Merge tag 'v3.18' into for_next
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66
67 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69
70 #else
71
72 #define pgprintk(x...) do { } while (0)
73 #define rmap_printk(x...) do { } while (0)
74
75 #endif
76
77 #ifdef MMU_DEBUG
78 static bool dbg = 0;
79 module_param(dbg, bool, 0644);
80 #endif
81
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x)                                                       \
86         if (!(x)) {                                                     \
87                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
88                        __FILE__, __LINE__, #x);                         \
89         }
90 #endif
91
92 #define PTE_PREFETCH_NUM                8
93
94 #define PT_FIRST_AVAIL_BITS_SHIFT 10
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
97 #define PT64_LEVEL_BITS 9
98
99 #define PT64_LEVEL_SHIFT(level) \
100                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101
102 #define PT64_INDEX(address, level)\
103         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106 #define PT32_LEVEL_BITS 10
107
108 #define PT32_LEVEL_SHIFT(level) \
109                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110
111 #define PT32_LVL_OFFSET_MASK(level) \
112         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT32_LEVEL_BITS))) - 1))
114
115 #define PT32_INDEX(address, level)\
116         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117
118
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124                                                 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                                 * PT64_LEVEL_BITS))) - 1))
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137                         | shadow_x_mask | shadow_nx_mask)
138
139 #define ACC_EXEC_MASK    1
140 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
141 #define ACC_USER_MASK    PT_USER_MASK
142 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143
144 #include <trace/events/kvm.h>
145
146 #define CREATE_TRACE_POINTS
147 #include "mmutrace.h"
148
149 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
154 /* make pte_list_desc fit well in cache line */
155 #define PTE_LIST_EXT 3
156
157 struct pte_list_desc {
158         u64 *sptes[PTE_LIST_EXT];
159         struct pte_list_desc *more;
160 };
161
162 struct kvm_shadow_walk_iterator {
163         u64 addr;
164         hpa_t shadow_addr;
165         u64 *sptep;
166         int level;
167         unsigned index;
168 };
169
170 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
171         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
172              shadow_walk_okay(&(_walker));                      \
173              shadow_walk_next(&(_walker)))
174
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
176         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
177              shadow_walk_okay(&(_walker)) &&                            \
178                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
179              __shadow_walk_next(&(_walker), spte))
180
181 static struct kmem_cache *pte_list_desc_cache;
182 static struct kmem_cache *mmu_page_header_cache;
183 static struct percpu_counter kvm_total_used_mmu_pages;
184
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
190 static u64 __read_mostly shadow_mmio_mask;
191
192 static void mmu_spte_set(u64 *sptep, u64 spte);
193 static void mmu_free_roots(struct kvm_vcpu *vcpu);
194
195 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196 {
197         shadow_mmio_mask = mmio_mask;
198 }
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200
201 /*
202  * the low bit of the generation number is always presumed to be zero.
203  * This disables mmio caching during memslot updates.  The concept is
204  * similar to a seqcount but instead of retrying the access we just punt
205  * and ignore the cache.
206  *
207  * spte bits 3-11 are used as bits 1-9 of the generation number,
208  * the bits 52-61 are used as bits 10-19 of the generation number.
209  */
210 #define MMIO_SPTE_GEN_LOW_SHIFT         2
211 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
212
213 #define MMIO_GEN_SHIFT                  20
214 #define MMIO_GEN_LOW_SHIFT              10
215 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
216 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
217 #define MMIO_MAX_GEN                    ((1 << MMIO_GEN_SHIFT) - 1)
218
219 static u64 generation_mmio_spte_mask(unsigned int gen)
220 {
221         u64 mask;
222
223         WARN_ON(gen > MMIO_MAX_GEN);
224
225         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
226         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
227         return mask;
228 }
229
230 static unsigned int get_mmio_spte_generation(u64 spte)
231 {
232         unsigned int gen;
233
234         spte &= ~shadow_mmio_mask;
235
236         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
237         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
238         return gen;
239 }
240
241 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
242 {
243         return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
244 }
245
246 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247                            unsigned access)
248 {
249         unsigned int gen = kvm_current_mmio_generation(kvm);
250         u64 mask = generation_mmio_spte_mask(gen);
251
252         access &= ACC_WRITE_MASK | ACC_USER_MASK;
253         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
254
255         trace_mark_mmio_spte(sptep, gfn, access, gen);
256         mmu_spte_set(sptep, mask);
257 }
258
259 static bool is_mmio_spte(u64 spte)
260 {
261         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262 }
263
264 static gfn_t get_mmio_spte_gfn(u64 spte)
265 {
266         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267         return (spte & ~mask) >> PAGE_SHIFT;
268 }
269
270 static unsigned get_mmio_spte_access(u64 spte)
271 {
272         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273         return (spte & ~mask) & ~PAGE_MASK;
274 }
275
276 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277                           pfn_t pfn, unsigned access)
278 {
279         if (unlikely(is_noslot_pfn(pfn))) {
280                 mark_mmio_spte(kvm, sptep, gfn, access);
281                 return true;
282         }
283
284         return false;
285 }
286
287 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288 {
289         unsigned int kvm_gen, spte_gen;
290
291         kvm_gen = kvm_current_mmio_generation(kvm);
292         spte_gen = get_mmio_spte_generation(spte);
293
294         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295         return likely(kvm_gen == spte_gen);
296 }
297
298 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
299                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
300 {
301         shadow_user_mask = user_mask;
302         shadow_accessed_mask = accessed_mask;
303         shadow_dirty_mask = dirty_mask;
304         shadow_nx_mask = nx_mask;
305         shadow_x_mask = x_mask;
306 }
307 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
308
309 static int is_cpuid_PSE36(void)
310 {
311         return 1;
312 }
313
314 static int is_nx(struct kvm_vcpu *vcpu)
315 {
316         return vcpu->arch.efer & EFER_NX;
317 }
318
319 static int is_shadow_present_pte(u64 pte)
320 {
321         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
322 }
323
324 static int is_large_pte(u64 pte)
325 {
326         return pte & PT_PAGE_SIZE_MASK;
327 }
328
329 static int is_rmap_spte(u64 pte)
330 {
331         return is_shadow_present_pte(pte);
332 }
333
334 static int is_last_spte(u64 pte, int level)
335 {
336         if (level == PT_PAGE_TABLE_LEVEL)
337                 return 1;
338         if (is_large_pte(pte))
339                 return 1;
340         return 0;
341 }
342
343 static pfn_t spte_to_pfn(u64 pte)
344 {
345         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
346 }
347
348 static gfn_t pse36_gfn_delta(u32 gpte)
349 {
350         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
351
352         return (gpte & PT32_DIR_PSE36_MASK) << shift;
353 }
354
355 #ifdef CONFIG_X86_64
356 static void __set_spte(u64 *sptep, u64 spte)
357 {
358         *sptep = spte;
359 }
360
361 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
362 {
363         *sptep = spte;
364 }
365
366 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
367 {
368         return xchg(sptep, spte);
369 }
370
371 static u64 __get_spte_lockless(u64 *sptep)
372 {
373         return ACCESS_ONCE(*sptep);
374 }
375
376 static bool __check_direct_spte_mmio_pf(u64 spte)
377 {
378         /* It is valid if the spte is zapped. */
379         return spte == 0ull;
380 }
381 #else
382 union split_spte {
383         struct {
384                 u32 spte_low;
385                 u32 spte_high;
386         };
387         u64 spte;
388 };
389
390 static void count_spte_clear(u64 *sptep, u64 spte)
391 {
392         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
393
394         if (is_shadow_present_pte(spte))
395                 return;
396
397         /* Ensure the spte is completely set before we increase the count */
398         smp_wmb();
399         sp->clear_spte_count++;
400 }
401
402 static void __set_spte(u64 *sptep, u64 spte)
403 {
404         union split_spte *ssptep, sspte;
405
406         ssptep = (union split_spte *)sptep;
407         sspte = (union split_spte)spte;
408
409         ssptep->spte_high = sspte.spte_high;
410
411         /*
412          * If we map the spte from nonpresent to present, We should store
413          * the high bits firstly, then set present bit, so cpu can not
414          * fetch this spte while we are setting the spte.
415          */
416         smp_wmb();
417
418         ssptep->spte_low = sspte.spte_low;
419 }
420
421 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
422 {
423         union split_spte *ssptep, sspte;
424
425         ssptep = (union split_spte *)sptep;
426         sspte = (union split_spte)spte;
427
428         ssptep->spte_low = sspte.spte_low;
429
430         /*
431          * If we map the spte from present to nonpresent, we should clear
432          * present bit firstly to avoid vcpu fetch the old high bits.
433          */
434         smp_wmb();
435
436         ssptep->spte_high = sspte.spte_high;
437         count_spte_clear(sptep, spte);
438 }
439
440 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
441 {
442         union split_spte *ssptep, sspte, orig;
443
444         ssptep = (union split_spte *)sptep;
445         sspte = (union split_spte)spte;
446
447         /* xchg acts as a barrier before the setting of the high bits */
448         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
449         orig.spte_high = ssptep->spte_high;
450         ssptep->spte_high = sspte.spte_high;
451         count_spte_clear(sptep, spte);
452
453         return orig.spte;
454 }
455
456 /*
457  * The idea using the light way get the spte on x86_32 guest is from
458  * gup_get_pte(arch/x86/mm/gup.c).
459  *
460  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
461  * coalesces them and we are running out of the MMU lock.  Therefore
462  * we need to protect against in-progress updates of the spte.
463  *
464  * Reading the spte while an update is in progress may get the old value
465  * for the high part of the spte.  The race is fine for a present->non-present
466  * change (because the high part of the spte is ignored for non-present spte),
467  * but for a present->present change we must reread the spte.
468  *
469  * All such changes are done in two steps (present->non-present and
470  * non-present->present), hence it is enough to count the number of
471  * present->non-present updates: if it changed while reading the spte,
472  * we might have hit the race.  This is done using clear_spte_count.
473  */
474 static u64 __get_spte_lockless(u64 *sptep)
475 {
476         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
477         union split_spte spte, *orig = (union split_spte *)sptep;
478         int count;
479
480 retry:
481         count = sp->clear_spte_count;
482         smp_rmb();
483
484         spte.spte_low = orig->spte_low;
485         smp_rmb();
486
487         spte.spte_high = orig->spte_high;
488         smp_rmb();
489
490         if (unlikely(spte.spte_low != orig->spte_low ||
491               count != sp->clear_spte_count))
492                 goto retry;
493
494         return spte.spte;
495 }
496
497 static bool __check_direct_spte_mmio_pf(u64 spte)
498 {
499         union split_spte sspte = (union split_spte)spte;
500         u32 high_mmio_mask = shadow_mmio_mask >> 32;
501
502         /* It is valid if the spte is zapped. */
503         if (spte == 0ull)
504                 return true;
505
506         /* It is valid if the spte is being zapped. */
507         if (sspte.spte_low == 0ull &&
508             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
509                 return true;
510
511         return false;
512 }
513 #endif
514
515 static bool spte_is_locklessly_modifiable(u64 spte)
516 {
517         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
518                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
519 }
520
521 static bool spte_has_volatile_bits(u64 spte)
522 {
523         /*
524          * Always atomicly update spte if it can be updated
525          * out of mmu-lock, it can ensure dirty bit is not lost,
526          * also, it can help us to get a stable is_writable_pte()
527          * to ensure tlb flush is not missed.
528          */
529         if (spte_is_locklessly_modifiable(spte))
530                 return true;
531
532         if (!shadow_accessed_mask)
533                 return false;
534
535         if (!is_shadow_present_pte(spte))
536                 return false;
537
538         if ((spte & shadow_accessed_mask) &&
539               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
540                 return false;
541
542         return true;
543 }
544
545 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
546 {
547         return (old_spte & bit_mask) && !(new_spte & bit_mask);
548 }
549
550 /* Rules for using mmu_spte_set:
551  * Set the sptep from nonpresent to present.
552  * Note: the sptep being assigned *must* be either not present
553  * or in a state where the hardware will not attempt to update
554  * the spte.
555  */
556 static void mmu_spte_set(u64 *sptep, u64 new_spte)
557 {
558         WARN_ON(is_shadow_present_pte(*sptep));
559         __set_spte(sptep, new_spte);
560 }
561
562 /* Rules for using mmu_spte_update:
563  * Update the state bits, it means the mapped pfn is not changged.
564  *
565  * Whenever we overwrite a writable spte with a read-only one we
566  * should flush remote TLBs. Otherwise rmap_write_protect
567  * will find a read-only spte, even though the writable spte
568  * might be cached on a CPU's TLB, the return value indicates this
569  * case.
570  */
571 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
572 {
573         u64 old_spte = *sptep;
574         bool ret = false;
575
576         WARN_ON(!is_rmap_spte(new_spte));
577
578         if (!is_shadow_present_pte(old_spte)) {
579                 mmu_spte_set(sptep, new_spte);
580                 return ret;
581         }
582
583         if (!spte_has_volatile_bits(old_spte))
584                 __update_clear_spte_fast(sptep, new_spte);
585         else
586                 old_spte = __update_clear_spte_slow(sptep, new_spte);
587
588         /*
589          * For the spte updated out of mmu-lock is safe, since
590          * we always atomicly update it, see the comments in
591          * spte_has_volatile_bits().
592          */
593         if (spte_is_locklessly_modifiable(old_spte) &&
594               !is_writable_pte(new_spte))
595                 ret = true;
596
597         if (!shadow_accessed_mask)
598                 return ret;
599
600         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
601                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
602         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
603                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
604
605         return ret;
606 }
607
608 /*
609  * Rules for using mmu_spte_clear_track_bits:
610  * It sets the sptep from present to nonpresent, and track the
611  * state bits, it is used to clear the last level sptep.
612  */
613 static int mmu_spte_clear_track_bits(u64 *sptep)
614 {
615         pfn_t pfn;
616         u64 old_spte = *sptep;
617
618         if (!spte_has_volatile_bits(old_spte))
619                 __update_clear_spte_fast(sptep, 0ull);
620         else
621                 old_spte = __update_clear_spte_slow(sptep, 0ull);
622
623         if (!is_rmap_spte(old_spte))
624                 return 0;
625
626         pfn = spte_to_pfn(old_spte);
627
628         /*
629          * KVM does not hold the refcount of the page used by
630          * kvm mmu, before reclaiming the page, we should
631          * unmap it from mmu first.
632          */
633         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
634
635         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
636                 kvm_set_pfn_accessed(pfn);
637         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
638                 kvm_set_pfn_dirty(pfn);
639         return 1;
640 }
641
642 /*
643  * Rules for using mmu_spte_clear_no_track:
644  * Directly clear spte without caring the state bits of sptep,
645  * it is used to set the upper level spte.
646  */
647 static void mmu_spte_clear_no_track(u64 *sptep)
648 {
649         __update_clear_spte_fast(sptep, 0ull);
650 }
651
652 static u64 mmu_spte_get_lockless(u64 *sptep)
653 {
654         return __get_spte_lockless(sptep);
655 }
656
657 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
658 {
659         /*
660          * Prevent page table teardown by making any free-er wait during
661          * kvm_flush_remote_tlbs() IPI to all active vcpus.
