Merge remote-tracking branches 'spi/topic/bfin-sport', 'spi/topic/bfin5xx', 'spi...
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47  * When setting this variable to true it enables Two-Dimensional-Paging
48  * where the hardware walks 2 page tables:
49  * 1. the guest-virtual to guest-physical
50  * 2. while doing 1. it walks guest-physical to host-physical
51  * If the hardware supports that we don't need to do shadow paging.
52  */
53 bool tdp_enabled = false;
54
55 enum {
56         AUDIT_PRE_PAGE_FAULT,
57         AUDIT_POST_PAGE_FAULT,
58         AUDIT_PRE_PTE_WRITE,
59         AUDIT_POST_PTE_WRITE,
60         AUDIT_PRE_SYNC,
61         AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM                8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100                                                 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111                                                 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114                                                 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121                                             * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124                         | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK    1
127 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
128 #define ACC_USER_MASK    PT_USER_MASK
129 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145         u64 *sptes[PTE_LIST_EXT];
146         struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150         u64 addr;
151         hpa_t shadow_addr;
152         u64 *sptep;
153         int level;
154         unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
158         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
159              shadow_walk_okay(&(_walker));                      \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
164              shadow_walk_okay(&(_walker)) &&                            \
165                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
166              __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178
179 static void mmu_spte_set(u64 *sptep, u64 spte);
180 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 {
184         shadow_mmio_mask = mmio_mask;
185 }
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188 /*
189  * the low bit of the generation number is always presumed to be zero.
190  * This disables mmio caching during memslot updates.  The concept is
191  * similar to a seqcount but instead of retrying the access we just punt
192  * and ignore the cache.
193  *
194  * spte bits 3-11 are used as bits 1-9 of the generation number,
195  * the bits 52-61 are used as bits 10-19 of the generation number.
196  */
197 #define MMIO_SPTE_GEN_LOW_SHIFT         2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
199
200 #define MMIO_GEN_SHIFT                  20
201 #define MMIO_GEN_LOW_SHIFT              10
202 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
204
205 static u64 generation_mmio_spte_mask(unsigned int gen)
206 {
207         u64 mask;
208
209         WARN_ON(gen & ~MMIO_GEN_MASK);
210
211         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213         return mask;
214 }
215
216 static unsigned int get_mmio_spte_generation(u64 spte)
217 {
218         unsigned int gen;
219
220         spte &= ~shadow_mmio_mask;
221
222         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224         return gen;
225 }
226
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 {
229         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233                            unsigned access)
234 {
235         unsigned int gen = kvm_current_mmio_generation(vcpu);
236         u64 mask = generation_mmio_spte_mask(gen);
237
238         access &= ACC_WRITE_MASK | ACC_USER_MASK;
239         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241         trace_mark_mmio_spte(sptep, gfn, access, gen);
242         mmu_spte_set(sptep, mask);
243 }
244
245 static bool is_mmio_spte(u64 spte)
246 {
247         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248 }
249
250 static gfn_t get_mmio_spte_gfn(u64 spte)
251 {
252         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253         return (spte & ~mask) >> PAGE_SHIFT;
254 }
255
256 static unsigned get_mmio_spte_access(u64 spte)
257 {
258         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259         return (spte & ~mask) & ~PAGE_MASK;
260 }
261
262 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263                           kvm_pfn_t pfn, unsigned access)
264 {
265         if (unlikely(is_noslot_pfn(pfn))) {
266                 mark_mmio_spte(vcpu, sptep, gfn, access);
267                 return true;
268         }
269
270         return false;
271 }
272
273 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 {
275         unsigned int kvm_gen, spte_gen;
276
277         kvm_gen = kvm_current_mmio_generation(vcpu);
278         spte_gen = get_mmio_spte_generation(spte);
279
280         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281         return likely(kvm_gen == spte_gen);
282 }
283
284 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 {
287         shadow_user_mask = user_mask;
288         shadow_accessed_mask = accessed_mask;
289         shadow_dirty_mask = dirty_mask;
290         shadow_nx_mask = nx_mask;
291         shadow_x_mask = x_mask;
292 }
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295 static int is_cpuid_PSE36(void)
296 {
297         return 1;
298 }
299
300 static int is_nx(struct kvm_vcpu *vcpu)
301 {
302         return vcpu->arch.efer & EFER_NX;
303 }
304
305 static int is_shadow_present_pte(u64 pte)
306 {
307         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 }
309
310 static int is_large_pte(u64 pte)
311 {
312         return pte & PT_PAGE_SIZE_MASK;
313 }
314
315 static int is_last_spte(u64 pte, int level)
316 {
317         if (level == PT_PAGE_TABLE_LEVEL)
318                 return 1;
319         if (is_large_pte(pte))
320                 return 1;
321         return 0;
322 }
323
324 static kvm_pfn_t spte_to_pfn(u64 pte)
325 {
326         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 }
328
329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333         return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339         WRITE_ONCE(*sptep, spte);
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344         WRITE_ONCE(*sptep, spte);
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349         return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354         return ACCESS_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358         struct {
359                 u32 spte_low;
360                 u32 spte_high;
361         };
362         u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
368
369         if (is_shadow_present_pte(spte))
370                 return;
371
372         /* Ensure the spte is completely set before we increase the count */
373         smp_wmb();
374         sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379         union split_spte *ssptep, sspte;
380
381         ssptep = (union split_spte *)sptep;
382         sspte = (union split_spte)spte;
383
384         ssptep->spte_high = sspte.spte_high;
385
386         /*
387          * If we map the spte from nonpresent to present, We should store
388          * the high bits firstly, then set present bit, so cpu can not
389          * fetch this spte while we are setting the spte.
390          */
391         smp_wmb();
392
393         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398         union split_spte *ssptep, sspte;
399
400         ssptep = (union split_spte *)sptep;
401         sspte = (union split_spte)spte;
402
403         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
404
405         /*
406          * If we map the spte from present to nonpresent, we should clear
407          * present bit firstly to avoid vcpu fetch the old high bits.
408          */
409         smp_wmb();
410
411         ssptep->spte_high = sspte.spte_high;
412         count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417         union split_spte *ssptep, sspte, orig;
418
419         ssptep = (union split_spte *)sptep;
420         sspte = (union split_spte)spte;
421
422         /* xchg acts as a barrier before the setting of the high bits */
423         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424         orig.spte_high = ssptep->spte_high;
425         ssptep->spte_high = sspte.spte_high;
426         count_spte_clear(sptep, spte);
427
428         return orig.spte;
429 }
430
431 /*
432  * The idea using the light way get the spte on x86_32 guest is from
433  * gup_get_pte(arch/x86/mm/gup.c).
434  *
435  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436  * coalesces them and we are running out of the MMU lock.  Therefore
437  * we need to protect against in-progress updates of the spte.
438  *
439  * Reading the spte while an update is in progress may get the old value
440  * for the high part of the spte.  The race is fine for a present->non-present
441  * change (because the high part of the spte is ignored for non-present spte),
442  * but for a present->present change we must reread the spte.
