0][2] =
3604                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3605         context->rsvd_bits_mask[0][1] =
3606                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3607         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3608
3609         /* large page */
3610         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3611         context->rsvd_bits_mask[1][2] =
3612                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3613         context->rsvd_bits_mask[1][1] =
3614                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3615         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3616
3617         for (pte = 0; pte < 64; pte++) {
3618                 int rwx_bits = pte & 7;
3619                 int mt = pte >> 3;
3620                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3621                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3622                                 (rwx_bits == 0x4 && !execonly))
3623                         context->bad_mt_xwr |= (1ull << pte);
3624         }
3625 }
3626
3627 void update_permission_bitmask(struct kvm_vcpu *vcpu,
3628                 struct kvm_mmu *mmu, bool ept)
3629 {
3630         unsigned bit, byte, pfec;
3631         u8 map;
3632         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3633
3634         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3635         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3636         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3637                 pfec = byte << 1;
3638                 map = 0;
3639                 wf = pfec & PFERR_WRITE_MASK;
3640                 uf = pfec & PFERR_USER_MASK;
3641                 ff = pfec & PFERR_FETCH_MASK;
3642                 /*
3643                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3644                  * subject to SMAP restrictions, and cleared otherwise. The
3645                  * bit is only meaningful if the SMAP bit is set in CR4.
3646                  */
3647                 smapf = !(pfec & PFERR_RSVD_MASK);
3648                 for (bit = 0; bit < 8; ++bit) {
3649                         x = bit & ACC_EXEC_MASK;
3650                         w = bit & ACC_WRITE_MASK;
3651                         u = bit & ACC_USER_MASK;
3652
3653                         if (!ept) {
3654                                 /* Not really needed: !nx will cause pte.nx to fault */
3655                                 x |= !mmu->nx;
3656                                 /* Allow supervisor writes if !cr0.wp */
3657                                 w |= !is_write_protection(vcpu) && !uf;
3658                                 /* Disallow supervisor fetches of user code if cr4.smep */
3659                                 x &= !(cr4_smep && u && !uf);
3660
3661                                 /*
3662                                  * SMAP:kernel-mode data accesses from user-mode
3663                                  * mappings should fault. A fault is considered
3664                                  * as a SMAP violation if all of the following
3665                                  * conditions are ture:
3666                                  *   - X86_CR4_SMAP is set in CR4
3667                                  *   - An user page is accessed
3668                                  *   - Page fault in kernel mode
3669                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3670                                  *
3671                                  *   Here, we cover the first three conditions.
3672                                  *   The fourth is computed dynamically in
3673                                  *   permission_fault() and is in smapf.
3674                                  *
3675                                  *   Also, SMAP does not affect instruction
3676                                  *   fetches, add the !ff check here to make it
3677                                  *   clearer.
3678                                  */
3679                                 smap = cr4_smap && u && !uf && !ff;
3680                         } else
3681                                 /* Not really needed: no U/S accesses on ept  */
3682                                 u = 1;
3683
3684                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3685                                 (smapf && smap);
3686                         map |= fault << bit;
3687                 }
3688                 mmu->permissions[byte] = map;
3689         }
3690 }
3691
3692 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3693 {
3694         u8 map;
3695         unsigned level, root_level = mmu->root_level;
3696         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3697
3698         if (root_level == PT32E_ROOT_LEVEL)
3699                 --root_level;
3700         /* PT_PAGE_TABLE_LEVEL always terminates */
3701         map = 1 | (1 << ps_set_index);
3702         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3703                 if (level <= PT_PDPE_LEVEL
3704                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3705                         map |= 1 << (ps_set_index | (level - 1));
3706         }
3707         mmu->last_pte_bitmap = map;
3708 }
3709
3710 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3711                                          struct kvm_mmu *context,
3712                                          int level)
3713 {
3714         context->nx = is_nx(vcpu);
3715         context->root_level = level;
3716
3717         reset_rsvds_bits_mask(vcpu, context);
3718         update_permission_bitmask(vcpu, context, false);
3719         update_last_pte_bitmap(vcpu, context);
3720
3721         ASSERT(is_pae(vcpu));
3722         context->page_fault = paging64_page_fault;
3723         context->gva_to_gpa = paging64_gva_to_gpa;
3724         context->sync_page = paging64_sync_page;
3725         context->invlpg = paging64_invlpg;
3726         context->update_pte = paging64_update_pte;
3727         context->shadow_root_level = level;