662          */
663         local_irq_disable();
664         vcpu->mode = READING_SHADOW_PAGE_TABLES;
665         /*
666          * Make sure a following spte read is not reordered ahead of the write
667          * to vcpu->mode.
668          */
669         smp_mb();
670 }
671
672 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
673 {
674         /*
675          * Make sure the write to vcpu->mode is not reordered in front of
676          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
677          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
678          */
679         smp_mb();
680         vcpu->mode = OUTSIDE_GUEST_MODE;
681         local_irq_enable();
682 }
683
684 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
685                                   struct kmem_cache *base_cache, int min)
686 {
687         void *obj;
688
689         if (cache->nobjs >= min)
690                 return 0;
691         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
692                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
693                 if (!obj)
694                         return -ENOMEM;
695                 cache->objects[cache->nobjs++] = obj;
696         }
697         return 0;
698 }
699
700 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
701 {
702         return cache->nobjs;
703 }
704
705 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
706                                   struct kmem_cache *cache)
707 {
708         while (mc->nobjs)
709                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
710 }
711
712 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
713                                        int min)
714 {
715         void *page;
716
717         if (cache->nobjs >= min)
718                 return 0;
719         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
720                 page = (void *)__get_free_page(GFP_KERNEL);
721                 if (!page)
722                         return -ENOMEM;
723                 cache->objects[cache->nobjs++] = page;
724         }
725         return 0;
726 }
727
728 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
729 {
730         while (mc->nobjs)
731                 free_page((unsigned long)mc->objects[--mc->nobjs]);
732 }
733
734 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
735 {
736         int r;
737
738         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
739                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
740         if (r)
741                 goto out;
742         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
743         if (r)
744                 goto out;
745         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
746                                    mmu_page_header_cache, 4);
747 out:
748         return r;
749 }
750
751 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
752 {
753         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
754                                 pte_list_desc_cache);
755         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
756         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
757                                 mmu_page_header_cache);
758 }
759
760 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
761 {
762         void *p;
763
764         BUG_ON(!mc->nobjs);
765         p = mc->objects[--mc->nobjs];
766         return p;
767 }
768
769 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
770 {
771         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
772 }
773
774 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
775 {
776         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
777 }
778
779 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
780 {
781         if (!sp->role.direct)
782                 return sp->gfns[index];
783
784         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
785 }
786
787 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
788 {
789         if (sp->role.direct)
790                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
791         else
792                 sp->gfns[index] = gfn;
793 }
794
795 /*
796  * Return the pointer to the large page information for a given gfn,
797  * handling slots that are not large page aligned.
798  */
799 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
800                                               struct kvm_memory_slot *slot,
801                                               int level)
802 {
803         unsigned long idx;
804
805         idx = gfn_to_index(gfn, slot->base_gfn, level);
806         return &slot->arch.lpage_info[level - 2][idx];
807 }
808
809 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
810 {
811         struct kvm_memory_slot *slot;
812         struct kvm_lpage_info *linfo;
813         int i;
814
815         slot = gfn_to_memslot(kvm, gfn);
816         for (i = PT_DIRECTORY_LEVEL;
817              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
818                 linfo = lpage_info_slot(gfn, slot, i);
819                 linfo->write_count += 1;
820         }
821         kvm->arch.indirect_shadow_pages++;
822 }
823
824 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
825 {
826         struct kvm_memory_slot *slot;
827         struct kvm_lpage_info *linfo;
828         int i;
829
830         slot = gfn_to_memslot(kvm, gfn);
831         for (i = PT_DIRECTORY_LEVEL;
832              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
833                 linfo = lpage_info_slot(gfn, slot, i);
834                 linfo->write_count -= 1;
835                 WARN_ON(linfo->write_count < 0);
836         }
837         kvm->arch.indirect_shadow_pages--;
838 }
839
840 static int has_wrprotected_page(struct kvm *kvm,
841                                 gfn_t gfn,
842                                 int level)
843 {
844         struct kvm_memory_slot *slot;
845         struct kvm_lpage_info *linfo;
846
847         slot = gfn_to_memslot(kvm, gfn);
848         if (slot) {
849                 linfo = lpage_info_slot(gfn, slot, level);
850                 return linfo->write_count;
851         }
852
853         return 1;
854 }
855
856 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
857 {
858         unsigned long page_size;
859         int i, ret = 0;
860
861         page_size = kvm_host_page_size(kvm, gfn);
862
863         for (i = PT_PAGE_TABLE_LEVEL;
864              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
865                 if (page_size >= KVM_HPAGE_SIZE(i))
866                         ret = i;
867                 else
868                         break;
869         }
870
871         return ret;
872 }
873
874 static struct kvm_memory_slot *
875 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
876                             bool no_dirty_log)
877 {
878         struct kvm_memory_slot *slot;
879
880         slot = gfn_to_memslot(vcpu->kvm, gfn);
881         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
882               (no_dirty_log && slot->dirty_bitmap))
883                 slot = NULL;
884
885         return slot;
886 }
887
888 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889 {
890         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
891 }
892
893 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
894 {
895         int host_level, level, max_level;
896
897         host_level = host_mapping_level(vcpu->kvm, large_gfn);
898
899         if (host_level == PT_PAGE_TABLE_LEVEL)
900                 return host_level;
901
902         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
903
904         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
905                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
906                         break;
907
908         return level - 1;
909 }
910
911 /*
912  * Pte mapping structures:
913  *
914  * If pte_list bit zero is zero, then pte_list point to the spte.
915  *
916  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917  * pte_list_desc containing more mappings.
918  *
919  * Returns the number of pte entries before the spte was added or zero if
920  * the spte was not added.
921  *
922  */
923 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
924                         unsigned long *pte_list)
925 {
926         struct pte_list_desc *desc;
927         int i, count = 0;
928
929         if (!*pte_list) {
930                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
931                 *pte_list = (unsigned long)spte;
932         } else if (!(*pte_list & 1)) {
933                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
934                 desc = mmu_alloc_pte_list_desc(vcpu);
935                 desc->sptes[0] = (u64 *)*pte_list;
936                 desc->sptes[1] = spte;
937                 *pte_list = (unsigned long)desc | 1;
938                 ++count;
939         } else {
940                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
941                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
943                         desc = desc->more;
944                         count += PTE_LIST_EXT;
945                 }
946                 if (desc->sptes[PTE_LIST_EXT-1]) {
947                         desc->more = mmu_alloc_pte_list_desc(vcpu);
948                         desc = desc->more;
949                 }
950                 for (i = 0; desc->sptes[i]; ++i)
951                         ++count;
952                 desc->sptes[i] = spte;
953         }
954         return count;
955 }
956
957 static void
958 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
959                            int i, struct pte_list_desc *prev_desc)
960 {
961         int j;
962
963         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
964                 ;
965         desc->sptes[i] = desc->sptes[j];
966         desc->sptes[j] = NULL;
967         if (j != 0)
968                 return;
969         if (!prev_desc && !desc->more)
970                 *pte_list = (unsigned long)desc->sptes[0];
971         else
972                 if (prev_desc)
973                         prev_desc->more = desc->more;
974                 else
975                         *pte_list = (unsigned long)desc->more | 1;
976         mmu_free_pte_list_desc(desc);
977 }
978
979 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
980 {
981         struct pte_list_desc *desc;
982         struct pte_list_desc *prev_desc;
983         int i;
984
985         if (!*pte_list) {
986                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
987                 BUG();
988         } else if (!(*pte_list & 1)) {
989                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
990                 if ((u64 *)*pte_list != spte) {
991                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
992                         BUG();
993                 }
994                 *pte_list = 0;
995         } else {
996                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
997                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
998                 prev_desc = NULL;
999                 while (desc) {
1000                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1001                                 if (desc->sptes[i] == spte) {
1002                                         pte_list_desc_remove_entry(pte_list,
1003                                                                desc, i,
1004                                                                prev_desc);
1005                                         return;
1006                                 }
1007                         prev_desc = desc;
1008                         desc = desc->more;
1009                 }
1010                 pr_err("pte_list_remove: %p many->many\n", spte);
1011                 BUG();
1012         }
1013 }
1014
1015 typedef void (*pte_list_walk_fn) (u64 *spte);
1016 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017 {
1018         struct pte_list_desc *desc;
1019         int i;
1020
1021         if (!*pte_list)
1022                 return;
1023
1024         if (!(*pte_list & 1))
1025                 return fn((u64 *)*pte_list);
1026
1027         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1028         while (desc) {
1029                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030                         fn(desc->sptes[i]);
1031                 desc = desc->more;
1032         }
1033 }
1034
1035 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1036                                     struct kvm_memory_slot *slot)
1037 {
1038         unsigned long idx;
1039
1040         idx = gfn_to_index(gfn, slot->base_gfn, level);
1041         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1042 }
1043
1044 /*
1045  * Take gfn and return the reverse mapping to it.
1046  */
1047 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1048 {
1049         struct kvm_memory_slot *slot;
1050
1051         slot = gfn_to_memslot(kvm, gfn);
1052         return __gfn_to_rmap(gfn, level, slot);
1053 }
1054
1055 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1056 {
1057         struct kvm_mmu_memory_cache *cache;
1058
1059         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1060         return mmu_memory_cache_free_objects(cache);
1061 }
1062
1063 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1064 {
1065         struct kvm_mmu_page *sp;
1066         unsigned long *rmapp;
1067
1068         sp = page_header(__pa(spte));
1069         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1070         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1071         return pte_list_add(vcpu, spte, rmapp);
1072 }
1073
1074 static void rmap_remove(struct kvm *kvm, u64 *spte)
1075 {
1076         struct kvm_mmu_page *sp;
1077         gfn_t gfn;
1078         unsigned long *rmapp;
1079
1080         sp = page_header(__pa(spte));
1081         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1082         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1083         pte_list_remove(spte, rmapp);
1084 }
1085
1086 /*
1087  * Used by the following functions to iterate through the sptes linked by a
1088  * rmap.  All fields are private and not assumed to be used outside.
1089  */
1090 struct rmap_iterator {
1091         /* private fields */
1092         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1093         int pos;                        /* index of the sptep */
1094 };
1095
1096 /*
1097  * Iteration must be started by this function.  This should also be used after
1098  * removing/dropping sptes from the rmap link because in such cases the
1099  * information in the itererator may not be valid.
1100  *
1101  * Returns sptep if found, NULL otherwise.
1102  */
1103 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1104 {
1105         if (!rmap)
1106                 return NULL;
1107
1108         if (!(rmap & 1)) {
1109                 iter->desc = NULL;
1110                 return (u64 *)rmap;
1111         }
1112
1113         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1114         iter->pos = 0;
1115         return iter->desc->sptes[iter->pos];
1116 }
1117
1118 /*
1119  * Must be used with a valid iterator: e.g. after rmap_get_first().
1120  *
1121  * Returns sptep if found, NULL otherwise.
1122  */
1123 static u64 *rmap_get_next(struct rmap_iterator *iter)
1124 {
1125         if (iter->desc) {
1126                 if (iter->pos < PTE_LIST_EXT - 1) {
1127                         u64 *sptep;
1128
1129                         ++iter->pos;
1130                         sptep = iter->desc->sptes[iter->pos];
1131                         if (sptep)
1132                                 return sptep;
1133                 }
1134
1135                 iter->desc = iter->desc->more;
1136
1137                 if (iter->desc) {
1138                         iter->pos = 0;
1139                         /* desc->sptes[0] cannot be NULL */
1140                         return iter->desc->sptes[iter->pos];
1141                 }
1142         }
1143
1144         return NULL;
1145 }
1146
1147 static void drop_spte(struct kvm *kvm, u64 *sptep)
1148 {
1149         if (mmu_spte_clear_track_bits(sptep))
1150                 rmap_remove(kvm, sptep);
1151 }
1152
1153
1154 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1155 {
1156         if (is_large_pte(*sptep)) {
1157                 WARN_ON(page_header(__pa(sptep))->role.level ==
1158                         PT_PAGE_TABLE_LEVEL);
1159                 drop_spte(kvm, sptep);
1160                 --kvm->stat.lpages;
1161                 return true;
1162         }
1163
1164         return false;
1165 }
1166
1167 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1168 {
1169         if (__drop_large_spte(vcpu->kvm, sptep))
1170                 kvm_flush_remote_tlbs(vcpu->kvm);
1171 }
1172
1173 /*
1174  * Write-protect on the specified @sptep, @pt_protect indicates whether
1175  * spte write-protection is caused by protecting shadow page table.
1176  *
1177  * Note: write protection is difference between dirty logging and spte
1178  * protection:
1179  * - for dirty logging, the spte can be set to writable at anytime if
1180  *   its dirty bitmap is properly set.
1181  * - for spte protection, the spte can be writable only after unsync-ing
1182  *   shadow page.
1183  *
1184  * Return true if tlb need be flushed.
1185  */
1186 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1187 {
1188         u64 spte = *sptep;
1189
1190         if (!is_writable_pte(spte) &&
1191               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1192                 return false;
1193
1194         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
1196         if (pt_protect)
1197                 spte &= ~SPTE_MMU_WRITEABLE;
1198         spte = spte & ~PT_WRITABLE_MASK;
1199
1200         return mmu_spte_update(sptep, spte);
1201 }
1202
1203 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1204                                  bool pt_protect)
1205 {
1206         u64 *sptep;
1207         struct rmap_iterator iter;
1208         bool flush = false;
1209
1210         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1211                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1212
1213                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1214                 sptep = rmap_get_next(&iter);
1215         }
1216
1217         return flush;
1218 }
1219
1220 /**
1221  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1222  * @kvm: kvm instance
1223  * @slot: slot to protect
1224  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1225  * @mask: indicates which pages we should protect
1226  *
1227  * Used when we do not need to care about huge page mappings: e.g. during dirty
1228  * logging we do not have any such mappings.