443  *
444  * All such changes are done in two steps (present->non-present and
445  * non-present->present), hence it is enough to count the number of
446  * present->non-present updates: if it changed while reading the spte,
447  * we might have hit the race.  This is done using clear_spte_count.
448  */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
452         union split_spte spte, *orig = (union split_spte *)sptep;
453         int count;
454
455 retry:
456         count = sp->clear_spte_count;
457         smp_rmb();
458
459         spte.spte_low = orig->spte_low;
460         smp_rmb();
461
462         spte.spte_high = orig->spte_high;
463         smp_rmb();
464
465         if (unlikely(spte.spte_low != orig->spte_low ||
466               count != sp->clear_spte_count))
467                 goto retry;
468
469         return spte.spte;
470 }
471 #endif
472
473 static bool spte_is_locklessly_modifiable(u64 spte)
474 {
475         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 }
478
479 static bool spte_has_volatile_bits(u64 spte)
480 {
481         /*
482          * Always atomically update spte if it can be updated
483          * out of mmu-lock, it can ensure dirty bit is not lost,
484          * also, it can help us to get a stable is_writable_pte()
485          * to ensure tlb flush is not missed.
486          */
487         if (spte_is_locklessly_modifiable(spte))
488                 return true;
489
490         if (!shadow_accessed_mask)
491                 return false;
492
493         if (!is_shadow_present_pte(spte))
494                 return false;
495
496         if ((spte & shadow_accessed_mask) &&
497               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498                 return false;
499
500         return true;
501 }
502
503 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504 {
505         return (old_spte & bit_mask) && !(new_spte & bit_mask);
506 }
507
508 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509 {
510         return (old_spte & bit_mask) != (new_spte & bit_mask);
511 }
512
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521         WARN_ON(is_shadow_present_pte(*sptep));
522         __set_spte(sptep, new_spte);
523 }
524
525 /* Rules for using mmu_spte_update:
526  * Update the state bits, it means the mapped pfn is not changged.
527  *
528  * Whenever we overwrite a writable spte with a read-only one we
529  * should flush remote TLBs. Otherwise rmap_write_protect
530  * will find a read-only spte, even though the writable spte
531  * might be cached on a CPU's TLB, the return value indicates this
532  * case.
533  */
534 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535 {
536         u64 old_spte = *sptep;
537         bool ret = false;
538
539         WARN_ON(!is_shadow_present_pte(new_spte));
540
541         if (!is_shadow_present_pte(old_spte)) {
542                 mmu_spte_set(sptep, new_spte);
543                 return ret;
544         }
545
546         if (!spte_has_volatile_bits(old_spte))
547                 __update_clear_spte_fast(sptep, new_spte);
548         else
549                 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551         /*
552          * For the spte updated out of mmu-lock is safe, since
553          * we always atomically update it, see the comments in
554          * spte_has_volatile_bits().
555          */
556         if (spte_is_locklessly_modifiable(old_spte) &&
557               !is_writable_pte(new_spte))
558                 ret = true;
559
560         if (!shadow_accessed_mask) {
561                 /*
562                  * We don't set page dirty when dropping non-writable spte.
563                  * So do it now if the new spte is becoming non-writable.
564                  */
565                 if (ret)
566                         kvm_set_pfn_dirty(spte_to_pfn(old_spte));
567                 return ret;
568         }
569
570         /*
571          * Flush TLB when accessed/dirty bits are changed in the page tables,
572          * to guarantee consistency between TLB and page tables.
573          */
574         if (spte_is_bit_changed(old_spte, new_spte,
575                                 shadow_accessed_mask | shadow_dirty_mask))
576                 ret = true;
577
578         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
579                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
580         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
581                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
582
583         return ret;
584 }
585
586 /*
587  * Rules for using mmu_spte_clear_track_bits:
588  * It sets the sptep from present to nonpresent, and track the
589  * state bits, it is used to clear the last level sptep.
590  */
591 static int mmu_spte_clear_track_bits(u64 *sptep)
592 {
593         kvm_pfn_t pfn;
594         u64 old_spte = *sptep;
595
596         if (!spte_has_volatile_bits(old_spte))
597                 __update_clear_spte_fast(sptep, 0ull);
598         else
599                 old_spte = __update_clear_spte_slow(sptep, 0ull);
600
601         if (!is_shadow_present_pte(old_spte))
602                 return 0;
603
604         pfn = spte_to_pfn(old_spte);
605
606         /*
607          * KVM does not hold the refcount of the page used by
608          * kvm mmu, before reclaiming the page, we should
609          * unmap it from mmu first.
610          */
611         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
612
613         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
614                 kvm_set_pfn_accessed(pfn);
615         if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
616                                             PT_WRITABLE_MASK))
617                 kvm_set_pfn_dirty(pfn);
618         return 1;
619 }
620
621 /*
622  * Rules for using mmu_spte_clear_no_track:
623  * Directly clear spte without caring the state bits of sptep,
624  * it is used to set the upper level spte.
625  */
626 static void mmu_spte_clear_no_track(u64 *sptep)
627 {
628         __update_clear_spte_fast(sptep, 0ull);
629 }
630
631 static u64 mmu_spte_get_lockless(u64 *sptep)
632 {
633         return __get_spte_lockless(sptep);
634 }
635
636 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
637 {
638         /*
639          * Prevent page table teardown by making any free-er wait during
640          * kvm_flush_remote_tlbs() IPI to all active vcpus.
641          */
642         local_irq_disable();
643
644         /*
645          * Make sure a following spte read is not reordered ahead of the write
646          * to vcpu->mode.
647          */
648         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
649 }
650
651 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
652 {
653         /*
654          * Make sure the write to vcpu->mode is not reordered in front of
655          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
656          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
657          */
658         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
659         local_irq_enable();
660 }
661
662 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
663                                   struct kmem_cache *base_cache, int min)
664 {
665         void *obj;
666
667         if (cache->nobjs >= min)
668                 return 0;
669         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
670                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
671                 if (!obj)
672                         return -ENOMEM;
673                 cache->objects[cache->nobjs++] = obj;
674         }
675         return 0;
676 }
677
678 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
679 {
680         return cache->nobjs;
681 }
682
683 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
684                                   struct kmem_cache *cache)
685 {
686         while (mc->nobjs)
687                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
688 }
689
690 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
691                                        int min)
692 {
693         void *page;
694
695         if (cache->nobjs >= min)
696                 return 0;
697         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
698                 page = (void *)__get_free_page(GFP_KERNEL);
699                 if (!page)
700                         return -ENOMEM;
701                 cache->objects[cache->nobjs++] = page;
702         }
703         return 0;
704 }
705
706 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
707 {
708         while (mc->nobjs)
709                 free_page((unsigned long)mc->objects[--mc->nobjs]);
710 }
711
712 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
713 {
714         int r;
715
716         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
717                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
718         if (r)
719                 goto out;
720         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
721         if (r)
722                 goto out;
723         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
724                                    mmu_page_header_cache, 4);
725 out:
726         return r;
727 }
728
729 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
730 {
731         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
732                                 pte_list_desc_cache);
733         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
734         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
735                                 mmu_page_header_cache);
736 }
737
738 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
739 {
740         void *p;
741
742         BUG_ON(!mc->nobjs);
743         p = mc->objects[--mc->nobjs];
744         return p;
745 }
746
747 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
748 {
749         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
750 }
751
752 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
753 {
754         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
755 }
756
757 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
758 {
759         if (!sp->role.direct)
760                 return sp->gfns[index];
761
762         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
763 }
764
765 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
766 {
767         if (sp->role.direct)
768                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
769         else
770                 sp->gfns[index] = gfn;
771 }
772
773 /*
774  * Return the pointer to the large page information for a given gfn,
775  * handling slots that are not large page aligned.