3728         context->root_hpa = INVALID_PAGE;
3729         context->direct_map = false;
3730 }
3731
3732 static void paging64_init_context(struct kvm_vcpu *vcpu,
3733                                   struct kvm_mmu *context)
3734 {
3735         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3736 }
3737
3738 static void paging32_init_context(struct kvm_vcpu *vcpu,
3739                                   struct kvm_mmu *context)
3740 {
3741         context->nx = false;
3742         context->root_level = PT32_ROOT_LEVEL;
3743
3744         reset_rsvds_bits_mask(vcpu, context);
3745         update_permission_bitmask(vcpu, context, false);
3746         update_last_pte_bitmap(vcpu, context);
3747
3748         context->page_fault = paging32_page_fault;
3749         context->gva_to_gpa = paging32_gva_to_gpa;
3750         context->sync_page = paging32_sync_page;
3751         context->invlpg = paging32_invlpg;
3752         context->update_pte = paging32_update_pte;
3753         context->shadow_root_level = PT32E_ROOT_LEVEL;
3754         context->root_hpa = INVALID_PAGE;
3755         context->direct_map = false;
3756 }
3757
3758 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3759                                    struct kvm_mmu *context)
3760 {
3761         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3762 }
3763
3764 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3765 {
3766         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3767
3768         context->base_role.word = 0;
3769         context->page_fault = tdp_page_fault;
3770         context->sync_page = nonpaging_sync_page;
3771         context->invlpg = nonpaging_invlpg;
3772         context->update_pte = nonpaging_update_pte;
3773         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3774         context->root_hpa = INVALID_PAGE;
3775         context->direct_map = true;
3776         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3777         context->get_cr3 = get_cr3;
3778         context->get_pdptr = kvm_pdptr_read;
3779         context->inject_page_fault = kvm_inject_page_fault;
3780
3781         if (!is_paging(vcpu)) {
3782                 context->nx = false;
3783                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3784                 context->root_level = 0;
3785         } else if (is_long_mode(vcpu)) {
3786                 context->nx = is_nx(vcpu);
3787                 context->root_level = PT64_ROOT_LEVEL;
3788                 reset_rsvds_bits_mask(vcpu, context);
3789                 context->gva_to_gpa = paging64_gva_to_gpa;
3790         } else if (is_pae(vcpu)) {
3791                 context->nx = is_nx(vcpu);
3792                 context->root_level = PT32E_ROOT_LEVEL;
3793                 reset_rsvds_bits_mask(vcpu, context);
3794                 context->gva_to_gpa = paging64_gva_to_gpa;
3795         } else {
3796                 context->nx = false;
3797                 context->root_level = PT32_ROOT_LEVEL;
3798                 reset_rsvds_bits_mask(vcpu, context);
3799                 context->gva_to_gpa = paging32_gva_to_gpa;
3800         }
3801
3802         update_permission_bitmask(vcpu, context, false);
3803         update_last_pte_bitmap(vcpu, context);
3804 }
3805
3806 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3807 {
3808         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3809         ASSERT(vcpu);
3810         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3811
3812         if (!is_paging(vcpu))
3813                 nonpaging_init_context(vcpu, context);
3814         else if (is_long_mode(vcpu))
3815                 paging64_init_context(vcpu, context);
3816         else if (is_pae(vcpu))
3817                 paging32E_init_context(vcpu, context);
3818         else
3819                 paging32_init_context(vcpu, context);
3820
3821         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3822         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3823         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3824         vcpu->arch.mmu.base_role.smep_andnot_wp
3825                 = smep && !is_write_protection(vcpu);
3826 }
3827 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3828
3829 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3830                 bool execonly)
3831 {
3832         ASSERT(vcpu);
3833         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3834
3835         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3836
3837         context->nx = true;
3838         context->page_fault = ept_page_fault;
3839         context->gva_to_gpa = ept_gva_to_gpa;
3840         context->sync_page = ept_sync_page;
3841         context->invlpg = ept_invlpg;
3842         context->update_pte = ept_update_pte;
3843         context->root_level = context->shadow_root_level;
3844         context->root_hpa = INVALID_PAGE;
3845         context->direct_map = false;
3846
3847         update_permission_bitmask(vcpu, context, true);
3848         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3849 }
3850 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3851
3852 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3853 {
3854         kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3855         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3856         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3857         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3858         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3859 }
3860
3861 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3862 {
3863         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3864
3865         g_context->get_cr3           = get_cr3;
3866         g_context->get_pdptr         = kvm_pdptr_read;
3867         g_context->inject_page_fault = kvm_inject_page_fault;
3868
3869         /*
3870          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3871          * translation of l2_gpa to l1_gpa addresses is done using the
3872          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3873          * functions between mmu and nested_mmu are swapped.