1229  */
1230 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1231                                      struct kvm_memory_slot *slot,
1232                                      gfn_t gfn_offset, unsigned long mask)
1233 {
1234         unsigned long *rmapp;
1235
1236         while (mask) {
1237                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1238                                       PT_PAGE_TABLE_LEVEL, slot);
1239                 __rmap_write_protect(kvm, rmapp, false);
1240
1241                 /* clear the first set bit */
1242                 mask &= mask - 1;
1243         }
1244 }
1245
1246 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1247 {
1248         struct kvm_memory_slot *slot;
1249         unsigned long *rmapp;
1250         int i;
1251         bool write_protected = false;
1252
1253         slot = gfn_to_memslot(kvm, gfn);
1254
1255         for (i = PT_PAGE_TABLE_LEVEL;
1256              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1257                 rmapp = __gfn_to_rmap(gfn, i, slot);
1258                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1259         }
1260
1261         return write_protected;
1262 }
1263
1264 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1265                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1266                            unsigned long data)
1267 {
1268         u64 *sptep;
1269         struct rmap_iterator iter;
1270         int need_tlb_flush = 0;
1271
1272         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1273                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1274                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1275                              sptep, *sptep, gfn, level);
1276
1277                 drop_spte(kvm, sptep);
1278                 need_tlb_flush = 1;
1279         }
1280
1281         return need_tlb_flush;
1282 }
1283
1284 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1285                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1286                              unsigned long data)
1287 {
1288         u64 *sptep;
1289         struct rmap_iterator iter;
1290         int need_flush = 0;
1291         u64 new_spte;
1292         pte_t *ptep = (pte_t *)data;
1293         pfn_t new_pfn;
1294
1295         WARN_ON(pte_huge(*ptep));
1296         new_pfn = pte_pfn(*ptep);
1297
1298         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1299                 BUG_ON(!is_shadow_present_pte(*sptep));
1300                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1301                              sptep, *sptep, gfn, level);
1302
1303                 need_flush = 1;
1304
1305                 if (pte_write(*ptep)) {
1306                         drop_spte(kvm, sptep);
1307                         sptep = rmap_get_first(*rmapp, &iter);
1308                 } else {
1309                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1310                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1311
1312                         new_spte &= ~PT_WRITABLE_MASK;
1313                         new_spte &= ~SPTE_HOST_WRITEABLE;
1314                         new_spte &= ~shadow_accessed_mask;
1315
1316                         mmu_spte_clear_track_bits(sptep);
1317                         mmu_spte_set(sptep, new_spte);
1318                         sptep = rmap_get_next(&iter);
1319                 }
1320         }
1321
1322         if (need_flush)
1323                 kvm_flush_remote_tlbs(kvm);
1324
1325         return 0;
1326 }
1327
1328 static int kvm_handle_hva_range(struct kvm *kvm,
1329                                 unsigned long start,
1330                                 unsigned long end,
1331                                 unsigned long data,
1332                                 int (*handler)(struct kvm *kvm,
1333                                                unsigned long *rmapp,
1334                                                struct kvm_memory_slot *slot,
1335                                                gfn_t gfn,
1336                                                int level,
1337                                                unsigned long data))
1338 {
1339         int j;
1340         int ret = 0;
1341         struct kvm_memslots *slots;
1342         struct kvm_memory_slot *memslot;
1343
1344         slots = kvm_memslots(kvm);
1345
1346         kvm_for_each_memslot(memslot, slots) {
1347                 unsigned long hva_start, hva_end;
1348                 gfn_t gfn_start, gfn_end;
1349
1350                 hva_start = max(start, memslot->userspace_addr);
1351                 hva_end = min(end, memslot->userspace_addr +
1352                                         (memslot->npages << PAGE_SHIFT));
1353                 if (hva_start >= hva_end)
1354                         continue;
1355                 /*
1356                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1357                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1358                  */
1359                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1360                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1361
1362                 for (j = PT_PAGE_TABLE_LEVEL;
1363                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1364                         unsigned long idx, idx_end;
1365                         unsigned long *rmapp;
1366                         gfn_t gfn = gfn_start;
1367
1368                         /*
1369                          * {idx(page_j) | page_j intersects with
1370                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1371                          */
1372                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1373                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1374
1375                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1376
1377                         for (; idx <= idx_end;
1378                                ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1379                                 ret |= handler(kvm, rmapp++, memslot,
1380                                                gfn, j, data);
1381                 }
1382         }
1383
1384         return ret;
1385 }
1386
1387 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1388                           unsigned long data,
1389                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1390                                          struct kvm_memory_slot *slot,
1391                                          gfn_t gfn, int level,
1392                                          unsigned long data))
1393 {
1394         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1395 }
1396
1397 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1398 {
1399         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1400 }
1401
1402 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1403 {
1404         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1405 }
1406
1407 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1408 {
1409         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1410 }
1411
1412 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1413                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1414                          unsigned long data)
1415 {
1416         u64 *sptep;
1417         struct rmap_iterator uninitialized_var(iter);
1418         int young = 0;
1419
1420         BUG_ON(!shadow_accessed_mask);
1421
1422         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1423              sptep = rmap_get_next(&iter)) {
1424                 BUG_ON(!is_shadow_present_pte(*sptep));
1425
1426                 if (*sptep & shadow_accessed_mask) {
1427                         young = 1;
1428                         clear_bit((ffs(shadow_accessed_mask) - 1),
1429                                  (unsigned long *)sptep);
1430                 }
1431         }
1432         trace_kvm_age_page(gfn, level, slot, young);
1433         return young;
1434 }
1435
1436 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1437                               struct kvm_memory_slot *slot, gfn_t gfn,
1438                               int level, unsigned long data)
1439 {
1440         u64 *sptep;
1441         struct rmap_iterator iter;
1442         int young = 0;
1443
1444         /*
1445          * If there's no access bit in the secondary pte set by the
1446          * hardware it's up to gup-fast/gup to set the access bit in
1447          * the primary pte or in the page structure.
1448          */
1449         if (!shadow_accessed_mask)
1450                 goto out;
1451
1452         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1453              sptep = rmap_get_next(&iter)) {
1454                 BUG_ON(!is_shadow_present_pte(*sptep));
1455
1456                 if (*sptep & shadow_accessed_mask) {
1457                         young = 1;
1458                         break;
1459                 }
1460         }
1461 out:
1462         return young;
1463 }
1464
1465 #define RMAP_RECYCLE_THRESHOLD 1000
1466
1467 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1468 {
1469         unsigned long *rmapp;
1470         struct kvm_mmu_page *sp;
1471
1472         sp = page_header(__pa(spte));
1473
1474         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1475
1476         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1477         kvm_flush_remote_tlbs(vcpu->kvm);
1478 }
1479
1480 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1481 {
1482         /*
1483          * In case of absence of EPT Access and Dirty Bits supports,
1484          * emulate the accessed bit for EPT, by checking if this page has
1485          * an EPT mapping, and clearing it if it does. On the next access,
1486          * a new EPT mapping will be established.
1487          * This has some overhead, but not as much as the cost of swapping
1488          * out actively used pages or breaking up actively used hugepages.
1489          */
1490         if (!shadow_accessed_mask) {
1491                 /*
1492                  * We are holding the kvm->mmu_lock, and we are blowing up
1493                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1494                  * This is correct as long as we don't decouple the mmu_lock
1495                  * protected regions (like invalidate_range_start|end does).
1496                  */
1497                 kvm->mmu_notifier_seq++;
1498                 return kvm_handle_hva_range(kvm, start, end, 0,
1499                                             kvm_unmap_rmapp);
1500         }
1501
1502         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1503 }
1504
1505 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1506 {
1507         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1508 }
1509
1510 #ifdef MMU_DEBUG
1511 static int is_empty_shadow_page(u64 *spt)
1512 {
1513         u64 *pos;
1514         u64 *end;
1515
1516         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1517                 if (is_shadow_present_pte(*pos)) {
1518                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1519                                pos, *pos);
1520                         return 0;
1521                 }
1522         return 1;
1523 }
1524 #endif
1525
1526 /*
1527  * This value is the sum of all of the kvm instances's
1528  * kvm->arch.n_used_mmu_pages values.  We need a global,
1529  * aggregate version in order to make the slab shrinker
1530  * faster
1531  */
1532 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1533 {
1534         kvm->arch.n_used_mmu_pages += nr;
1535         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1536 }
1537
1538 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1539 {
1540         ASSERT(is_empty_shadow_page(sp->spt));
1541         hlist_del(&sp->hash_link);
1542         list_del(&sp->link);
1543         free_page((unsigned long)sp->spt);
1544         if (!sp->role.direct)
1545                 free_page((unsigned long)sp->gfns);
1546         kmem_cache_free(mmu_page_header_cache, sp);
1547 }
1548
1549 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1550 {
1551         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1552 }
1553
1554 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1555                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1556 {
1557         if (!parent_pte)
1558                 return;
1559
1560         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1561 }
1562
1563 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1564                                        u64 *parent_pte)
1565 {
1566         pte_list_remove(parent_pte, &sp->parent_ptes);
1567 }
1568
1569 static void drop_parent_pte(struct kvm_mmu_page *sp,
1570                             u64 *parent_pte)
1571 {
1572         mmu_page_remove_parent_pte(sp, parent_pte);
1573         mmu_spte_clear_no_track(parent_pte);
1574 }
1575
1576 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1577                                                u64 *parent_pte, int direct)
1578 {
1579         struct kvm_mmu_page *sp;
1580
1581         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1582         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1583         if (!direct)
1584                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1585         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1586
1587         /*
1588          * The active_mmu_pages list is the FIFO list, do not move the
1589          * page until it is zapped. kvm_zap_obsolete_pages depends on
1590          * this feature. See the comments in kvm_zap_obsolete_pages().
1591          */
1592         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1593         sp->parent_ptes = 0;
1594         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1595         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1596         return sp;
1597 }
1598
1599 static void mark_unsync(u64 *spte);
1600 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1601 {
1602         pte_list_walk(&sp->parent_ptes, mark_unsync);
1603 }
1604
1605 static void mark_unsync(u64 *spte)
1606 {
1607         struct kvm_mmu_page *sp;
1608         unsigned int index;
1609
1610         sp = page_header(__pa(spte));
1611         index = spte - sp->spt;
1612         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1613                 return;
1614         if (sp->unsync_children++)
1615                 return;
1616         kvm_mmu_mark_parents_unsync(sp);
1617 }
1618
1619 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1620                                struct kvm_mmu_page *sp)
1621 {
1622         return 1;
1623 }
1624
1625 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1626 {
1627 }
1628
1629 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1630                                  struct kvm_mmu_page *sp, u64 *spte,
1631                                  const void *pte)
1632 {
1633         WARN_ON(1);
1634 }
1635
1636 #define KVM_PAGE_ARRAY_NR 16
1637
1638 struct kvm_mmu_pages {
1639         struct mmu_page_and_offset {
1640                 struct kvm_mmu_page *sp;
1641                 unsigned int idx;
1642         } page[KVM_PAGE_ARRAY_NR];
1643         unsigned int nr;
1644 };
1645
1646 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1647                          int idx)
1648 {
1649         int i;
1650
1651         if (sp->unsync)
1652                 for (i=0; i < pvec->nr; i++)
1653                         if (pvec->page[i].sp == sp)
1654                                 return 0;
1655
1656         pvec->page[pvec->nr].sp = sp;
1657         pvec->page[pvec->nr].idx = idx;
1658         pvec->nr++;
1659         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1660 }
1661
1662 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1663                            struct kvm_mmu_pages *pvec)
1664 {
1665         int i, ret, nr_unsync_leaf = 0;
1666
1667         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1668                 struct kvm_mmu_page *child;
1669                 u64 ent = sp->spt[i];
1670
1671                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1672                         goto clear_child_bitmap;
1673
1674                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1675
1676                 if (child->unsync_children) {
1677                         if (mmu_pages_add(pvec, child, i))
1678                                 return -ENOSPC;
1679
1680                         ret = __mmu_unsync_walk(child, pvec);
1681                         if (!ret)
1682                                 goto clear_child_bitmap;
1683                         else if (ret > 0)
1684                                 nr_unsync_leaf += ret;
1685                         else
1686                                 return ret;
1687                 } else if (child->unsync) {
1688                         nr_unsync_leaf++;
1689                         if (mmu_pages_add(pvec, child, i))
1690                                 return -ENOSPC;
1691                 } else
1692                          goto clear_child_bitmap;
1693
1694                 continue;
1695
1696 clear_child_bitmap:
1697                 __clear_bit(i, sp->unsync_child_bitmap);
1698                 sp->unsync_children--;
1699                 WARN_ON((int)sp->unsync_children < 0);
1700         }
1701
1702
1703         return nr_unsync_leaf;
1704 }
1705
1706 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1707                            struct kvm_mmu_pages *pvec)
1708 {
1709         if (!sp->unsync_children)
1710                 return 0;
1711
1712         mmu_pages_add(pvec, sp, 0);
1713         return __mmu_unsync_walk(sp, pvec);
1714 }
1715
1716 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1717 {
1718         WARN_ON(!sp->unsync);
1719         trace_kvm_mmu_sync_page(sp);
1720         sp->unsync = 0;
1721         --kvm->stat.mmu_unsync;
1722 }
1723
1724 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1725                                     struct list_head *invalid_list);
1726 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1727                                     struct list_head *invalid_list);
1728
1729 /*
1730  * NOTE: we should pay more attention on the zapped-obsolete page
1731  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1732  * since it has been deleted from active_mmu_pages but still can be found
1733  * at hast list.
1734  *
1735  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1736  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1737  * all the obsolete pages.