776  */
777 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
778                                               struct kvm_memory_slot *slot,
779                                               int level)
780 {
781         unsigned long idx;
782
783         idx = gfn_to_index(gfn, slot->base_gfn, level);
784         return &slot->arch.lpage_info[level - 2][idx];
785 }
786
787 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
788                                             gfn_t gfn, int count)
789 {
790         struct kvm_lpage_info *linfo;
791         int i;
792
793         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
794                 linfo = lpage_info_slot(gfn, slot, i);
795                 linfo->disallow_lpage += count;
796                 WARN_ON(linfo->disallow_lpage < 0);
797         }
798 }
799
800 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
801 {
802         update_gfn_disallow_lpage_count(slot, gfn, 1);
803 }
804
805 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
806 {
807         update_gfn_disallow_lpage_count(slot, gfn, -1);
808 }
809
810 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
811 {
812         struct kvm_memslots *slots;
813         struct kvm_memory_slot *slot;
814         gfn_t gfn;
815
816         kvm->arch.indirect_shadow_pages++;
817         gfn = sp->gfn;
818         slots = kvm_memslots_for_spte_role(kvm, sp->role);
819         slot = __gfn_to_memslot(slots, gfn);
820
821         /* the non-leaf shadow pages are keeping readonly. */
822         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
823                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
824                                                     KVM_PAGE_TRACK_WRITE);
825
826         kvm_mmu_gfn_disallow_lpage(slot, gfn);
827 }
828
829 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
830 {
831         struct kvm_memslots *slots;
832         struct kvm_memory_slot *slot;
833         gfn_t gfn;
834
835         kvm->arch.indirect_shadow_pages--;
836         gfn = sp->gfn;
837         slots = kvm_memslots_for_spte_role(kvm, sp->role);
838         slot = __gfn_to_memslot(slots, gfn);
839         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
840                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
841                                                        KVM_PAGE_TRACK_WRITE);
842
843         kvm_mmu_gfn_allow_lpage(slot, gfn);
844 }
845
846 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
847                                           struct kvm_memory_slot *slot)
848 {
849         struct kvm_lpage_info *linfo;
850
851         if (slot) {
852                 linfo = lpage_info_slot(gfn, slot, level);
853                 return !!linfo->disallow_lpage;
854         }
855
856         return true;
857 }
858
859 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
860                                         int level)
861 {
862         struct kvm_memory_slot *slot;
863
864         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
865         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
866 }
867
868 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
869 {
870         unsigned long page_size;
871         int i, ret = 0;
872
873         page_size = kvm_host_page_size(kvm, gfn);
874
875         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
876                 if (page_size >= KVM_HPAGE_SIZE(i))
877                         ret = i;
878                 else
879                         break;
880         }
881
882         return ret;
883 }
884
885 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
886                                           bool no_dirty_log)
887 {
888         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
889                 return false;
890         if (no_dirty_log && slot->dirty_bitmap)
891                 return false;
892
893         return true;
894 }
895
896 static struct kvm_memory_slot *
897 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
898                             bool no_dirty_log)
899 {
900         struct kvm_memory_slot *slot;
901
902         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
903         if (!memslot_valid_for_gpte(slot, no_dirty_log))
904                 slot = NULL;
905
906         return slot;
907 }
908
909 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
910                          bool *force_pt_level)
911 {
912         int host_level, level, max_level;
913         struct kvm_memory_slot *slot;
914
915         if (unlikely(*force_pt_level))
916                 return PT_PAGE_TABLE_LEVEL;
917
918         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
919         *force_pt_level = !memslot_valid_for_gpte(slot, true);
920         if (unlikely(*force_pt_level))
921                 return PT_PAGE_TABLE_LEVEL;
922
923         host_level = host_mapping_level(vcpu->kvm, large_gfn);
924
925         if (host_level == PT_PAGE_TABLE_LEVEL)
926                 return host_level;
927
928         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
929
930         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
931                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
932                         break;
933
934         return level - 1;
935 }
936
937 /*
938  * About rmap_head encoding:
939  *
940  * If the bit zero of rmap_head->val is clear, then it points to the only spte
941  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
942  * pte_list_desc containing more mappings.
943  */
944
945 /*
946  * Returns the number of pointers in the rmap chain, not counting the new one.