3874          */
3875         if (!is_paging(vcpu)) {
3876                 g_context->nx = false;
3877                 g_context->root_level = 0;
3878                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3879         } else if (is_long_mode(vcpu)) {
3880                 g_context->nx = is_nx(vcpu);
3881                 g_context->root_level = PT64_ROOT_LEVEL;
3882                 reset_rsvds_bits_mask(vcpu, g_context);
3883                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3884         } else if (is_pae(vcpu)) {
3885                 g_context->nx = is_nx(vcpu);
3886                 g_context->root_level = PT32E_ROOT_LEVEL;
3887                 reset_rsvds_bits_mask(vcpu, g_context);
3888                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3889         } else {
3890                 g_context->nx = false;
3891                 g_context->root_level = PT32_ROOT_LEVEL;
3892                 reset_rsvds_bits_mask(vcpu, g_context);
3893                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3894         }
3895
3896         update_permission_bitmask(vcpu, g_context, false);
3897         update_last_pte_bitmap(vcpu, g_context);
3898 }
3899
3900 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3901 {
3902         if (mmu_is_nested(vcpu))
3903                 return init_kvm_nested_mmu(vcpu);
3904         else if (tdp_enabled)
3905                 return init_kvm_tdp_mmu(vcpu);
3906         else
3907                 return init_kvm_softmmu(vcpu);
3908 }
3909
3910 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3911 {
3912         ASSERT(vcpu);
3913
3914         kvm_mmu_unload(vcpu);
3915         init_kvm_mmu(vcpu);
3916 }
3917 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3918
3919 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3920 {
3921         int r;
3922
3923         r = mmu_topup_memory_caches(vcpu);
3924         if (r)
3925                 goto out;
3926         r = mmu_alloc_roots(vcpu);
3927         kvm_mmu_sync_roots(vcpu);
3928         if (r)
3929                 goto out;
3930         /* set_cr3() should ensure TLB has been flushed */
3931         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3932 out:
3933         return r;
3934 }
3935 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3936
3937 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3938 {
3939         mmu_free_roots(vcpu);
3940         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3941 }
3942 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3943
3944 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3945                                   struct kvm_mmu_page *sp, u64 *spte,
3946                                   const void *new)
3947 {
3948         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3949                 ++vcpu->kvm->stat.mmu_pde_zapped;
3950                 return;
3951         }
3952
3953         ++vcpu->kvm->stat.mmu_pte_updated;
3954         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3955 }
3956
3957 static bool need_remote_flush(u64 old, u64 new)
3958 {
3959         if (!is_shadow_present_pte(old))
3960                 return false;
3961         if (!is_shadow_present_pte(new))
3962                 return true;
3963         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3964                 return true;
3965         old ^= shadow_nx_mask;
3966         new ^= shadow_nx_mask;
3967         return (old & ~new & PT64_PERM_MASK) != 0;
3968 }
3969
3970 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3971                                     bool remote_flush, bool local_flush)
3972 {
3973         if (zap_page)
3974                 return;
3975
3976         if (remote_flush)
3977                 kvm_flush_remote_tlbs(vcpu->kvm);
3978         else if (local_flush)
3979                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3980 }
3981
3982 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3983                                     const u8 *new, int *bytes)
3984 {
3985         u64 gentry;
3986         int r;
3987
3988         /*
3989          * Assume that the pte write on a page table of the same type
3990          * as the current vcpu paging mode since we update the sptes only
3991          * when they have the same mode.