1738  */
1739 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1740         hlist_for_each_entry(_sp,                                       \
1741           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1742                 if ((_sp)->gfn != (_gfn)) {} else
1743
1744 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1745         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1746                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1747
1748 /* @sp->gfn should be write-protected at the call site */
1749 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1750                            struct list_head *invalid_list, bool clear_unsync)
1751 {
1752         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1753                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1754                 return 1;
1755         }
1756
1757         if (clear_unsync)
1758                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1759
1760         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1761                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1762                 return 1;
1763         }
1764
1765         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1766         return 0;
1767 }
1768
1769 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1770                                    struct kvm_mmu_page *sp)
1771 {
1772         LIST_HEAD(invalid_list);
1773         int ret;
1774
1775         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1776         if (ret)
1777                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1778
1779         return ret;
1780 }
1781
1782 #ifdef CONFIG_KVM_MMU_AUDIT
1783 #include "mmu_audit.c"
1784 #else
1785 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1786 static void mmu_audit_disable(void) { }
1787 #endif
1788
1789 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1790                          struct list_head *invalid_list)
1791 {
1792         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1793 }
1794
1795 /* @gfn should be write-protected at the call site */
1796 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1797 {
1798         struct kvm_mmu_page *s;
1799         LIST_HEAD(invalid_list);
1800         bool flush = false;
1801
1802         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1803                 if (!s->unsync)
1804                         continue;
1805
1806                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1807                 kvm_unlink_unsync_page(vcpu->kvm, s);
1808                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1809                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1810                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1811                         continue;
1812                 }
1813                 flush = true;
1814         }
1815
1816         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1817         if (flush)
1818                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1819 }
1820
1821 struct mmu_page_path {
1822         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1823         unsigned int idx[PT64_ROOT_LEVEL-1];
1824 };
1825
1826 #define for_each_sp(pvec, sp, parents, i)                       \
1827                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1828                         sp = pvec.page[i].sp;                   \
1829                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1830                         i = mmu_pages_next(&pvec, &parents, i))
1831
1832 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1833                           struct mmu_page_path *parents,
1834                           int i)
1835 {
1836         int n;
1837
1838         for (n = i+1; n < pvec->nr; n++) {
1839                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1840
1841                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1842                         parents->idx[0] = pvec->page[n].idx;
1843                         return n;
1844                 }
1845
1846                 parents->parent[sp->role.level-2] = sp;
1847                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1848         }
1849
1850         return n;
1851 }
1852
1853 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1854 {
1855         struct kvm_mmu_page *sp;
1856         unsigned int level = 0;
1857
1858         do {
1859                 unsigned int idx = parents->idx[level];
1860
1861                 sp = parents->parent[level];
1862                 if (!sp)
1863                         return;
1864
1865                 --sp->unsync_children;
1866                 WARN_ON((int)sp->unsync_children < 0);
1867                 __clear_bit(idx, sp->unsync_child_bitmap);
1868                 level++;
1869         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1870 }
1871
1872 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1873                                struct mmu_page_path *parents,
1874                                struct kvm_mmu_pages *pvec)
1875 {
1876         parents->parent[parent->role.level-1] = NULL;
1877         pvec->nr = 0;
1878 }
1879
1880 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1881                               struct kvm_mmu_page *parent)
1882 {
1883         int i;
1884         struct kvm_mmu_page *sp;
1885         struct mmu_page_path parents;
1886         struct kvm_mmu_pages pages;
1887         LIST_HEAD(invalid_list);
1888
1889         kvm_mmu_pages_init(parent, &parents, &pages);
1890         while (mmu_unsync_walk(parent, &pages)) {
1891                 bool protected = false;
1892
1893                 for_each_sp(pages, sp, parents, i)
1894                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1895
1896                 if (protected)
1897                         kvm_flush_remote_tlbs(vcpu->kvm);
1898
1899                 for_each_sp(pages, sp, parents, i) {
1900                         kvm_sync_page(vcpu, sp, &invalid_list);
1901                         mmu_pages_clear_parents(&parents);
1902                 }
1903                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1904                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1905                 kvm_mmu_pages_init(parent, &parents, &pages);
1906         }
1907 }
1908
1909 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1910 {
1911         int i;
1912
1913         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1914                 sp->spt[i] = 0ull;
1915 }
1916
1917 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1918 {
1919         sp->write_flooding_count = 0;
1920 }
1921
1922 static void clear_sp_write_flooding_count(u64 *spte)
1923 {
1924         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1925
1926         __clear_sp_write_flooding_count(sp);
1927 }
1928
1929 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1930 {
1931         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1932 }
1933
1934 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1935                                              gfn_t gfn,
1936                                              gva_t gaddr,
1937                                              unsigned level,
1938                                              int direct,
1939                                              unsigned access,
1940                                              u64 *parent_pte)
1941 {
1942         union kvm_mmu_page_role role;
1943         unsigned quadrant;
1944         struct kvm_mmu_page *sp;
1945         bool need_sync = false;
1946
1947         role = vcpu->arch.mmu.base_role;
1948         role.level = level;
1949         role.direct = direct;
1950         if (role.direct)
1951                 role.cr4_pae = 0;
1952         role.access = access;
1953         if (!vcpu->arch.mmu.direct_map
1954             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1955                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1956                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1957                 role.quadrant = quadrant;
1958         }
1959         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1960                 if (is_obsolete_sp(vcpu->kvm, sp))
1961                         continue;
1962
1963                 if (!need_sync && sp->unsync)
1964                         need_sync = true;
1965
1966                 if (sp->role.word != role.word)
1967                         continue;
1968
1969                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1970                         break;
1971
1972                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1973                 if (sp->unsync_children) {
1974                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1975                         kvm_mmu_mark_parents_unsync(sp);
1976                 } else if (sp->unsync)
1977                         kvm_mmu_mark_parents_unsync(sp);
1978
1979                 __clear_sp_write_flooding_count(sp);
1980                 trace_kvm_mmu_get_page(sp, false);
1981                 return sp;
1982         }
1983         ++vcpu->kvm->stat.mmu_cache_miss;
1984         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1985         if (!sp)
1986                 return sp;
1987         sp->gfn = gfn;
1988         sp->role = role;
1989         hlist_add_head(&sp->hash_link,
1990                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1991         if (!direct) {
1992                 if (rmap_write_protect(vcpu->kvm, gfn))
1993                         kvm_flush_remote_tlbs(vcpu->kvm);
1994                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1995                         kvm_sync_pages(vcpu, gfn);
1996
1997                 account_shadowed(vcpu->kvm, gfn);
1998         }
1999         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2000         init_shadow_page_table(sp);
2001         trace_kvm_mmu_get_page(sp, true);
2002         return sp;
2003 }
2004
2005 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2006                              struct kvm_vcpu *vcpu, u64 addr)
2007 {
2008         iterator->addr = addr;
2009         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2010         iterator->level = vcpu->arch.mmu.shadow_root_level;
2011
2012         if (iterator->level == PT64_ROOT_LEVEL &&
2013             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2014             !vcpu->arch.mmu.direct_map)
2015                 --iterator->level;
2016
2017         if (iterator->level == PT32E_ROOT_LEVEL) {
2018                 iterator->shadow_addr
2019                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2020                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2021                 --iterator->level;
2022                 if (!iterator->shadow_addr)
2023                         iterator->level = 0;
2024         }
2025 }
2026
2027 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2028 {
2029         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2030                 return false;
2031
2032         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2033         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2034         return true;
2035 }
2036
2037 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2038                                u64 spte)
2039 {
2040         if (is_last_spte(spte, iterator->level)) {
2041                 iterator->level = 0;
2042                 return;
2043         }
2044
2045         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2046         --iterator->level;
2047 }
2048
2049 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2050 {
2051         return __shadow_walk_next(iterator, *iterator->sptep);
2052 }
2053
2054 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2055 {
2056         u64 spte;
2057
2058         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2059                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2060
2061         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2062                shadow_user_mask | shadow_x_mask;
2063
2064         if (accessed)
2065                 spte |= shadow_accessed_mask;
2066
2067         mmu_spte_set(sptep, spte);
2068 }
2069
2070 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2071                                    unsigned direct_access)
2072 {
2073         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2074                 struct kvm_mmu_page *child;
2075
2076                 /*
2077                  * For the direct sp, if the guest pte's dirty bit
2078                  * changed form clean to dirty, it will corrupt the
2079                  * sp's access: allow writable in the read-only sp,
2080                  * so we should update the spte at this point to get
2081                  * a new sp with the correct access.
2082                  */
2083                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2084                 if (child->role.access == direct_access)
2085                         return;
2086
2087                 drop_parent_pte(child, sptep);
2088                 kvm_flush_remote_tlbs(vcpu->kvm);
2089         }
2090 }
2091
2092 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2093                              u64 *spte)
2094 {
2095         u64 pte;
2096         struct kvm_mmu_page *child;
2097
2098         pte = *spte;
2099         if (is_shadow_present_pte(pte)) {
2100                 if (is_last_spte(pte, sp->role.level)) {
2101                         drop_spte(kvm, spte);
2102                         if (is_large_pte(pte))
2103                                 --kvm->stat.lpages;
2104                 } else {
2105                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2106                         drop_parent_pte(child, spte);
2107                 }
2108                 return true;
2109         }
2110
2111         if (is_mmio_spte(pte))
2112                 mmu_spte_clear_no_track(spte);
2113
2114         return false;
2115 }
2116
2117 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2118                                          struct kvm_mmu_page *sp)
2119 {
2120         unsigned i;
2121
2122         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2123                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2124 }
2125
2126 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2127 {
2128         mmu_page_remove_parent_pte(sp, parent_pte);
2129 }
2130
2131 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2132 {
2133         u64 *sptep;
2134         struct rmap_iterator iter;
2135
2136         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2137                 drop_parent_pte(sp, sptep);
2138 }
2139
2140 static int mmu_zap_unsync_children(struct kvm *kvm,
2141                                    struct kvm_mmu_page *parent,
2142                                    struct list_head *invalid_list)
2143 {
2144         int i, zapped = 0;
2145         struct mmu_page_path parents;
2146         struct kvm_mmu_pages pages;
2147
2148         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2149                 return 0;
2150
2151         kvm_mmu_pages_init(parent, &parents, &pages);
2152         while (mmu_unsync_walk(parent, &pages)) {
2153                 struct kvm_mmu_page *sp;
2154
2155                 for_each_sp(pages, sp, parents, i) {
2156                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2157                         mmu_pages_clear_parents(&parents);
2158                         zapped++;
2159                 }
2160                 kvm_mmu_pages_init(parent, &parents, &pages);
2161         }
2162
2163         return zapped;
2164 }
2165
2166 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2167                                     struct list_head *invalid_list)
2168 {
2169         int ret;
2170
2171         trace_kvm_mmu_prepare_zap_page(sp);
2172         ++kvm->stat.mmu_shadow_zapped;
2173         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2174         kvm_mmu_page_unlink_children(kvm, sp);
2175         kvm_mmu_unlink_parents(kvm, sp);
2176
2177         if (!sp->role.invalid && !sp->role.direct)
2178                 unaccount_shadowed(kvm, sp->gfn);
2179
2180         if (sp->unsync)
2181                 kvm_unlink_unsync_page(kvm, sp);
2182         if (!sp->root_count) {
2183                 /* Count self */
2184                 ret++;
2185                 list_move(&sp->link, invalid_list);
2186                 kvm_mod_used_mmu_pages(kvm, -1);
2187         } else {
2188                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2189
2190                 /*
2191                  * The obsolete pages can not be used on any vcpus.
2192                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2193                  */
2194                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2195                         kvm_reload_remote_mmus(kvm);
2196         }
2197
2198         sp->role.invalid = 1;
2199         return ret;
2200 }
2201
2202 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2203                                     struct list_head *invalid_list)
2204 {
2205         struct kvm_mmu_page *sp, *nsp;
2206
2207         if (list_empty(invalid_list))
2208                 return;
2209
2210         /*
2211          * wmb: make sure everyone sees our modifications to the page tables
2212          * rmb: make sure we see changes to vcpu->mode
2213          */
2214         smp_mb();
2215
2216         /*
2217          * Wait for all vcpus to exit guest mode and/or lockless shadow
2218          * page table walks.
2219          */
2220         kvm_flush_remote_tlbs(kvm);
2221
2222         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2223                 WARN_ON(!sp->role.invalid || sp->root_count);
2224                 kvm_mmu_free_page(sp);
2225         }
2226 }
2227
2228 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2229                                         struct list_head *invalid_list)
2230 {
2231         struct kvm_mmu_page *sp;
2232
2233         if (list_empty(&kvm->arch.active_mmu_pages))
2234                 return false;
2235
2236         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2237                         struct kvm_mmu_page, link);
2238         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2239
2240         return true;
2241 }
2242
2243 /*
2244  * Changing the number of mmu pages allocated to the vm
2245  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2246  */
2247 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2248 {
2249         LIST_HEAD(invalid_list);
2250
2251         spin_lock(&kvm->mmu_lock);
2252
2253         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2254                 /* Need to free some mmu pages to achieve the goal. */
2255                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2256                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2257                                 break;
2258
2259                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2260                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2261         }
2262
2263         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2264
2265         spin_unlock(&kvm->mmu_lock);
2266 }
2267
2268 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2269 {
2270         struct kvm_mmu_page *sp;
2271         LIST_HEAD(invalid_list);
2272         int r;
2273
2274         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2275         r = 0;
2276         spin_lock(&kvm->mmu_lock);
2277         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2278                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2279                          sp->role.word);
2280                 r = 1;
2281                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2282         }
2283         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2284         spin_unlock(&kvm->mmu_lock);
2285
2286         return r;
2287 }
2288 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2289
2290 /*
2291  * The function is based on mtrr_type_lookup() in
2292  * arch/x86/kernel/cpu/mtrr/generic.c
2293  */
2294 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2295                          u64 start, u64 end)
2296 {
2297         int i;
2298         u64 base, mask;
2299         u8 prev_match, curr_match;
2300         int num_var_ranges = KVM_NR_VAR_MTRR;
2301
2302         if (!mtrr_state->enabled)
2303                 return 0xFF;
2304
2305         /* Make end inclusive end, instead of exclusive */
2306         end--;
2307
2308         /* Look in fixed ranges. Just return the type as per start */
2309         if (mtrr_state->have_fixed && (start < 0x100000)) {
2310                 int idx;
2311
2312                 if (start < 0x80000) {
2313                         idx = 0;
2314                         idx += (start >> 16);
2315                         return mtrr_state->fixed_ranges[idx];
2316                 } else if (start < 0xC0000) {
2317                         idx = 1 * 8;
2318                         idx += ((start - 0x80000) >> 14);
2319                         return mtrr_state->fixed_ranges[idx];
2320                 } else if (start < 0x1000000) {
2321                         idx = 3 * 8;
2322                         idx += ((start - 0xC0000) >> 12);
2323                         return mtrr_state->fixed_ranges[idx];
2324                 }
2325         }
2326
2327         /*
2328          * Look in variable ranges
2329          * Look of multiple ranges matching this address and pick type
2330          * as per MTRR precedence
2331          */
2332         if (!(mtrr_state->enabled & 2))
2333                 return mtrr_state->def_type;
2334
2335         prev_match = 0xFF;
2336         for (i = 0; i < num_var_ranges; ++i) {
2337                 unsigned short start_state, end_state;
2338
2339                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2340                         continue;
2341
2342                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2343                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2344                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2345                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2346
2347                 start_state = ((start & mask) == (base & mask));
2348                 end_state = ((end & mask) == (base & mask));
2349                 if (start_state != end_state)
2350                         return 0xFE;
2351
2352                 if ((start & mask) != (base & mask))
2353                         continue;
2354
2355                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2356                 if (prev_match == 0xFF) {
2357                         prev_match = curr_match;
2358                         continue;
2359                 }
2360
2361                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2362                     curr_match == MTRR_TYPE_UNCACHABLE)
2363                         return MTRR_TYPE_UNCACHABLE;
2364
2365                 if ((prev_match == MTRR_TYPE_WRBACK &&
2366                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2367                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2368                      curr_match == MTRR_TYPE_WRBACK)) {
2369                         prev_match = MTRR_TYPE_WRTHROUGH;
2370                         curr_match = MTRR_TYPE_WRTHROUGH;
2371                 }
2372
2373                 if (prev_match != curr_match)
2374                         return MTRR_TYPE_UNCACHABLE;
2375         }
2376
2377         if (prev_match != 0xFF)
2378                 return prev_match;
2379
2380         return mtrr_state->def_type;
2381 }
2382
2383 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2384 {
2385         u8 mtrr;
2386
2387         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2388                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2389         if (mtrr == 0xfe || mtrr == 0xff)
2390                 mtrr = MTRR_TYPE_WRBACK;
2391         return mtrr;
2392 }
2393 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2394
2395 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2396 {
2397         trace_kvm_mmu_unsync_page(sp);
2398         ++vcpu->kvm->stat.mmu_unsync;
2399         sp->unsync = 1;
2400
2401         kvm_mmu_mark_parents_unsync(sp);
2402 }
2403
2404 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2405 {
2406         struct kvm_mmu_page *s;
2407
2408         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2409                 if (s->unsync)
2410                         continue;
2411                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2412                 __kvm_unsync_page(vcpu, s);
2413         }
2414 }
2415
2416 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2417                                   bool can_unsync)
2418 {
2419         struct kvm_mmu_page *s;
2420         bool need_unsync = false;
2421
2422         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2423                 if (!can_unsync)
2424                         return 1;
2425
2426                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2427                         return 1;
2428
2429                 if (!s->unsync)
2430                         need_unsync = true;
2431         }
2432         if (need_unsync)
2433                 kvm_unsync_pages(vcpu, gfn);
2434         return 0;
2435 }
2436
2437 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2438                     unsigned pte_access, int level,
2439                     gfn_t gfn, pfn_t pfn, bool speculative,
2440                     bool can_unsync, bool host_writable)
2441 {
2442         u64 spte;
2443         int ret = 0;
2444
2445         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2446                 return 0;
2447
2448         spte = PT_PRESENT_MASK;
2449         if (!speculative)
2450                 spte |= shadow_accessed_mask;
2451
2452         if (pte_access & ACC_EXEC_MASK)
2453                 spte |= shadow_x_mask;
2454         else
2455                 spte |= shadow_nx_mask;
2456
2457         if (pte_access & ACC_USER_MASK)
2458                 spte |= shadow_user_mask;
2459
2460         if (level > PT_PAGE_TABLE_LEVEL)
2461                 spte |= PT_PAGE_SIZE_MASK;
2462         if (tdp_enabled)
2463                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2464                         kvm_is_reserved_pfn(pfn));
2465
2466         if (host_writable)
2467                 spte |= SPTE_HOST_WRITEABLE;
2468         else
2469                 pte_access &= ~ACC_WRITE_MASK;
2470
2471         spte |= (u64)pfn << PAGE_SHIFT;
2472
2473         if (pte_access & ACC_WRITE_MASK) {
2474
2475                 /*
2476                  * Other vcpu creates new sp in the window between
2477                  * mapping_level() and acquiring mmu-lock. We can
2478                  * allow guest to retry the access, the mapping can
2479                  * be fixed if guest refault.