947  */
948 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
949                         struct kvm_rmap_head *rmap_head)
950 {
951         struct pte_list_desc *desc;
952         int i, count = 0;
953
954         if (!rmap_head->val) {
955                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
956                 rmap_head->val = (unsigned long)spte;
957         } else if (!(rmap_head->val & 1)) {
958                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
959                 desc = mmu_alloc_pte_list_desc(vcpu);
960                 desc->sptes[0] = (u64 *)rmap_head->val;
961                 desc->sptes[1] = spte;
962                 rmap_head->val = (unsigned long)desc | 1;
963                 ++count;
964         } else {
965                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
966                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
967                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
968                         desc = desc->more;
969                         count += PTE_LIST_EXT;
970                 }
971                 if (desc->sptes[PTE_LIST_EXT-1]) {
972                         desc->more = mmu_alloc_pte_list_desc(vcpu);
973                         desc = desc->more;
974                 }
975                 for (i = 0; desc->sptes[i]; ++i)
976                         ++count;
977                 desc->sptes[i] = spte;
978         }
979         return count;
980 }
981
982 static void
983 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
984                            struct pte_list_desc *desc, int i,
985                            struct pte_list_desc *prev_desc)
986 {
987         int j;
988
989         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
990                 ;
991         desc->sptes[i] = desc->sptes[j];
992         desc->sptes[j] = NULL;
993         if (j != 0)
994                 return;
995         if (!prev_desc && !desc->more)
996                 rmap_head->val = (unsigned long)desc->sptes[0];
997         else
998                 if (prev_desc)
999                         prev_desc->more = desc->more;
1000                 else
1001                         rmap_head->val = (unsigned long)desc->more | 1;
1002         mmu_free_pte_list_desc(desc);
1003 }
1004
1005 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1006 {
1007         struct pte_list_desc *desc;
1008         struct pte_list_desc *prev_desc;
1009         int i;
1010
1011         if (!rmap_head->val) {
1012                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1013                 BUG();
1014         } else if (!(rmap_head->val & 1)) {
1015                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1016                 if ((u64 *)rmap_head->val != spte) {
1017                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1018                         BUG();
1019                 }
1020                 rmap_head->val = 0;
1021         } else {
1022                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1023                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024                 prev_desc = NULL;
1025                 while (desc) {
1026                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1027                                 if (desc->sptes[i] == spte) {
1028                                         pte_list_desc_remove_entry(rmap_head,
1029                                                         desc, i, prev_desc);
1030                                         return;
1031                                 }
1032                         }
1033                         prev_desc = desc;
1034                         desc = desc->more;
1035                 }
1036                 pr_err("pte_list_remove: %p many->many\n", spte);
1037                 BUG();
1038         }
1039 }
1040
1041 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1042                                            struct kvm_memory_slot *slot)
1043 {
1044         unsigned long idx;
1045
1046         idx = gfn_to_index(gfn, slot->base_gfn, level);
1047         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1048 }
1049
1050 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1051                                          struct kvm_mmu_page *sp)
1052 {
1053         struct kvm_memslots *slots;
1054         struct kvm_memory_slot *slot;
1055
1056         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1057         slot = __gfn_to_memslot(slots, gfn);
1058         return __gfn_to_rmap(gfn, sp->role.level, slot);
1059 }
1060
1061 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1062 {
1063         struct kvm_mmu_memory_cache *cache;
1064
1065         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1066         return mmu_memory_cache_free_objects(cache);
1067 }
1068
1069 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1070 {
1071         struct kvm_mmu_page *sp;
1072         struct kvm_rmap_head *rmap_head;
1073
1074         sp = page_header(__pa(spte));
1075         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1076         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1077         return pte_list_add(vcpu, spte, rmap_head);
1078 }
1079
1080 static void rmap_remove(struct kvm *kvm, u64 *spte)
1081 {
1082         struct kvm_mmu_page *sp;
1083         gfn_t gfn;
1084         struct kvm_rmap_head *rmap_head;
1085
1086         sp = page_header(__pa(spte));
1087         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1088         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1089         pte_list_remove(spte, rmap_head);
1090 }
1091
1092 /*
1093  * Used by the following functions to iterate through the sptes linked by a
1094  * rmap.  All fields are private and not assumed to be used outside.
1095  */
1096 struct rmap_iterator {
1097         /* private fields */
1098         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1099         int pos;                        /* index of the sptep */
1100 };
1101
1102 /*
1103  * Iteration must be started by this function.  This should also be used after
1104  * removing/dropping sptes from the rmap link because in such cases the
1105  * information in the itererator may not be valid.
1106  *
1107  * Returns sptep if found, NULL otherwise.
1108  */
1109 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1110                            struct rmap_iterator *iter)
1111 {
1112         u64 *sptep;
1113
1114         if (!rmap_head->val)
1115                 return NULL;
1116
1117         if (!(rmap_head->val & 1)) {
1118                 iter->desc = NULL;
1119                 sptep = (u64 *)rmap_head->val;
1120                 goto out;
1121         }
1122
1123         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1124         iter->pos = 0;
1125         sptep = iter->desc->sptes[iter->pos];
1126 out:
1127         BUG_ON(!is_shadow_present_pte(*sptep));
1128         return sptep;
1129 }
1130
1131 /*
1132  * Must be used with a valid iterator: e.g. after rmap_get_first().
1133  *
1134  * Returns sptep if found, NULL otherwise.
1135  */
1136 static u64 *rmap_get_next(struct rmap_iterator *iter)
1137 {
1138         u64 *sptep;
1139
1140         if (iter->desc) {
1141                 if (iter->pos < PTE_LIST_EXT - 1) {
1142                         ++iter->pos;
1143                         sptep = iter->desc->sptes[iter->pos];
1144                         if (sptep)
1145                                 goto out;
1146                 }
1147
1148                 iter->desc = iter->desc->more;
1149
1150                 if (iter->desc) {
1151                         iter->pos = 0;
1152                         /* desc->sptes[0] cannot be NULL */
1153                         sptep = iter->desc->sptes[iter->pos];
1154                         goto out;
1155                 }
1156         }
1157
1158         return NULL;
1159 out:
1160         BUG_ON(!is_shadow_present_pte(*sptep));
1161         return sptep;
1162 }
1163
1164 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1165         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1166              _spte_; _spte_ = rmap_get_next(_iter_))
1167
1168 static void drop_spte(struct kvm *kvm, u64 *sptep)
1169 {
1170         if (mmu_spte_clear_track_bits(sptep))
1171                 rmap_remove(kvm, sptep);
1172 }
1173
1174
1175 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1176 {
1177         if (is_large_pte(*sptep)) {
1178                 WARN_ON(page_header(__pa(sptep))->role.level ==
1179                         PT_PAGE_TABLE_LEVEL);
1180                 drop_spte(kvm, sptep);
1181                 --kvm->stat.lpages;
1182                 return true;
1183         }
1184
1185         return false;
1186 }
1187
1188 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1189 {
1190         if (__drop_large_spte(vcpu->kvm, sptep))
1191                 kvm_flush_remote_tlbs(vcpu->kvm);
1192 }
1193
1194 /*
1195  * Write-protect on the specified @sptep, @pt_protect indicates whether
1196  * spte write-protection is caused by protecting shadow page table.
1197  *
1198  * Note: write protection is difference between dirty logging and spte
1199  * protection:
1200  * - for dirty logging, the spte can be set to writable at anytime if
1201  *   its dirty bitmap is properly set.
1202  * - for spte protection, the spte can be writable only after unsync-ing
1203  *   shadow page.
1204  *
1205  * Return true if tlb need be flushed.
1206  */
1207 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1208 {
1209         u64 spte = *sptep;
1210
1211         if (!is_writable_pte(spte) &&
1212               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1213                 return false;
1214
1215         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1216
1217         if (pt_protect)
1218                 spte &= ~SPTE_MMU_WRITEABLE;
1219         spte = spte & ~PT_WRITABLE_MASK;
1220
1221         return mmu_spte_update(sptep, spte);
1222 }
1223
1224 static bool __rmap_write_protect(struct kvm *kvm,
1225                                  struct kvm_rmap_head *rmap_head,
1226                                  bool pt_protect)
1227 {
1228         u64 *sptep;
1229         struct rmap_iterator iter;
1230         bool flush = false;
1231
1232         for_each_rmap_spte(rmap_head, &iter, sptep)
1233                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1234
1235         return flush;
1236 }
1237
1238 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1239 {
1240         u64 spte = *sptep;
1241
1242         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1243
1244         spte &= ~shadow_dirty_mask;
1245
1246         return mmu_spte_update(sptep, spte);
1247 }
1248
1249 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1250 {
1251         u64 *sptep;
1252         struct rmap_iterator iter;
1253         bool flush = false;
1254
1255         for_each_rmap_spte(rmap_head, &iter, sptep)
1256                 flush |= spte_clear_dirty(kvm, sptep);
1257
1258         return flush;
1259 }
1260
1261 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1262 {
1263         u64 spte = *sptep;
1264
1265         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1266
1267         spte |= shadow_dirty_mask;
1268
1269         return mmu_spte_update(sptep, spte);
1270 }
1271
1272 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1273 {
1274         u64 *sptep;
1275         struct rmap_iterator iter;
1276         bool flush = false;
1277
1278         for_each_rmap_spte(rmap_head, &iter, sptep)
1279                 flush |= spte_set_dirty(kvm, sptep);
1280
1281         return flush;
1282 }
1283
1284 /**
1285  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1286  * @kvm: kvm instance
1287  * @slot: slot to protect
1288  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1289  * @mask: indicates which pages we should protect
1290  *
1291  * Used when we do not need to care about huge page mappings: e.g. during dirty
1292  * logging we do not have any such mappings.