3992          */
3993         if (is_pae(vcpu) && *bytes == 4) {
3994                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3995                 *gpa &= ~(gpa_t)7;
3996                 *bytes = 8;
3997                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3998                 if (r)
3999                         gentry = 0;
4000                 new = (const u8 *)&gentry;
4001         }
4002
4003         switch (*bytes) {
4004         case 4:
4005                 gentry = *(const u32 *)new;
4006                 break;
4007         case 8:
4008                 gentry = *(const u64 *)new;
4009                 break;
4010         default:
4011                 gentry = 0;
4012                 break;
4013         }
4014
4015         return gentry;
4016 }
4017
4018 /*
4019  * If we're seeing too many writes to a page, it may no longer be a page table,
4020  * or we may be forking, in which case it is better to unmap the page.
4021  */
4022 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4023 {
4024         /*
4025          * Skip write-flooding detected for the sp whose level is 1, because
4026          * it can become unsync, then the guest page is not write-protected.
4027          */
4028         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4029                 return false;
4030
4031         return ++sp->write_flooding_count >= 3;
4032 }
4033
4034 /*
4035  * Misaligned accesses are too much trouble to fix up; also, they usually
4036  * indicate a page is not used as a page table.
4037  */
4038 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4039                                     int bytes)
4040 {
4041         unsigned offset, pte_size, misaligned;
4042
4043         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4044                  gpa, bytes, sp->role.word);
4045
4046         offset = offset_in_page(gpa);
4047         pte_size = sp->role.cr4_pae ? 8 : 4;
4048
4049         /*
4050          * Sometimes, the OS only writes the last one bytes to update status
4051          * bits, for example, in linux, andb instruction is used in clear_bit().
4052          */
4053         if (!(offset & (pte_size - 1)) && bytes == 1)
4054                 return false;
4055
4056         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4057         misaligned |= bytes < 4;
4058
4059         return misaligned;
4060 }
4061
4062 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4063 {
4064         unsigned page_offset, quadrant;
4065         u64 *spte;
4066         int level;
4067
4068         page_offset = offset_in_page(gpa);
4069         level = sp->role.level;
4070         *nspte = 1;
4071         if (!sp->role.cr4_pae) {
4072                 page_offset <<= 1;      /* 32->64 */
4073                 /*
4074                  * A 32-bit pde maps 4MB while the shadow pdes map
4075                  * only 2MB.  So we need to double the offset again
4076                  * and zap two pdes instead of one.
4077                  */
4078                 if (level == PT32_ROOT_LEVEL) {
4079                         page_offset &= ~7; /* kill rounding error */
4080                         page_offset <<= 1;
4081                         *nspte = 2;
4082                 }
4083                 quadrant = page_offset >> PAGE_SHIFT;
4084                 page_offset &= ~PAGE_MASK;
4085                 if (quadrant != sp->role.quadrant)
4086                         return NULL;
4087         }
4088
4089         spte = &sp->spt[page_offset / sizeof(*spte)];
4090         return spte;
4091 }
4092
4093 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4094                        const u8 *new, int bytes)
4095 {
4096         gfn_t gfn = gpa >> PAGE_SHIFT;
4097         union kvm_mmu_page_role mask = { .word = 0 };
4098         struct kvm_mmu_page *sp;
4099         LIST_HEAD(invalid_list);
4100         u64 entry, gentry, *spte;
4101         int npte;
4102         bool remote_flush, local_flush, zap_page;
4103
4104         /*
4105          * If we don't have indirect shadow pages, it means no page is
4106          * write-protected, so we can exit simply.
4107          */
4108         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4109                 return;
4110
4111         zap_page = remote_flush = local_flush = false;
4112
4113         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4114
4115         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4116
4117         /*
4118          * No need to care whether allocation memory is successful
4119          * or not since pte prefetch is skiped if it does not have
4120          * enough objects in the cache.