2480                  */
2481                 if (level > PT_PAGE_TABLE_LEVEL &&
2482                     has_wrprotected_page(vcpu->kvm, gfn, level))
2483                         goto done;
2484
2485                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2486
2487                 /*
2488                  * Optimization: for pte sync, if spte was writable the hash
2489                  * lookup is unnecessary (and expensive). Write protection
2490                  * is responsibility of mmu_get_page / kvm_sync_page.
2491                  * Same reasoning can be applied to dirty page accounting.
2492                  */
2493                 if (!can_unsync && is_writable_pte(*sptep))
2494                         goto set_pte;
2495
2496                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2497                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2498                                  __func__, gfn);
2499                         ret = 1;
2500                         pte_access &= ~ACC_WRITE_MASK;
2501                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2502                 }
2503         }
2504
2505         if (pte_access & ACC_WRITE_MASK)
2506                 mark_page_dirty(vcpu->kvm, gfn);
2507
2508 set_pte:
2509         if (mmu_spte_update(sptep, spte))
2510                 kvm_flush_remote_tlbs(vcpu->kvm);
2511 done:
2512         return ret;
2513 }
2514
2515 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2516                          unsigned pte_access, int write_fault, int *emulate,
2517                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2518                          bool host_writable)
2519 {
2520         int was_rmapped = 0;
2521         int rmap_count;
2522
2523         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2524                  *sptep, write_fault, gfn);
2525
2526         if (is_rmap_spte(*sptep)) {
2527                 /*
2528                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2529                  * the parent of the now unreachable PTE.
2530                  */
2531                 if (level > PT_PAGE_TABLE_LEVEL &&
2532                     !is_large_pte(*sptep)) {
2533                         struct kvm_mmu_page *child;
2534                         u64 pte = *sptep;
2535
2536                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2537                         drop_parent_pte(child, sptep);
2538                         kvm_flush_remote_tlbs(vcpu->kvm);
2539                 } else if (pfn != spte_to_pfn(*sptep)) {
2540                         pgprintk("hfn old %llx new %llx\n",
2541                                  spte_to_pfn(*sptep), pfn);
2542                         drop_spte(vcpu->kvm, sptep);
2543                         kvm_flush_remote_tlbs(vcpu->kvm);
2544                 } else
2545                         was_rmapped = 1;
2546         }
2547
2548         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2549               true, host_writable)) {
2550                 if (write_fault)
2551                         *emulate = 1;
2552                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2553         }
2554
2555         if (unlikely(is_mmio_spte(*sptep) && emulate))
2556                 *emulate = 1;
2557
2558         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2559         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2560                  is_large_pte(*sptep)? "2MB" : "4kB",
2561                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2562                  *sptep, sptep);
2563         if (!was_rmapped && is_large_pte(*sptep))
2564                 ++vcpu->kvm->stat.lpages;
2565
2566         if (is_shadow_present_pte(*sptep)) {
2567                 if (!was_rmapped) {
2568                         rmap_count = rmap_add(vcpu, sptep, gfn);
2569                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2570                                 rmap_recycle(vcpu, sptep, gfn);
2571                 }
2572         }
2573
2574         kvm_release_pfn_clean(pfn);
2575 }
2576
2577 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2578                                      bool no_dirty_log)
2579 {
2580         struct kvm_memory_slot *slot;
2581
2582         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2583         if (!slot)
2584                 return KVM_PFN_ERR_FAULT;
2585
2586         return gfn_to_pfn_memslot_atomic(slot, gfn);
2587 }
2588
2589 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2590                                     struct kvm_mmu_page *sp,
2591                                     u64 *start, u64 *end)
2592 {
2593         struct page *pages[PTE_PREFETCH_NUM];
2594         unsigned access = sp->role.access;
2595         int i, ret;
2596         gfn_t gfn;
2597
2598         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2599         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2600                 return -1;
2601
2602         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2603         if (ret <= 0)
2604                 return -1;
2605
2606         for (i = 0; i < ret; i++, gfn++, start++)
2607                 mmu_set_spte(vcpu, start, access, 0, NULL,
2608                              sp->role.level, gfn, page_to_pfn(pages[i]),
2609                              true, true);
2610
2611         return 0;
2612 }
2613
2614 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2615                                   struct kvm_mmu_page *sp, u64 *sptep)
2616 {
2617         u64 *spte, *start = NULL;
2618         int i;
2619
2620         WARN_ON(!sp->role.direct);
2621
2622         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2623         spte = sp->spt + i;
2624
2625         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2626                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2627                         if (!start)
2628                                 continue;
2629                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2630                                 break;
2631                         start = NULL;
2632                 } else if (!start)
2633                         start = spte;
2634         }
2635 }
2636
2637 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2638 {
2639         struct kvm_mmu_page *sp;
2640
2641         /*
2642          * Since it's no accessed bit on EPT, it's no way to
2643          * distinguish between actually accessed translations
2644          * and prefetched, so disable pte prefetch if EPT is
2645          * enabled.
2646          */
2647         if (!shadow_accessed_mask)
2648                 return;
2649
2650         sp = page_header(__pa(sptep));
2651         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2652                 return;
2653
2654         __direct_pte_prefetch(vcpu, sp, sptep);
2655 }
2656
2657 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2658                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2659                         bool prefault)
2660 {
2661         struct kvm_shadow_walk_iterator iterator;
2662         struct kvm_mmu_page *sp;
2663         int emulate = 0;
2664         gfn_t pseudo_gfn;
2665
2666         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2667                 return 0;
2668
2669         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2670                 if (iterator.level == level) {
2671                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2672                                      write, &emulate, level, gfn, pfn,
2673                                      prefault, map_writable);
2674                         direct_pte_prefetch(vcpu, iterator.sptep);
2675                         ++vcpu->stat.pf_fixed;
2676                         break;
2677                 }
2678
2679                 drop_large_spte(vcpu, iterator.sptep);
2680                 if (!is_shadow_present_pte(*iterator.sptep)) {
2681                         u64 base_addr = iterator.addr;
2682
2683                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2684                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2685                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2686                                               iterator.level - 1,
2687                                               1, ACC_ALL, iterator.sptep);
2688
2689                         link_shadow_page(iterator.sptep, sp, true);
2690                 }
2691         }
2692         return emulate;
2693 }
2694
2695 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2696 {
2697         siginfo_t info;
2698
2699         info.si_signo   = SIGBUS;
2700         info.si_errno   = 0;
2701         info.si_code    = BUS_MCEERR_AR;
2702         info.si_addr    = (void __user *)address;
2703         info.si_addr_lsb = PAGE_SHIFT;
2704
2705         send_sig_info(SIGBUS, &info, tsk);
2706 }
2707
2708 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2709 {
2710         /*
2711          * Do not cache the mmio info caused by writing the readonly gfn
2712          * into the spte otherwise read access on readonly gfn also can
2713          * caused mmio page fault and treat it as mmio access.
2714          * Return 1 to tell kvm to emulate it.
2715          */
2716         if (pfn == KVM_PFN_ERR_RO_FAULT)
2717                 return 1;
2718
2719         if (pfn == KVM_PFN_ERR_HWPOISON) {
2720                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2721                 return 0;
2722         }
2723
2724         return -EFAULT;
2725 }
2726
2727 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2728                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2729 {
2730         pfn_t pfn = *pfnp;
2731         gfn_t gfn = *gfnp;
2732         int level = *levelp;
2733
2734         /*
2735          * Check if it's a transparent hugepage. If this would be an
2736          * hugetlbfs page, level wouldn't be set to
2737          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2738          * here.
2739          */
2740         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2741             level == PT_PAGE_TABLE_LEVEL &&
2742             PageTransCompound(pfn_to_page(pfn)) &&
2743             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2744                 unsigned long mask;
2745                 /*
2746                  * mmu_notifier_retry was successful and we hold the
2747                  * mmu_lock here, so the pmd can't become splitting
2748                  * from under us, and in turn
2749                  * __split_huge_page_refcount() can't run from under
2750                  * us and we can safely transfer the refcount from
2751                  * PG_tail to PG_head as we switch the pfn to tail to
2752                  * head.
2753                  */
2754                 *levelp = level = PT_DIRECTORY_LEVEL;
2755                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2756                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2757                 if (pfn & mask) {
2758                         gfn &= ~mask;
2759                         *gfnp = gfn;
2760                         kvm_release_pfn_clean(pfn);
2761                         pfn &= ~mask;
2762                         kvm_get_pfn(pfn);
2763                         *pfnp = pfn;
2764                 }
2765         }
2766 }
2767
2768 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2769                                 pfn_t pfn, unsigned access, int *ret_val)
2770 {
2771         bool ret = true;
2772
2773         /* The pfn is invalid, report the error! */
2774         if (unlikely(is_error_pfn(pfn))) {
2775                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2776                 goto exit;
2777         }
2778
2779         if (unlikely(is_noslot_pfn(pfn)))
2780                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2781
2782         ret = false;
2783 exit:
2784         return ret;
2785 }
2786
2787 static bool page_fault_can_be_fast(u32 error_code)
2788 {
2789         /*
2790          * Do not fix the mmio spte with invalid generation number which
2791          * need to be updated by slow page fault path.
2792          */
2793         if (unlikely(error_code & PFERR_RSVD_MASK))
2794                 return false;
2795
2796         /*
2797          * #PF can be fast only if the shadow page table is present and it
2798          * is caused by write-protect, that means we just need change the
2799          * W bit of the spte which can be done out of mmu-lock.
2800          */
2801         if (!(error_code & PFERR_PRESENT_MASK) ||
2802               !(error_code & PFERR_WRITE_MASK))
2803                 return false;
2804
2805         return true;
2806 }
2807
2808 static bool
2809 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2810                         u64 *sptep, u64 spte)
2811 {
2812         gfn_t gfn;
2813
2814         WARN_ON(!sp->role.direct);
2815
2816         /*
2817          * The gfn of direct spte is stable since it is calculated
2818          * by sp->gfn.
2819          */
2820         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2821
2822         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2823                 mark_page_dirty(vcpu->kvm, gfn);
2824
2825         return true;
2826 }
2827
2828 /*
2829  * Return value:
2830  * - true: let the vcpu to access on the same address again.
2831  * - false: let the real page fault path to fix it.
2832  */
2833 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2834                             u32 error_code)
2835 {
2836         struct kvm_shadow_walk_iterator iterator;
2837         struct kvm_mmu_page *sp;
2838         bool ret = false;
2839         u64 spte = 0ull;
2840
2841         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2842                 return false;
2843
2844         if (!page_fault_can_be_fast(error_code))
2845                 return false;
2846
2847         walk_shadow_page_lockless_begin(vcpu);
2848         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2849                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2850                         break;
2851
2852         /*
2853          * If the mapping has been changed, let the vcpu fault on the
2854          * same address again.
2855          */
2856         if (!is_rmap_spte(spte)) {
2857                 ret = true;
2858                 goto exit;
2859         }
2860
2861         sp = page_header(__pa(iterator.sptep));
2862         if (!is_last_spte(spte, sp->role.level))
2863                 goto exit;
2864
2865         /*
2866          * Check if it is a spurious fault caused by TLB lazily flushed.
2867          *
2868          * Need not check the access of upper level table entries since
2869          * they are always ACC_ALL.
2870          */
2871          if (is_writable_pte(spte)) {
2872                 ret = true;
2873                 goto exit;
2874         }
2875
2876         /*
2877          * Currently, to simplify the code, only the spte write-protected
2878          * by dirty-log can be fast fixed.
2879          */
2880         if (!spte_is_locklessly_modifiable(spte))
2881                 goto exit;
2882
2883         /*
2884          * Do not fix write-permission on the large spte since we only dirty
2885          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2886          * that means other pages are missed if its slot is dirty-logged.
2887          *
2888          * Instead, we let the slow page fault path create a normal spte to
2889          * fix the access.
2890          *
2891          * See the comments in kvm_arch_commit_memory_region().
2892          */
2893         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2894                 goto exit;
2895
2896         /*
2897          * Currently, fast page fault only works for direct mapping since
2898          * the gfn is not stable for indirect shadow page.
2899          * See Documentation/virtual/kvm/locking.txt to get more detail.
2900          */
2901         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2902 exit:
2903         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2904                               spte, ret);
2905         walk_shadow_page_lockless_end(vcpu);
2906
2907         return ret;
2908 }
2909
2910 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2911                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2912 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2913
2914 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2915                          gfn_t gfn, bool prefault)
2916 {
2917         int r;
2918         int level;
2919         int force_pt_level;
2920         pfn_t pfn;
2921         unsigned long mmu_seq;
2922         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2923
2924         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2925         if (likely(!force_pt_level)) {
2926                 level = mapping_level(vcpu, gfn);
2927                 /*
2928                  * This path builds a PAE pagetable - so we can map
2929                  * 2mb pages at maximum. Therefore check if the level
2930                  * is larger than that.