1293  */
1294 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1295                                      struct kvm_memory_slot *slot,
1296                                      gfn_t gfn_offset, unsigned long mask)
1297 {
1298         struct kvm_rmap_head *rmap_head;
1299
1300         while (mask) {
1301                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1302                                           PT_PAGE_TABLE_LEVEL, slot);
1303                 __rmap_write_protect(kvm, rmap_head, false);
1304
1305                 /* clear the first set bit */
1306                 mask &= mask - 1;
1307         }
1308 }
1309
1310 /**
1311  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1312  * @kvm: kvm instance
1313  * @slot: slot to clear D-bit
1314  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1315  * @mask: indicates which pages we should clear D-bit
1316  *
1317  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1318  */
1319 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1320                                      struct kvm_memory_slot *slot,
1321                                      gfn_t gfn_offset, unsigned long mask)
1322 {
1323         struct kvm_rmap_head *rmap_head;
1324
1325         while (mask) {
1326                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1327                                           PT_PAGE_TABLE_LEVEL, slot);
1328                 __rmap_clear_dirty(kvm, rmap_head);
1329
1330                 /* clear the first set bit */
1331                 mask &= mask - 1;
1332         }
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1335
1336 /**
1337  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1338  * PT level pages.
1339  *
1340  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1341  * enable dirty logging for them.
1342  *
1343  * Used when we do not need to care about huge page mappings: e.g. during dirty
1344  * logging we do not have any such mappings.
1345  */
1346 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1347                                 struct kvm_memory_slot *slot,
1348                                 gfn_t gfn_offset, unsigned long mask)
1349 {
1350         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1351                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1352                                 mask);
1353         else
1354                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1355 }
1356
1357 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1358                                     struct kvm_memory_slot *slot, u64 gfn)
1359 {
1360         struct kvm_rmap_head *rmap_head;
1361         int i;
1362         bool write_protected = false;
1363
1364         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1365                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1366                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1367         }
1368
1369         return write_protected;
1370 }
1371
1372 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1373 {
1374         struct kvm_memory_slot *slot;
1375
1376         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1377         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1378 }
1379
1380 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1381 {
1382         u64 *sptep;
1383         struct rmap_iterator iter;
1384         bool flush = false;
1385
1386         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1387                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1388
1389                 drop_spte(kvm, sptep);
1390                 flush = true;
1391         }
1392
1393         return flush;
1394 }
1395
1396 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398                            unsigned long data)
1399 {
1400         return kvm_zap_rmapp(kvm, rmap_head);
1401 }
1402
1403 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1404                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1405                              unsigned long data)
1406 {
1407         u64 *sptep;
1408         struct rmap_iterator iter;
1409         int need_flush = 0;
1410         u64 new_spte;
1411         pte_t *ptep = (pte_t *)data;
1412         kvm_pfn_t new_pfn;
1413
1414         WARN_ON(pte_huge(*ptep));
1415         new_pfn = pte_pfn(*ptep);
1416
1417 restart:
1418         for_each_rmap_spte(rmap_head, &iter, sptep) {
1419                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1420                              sptep, *sptep, gfn, level);
1421
1422                 need_flush = 1;
1423
1424                 if (pte_write(*ptep)) {
1425                         drop_spte(kvm, sptep);
1426                         goto restart;
1427                 } else {
1428                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1429                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1430
1431                         new_spte &= ~PT_WRITABLE_MASK;
1432                         new_spte &= ~SPTE_HOST_WRITEABLE;
1433                         new_spte &= ~shadow_accessed_mask;
1434
1435                         mmu_spte_clear_track_bits(sptep);
1436                         mmu_spte_set(sptep, new_spte);
1437                 }
1438         }
1439
1440         if (need_flush)
1441                 kvm_flush_remote_tlbs(kvm);
1442
1443         return 0;
1444 }
1445
1446 struct slot_rmap_walk_iterator {
1447         /* input fields. */
1448         struct kvm_memory_slot *slot;
1449         gfn_t start_gfn;
1450         gfn_t end_gfn;
1451         int start_level;
1452         int end_level;
1453
1454         /* output fields. */
1455         gfn_t gfn;
1456         struct kvm_rmap_head *rmap;
1457         int level;
1458
1459         /* private field. */
1460         struct kvm_rmap_head *end_rmap;
1461 };
1462
1463 static void
1464 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1465 {
1466         iterator->level = level;
1467         iterator->gfn = iterator->start_gfn;
1468         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1469         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1470                                            iterator->slot);
1471 }
1472
1473 static void
1474 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1475                     struct kvm_memory_slot *slot, int start_level,
1476                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1477 {
1478         iterator->slot = slot;
1479         iterator->start_level = start_level;
1480         iterator->end_level = end_level;
1481         iterator->start_gfn = start_gfn;
1482         iterator->end_gfn = end_gfn;
1483
1484         rmap_walk_init_level(iterator, iterator->start_level);
1485 }
1486
1487 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1488 {
1489         return !!iterator->rmap;
1490 }
1491
1492 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1493 {
1494         if (++iterator->rmap <= iterator->end_rmap) {
1495                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1496                 return;
1497         }
1498
1499         if (++iterator->level > iterator->end_level) {
1500                 iterator->rmap = NULL;
1501                 return;
1502         }
1503
1504         rmap_walk_init_level(iterator, iterator->level);
1505 }
1506
1507 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1508            _start_gfn, _end_gfn, _iter_)                                \
1509         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1510                                  _end_level_, _start_gfn, _end_gfn);    \
1511              slot_rmap_walk_okay(_iter_);                               \
1512              slot_rmap_walk_next(_iter_))
1513
1514 static int kvm_handle_hva_range(struct kvm *kvm,
1515                                 unsigned long start,
1516                                 unsigned long end,
1517                                 unsigned long data,
1518                                 int (*handler)(struct kvm *kvm,
1519                                                struct kvm_rmap_head *rmap_head,
1520                                                struct kvm_memory_slot *slot,
1521                                                gfn_t gfn,
1522                                                int level,
1523                                                unsigned long data))
1524 {
1525         struct kvm_memslots *slots;
1526         struct kvm_memory_slot *memslot;
1527         struct slot_rmap_walk_iterator iterator;
1528         int ret = 0;
1529         int i;
1530
1531         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1532                 slots = __kvm_memslots(kvm, i);