4121          */
4122         mmu_topup_memory_caches(vcpu);
4123
4124         spin_lock(&vcpu->kvm->mmu_lock);
4125         ++vcpu->kvm->stat.mmu_pte_write;
4126         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4127
4128         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4129         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4130                 if (detect_write_misaligned(sp, gpa, bytes) ||
4131                       detect_write_flooding(sp)) {
4132                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4133                                                      &invalid_list);
4134                         ++vcpu->kvm->stat.mmu_flooded;
4135                         continue;
4136                 }
4137
4138                 spte = get_written_sptes(sp, gpa, &npte);
4139                 if (!spte)
4140                         continue;
4141
4142                 local_flush = true;
4143                 while (npte--) {
4144                         entry = *spte;
4145                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4146                         if (gentry &&
4147                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4148                               & mask.word) && rmap_can_add(vcpu))
4149                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4150                         if (need_remote_flush(entry, *spte))
4151                                 remote_flush = true;
4152                         ++spte;
4153                 }
4154         }
4155         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4156         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4157         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4158         spin_unlock(&vcpu->kvm->mmu_lock);
4159 }
4160
4161 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4162 {
4163         gpa_t gpa;
4164         int r;
4165
4166         if (vcpu->arch.mmu.direct_map)
4167                 return 0;
4168
4169         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4170
4171         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4172
4173         return r;
4174 }
4175 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4176
4177 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4178 {
4179         LIST_HEAD(invalid_list);
4180
4181         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4182                 return;
4183
4184         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4185                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4186                         break;
4187
4188                 ++vcpu->kvm->stat.mmu_recycled;
4189         }
4190         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4191 }
4192
4193 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4194 {
4195         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4196                 return vcpu_match_mmio_gpa(vcpu, addr);
4197
4198         return vcpu_match_mmio_gva(vcpu, addr);
4199 }
4200
4201 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4202                        void *insn, int insn_len)
4203 {
4204         int r, emulation_type = EMULTYPE_RETRY;
4205         enum emulation_result er;
4206
4207         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4208         if (r < 0)
4209                 goto out;
4210
4211         if (!r) {
4212                 r = 1;
4213                 goto out;
4214         }
4215
4216         if (is_mmio_page_fault(vcpu, cr2))
4217                 emulation_type = 0;
4218
4219         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4220
4221         switch (er) {
4222         case EMULATE_DONE:
4223                 return 1;
4224         case EMULATE_USER_EXIT:
4225                 ++vcpu->stat.mmio_exits;
4226                 /* fall through */
4227         case EMULATE_FAIL:
4228                 return 0;
4229         default:
4230                 BUG();
4231         }
4232 out:
4233         return r;
4234 }
4235 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4236
4237 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4238 {
4239         vcpu->arch.mmu.invlpg(vcpu, gva);
4240         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4241         ++vcpu->stat.invlpg;
4242 }
4243 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4244
4245 void kvm_enable_tdp(void)
4246 {
4247         tdp_enabled = true;
4248 }
4249 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4250
4251 void kvm_disable_tdp(void)
4252 {
4253         tdp_enabled = false;
4254 }
4255 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4256
4257 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4258 {
4259         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4260         if (vcpu->arch.mmu.lm_root != NULL)
4261                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4262 }
4263
4264 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4265 {
4266         struct page *page;
4267         int i;
4268
4269         ASSERT(vcpu);
4270
4271         /*
4272          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4273          * Therefore we need to allocate shadow page tables in the first
4274          * 4GB of memory, which happens to fit the DMA32 zone.
4275          */
4276         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4277         if (!page)
4278                 return -ENOMEM;
4279
4280         vcpu->arch.mmu.pae_root = page_address(page);
4281         for (i = 0; i < 4; ++i)
4282                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4283
4284         return 0;
4285 }
4286
4287 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4288 {
4289         ASSERT(vcpu);
4290
4291         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4292         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4293         vcpu->arch.mmu.translate_gpa = translate_gpa;
4294         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4295
4296         return alloc_mmu_pages(vcpu);
4297 }
4298
4299 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4300 {
4301         ASSERT(vcpu);
4302         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4303
4304         init_kvm_mmu(vcpu);
4305 }
4306
4307 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4308 {
4309         struct kvm_memory_slot *memslot;
4310         gfn_t last_gfn;
4311         int i;
4312
4313         memslot = id_to_memslot(kvm->memslots, slot);
4314         last_gfn = memslot->base_gfn + memslot->npages - 1;
4315
4316         spin_lock(&kvm->mmu_lock);
4317
4318         for (i = PT_PAGE_TABLE_LEVEL;
4319              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4320                 unsigned long *rmapp;
4321                 unsigned long last_index, index;
4322
4323                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4324                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4325
4326                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4327                         if (*rmapp)
4328                                 __rmap_write_protect(kvm, rmapp, false);
4329
4330                         if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4331                                 cond_resched_lock(&kvm->mmu_lock);
4332                 }
4333         }
4334
4335         spin_unlock(&kvm->mmu_lock);
4336
4337         /*
4338          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4339          * which do tlb flush out of mmu-lock should be serialized by
4340          * kvm->slots_lock otherwise tlb flush would be missed.