2931                  */
2932                 if (level > PT_DIRECTORY_LEVEL)
2933                         level = PT_DIRECTORY_LEVEL;
2934
2935                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2936         } else
2937                 level = PT_PAGE_TABLE_LEVEL;
2938
2939         if (fast_page_fault(vcpu, v, level, error_code))
2940                 return 0;
2941
2942         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2943         smp_rmb();
2944
2945         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2946                 return 0;
2947
2948         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2949                 return r;
2950
2951         spin_lock(&vcpu->kvm->mmu_lock);
2952         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2953                 goto out_unlock;
2954         make_mmu_pages_available(vcpu);
2955         if (likely(!force_pt_level))
2956                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2957         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2958                          prefault);
2959         spin_unlock(&vcpu->kvm->mmu_lock);
2960
2961
2962         return r;
2963
2964 out_unlock:
2965         spin_unlock(&vcpu->kvm->mmu_lock);
2966         kvm_release_pfn_clean(pfn);
2967         return 0;
2968 }
2969
2970
2971 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2972 {
2973         int i;
2974         struct kvm_mmu_page *sp;
2975         LIST_HEAD(invalid_list);
2976
2977         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2978                 return;
2979
2980         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2981             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2982              vcpu->arch.mmu.direct_map)) {
2983                 hpa_t root = vcpu->arch.mmu.root_hpa;
2984
2985                 spin_lock(&vcpu->kvm->mmu_lock);
2986                 sp = page_header(root);
2987                 --sp->root_count;
2988                 if (!sp->root_count && sp->role.invalid) {
2989                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2990                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2991                 }
2992                 spin_unlock(&vcpu->kvm->mmu_lock);
2993                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2994                 return;
2995         }
2996
2997         spin_lock(&vcpu->kvm->mmu_lock);
2998         for (i = 0; i < 4; ++i) {
2999                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3000
3001                 if (root) {
3002                         root &= PT64_BASE_ADDR_MASK;
3003                         sp = page_header(root);
3004                         --sp->root_count;
3005                         if (!sp->root_count && sp->role.invalid)
3006                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3007                                                          &invalid_list);
3008                 }
3009                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3010         }
3011         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3012         spin_unlock(&vcpu->kvm->mmu_lock);
3013         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3014 }
3015
3016 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3017 {
3018         int ret = 0;
3019
3020         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3021                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3022                 ret = 1;
3023         }
3024
3025         return ret;
3026 }
3027
3028 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3029 {
3030         struct kvm_mmu_page *sp;
3031         unsigned i;
3032
3033         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3034                 spin_lock(&vcpu->kvm->mmu_lock);
3035                 make_mmu_pages_available(vcpu);
3036                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3037                                       1, ACC_ALL, NULL);
3038                 ++sp->root_count;
3039                 spin_unlock(&vcpu->kvm->mmu_lock);
3040                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3041         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3042                 for (i = 0; i < 4; ++i) {
3043                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3044
3045                         ASSERT(!VALID_PAGE(root));
3046                         spin_lock(&vcpu->kvm->mmu_lock);
3047                         make_mmu_pages_available(vcpu);
3048                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3049                                               i << 30,
3050                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3051                                               NULL);
3052                         root = __pa(sp->spt);
3053                         ++sp->root_count;
3054                         spin_unlock(&vcpu->kvm->mmu_lock);
3055                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3056                 }
3057                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3058         } else
3059                 BUG();
3060
3061         return 0;
3062 }
3063
3064 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3065 {
3066         struct kvm_mmu_page *sp;
3067         u64 pdptr, pm_mask;
3068         gfn_t root_gfn;
3069         int i;
3070
3071         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3072
3073         if (mmu_check_root(vcpu, root_gfn))
3074                 return 1;
3075
3076         /*
3077          * Do we shadow a long mode page table? If so we need to
3078          * write-protect the guests page table root.
3079          */
3080         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3081                 hpa_t root = vcpu->arch.mmu.root_hpa;
3082
3083                 ASSERT(!VALID_PAGE(root));
3084
3085                 spin_lock(&vcpu->kvm->mmu_lock);
3086                 make_mmu_pages_available(vcpu);
3087                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3088                                       0, ACC_ALL, NULL);
3089                 root = __pa(sp->spt);
3090                 ++sp->root_count;
3091                 spin_unlock(&vcpu->kvm->mmu_lock);
3092                 vcpu->arch.mmu.root_hpa = root;
3093                 return 0;
3094         }
3095
3096         /*
3097          * We shadow a 32 bit page table. This may be a legacy 2-level
3098          * or a PAE 3-level page table. In either case we need to be aware that
3099          * the shadow page table may be a PAE or a long mode page table.
3100          */
3101         pm_mask = PT_PRESENT_MASK;
3102         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3103                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3104
3105         for (i = 0; i < 4; ++i) {
3106                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3107
3108                 ASSERT(!VALID_PAGE(root));
3109                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3110                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3111                         if (!is_present_gpte(pdptr)) {
3112                                 vcpu->arch.mmu.pae_root[i] = 0;
3113                                 continue;
3114                         }
3115                         root_gfn = pdptr >> PAGE_SHIFT;
3116                         if (mmu_check_root(vcpu, root_gfn))
3117                                 return 1;
3118                 }
3119                 spin_lock(&vcpu->kvm->mmu_lock);
3120                 make_mmu_pages_available(vcpu);
3121                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3122                                       PT32_ROOT_LEVEL, 0,
3123                                       ACC_ALL, NULL);
3124                 root = __pa(sp->spt);
3125                 ++sp->root_count;
3126                 spin_unlock(&vcpu->kvm->mmu_lock);
3127
3128                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3129         }
3130         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3131
3132         /*
3133          * If we shadow a 32 bit page table with a long mode page
3134          * table we enter this path.
3135          */
3136         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3137                 if (vcpu->arch.mmu.lm_root == NULL) {
3138                         /*
3139                          * The additional page necessary for this is only
3140                          * allocated on demand.
3141                          */
3142
3143                         u64 *lm_root;
3144
3145                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3146                         if (lm_root == NULL)
3147                                 return 1;
3148
3149                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3150
3151                         vcpu->arch.mmu.lm_root = lm_root;
3152                 }
3153
3154                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3155         }
3156
3157         return 0;
3158 }
3159
3160 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3161 {
3162         if (vcpu->arch.mmu.direct_map)
3163                 return mmu_alloc_direct_roots(vcpu);
3164         else
3165                 return mmu_alloc_shadow_roots(vcpu);
3166 }
3167
3168 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3169 {
3170         int i;
3171         struct kvm_mmu_page *sp;
3172
3173         if (vcpu->arch.mmu.direct_map)
3174                 return;
3175
3176         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3177                 return;
3178
3179         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3180         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3181         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3182                 hpa_t root = vcpu->arch.mmu.root_hpa;
3183                 sp = page_header(root);
3184                 mmu_sync_children(vcpu, sp);
3185                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3186                 return;
3187         }
3188         for (i = 0; i < 4; ++i) {
3189                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3190
3191                 if (root && VALID_PAGE(root)) {
3192                         root &= PT64_BASE_ADDR_MASK;
3193                         sp = page_header(root);
3194                         mmu_sync_children(vcpu, sp);
3195                 }
3196         }
3197         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3198 }
3199
3200 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3201 {
3202         spin_lock(&vcpu->kvm->mmu_lock);
3203         mmu_sync_roots(vcpu);
3204         spin_unlock(&vcpu->kvm->mmu_lock);
3205 }
3206 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3207
3208 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3209                                   u32 access, struct x86_exception *exception)
3210 {
3211         if (exception)
3212                 exception->error_code = 0;
3213         return vaddr;
3214 }
3215
3216 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3217                                          u32 access,
3218                                          struct x86_exception *exception)
3219 {
3220         if (exception)
3221                 exception->error_code = 0;
3222         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3223 }
3224
3225 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3226 {
3227         if (direct)
3228                 return vcpu_match_mmio_gpa(vcpu, addr);
3229
3230         return vcpu_match_mmio_gva(vcpu, addr);
3231 }
3232
3233
3234 /*
3235  * On direct hosts, the last spte is only allows two states
3236  * for mmio page fault:
3237  *   - It is the mmio spte
3238  *   - It is zapped or it is being zapped.
3239  *
3240  * This function completely checks the spte when the last spte
3241  * is not the mmio spte.
3242  */
3243 static bool check_direct_spte_mmio_pf(u64 spte)
3244 {
3245         return __check_direct_spte_mmio_pf(spte);
3246 }
3247
3248 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3249 {
3250         struct kvm_shadow_walk_iterator iterator;
3251         u64 spte = 0ull;
3252
3253         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3254                 return spte;
3255
3256         walk_shadow_page_lockless_begin(vcpu);
3257         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3258                 if (!is_shadow_present_pte(spte))
3259                         break;
3260         walk_shadow_page_lockless_end(vcpu);
3261
3262         return spte;
3263 }
3264
3265 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3266 {
3267         u64 spte;
3268
3269         if (quickly_check_mmio_pf(vcpu, addr, direct))
3270                 return RET_MMIO_PF_EMULATE;
3271
3272         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3273
3274         if (is_mmio_spte(spte)) {
3275                 gfn_t gfn = get_mmio_spte_gfn(spte);
3276                 unsigned access = get_mmio_spte_access(spte);
3277
3278                 if (!check_mmio_spte(vcpu->kvm, spte))
3279                         return RET_MMIO_PF_INVALID;
3280
3281                 if (direct)
3282                         addr = 0;
3283
3284                 trace_handle_mmio_page_fault(addr, gfn, access);
3285                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3286                 return RET_MMIO_PF_EMULATE;
3287         }
3288
3289         /*
3290          * It's ok if the gva is remapped by other cpus on shadow guest,
3291          * it's a BUG if the gfn is not a mmio page.
3292          */
3293         if (direct && !check_direct_spte_mmio_pf(spte))
3294                 return RET_MMIO_PF_BUG;
3295
3296         /*
3297          * If the page table is zapped by other cpus, let CPU fault again on
3298          * the address.
3299          */
3300         return RET_MMIO_PF_RETRY;
3301 }
3302 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3303
3304 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3305                                   u32 error_code, bool direct)
3306 {
3307         int ret;
3308
3309         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3310         WARN_ON(ret == RET_MMIO_PF_BUG);
3311         return ret;
3312 }
3313
3314 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3315                                 u32 error_code, bool prefault)
3316 {
3317         gfn_t gfn;
3318         int r;
3319
3320         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3321
3322         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3323                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3324
3325                 if (likely(r != RET_MMIO_PF_INVALID))
3326                         return r;
3327         }
3328
3329         r = mmu_topup_memory_caches(vcpu);
3330         if (r)
3331                 return r;
3332
3333         ASSERT(vcpu);
3334         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3335
3336         gfn = gva >> PAGE_SHIFT;
3337
3338         return nonpaging_map(vcpu, gva & PAGE_MASK,
3339                              error_code, gfn, prefault);
3340 }
3341
3342 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3343 {
3344         struct kvm_arch_async_pf arch;
3345
3346         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3347         arch.gfn = gfn;
3348         arch.direct_map = vcpu->arch.mmu.direct_map;
3349         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3350
3351         return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3352 }
3353
3354 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3355 {
3356         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3357                      kvm_event_needs_reinjection(vcpu)))
3358                 return false;
3359
3360         return kvm_x86_ops->interrupt_allowed(vcpu);
3361 }
3362
3363 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3364                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3365 {
3366         bool async;
3367
3368         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3369
3370         if (!async)
3371                 return false; /* *pfn has correct page already */
3372
3373         if (!prefault && can_do_async_pf(vcpu)) {
3374                 trace_kvm_try_async_get_page(gva, gfn);
3375                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3376                         trace_kvm_async_pf_doublefault(gva, gfn);
3377                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3378                         return true;
3379                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3380                         return true;
3381         }
3382
3383         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3384
3385         return false;
3386 }
3387
3388 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3389                           bool prefault)
3390 {
3391         pfn_t pfn;
3392         int r;
3393         int level;
3394         int force_pt_level;
3395         gfn_t gfn = gpa >> PAGE_SHIFT;
3396         unsigned long mmu_seq;
3397         int write = error_code & PFERR_WRITE_MASK;
3398         bool map_writable;
3399
3400         ASSERT(vcpu);
3401         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3402
3403         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3404                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3405
3406                 if (likely(r != RET_MMIO_PF_INVALID))
3407                         return r;
3408         }
3409
3410         r = mmu_topup_memory_caches(vcpu);
3411         if (r)
3412                 return r;
3413
3414         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3415         if (likely(!force_pt_level)) {
3416                 level = mapping_level(vcpu, gfn);
3417                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3418         } else
3419                 level = PT_PAGE_TABLE_LEVEL;
3420
3421         if (fast_page_fault(vcpu, gpa, level, error_code))
3422                 return 0;
3423
3424         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3425         smp_rmb();
3426
3427         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3428                 return 0;
3429
3430         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3431                 return r;
3432
3433         spin_lock(&vcpu->kvm->mmu_lock);
3434         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3435                 goto out_unlock;
3436         make_mmu_pages_available(vcpu);
3437         if (likely(!force_pt_level))
3438                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3439         r = __direct_map(vcpu, gpa, write, map_writable,
3440                          level, gfn, pfn, prefault);
3441         spin_unlock(&vcpu->kvm->mmu_lock);
3442
3443         return r;
3444
3445 out_unlock:
3446         spin_unlock(&vcpu->kvm->mmu_lock);
3447         kvm_release_pfn_clean(pfn);
3448         return 0;
3449 }
3450
3451 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3452                                    struct kvm_mmu *context)
3453 {
3454         context->page_fault = nonpaging_page_fault;
3455         context->gva_to_gpa = nonpaging_gva_to_gpa;
3456         context->sync_page = nonpaging_sync_page;
3457         context->invlpg = nonpaging_invlpg;
3458         context->update_pte = nonpaging_update_pte;
3459         context->root_level = 0;
3460         context->shadow_root_level = PT32E_ROOT_LEVEL;
3461         context->root_hpa = INVALID_PAGE;
3462         context->direct_map = true;
3463         context->nx = false;
3464 }
3465
3466 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3467 {
3468         mmu_free_roots(vcpu);
3469 }
3470
3471 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3472 {
3473         return kvm_read_cr3(vcpu);
3474 }
3475
3476 static void inject_page_fault(struct kvm_vcpu *vcpu,
3477                               struct x86_exception *fault)
3478 {
3479         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3480 }
3481
3482 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3483                            unsigned access, int *nr_present)
3484 {
3485         if (unlikely(is_mmio_spte(*sptep))) {
3486                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3487                         mmu_spte_clear_no_track(sptep);
3488                         return true;
3489                 }
3490
3491                 (*nr_present)++;
3492                 mark_mmio_spte(kvm, sptep, gfn, access);
3493                 return true;
3494         }
3495
3496         return false;
3497 }
3498
3499 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3500 {
3501         unsigned index;
3502
3503         index = level - 1;
3504         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3505         return mmu->last_pte_bitmap & (1 << index);
3506 }
3507
3508 #define PTTYPE_EPT 18 /* arbitrary */
3509 #define PTTYPE PTTYPE_EPT
3510 #include "paging_tmpl.h"
3511 #undef PTTYPE
3512
3513 #define PTTYPE 64
3514 #include "paging_tmpl.h"
3515 #undef PTTYPE
3516
3517 #define PTTYPE 32
3518 #include "paging_tmpl.h"
3519 #undef PTTYPE
3520
3521 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3522                                   struct kvm_mmu *context)
3523 {
3524         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3525         u64 exb_bit_rsvd = 0;
3526         u64 gbpages_bit_rsvd = 0;
3527         u64 nonleaf_bit8_rsvd = 0;
3528
3529         context->bad_mt_xwr = 0;
3530
3531         if (!context->nx)
3532                 exb_bit_rsvd = rsvd_bits(63, 63);
3533         if (!guest_cpuid_has_gbpages(vcpu))
3534                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3535
3536         /*
3537          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3538          * leaf entries) on AMD CPUs only.