1533                 kvm_for_each_memslot(memslot, slots) {
1534                         unsigned long hva_start, hva_end;
1535                         gfn_t gfn_start, gfn_end;
1536
1537                         hva_start = max(start, memslot->userspace_addr);
1538                         hva_end = min(end, memslot->userspace_addr +
1539                                       (memslot->npages << PAGE_SHIFT));
1540                         if (hva_start >= hva_end)
1541                                 continue;
1542                         /*
1543                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1544                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1545                          */
1546                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1547                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1548
1549                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1550                                                  PT_MAX_HUGEPAGE_LEVEL,
1551                                                  gfn_start, gfn_end - 1,
1552                                                  &iterator)
1553                                 ret |= handler(kvm, iterator.rmap, memslot,
1554                                                iterator.gfn, iterator.level, data);
1555                 }
1556         }
1557
1558         return ret;
1559 }
1560
1561 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1562                           unsigned long data,
1563                           int (*handler)(struct kvm *kvm,
1564                                          struct kvm_rmap_head *rmap_head,
1565                                          struct kvm_memory_slot *slot,
1566                                          gfn_t gfn, int level,
1567                                          unsigned long data))
1568 {
1569         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1570 }
1571
1572 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1573 {
1574         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1575 }
1576
1577 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1578 {
1579         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1580 }
1581
1582 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1583 {
1584         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1585 }
1586
1587 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1588                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1589                          unsigned long data)
1590 {
1591         u64 *sptep;
1592         struct rmap_iterator uninitialized_var(iter);
1593         int young = 0;
1594
1595         BUG_ON(!shadow_accessed_mask);
1596
1597         for_each_rmap_spte(rmap_head, &iter, sptep) {
1598                 if (*sptep & shadow_accessed_mask) {
1599                         young = 1;
1600                         clear_bit((ffs(shadow_accessed_mask) - 1),
1601                                  (unsigned long *)sptep);
1602                 }
1603         }
1604
1605         trace_kvm_age_page(gfn, level, slot, young);
1606         return young;
1607 }
1608
1609 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1610                               struct kvm_memory_slot *slot, gfn_t gfn,
1611                               int level, unsigned long data)
1612 {
1613         u64 *sptep;
1614         struct rmap_iterator iter;
1615         int young = 0;
1616
1617         /*
1618          * If there's no access bit in the secondary pte set by the
1619          * hardware it's up to gup-fast/gup to set the access bit in
1620          * the primary pte or in the page structure.
1621          */
1622         if (!shadow_accessed_mask)
1623                 goto out;
1624
1625         for_each_rmap_spte(rmap_head, &iter, sptep) {
1626                 if (*sptep & shadow_accessed_mask) {
1627                         young = 1;
1628                         break;
1629                 }
1630         }
1631 out:
1632         return young;
1633 }
1634
1635 #define RMAP_RECYCLE_THRESHOLD 1000
1636
1637 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1638 {
1639         struct kvm_rmap_head *rmap_head;
1640         struct kvm_mmu_page *sp;
1641
1642         sp = page_header(__pa(spte));
1643
1644         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1645
1646         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1647         kvm_flush_remote_tlbs(vcpu->kvm);
1648 }
1649
1650 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1651 {
1652         /*
1653          * In case of absence of EPT Access and Dirty Bits supports,
1654          * emulate the accessed bit for EPT, by checking if this page has
1655          * an EPT mapping, and clearing it if it does. On the next access,
1656          * a new EPT mapping will be established.
1657          * This has some overhead, but not as much as the cost of swapping
1658          * out actively used pages or breaking up actively used hugepages.
1659          */
1660         if (!shadow_accessed_mask) {
1661                 /*
1662                  * We are holding the kvm->mmu_lock, and we are blowing up
1663                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1664                  * This is correct as long as we don't decouple the mmu_lock
1665                  * protected regions (like invalidate_range_start|end does).
1666                  */
1667                 kvm->mmu_notifier_seq++;
1668                 return kvm_handle_hva_range(kvm, start, end, 0,
1669                                             kvm_unmap_rmapp);
1670         }
1671
1672         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1673 }
1674
1675 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1676 {
1677         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1678 }
1679
1680 #ifdef MMU_DEBUG
1681 static int is_empty_shadow_page(u64 *spt)
1682 {
1683         u64 *pos;
1684         u64 *end;
1685
1686         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1687                 if (is_shadow_present_pte(*pos)) {
1688                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1689                                pos, *pos);
1690                         return 0;
1691                 }
1692         return 1;
1693 }
1694 #endif
1695
1696 /*
1697  * This value is the sum of all of the kvm instances's
1698  * kvm->arch.n_used_mmu_pages values.  We need a global,
1699  * aggregate version in order to make the slab shrinker
1700  * faster
1701  */
1702 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1703 {
1704         kvm->arch.n_used_mmu_pages += nr;
1705         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1706 }
1707
1708 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1709 {
1710         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1711         hlist_del(&sp->hash_link);
1712         list_del(&sp->link);
1713         free_page((unsigned long)sp->spt);
1714         if (!sp->role.direct)
1715                 free_page((unsigned long)sp->gfns);
1716         kmem_cache_free(mmu_page_header_cache, sp);
1717 }
1718
1719 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1720 {
1721         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1722 }
1723
1724 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1725                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1726 {
1727         if (!parent_pte)
1728                 return;
1729
1730         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1731 }
1732
1733 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1734                                        u64 *parent_pte)
1735 {
1736         pte_list_remove(parent_pte, &sp->parent_ptes);
1737 }
1738
1739 static void drop_parent_pte(struct kvm_mmu_page *sp,
1740                             u64 *parent_pte)
1741 {
1742         mmu_page_remove_parent_pte(sp, parent_pte);
1743         mmu_spte_clear_no_track(parent_pte);
1744 }
1745
1746 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1747 {
1748         struct kvm_mmu_page *sp;
1749
1750         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1751         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1752         if (!direct)
1753                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1754         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1755
1756         /*
1757          * The active_mmu_pages list is the FIFO list, do not move the
1758          * page until it is zapped. kvm_zap_obsolete_pages depends on
1759          * this feature. See the comments in kvm_zap_obsolete_pages().