4341          */
4342         lockdep_assert_held(&kvm->slots_lock);
4343
4344         /*
4345          * We can flush all the TLBs out of the mmu lock without TLB
4346          * corruption since we just change the spte from writable to
4347          * readonly so that we only need to care the case of changing
4348          * spte from present to present (changing the spte from present
4349          * to nonpresent will flush all the TLBs immediately), in other
4350          * words, the only case we care is mmu_spte_update() where we
4351          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4352          * instead of PT_WRITABLE_MASK, that means it does not depend
4353          * on PT_WRITABLE_MASK anymore.
4354          */
4355         kvm_flush_remote_tlbs(kvm);
4356 }
4357
4358 #define BATCH_ZAP_PAGES 10
4359 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4360 {
4361         struct kvm_mmu_page *sp, *node;
4362         int batch = 0;
4363
4364 restart:
4365         list_for_each_entry_safe_reverse(sp, node,
4366               &kvm->arch.active_mmu_pages, link) {
4367                 int ret;
4368
4369                 /*
4370                  * No obsolete page exists before new created page since
4371                  * active_mmu_pages is the FIFO list.
4372                  */
4373                 if (!is_obsolete_sp(kvm, sp))
4374                         break;
4375
4376                 /*
4377                  * Since we are reversely walking the list and the invalid
4378                  * list will be moved to the head, skip the invalid page
4379                  * can help us to avoid the infinity list walking.
4380                  */
4381                 if (sp->role.invalid)
4382                         continue;
4383
4384                 /*
4385                  * Need not flush tlb since we only zap the sp with invalid
4386                  * generation number.
4387                  */
4388                 if (batch >= BATCH_ZAP_PAGES &&
4389                       cond_resched_lock(&kvm->mmu_lock)) {
4390                         batch = 0;
4391                         goto restart;
4392                 }
4393
4394                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4395                                 &kvm->arch.zapped_obsolete_pages);
4396                 batch += ret;
4397
4398                 if (ret)
4399                         goto restart;
4400         }
4401
4402         /*
4403          * Should flush tlb before free page tables since lockless-walking
4404          * may use the pages.
4405          */
4406         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4407 }
4408
4409 /*
4410  * Fast invalidate all shadow pages and use lock-break technique
4411  * to zap obsolete pages.
4412  *
4413  * It's required when memslot is being deleted or VM is being
4414  * destroyed, in these cases, we should ensure that KVM MMU does
4415  * not use any resource of the being-deleted slot or all slots
4416  * after calling the function.
4417  */
4418 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4419 {
4420         spin_lock(&kvm->mmu_lock);
4421         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4422         kvm->arch.mmu_valid_gen++;
4423
4424         /*
4425          * Notify all vcpus to reload its shadow page table
4426          * and flush TLB. Then all vcpus will switch to new
4427          * shadow page table with the new mmu_valid_gen.
4428          *
4429          * Note: we should do this under the protection of
4430          * mmu-lock, otherwise, vcpu would purge shadow page
4431          * but miss tlb flush.
4432          */
4433         kvm_reload_remote_mmus(kvm);
4434
4435         kvm_zap_obsolete_pages(kvm);
4436         spin_unlock(&kvm->mmu_lock);
4437 }
4438
4439 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4440 {
4441         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4442 }
4443
4444 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4445 {
4446         /*
4447          * The very rare case: if the generation-number is round,
4448          * zap all shadow pages.
4449          */
4450         if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4451                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4452                 kvm_mmu_invalidate_zap_all_pages(kvm);
4453         }
4454 }
4455
4456 static unsigned long
4457 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4458 {
4459         struct kvm *kvm;
4460         int nr_to_scan = sc->nr_to_scan;
4461         unsigned long freed = 0;
4462
4463         spin_lock(&kvm_lock);
4464
4465         list_for_each_entry(kvm, &vm_list, vm_list) {
4466                 int idx;
4467                 LIST_HEAD(invalid_list);
4468
4469                 /*
4470                  * Never scan more than sc->nr_to_scan VM instances.
4471                  * Will not hit this condition practically since we do not try
4472                  * to shrink more than one VM and it is very unlikely to see
4473                  * !n_used_mmu_pages so many times.