3539          */
3540         if (guest_cpuid_is_amd(vcpu))
3541                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3542
3543         switch (context->root_level) {
3544         case PT32_ROOT_LEVEL:
3545                 /* no rsvd bits for 2 level 4K page table entries */
3546                 context->rsvd_bits_mask[0][1] = 0;
3547                 context->rsvd_bits_mask[0][0] = 0;
3548                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3549
3550                 if (!is_pse(vcpu)) {
3551                         context->rsvd_bits_mask[1][1] = 0;
3552                         break;
3553                 }
3554
3555                 if (is_cpuid_PSE36())
3556                         /* 36bits PSE 4MB page */
3557                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3558                 else
3559                         /* 32 bits PSE 4MB page */
3560                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3561                 break;
3562         case PT32E_ROOT_LEVEL:
3563                 context->rsvd_bits_mask[0][2] =
3564                         rsvd_bits(maxphyaddr, 63) |
3565                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3566                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3567                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3568                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3569                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3570                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3571                         rsvd_bits(maxphyaddr, 62) |
3572                         rsvd_bits(13, 20);              /* large page */
3573                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3574                 break;
3575         case PT64_ROOT_LEVEL:
3576                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3577                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3578                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3579                         nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3580                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3581                         rsvd_bits(maxphyaddr, 51);
3582                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3583                         rsvd_bits(maxphyaddr, 51);
3584                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3585                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3586                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3587                         rsvd_bits(13, 29);
3588                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3589                         rsvd_bits(maxphyaddr, 51) |
3590                         rsvd_bits(13, 20);              /* large page */
3591                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3592                 break;
3593         }
3594 }
3595
3596 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3597                 struct kvm_mmu *context, bool execonly)
3598 {
3599         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3600         int pte;
3601
3602         context->rsvd_bits_mask[0][3] =
3603                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3604         context->rsvd_bits_mask[0][2] =
3605                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3606         context->rsvd_bits_mask[0][1] =
3607                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3608         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3609
3610         /* large page */
3611         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3612         context->rsvd_bits_mask[1][2] =
3613                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3614         context->rsvd_bits_mask[1][1] =
3615                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3616         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3617
3618         for (pte = 0; pte < 64; pte++) {
3619                 int rwx_bits = pte & 7;
3620                 int mt = pte >> 3;
3621                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3622                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3623                                 (rwx_bits == 0x4 && !execonly))
3624                         context->bad_mt_xwr |= (1ull << pte);
3625         }
3626 }
3627
3628 void update_permission_bitmask(struct kvm_vcpu *vcpu,
3629                 struct kvm_mmu *mmu, bool ept)
3630 {
3631         unsigned bit, byte, pfec;
3632         u8 map;
3633         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3634
3635         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3636         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3637         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3638                 pfec = byte << 1;
3639                 map = 0;
3640                 wf = pfec & PFERR_WRITE_MASK;
3641                 uf = pfec & PFERR_USER_MASK;
3642                 ff = pfec & PFERR_FETCH_MASK;
3643                 /*
3644                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3645                  * subject to SMAP restrictions, and cleared otherwise. The
3646                  * bit is only meaningful if the SMAP bit is set in CR4.
3647                  */
3648                 smapf = !(pfec & PFERR_RSVD_MASK);
3649                 for (bit = 0; bit < 8; ++bit) {
3650                         x = bit & ACC_EXEC_MASK;
3651                         w = bit & ACC_WRITE_MASK;
3652                         u = bit & ACC_USER_MASK;
3653
3654                         if (!ept) {
3655                                 /* Not really needed: !nx will cause pte.nx to fault */
3656                                 x |= !mmu->nx;
3657                                 /* Allow supervisor writes if !cr0.wp */
3658                                 w |= !is_write_protection(vcpu) && !uf;
3659                                 /* Disallow supervisor fetches of user code if cr4.smep */
3660                                 x &= !(cr4_smep && u && !uf);
3661
3662                                 /*
3663                                  * SMAP:kernel-mode data accesses from user-mode
3664                                  * mappings should fault. A fault is considered
3665                                  * as a SMAP violation if all of the following
3666                                  * conditions are ture:
3667                                  *   - X86_CR4_SMAP is set in CR4
3668                                  *   - An user page is accessed
3669                                  *   - Page fault in kernel mode
3670                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3671                                  *
3672                                  *   Here, we cover the first three conditions.
3673                                  *   The fourth is computed dynamically in
3674                                  *   permission_fault() and is in smapf.
3675                                  *
3676                                  *   Also, SMAP does not affect instruction
3677                                  *   fetches, add the !ff check here to make it
3678                                  *   clearer.
3679                                  */
3680                                 smap = cr4_smap && u && !uf && !ff;
3681                         } else
3682                                 /* Not really needed: no U/S accesses on ept  */
3683                                 u = 1;
3684
3685                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3686                                 (smapf && smap);
3687                         map |= fault << bit;
3688                 }
3689                 mmu->permissions[byte] = map;
3690         }
3691 }
3692
3693 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3694 {
3695         u8 map;
3696         unsigned level, root_level = mmu->root_level;
3697         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3698
3699         if (root_level == PT32E_ROOT_LEVEL)
3700                 --root_level;
3701         /* PT_PAGE_TABLE_LEVEL always terminates */
3702         map = 1 | (1 << ps_set_index);
3703         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3704                 if (level <= PT_PDPE_LEVEL
3705                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3706                         map |= 1 << (ps_set_index | (level - 1));
3707         }
3708         mmu->last_pte_bitmap = map;
3709 }
3710
3711 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3712                                          struct kvm_mmu *context,
3713                                          int level)
3714 {
3715         context->nx = is_nx(vcpu);
3716         context->root_level = level;
3717
3718         reset_rsvds_bits_mask(vcpu, context);
3719         update_permission_bitmask(vcpu, context, false);
3720         update_last_pte_bitmap(vcpu, context);
3721
3722         ASSERT(is_pae(vcpu));
3723         context->page_fault = paging64_page_fault;
3724         context->gva_to_gpa = paging64_gva_to_gpa;
3725         context->sync_page = paging64_sync_page;
3726         context->invlpg = paging64_invlpg;
3727         context->update_pte = paging64_update_pte;
3728         context->shadow_root_level = level;
3729         context->root_hpa = INVALID_PAGE;
3730         context->direct_map = false;
3731 }
3732
3733 static void paging64_init_context(struct kvm_vcpu *vcpu,
3734                                   struct kvm_mmu *context)
3735 {
3736         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3737 }
3738
3739 static void paging32_init_context(struct kvm_vcpu *vcpu,
3740                                   struct kvm_mmu *context)
3741 {
3742         context->nx = false;
3743         context->root_level = PT32_ROOT_LEVEL;
3744
3745         reset_rsvds_bits_mask(vcpu, context);
3746         update_permission_bitmask(vcpu, context, false);
3747         update_last_pte_bitmap(vcpu, context);
3748
3749         context->page_fault = paging32_page_fault;
3750         context->gva_to_gpa = paging32_gva_to_gpa;
3751         context->sync_page = paging32_sync_page;
3752         context->invlpg = paging32_invlpg;
3753         context->update_pte = paging32_update_pte;
3754         context->shadow_root_level = PT32E_ROOT_LEVEL;
3755         context->root_hpa = INVALID_PAGE;
3756         context->direct_map = false;
3757 }
3758
3759 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3760                                    struct kvm_mmu *context)
3761 {
3762         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3763 }
3764
3765 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3766 {
3767         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3768
3769         context->base_role.word = 0;
3770         context->page_fault = tdp_page_fault;
3771         context->sync_page = nonpaging_sync_page;
3772         context->invlpg = nonpaging_invlpg;
3773         context->update_pte = nonpaging_update_pte;
3774         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3775         context->root_hpa = INVALID_PAGE;
3776         context->direct_map = true;
3777         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3778         context->get_cr3 = get_cr3;
3779         context->get_pdptr = kvm_pdptr_read;
3780         context->inject_page_fault = kvm_inject_page_fault;
3781
3782         if (!is_paging(vcpu)) {
3783                 context->nx = false;
3784                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3785                 context->root_level = 0;
3786         } else if (is_long_mode(vcpu)) {
3787                 context->nx = is_nx(vcpu);
3788                 context->root_level = PT64_ROOT_LEVEL;
3789                 reset_rsvds_bits_mask(vcpu, context);
3790                 context->gva_to_gpa = paging64_gva_to_gpa;
3791         } else if (is_pae(vcpu)) {
3792                 context->nx = is_nx(vcpu);
3793                 context->root_level = PT32E_ROOT_LEVEL;
3794                 reset_rsvds_bits_mask(vcpu, context);
3795                 context->gva_to_gpa = paging64_gva_to_gpa;
3796         } else {
3797                 context->nx = false;
3798                 context->root_level = PT32_ROOT_LEVEL;
3799                 reset_rsvds_bits_mask(vcpu, context);
3800                 context->gva_to_gpa = paging32_gva_to_gpa;
3801         }
3802
3803         update_permission_bitmask(vcpu, context, false);
3804         update_last_pte_bitmap(vcpu, context);
3805 }
3806
3807 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3808 {
3809         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3810         ASSERT(vcpu);
3811         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3812
3813         if (!is_paging(vcpu))
3814                 nonpaging_init_context(vcpu, context);
3815         else if (is_long_mode(vcpu))
3816                 paging64_init_context(vcpu, context);
3817         else if (is_pae(vcpu))
3818                 paging32E_init_context(vcpu, context);
3819         else
3820                 paging32_init_context(vcpu, context);
3821
3822         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3823         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3824         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3825         vcpu->arch.mmu.base_role.smep_andnot_wp
3826                 = smep && !is_write_protection(vcpu);
3827 }
3828 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3829
3830 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3831                 bool execonly)
3832 {
3833         ASSERT(vcpu);
3834         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3835
3836         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3837
3838         context->nx = true;
3839         context->page_fault = ept_page_fault;
3840         context->gva_to_gpa = ept_gva_to_gpa;
3841         context->sync_page = ept_sync_page;
3842         context->invlpg = ept_invlpg;
3843         context->update_pte = ept_update_pte;
3844         context->root_level = context->shadow_root_level;
3845         context->root_hpa = INVALID_PAGE;
3846         context->direct_map = false;
3847
3848         update_permission_bitmask(vcpu, context, true);
3849         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3850 }
3851 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3852
3853 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3854 {
3855         kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3856         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3857         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3858         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3859         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3860 }
3861
3862 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3863 {
3864         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3865
3866         g_context->get_cr3           = get_cr3;
3867         g_context->get_pdptr         = kvm_pdptr_read;
3868         g_context->inject_page_fault = kvm_inject_page_fault;
3869
3870         /*
3871          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3872          * translation of l2_gpa to l1_gpa addresses is done using the
3873          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3874          * functions between mmu and nested_mmu are swapped.
3875          */
3876         if (!is_paging(vcpu)) {
3877                 g_context->nx = false;
3878                 g_context->root_level = 0;
3879                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3880         } else if (is_long_mode(vcpu)) {
3881                 g_context->nx = is_nx(vcpu);
3882                 g_context->root_level = PT64_ROOT_LEVEL;
3883                 reset_rsvds_bits_mask(vcpu, g_context);
3884                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3885         } else if (is_pae(vcpu)) {
3886                 g_context->nx = is_nx(vcpu);
3887                 g_context->root_level = PT32E_ROOT_LEVEL;
3888                 reset_rsvds_bits_mask(vcpu, g_context);
3889                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3890         } else {
3891                 g_context->nx = false;
3892                 g_context->root_level = PT32_ROOT_LEVEL;
3893                 reset_rsvds_bits_mask(vcpu, g_context);
3894                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3895         }
3896
3897         update_permission_bitmask(vcpu, g_context, false);
3898         update_last_pte_bitmap(vcpu, g_context);
3899 }
3900
3901 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3902 {
3903         if (mmu_is_nested(vcpu))
3904                 return init_kvm_nested_mmu(vcpu);
3905         else if (tdp_enabled)
3906                 return init_kvm_tdp_mmu(vcpu);
3907         else
3908                 return init_kvm_softmmu(vcpu);
3909 }
3910
3911 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3912 {
3913         ASSERT(vcpu);
3914
3915         kvm_mmu_unload(vcpu);
3916         init_kvm_mmu(vcpu);
3917 }
3918 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3919
3920 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3921 {
3922         int r;
3923
3924         r = mmu_topup_memory_caches(vcpu);
3925         if (r)
3926                 goto out;
3927         r = mmu_alloc_roots(vcpu);
3928         kvm_mmu_sync_roots(vcpu);
3929         if (r)
3930                 goto out;
3931         /* set_cr3() should ensure TLB has been flushed */
3932         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3933 out:
3934         return r;
3935 }
3936 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3937
3938 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3939 {
3940         mmu_free_roots(vcpu);
3941         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3942 }
3943 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3944
3945 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3946                                   struct kvm_mmu_page *sp, u64 *spte,
3947                                   const void *new)
3948 {
3949         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3950                 ++vcpu->kvm->stat.mmu_pde_zapped;
3951                 return;
3952         }
3953
3954         ++vcpu->kvm->stat.mmu_pte_updated;
3955         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3956 }
3957
3958 static bool need_remote_flush(u64 old, u64 new)
3959 {
3960         if (!is_shadow_present_pte(old))
3961                 return false;
3962         if (!is_shadow_present_pte(new))
3963                 return true;
3964         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3965                 return true;
3966         old ^= shadow_nx_mask;
3967         new ^= shadow_nx_mask;
3968         return (old & ~new & PT64_PERM_MASK) != 0;
3969 }
3970
3971 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3972                                     bool remote_flush, bool local_flush)
3973 {
3974         if (zap_page)
3975                 return;
3976
3977         if (remote_flush)
3978                 kvm_flush_remote_tlbs(vcpu->kvm);
3979         else if (local_flush)
3980                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3981 }
3982
3983 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3984                                     const u8 *new, int *bytes)
3985 {
3986         u64 gentry;
3987         int r;
3988
3989         /*
3990          * Assume that the pte write on a page table of the same type
3991          * as the current vcpu paging mode since we update the sptes only
3992          * when they have the same mode.
3993          */
3994         if (is_pae(vcpu) && *bytes == 4) {
3995                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3996                 *gpa &= ~(gpa_t)7;
3997                 *bytes = 8;
3998                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3999                 if (r)
4000                         gentry = 0;
4001                 new = (const u8 *)&gentry;
4002         }
4003
4004         switch (*bytes) {
4005         case 4:
4006                 gentry = *(const u32 *)new;
4007                 break;
4008         case 8:
4009                 gentry = *(const u64 *)new;
4010                 break;
4011         default:
4012                 gentry = 0;
4013                 break;
4014         }
4015
4016         return gentry;
4017 }
4018
4019 /*
4020  * If we're seeing too many writes to a page, it may no longer be a page table,
4021  * or we may be forking, in which case it is better to unmap the page.
4022  */
4023 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4024 {
4025         /*
4026          * Skip write-flooding detected for the sp whose level is 1, because
4027          * it can become unsync, then the guest page is not write-protected.
4028          */
4029         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4030                 return false;
4031
4032         return ++sp->write_flooding_count >= 3;
4033 }
4034
4035 /*
4036  * Misaligned accesses are too much trouble to fix up; also, they usually
4037  * indicate a page is not used as a page table.
4038  */
4039 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4040                                     int bytes)
4041 {
4042         unsigned offset, pte_size, misaligned;
4043
4044         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4045                  gpa, bytes, sp->role.word);
4046
4047         offset = offset_in_page(gpa);
4048         pte_size = sp->role.cr4_pae ? 8 : 4;
4049
4050         /*
4051          * Sometimes, the OS only writes the last one bytes to update status
4052          * bits, for example, in linux, andb instruction is used in clear_bit().