1760          */
1761         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1762         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1763         return sp;
1764 }
1765
1766 static void mark_unsync(u64 *spte);
1767 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1768 {
1769         u64 *sptep;
1770         struct rmap_iterator iter;
1771
1772         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1773                 mark_unsync(sptep);
1774         }
1775 }
1776
1777 static void mark_unsync(u64 *spte)
1778 {
1779         struct kvm_mmu_page *sp;
1780         unsigned int index;
1781
1782         sp = page_header(__pa(spte));
1783         index = spte - sp->spt;
1784         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1785                 return;
1786         if (sp->unsync_children++)
1787                 return;
1788         kvm_mmu_mark_parents_unsync(sp);
1789 }
1790
1791 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1792                                struct kvm_mmu_page *sp)
1793 {
1794         return 0;
1795 }
1796
1797 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1798 {
1799 }
1800
1801 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1802                                  struct kvm_mmu_page *sp, u64 *spte,
1803                                  const void *pte)
1804 {
1805         WARN_ON(1);
1806 }
1807
1808 #define KVM_PAGE_ARRAY_NR 16
1809
1810 struct kvm_mmu_pages {
1811         struct mmu_page_and_offset {
1812                 struct kvm_mmu_page *sp;
1813                 unsigned int idx;
1814         } page[KVM_PAGE_ARRAY_NR];
1815         unsigned int nr;
1816 };
1817
1818 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1819                          int idx)
1820 {
1821         int i;
1822
1823         if (sp->unsync)
1824                 for (i=0; i < pvec->nr; i++)
1825                         if (pvec->page[i].sp == sp)
1826                                 return 0;
1827
1828         pvec->page[pvec->nr].sp = sp;
1829         pvec->page[pvec->nr].idx = idx;
1830         pvec->nr++;
1831         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1832 }
1833
1834 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1835 {
1836         --sp->unsync_children;
1837         WARN_ON((int)sp->unsync_children < 0);
1838         __clear_bit(idx, sp->unsync_child_bitmap);
1839 }
1840
1841 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1842                            struct kvm_mmu_pages *pvec)
1843 {
1844         int i, ret, nr_unsync_leaf = 0;
1845
1846         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1847                 struct kvm_mmu_page *child;
1848                 u64 ent = sp->spt[i];
1849
1850                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1851                         clear_unsync_child_bit(sp, i);
1852                         continue;
1853                 }
1854
1855                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1856
1857                 if (child->unsync_children) {
1858                         if (mmu_pages_add(pvec, child, i))
1859                                 return -ENOSPC;
1860
1861                         ret = __mmu_unsync_walk(child, pvec);
1862                         if (!ret) {
1863                                 clear_unsync_child_bit(sp, i);
1864                                 continue;
1865                         } else if (ret > 0) {
1866                                 nr_unsync_leaf += ret;
1867                         } else
1868                                 return ret;
1869                 } else if (child->unsync) {
1870                         nr_unsync_leaf++;
1871                         if (mmu_pages_add(pvec, child, i))
1872                                 return -ENOSPC;
1873                 } else
1874                         clear_unsync_child_bit(sp, i);
1875         }
1876
1877         return nr_unsync_leaf;
1878 }
1879
1880 #define INVALID_INDEX (-1)
1881
1882 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1883                            struct kvm_mmu_pages *pvec)
1884 {
1885         pvec->nr = 0;
1886         if (!sp->unsync_children)
1887                 return 0;
1888
1889         mmu_pages_add(pvec, sp, INVALID_INDEX);
1890         return __mmu_unsync_walk(sp, pvec);
1891 }
1892
1893 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1894 {
1895         WARN_ON(!sp->unsync);
1896         trace_kvm_mmu_sync_page(sp);
1897         sp->unsync = 0;
1898         --kvm->stat.mmu_unsync;
1899 }
1900
1901 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1902                                     struct list_head *invalid_list);
1903 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1904                                     struct list_head *invalid_list);
1905
1906 /*
1907  * NOTE: we should pay more attention on the zapped-obsolete page
1908  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1909  * since it has been deleted from active_mmu_pages but still can be found
1910  * at hast list.
1911  *
1912  * for_each_gfn_valid_sp() has skipped that kind of pages.
1913  */
1914 #define for_each_gfn_valid_sp(_kvm, _sp, _gfn)                          \
1915         hlist_for_each_entry(_sp,                                       \
1916           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1917                 if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
1918                         || (_sp)->role.invalid) {} else
1919
1920 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1921         for_each_gfn_valid_sp(_kvm, _sp, _gfn)                          \
1922                 if ((_sp)->role.direct) {} else
1923
1924 /* @sp->gfn should be write-protected at the call site */
1925 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1926                             struct list_head *invalid_list)
1927 {
1928         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1929                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1930                 return false;
1931         }
1932
1933         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1934                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1935                 return false;
1936         }
1937
1938         return true;
1939 }
1940
1941 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1942                                  struct list_head *invalid_list,
1943                                  bool remote_flush, bool local_flush)
1944 {
1945         if (!list_empty(invalid_list)) {
1946                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1947                 return;
1948         }
1949
1950         if (remote_flush)
1951                 kvm_flush_remote_tlbs(vcpu->kvm);
1952         else if (local_flush)
1953                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1954 }
1955
1956 #ifdef CONFIG_KVM_MMU_AUDIT
1957 #include "mmu_audit.c"
1958 #else
1959 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1960 static void mmu_audit_disable(void) { }
1961 #endif
1962
1963 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1964 {
1965         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1966 }
1967
1968 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1969                          struct list_head *invalid_list)
1970 {
1971         kvm_unlink_unsync_page(vcpu->kvm, sp);
1972         return __kvm_sync_page(vcpu, sp, invalid_list);
1973 }
1974
1975 /* @gfn should be write-protected at the call site */
1976 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1977                            struct list_head *invalid_list)
1978 {
1979         struct kvm_mmu_page *s;
1980         bool ret = false;
1981
1982         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1983                 if (!s->unsync)
1984                         continue;
1985
1986                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1987                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1988         }
1989
1990         return ret;
1991 }
1992
1993 struct mmu_page_path {
1994         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1995         unsigned int idx[PT64_ROOT_LEVEL];
1996 };
1997
1998 #define for_each_sp(pvec, sp, parents, i)                       \
1999                 for (i = mmu_pages_first(&pvec, &parents);      \
2000                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2001                         i = mmu_pages_next(&pvec, &parents, i))
2002
2003 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2004                           struct mmu_page_path *parents,
2005                           int i)
2006 {
2007         int n;
2008
2009         for (n = i+1; n < pvec->nr; n++) {
2010                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2011                 unsigned idx = pvec->page[n].idx;
2012                 int level = sp->role.level;
2013
2014                 parents->idx[level-1] = idx;
2015                 if (level == PT_PAGE_TABLE_LEVEL)
2016                         break;
2017
2018                 parents->parent[level-2] = sp;
2019         }
2020
2021         return n;
2022 }
2023
2024 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2025                            struct mmu_page_path *parents)
2026 {
2027         struct kvm_mmu_page *sp;
2028         int level;
2029
2030         if (pvec->nr == 0)
2031                 return 0;
2032
2033         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2034
2035         sp = pvec->page[0].sp;
2036         level = sp->role.level;
2037         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2038
2039         parents->parent[level-2] = sp;
2040
2041         /* Also set up a sentinel.  Further entries in pvec are all
2042          * children of sp, so this element is never overwritten.