4474                  */
4475                 if (!nr_to_scan--)
4476                         break;
4477                 /*
4478                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4479                  * here. We may skip a VM instance errorneosly, but we do not
4480                  * want to shrink a VM that only started to populate its MMU
4481                  * anyway.
4482                  */
4483                 if (!kvm->arch.n_used_mmu_pages &&
4484                       !kvm_has_zapped_obsolete_pages(kvm))
4485                         continue;
4486
4487                 idx = srcu_read_lock(&kvm->srcu);
4488                 spin_lock(&kvm->mmu_lock);
4489
4490                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4491                         kvm_mmu_commit_zap_page(kvm,
4492                               &kvm->arch.zapped_obsolete_pages);
4493                         goto unlock;
4494                 }
4495
4496                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4497                         freed++;
4498                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4499
4500 unlock:
4501                 spin_unlock(&kvm->mmu_lock);
4502                 srcu_read_unlock(&kvm->srcu, idx);
4503
4504                 /*
4505                  * unfair on small ones
4506                  * per-vm shrinkers cry out
4507                  * sadness comes quickly
4508                  */
4509                 list_move_tail(&kvm->vm_list, &vm_list);
4510                 break;
4511         }
4512
4513         spin_unlock(&kvm_lock);
4514         return freed;
4515 }
4516
4517 static unsigned long
4518 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4519 {
4520         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4521 }
4522
4523 static struct shrinker mmu_shrinker = {
4524         .count_objects = mmu_shrink_count,
4525         .scan_objects = mmu_shrink_scan,
4526         .seeks = DEFAULT_SEEKS * 10,
4527 };
4528
4529 static void mmu_destroy_caches(void)
4530 {
4531         if (pte_list_desc_cache)
4532                 kmem_cache_destroy(pte_list_desc_cache);
4533         if (mmu_page_header_cache)
4534                 kmem_cache_destroy(mmu_page_header_cache);
4535 }
4536
4537 int kvm_mmu_module_init(void)
4538 {
4539         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4540                                             sizeof(struct pte_list_desc),
4541                                             0, 0, NULL);
4542         if (!pte_list_desc_cache)
4543                 goto nomem;
4544
4545         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4546                                                   sizeof(struct kvm_mmu_page),
4547                                                   0, 0, NULL);
4548         if (!mmu_page_header_cache)
4549                 goto nomem;
4550
4551         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4552                 goto nomem;
4553
4554         register_shrinker(&mmu_shrinker);
4555
4556         return 0;
4557
4558 nomem:
4559         mmu_destroy_caches();
4560         return -ENOMEM;
4561 }
4562
4563 /*
4564  * Caculate mmu pages needed for kvm.
4565  */
4566 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4567 {
4568         unsigned int nr_mmu_pages;
4569         unsigned int  nr_pages = 0;
4570         struct kvm_memslots *slots;
4571         struct kvm_memory_slot *memslot;
4572
4573         slots = kvm_memslots(kvm);
4574
4575         kvm_for_each_memslot(memslot, slots)
4576                 nr_pages += memslot->npages;
4577
4578         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4579         nr_mmu_pages = max(nr_mmu_pages,
4580                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4581
4582         return nr_mmu_pages;
4583 }
4584
4585 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4586 {
4587         struct kvm_shadow_walk_iterator iterator;
4588         u64 spte;
4589         int nr_sptes = 0;
4590
4591         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4592                 return nr_sptes;
4593
4594         walk_shadow_page_lockless_begin(vcpu);
4595         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4596                 sptes[iterator.level-1] = spte;
4597                 nr_sptes++;
4598                 if (!is_shadow_present_pte(spte))
4599                         break;
4600         }
4601         walk_shadow_page_lockless_end(vcpu);
4602
4603         return nr_sptes;
4604 }
4605 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4606
4607 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4608 {
4609         ASSERT(vcpu);
4610
4611         kvm_mmu_unload(vcpu);
4612         free_mmu_pages(vcpu);
4613         mmu_free_memory_caches(vcpu);
4614 }
4615
4616 void kvm_mmu_module_exit(void)
4617 {
4618         mmu_destroy_caches();
4619         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4620         unregister_shrinker(&mmu_shrinker);
4621         mmu_audit_disable();
4622 }