4053          */
4054         if (!(offset & (pte_size - 1)) && bytes == 1)
4055                 return false;
4056
4057         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4058         misaligned |= bytes < 4;
4059
4060         return misaligned;
4061 }
4062
4063 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4064 {
4065         unsigned page_offset, quadrant;
4066         u64 *spte;
4067         int level;
4068
4069         page_offset = offset_in_page(gpa);
4070         level = sp->role.level;
4071         *nspte = 1;
4072         if (!sp->role.cr4_pae) {
4073                 page_offset <<= 1;      /* 32->64 */
4074                 /*
4075                  * A 32-bit pde maps 4MB while the shadow pdes map
4076                  * only 2MB.  So we need to double the offset again
4077                  * and zap two pdes instead of one.
4078                  */
4079                 if (level == PT32_ROOT_LEVEL) {
4080                         page_offset &= ~7; /* kill rounding error */
4081                         page_offset <<= 1;
4082                         *nspte = 2;
4083                 }
4084                 quadrant = page_offset >> PAGE_SHIFT;
4085                 page_offset &= ~PAGE_MASK;
4086                 if (quadrant != sp->role.quadrant)
4087                         return NULL;
4088         }
4089
4090         spte = &sp->spt[page_offset / sizeof(*spte)];
4091         return spte;
4092 }
4093
4094 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4095                        const u8 *new, int bytes)
4096 {
4097         gfn_t gfn = gpa >> PAGE_SHIFT;
4098         union kvm_mmu_page_role mask = { .word = 0 };
4099         struct kvm_mmu_page *sp;
4100         LIST_HEAD(invalid_list);
4101         u64 entry, gentry, *spte;
4102         int npte;
4103         bool remote_flush, local_flush, zap_page;
4104
4105         /*
4106          * If we don't have indirect shadow pages, it means no page is
4107          * write-protected, so we can exit simply.
4108          */
4109         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4110                 return;
4111
4112         zap_page = remote_flush = local_flush = false;
4113
4114         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4115
4116         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4117
4118         /*
4119          * No need to care whether allocation memory is successful
4120          * or not since pte prefetch is skiped if it does not have
4121          * enough objects in the cache.
4122          */
4123         mmu_topup_memory_caches(vcpu);
4124
4125         spin_lock(&vcpu->kvm->mmu_lock);
4126         ++vcpu->kvm->stat.mmu_pte_write;
4127         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4128
4129         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4130         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4131                 if (detect_write_misaligned(sp, gpa, bytes) ||
4132                       detect_write_flooding(sp)) {
4133                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4134                                                      &invalid_list);
4135                         ++vcpu->kvm->stat.mmu_flooded;
4136                         continue;
4137                 }
4138
4139                 spte = get_written_sptes(sp, gpa, &npte);
4140                 if (!spte)
4141                         continue;
4142
4143                 local_flush = true;
4144                 while (npte--) {
4145                         entry = *spte;
4146                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4147                         if (gentry &&
4148                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4149                               & mask.word) && rmap_can_add(vcpu))
4150                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4151                         if (need_remote_flush(entry, *spte))
4152                                 remote_flush = true;
4153                         ++spte;
4154                 }
4155         }
4156         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4157         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4158         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4159         spin_unlock(&vcpu->kvm->mmu_lock);
4160 }
4161
4162 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4163 {
4164         gpa_t gpa;
4165         int r;
4166
4167         if (vcpu->arch.mmu.direct_map)
4168                 return 0;
4169
4170         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4171
4172         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4173
4174         return r;
4175 }
4176 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4177
4178 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4179 {
4180         LIST_HEAD(invalid_list);
4181
4182         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4183                 return;
4184
4185         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4186                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4187                         break;
4188
4189                 ++vcpu->kvm->stat.mmu_recycled;
4190         }
4191         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4192 }
4193
4194 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4195 {
4196         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4197                 return vcpu_match_mmio_gpa(vcpu, addr);
4198
4199         return vcpu_match_mmio_gva(vcpu, addr);
4200 }
4201
4202 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4203                        void *insn, int insn_len)
4204 {
4205         int r, emulation_type = EMULTYPE_RETRY;
4206         enum emulation_result er;
4207
4208         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4209         if (r < 0)
4210                 goto out;
4211
4212         if (!r) {
4213                 r = 1;
4214                 goto out;
4215         }
4216
4217         if (is_mmio_page_fault(vcpu, cr2))
4218                 emulation_type = 0;
4219
4220         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4221
4222         switch (er) {
4223         case EMULATE_DONE:
4224                 return 1;
4225         case EMULATE_USER_EXIT:
4226                 ++vcpu->stat.mmio_exits;
4227                 /* fall through */
4228         case EMULATE_FAIL:
4229                 return 0;
4230         default:
4231                 BUG();
4232         }
4233 out:
4234         return r;
4235 }
4236 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4237
4238 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4239 {
4240         vcpu->arch.mmu.invlpg(vcpu, gva);
4241         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4242         ++vcpu->stat.invlpg;
4243 }
4244 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4245
4246 void kvm_enable_tdp(void)
4247 {
4248         tdp_enabled = true;
4249 }
4250 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4251
4252 void kvm_disable_tdp(void)
4253 {
4254         tdp_enabled = false;
4255 }
4256 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4257
4258 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4259 {
4260         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4261         if (vcpu->arch.mmu.lm_root != NULL)
4262                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4263 }
4264
4265 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4266 {
4267         struct page *page;
4268         int i;
4269
4270         ASSERT(vcpu);
4271
4272         /*
4273          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4274          * Therefore we need to allocate shadow page tables in the first
4275          * 4GB of memory, which happens to fit the DMA32 zone.
4276          */
4277         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4278         if (!page)
4279                 return -ENOMEM;
4280
4281         vcpu->arch.mmu.pae_root = page_address(page);
4282         for (i = 0; i < 4; ++i)
4283                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4284
4285         return 0;
4286 }
4287
4288 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4289 {
4290         ASSERT(vcpu);
4291
4292         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4293         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4294         vcpu->arch.mmu.translate_gpa = translate_gpa;
4295         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4296
4297         return alloc_mmu_pages(vcpu);
4298 }
4299
4300 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4301 {
4302         ASSERT(vcpu);
4303         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4304
4305         init_kvm_mmu(vcpu);
4306 }
4307
4308 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4309 {
4310         struct kvm_memory_slot *memslot;
4311         gfn_t last_gfn;
4312         int i;
4313
4314         memslot = id_to_memslot(kvm->memslots, slot);
4315         last_gfn = memslot->base_gfn + memslot->npages - 1;
4316
4317         spin_lock(&kvm->mmu_lock);
4318
4319         for (i = PT_PAGE_TABLE_LEVEL;
4320              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4321                 unsigned long *rmapp;
4322                 unsigned long last_index, index;
4323
4324                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4325                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4326
4327                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4328                         if (*rmapp)
4329                                 __rmap_write_protect(kvm, rmapp, false);
4330
4331                         if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4332                                 cond_resched_lock(&kvm->mmu_lock);
4333                 }
4334         }
4335
4336         spin_unlock(&kvm->mmu_lock);
4337
4338         /*
4339          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4340          * which do tlb flush out of mmu-lock should be serialized by
4341          * kvm->slots_lock otherwise tlb flush would be missed.
4342          */
4343         lockdep_assert_held(&kvm->slots_lock);
4344
4345         /*
4346          * We can flush all the TLBs out of the mmu lock without TLB
4347          * corruption since we just change the spte from writable to
4348          * readonly so that we only need to care the case of changing
4349          * spte from present to present (changing the spte from present
4350          * to nonpresent will flush all the TLBs immediately), in other
4351          * words, the only case we care is mmu_spte_update() where we
4352          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4353          * instead of PT_WRITABLE_MASK, that means it does not depend
4354          * on PT_WRITABLE_MASK anymore.
4355          */
4356         kvm_flush_remote_tlbs(kvm);
4357 }
4358
4359 #define BATCH_ZAP_PAGES 10
4360 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4361 {
4362         struct kvm_mmu_page *sp, *node;
4363         int batch = 0;
4364
4365 restart:
4366         list_for_each_entry_safe_reverse(sp, node,
4367               &kvm->arch.active_mmu_pages, link) {
4368                 int ret;
4369
4370                 /*
4371                  * No obsolete page exists before new created page since
4372                  * active_mmu_pages is the FIFO list.
4373                  */
4374                 if (!is_obsolete_sp(kvm, sp))
4375                         break;
4376
4377                 /*
4378                  * Since we are reversely walking the list and the invalid
4379                  * list will be moved to the head, skip the invalid page
4380                  * can help us to avoid the infinity list walking.
4381                  */
4382                 if (sp->role.invalid)
4383                         continue;
4384
4385                 /*
4386                  * Need not flush tlb since we only zap the sp with invalid
4387                  * generation number.
4388                  */
4389                 if (batch >= BATCH_ZAP_PAGES &&
4390                       cond_resched_lock(&kvm->mmu_lock)) {
4391                         batch = 0;
4392                         goto restart;
4393                 }
4394
4395                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4396                                 &kvm->arch.zapped_obsolete_pages);
4397                 batch += ret;
4398
4399                 if (ret)
4400                         goto restart;
4401         }
4402
4403         /*
4404          * Should flush tlb before free page tables since lockless-walking
4405          * may use the pages.
4406          */
4407         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4408 }
4409
4410 /*
4411  * Fast invalidate all shadow pages and use lock-break technique
4412  * to zap obsolete pages.
4413  *
4414  * It's required when memslot is being deleted or VM is being
4415  * destroyed, in these cases, we should ensure that KVM MMU does
4416  * not use any resource of the being-deleted slot or all slots
4417  * after calling the function.
4418  */
4419 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4420 {
4421         spin_lock(&kvm->mmu_lock);
4422         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4423         kvm->arch.mmu_valid_gen++;
4424
4425         /*
4426          * Notify all vcpus to reload its shadow page table
4427          * and flush TLB. Then all vcpus will switch to new
4428          * shadow page table with the new mmu_valid_gen.
4429          *
4430          * Note: we should do this under the protection of
4431          * mmu-lock, otherwise, vcpu would purge shadow page
4432          * but miss tlb flush.
4433          */
4434         kvm_reload_remote_mmus(kvm);
4435
4436         kvm_zap_obsolete_pages(kvm);
4437         spin_unlock(&kvm->mmu_lock);
4438 }
4439
4440 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4441 {
4442         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4443 }
4444
4445 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4446 {
4447         /*
4448          * The very rare case: if the generation-number is round,
4449          * zap all shadow pages.
4450          */
4451         if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4452                 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4453                 kvm_mmu_invalidate_zap_all_pages(kvm);
4454         }
4455 }
4456
4457 static unsigned long
4458 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4459 {
4460         struct kvm *kvm;
4461         int nr_to_scan = sc->nr_to_scan;
4462         unsigned long freed = 0;
4463
4464         spin_lock(&kvm_lock);
4465
4466         list_for_each_entry(kvm, &vm_list, vm_list) {
4467                 int idx;
4468                 LIST_HEAD(invalid_list);
4469
4470                 /*
4471                  * Never scan more than sc->nr_to_scan VM instances.
4472                  * Will not hit this condition practically since we do not try
4473                  * to shrink more than one VM and it is very unlikely to see
4474                  * !n_used_mmu_pages so many times.
4475                  */
4476                 if (!nr_to_scan--)
4477                         break;
4478                 /*
4479                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4480                  * here. We may skip a VM instance errorneosly, but we do not
4481                  * want to shrink a VM that only started to populate its MMU
4482                  * anyway.
4483                  */
4484                 if (!kvm->arch.n_used_mmu_pages &&
4485                       !kvm_has_zapped_obsolete_pages(kvm))
4486                         continue;
4487
4488                 idx = srcu_read_lock(&kvm->srcu);
4489                 spin_lock(&kvm->mmu_lock);
4490
4491                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4492                         kvm_mmu_commit_zap_page(kvm,
4493                               &kvm->arch.zapped_obsolete_pages);
4494                         goto unlock;
4495                 }
4496
4497                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4498                         freed++;
4499                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4500
4501 unlock:
4502                 spin_unlock(&kvm->mmu_lock);
4503                 srcu_read_unlock(&kvm->srcu, idx);
4504
4505                 /*
4506                  * unfair on small ones
4507                  * per-vm shrinkers cry out
4508                  * sadness comes quickly
4509                  */
4510                 list_move_tail(&kvm->vm_list, &vm_list);
4511                 break;
4512         }
4513
4514         spin_unlock(&kvm_lock);
4515         return freed;
4516 }
4517
4518 static unsigned long
4519 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4520 {
4521         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4522 }
4523
4524 static struct shrinker mmu_shrinker = {
4525         .count_objects = mmu_shrink_count,
4526         .scan_objects = mmu_shrink_scan,
4527         .seeks = DEFAULT_SEEKS * 10,
4528 };
4529
4530 static void mmu_destroy_caches(void)
4531 {
4532         if (pte_list_desc_cache)
4533                 kmem_cache_destroy(pte_list_desc_cache);
4534         if (mmu_page_header_cache)
4535                 kmem_cache_destroy(mmu_page_header_cache);
4536 }
4537
4538 int kvm_mmu_module_init(void)
4539 {
4540         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4541                                             sizeof(struct pte_list_desc),
4542                                             0, 0, NULL);
4543         if (!pte_list_desc_cache)
4544                 goto nomem;
4545
4546         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4547                                                   sizeof(struct kvm_mmu_page),
4548                                                   0, 0, NULL);
4549         if (!mmu_page_header_cache)
4550                 goto nomem;
4551
4552         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4553                 goto nomem;
4554
4555         register_shrinker(&mmu_shrinker);
4556
4557         return 0;
4558
4559 nomem:
4560         mmu_destroy_caches();
4561         return -ENOMEM;
4562 }
4563
4564 /*
4565  * Caculate mmu pages needed for kvm.
4566  */
4567 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4568 {
4569         unsigned int nr_mmu_pages;
4570         unsigned int  nr_pages = 0;
4571         struct kvm_memslots *slots;
4572         struct kvm_memory_slot *memslot;
4573
4574         slots = kvm_memslots(kvm);
4575
4576         kvm_for_each_memslot(memslot, slots)
4577                 nr_pages += memslot->npages;
4578
4579         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4580         nr_mmu_pages = max(nr_mmu_pages,
4581                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4582
4583         return nr_mmu_pages;
4584 }
4585
4586 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4587 {
4588         struct kvm_shadow_walk_iterator iterator;
4589         u64 spte;
4590         int nr_sptes = 0;
4591
4592         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4593                 return nr_sptes;
4594
4595         walk_shadow_page_lockless_begin(vcpu);
4596         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4597                 sptes[iterator.level-1] = spte;
4598                 nr_sptes++;
4599                 if (!is_shadow_present_pte(spte))
4600                         break;
4601         }
4602         walk_shadow_page_lockless_end(vcpu);
4603
4604         return nr_sptes;
4605 }
4606 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4607
4608 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4609 {
4610         ASSERT(vcpu);
4611
4612         kvm_mmu_unload(vcpu);
4613         free_mmu_pages(vcpu);
4614         mmu_free_memory_caches(vcpu);
4615 }
4616
4617 void kvm_mmu_module_exit(void)
4618 {
4619         mmu_destroy_caches();
4620         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4621         unregister_shrinker(&mmu_shrinker);
4622         mmu_audit_disable();
4623 }