2043          */
2044         parents->parent[level-1] = NULL;
2045         return mmu_pages_next(pvec, parents, 0);
2046 }
2047
2048 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2049 {
2050         struct kvm_mmu_page *sp;
2051         unsigned int level = 0;
2052
2053         do {
2054                 unsigned int idx = parents->idx[level];
2055                 sp = parents->parent[level];
2056                 if (!sp)
2057                         return;
2058
2059                 WARN_ON(idx == INVALID_INDEX);
2060                 clear_unsync_child_bit(sp, idx);
2061                 level++;
2062         } while (!sp->unsync_children);
2063 }
2064
2065 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2066                               struct kvm_mmu_page *parent)
2067 {
2068         int i;
2069         struct kvm_mmu_page *sp;
2070         struct mmu_page_path parents;
2071         struct kvm_mmu_pages pages;
2072         LIST_HEAD(invalid_list);
2073         bool flush = false;
2074
2075         while (mmu_unsync_walk(parent, &pages)) {
2076                 bool protected = false;
2077
2078                 for_each_sp(pages, sp, parents, i)
2079                         protected |= rmap_write_protect(vcpu, sp->gfn);
2080
2081                 if (protected) {
2082                         kvm_flush_remote_tlbs(vcpu->kvm);
2083                         flush = false;
2084                 }
2085
2086                 for_each_sp(pages, sp, parents, i) {
2087                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2088                         mmu_pages_clear_parents(&parents);
2089                 }
2090                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2091                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2092                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2093                         flush = false;
2094                 }
2095         }
2096
2097         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2098 }
2099
2100 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2101 {
2102         atomic_set(&sp->write_flooding_count,  0);
2103 }
2104
2105 static void clear_sp_write_flooding_count(u64 *spte)
2106 {
2107         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2108
2109         __clear_sp_write_flooding_count(sp);
2110 }
2111
2112 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2113                                              gfn_t gfn,
2114                                              gva_t gaddr,
2115                                              unsigned level,
2116                                              int direct,
2117                                              unsigned access)
2118 {
2119         union kvm_mmu_page_role role;
2120         unsigned quadrant;
2121         struct kvm_mmu_page *sp;
2122         bool need_sync = false;
2123         bool flush = false;
2124         LIST_HEAD(invalid_list);
2125
2126         role = vcpu->arch.mmu.base_role;
2127         role.level = level;
2128         role.direct = direct;
2129         if (role.direct)
2130                 role.cr4_pae = 0;
2131         role.access = access;
2132         if (!vcpu->arch.mmu.direct_map
2133             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2134                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2135                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2136                 role.quadrant = quadrant;
2137         }
2138         for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
2139                 if (!need_sync && sp->unsync)
2140                         need_sync = true;
2141
2142                 if (sp->role.word != role.word)
2143                         continue;
2144
2145                 if (sp->unsync) {
2146                         /* The page is good, but __kvm_sync_page might still end
2147                          * up zapping it.  If so, break in order to rebuild it.
2148                          */
2149                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2150                                 break;
2151
2152                         WARN_ON(!list_empty(&invalid_list));
2153                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2154                 }
2155
2156                 if (sp->unsync_children)
2157                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2158
2159                 __clear_sp_write_flooding_count(sp);
2160                 trace_kvm_mmu_get_page(sp, false);
2161                 return sp;
2162         }
2163
2164         ++vcpu->kvm->stat.mmu_cache_miss;
2165
2166         sp = kvm_mmu_alloc_page(vcpu, direct);
2167
2168         sp->gfn = gfn;
2169         sp->role = role;
2170         hlist_add_head(&sp->hash_link,
2171                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2172         if (!direct) {
2173                 /*
2174                  * we should do write protection before syncing pages
2175                  * otherwise the content of the synced shadow page may
2176                  * be inconsistent with guest page table.
2177                  */
2178                 account_shadowed(vcpu->kvm, sp);
2179                 if (level == PT_PAGE_TABLE_LEVEL &&
2180                       rmap_write_protect(vcpu, gfn))
2181                         kvm_flush_remote_tlbs(vcpu->kvm);
2182
2183                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2184                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2185         }
2186         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2187         clear_page(sp->spt);
2188         trace_kvm_mmu_get_page(sp, true);
2189
2190         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2191         return sp;
2192 }
2193
2194 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2195                              struct kvm_vcpu *vcpu, u64 addr)
2196 {
2197         iterator->addr = addr;
2198         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2199         iterator->level = vcpu->arch.mmu.shadow_root_level;
2200
2201         if (iterator->level == PT64_ROOT_LEVEL &&
2202             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2203             !vcpu->arch.mmu.direct_map)
2204                 --iterator->level;
2205
2206         if (iterator->level == PT32E_ROOT_LEVEL) {
2207                 iterator->shadow_addr
2208                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2209                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2210                 --iterator->level;
2211                 if (!iterator->shadow_addr)
2212                         iterator->level = 0;
2213         }
2214 }
2215
2216 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2217 {
2218         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2219                 return false;
2220
2221         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2222         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2223         return true;
2224 }
2225
2226 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2227                                u64 spte)
2228 {
2229         if (is_last_spte(spte, iterator->level)) {
2230                 iterator->level = 0;
2231                 return;
2232         }
2233
2234         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2235         --iterator->level;
2236 }
2237
2238 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2239 {
2240         return __shadow_walk_next(iterator, *iterator->sptep);
2241 }
2242
2243 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2244                              struct kvm_mmu_page *sp)
2245 {
2246         u64 spte;
2247
2248         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2249                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2250
2251         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2252                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2253
2254         mmu_spte_set(sptep, spte);
2255
2256         mmu_page_add_parent_pte(vcpu, sp, sptep);
2257
2258         if (sp->unsync_children || sp->unsync)
2259                 mark_unsync(sptep);
2260 }
2261
2262 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2263                                    unsigned direct_access)
2264 {
2265         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2266                 struct kvm_mmu_page *child;
2267
2268                 /*
2269                  * For the direct sp, if the guest pte's dirty bit
2270                  * changed form clean to dirty, it will corrupt the
2271                  * sp's access: allow writable in the read-only sp,
2272                  * so we should update the spte at this point to get
2273                  * a new sp with the correct access.
2274                  */
2275                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2276                 if (child->role.access == direct_access)
2277                         return;
2278
2279                 drop_parent_pte(child, sptep);
2280                 kvm_flush_remote_tlbs(vcpu->kvm);
2281         }
2282 }
2283
2284 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2285                              u64 *spte)
2286 {
2287         u64 pte;
2288         struct kvm_mmu_page *child;
2289
2290         pte = *spte;
2291         if (is_shadow_present_pte(pte)) {
2292                 if (is_last_spte(pte, sp->role.level)) {
2293                         drop_spte(kvm, spte);
2294                         if (is_large_pte(pte))
2295                                 --kvm->stat.lpages;
2296                 } else {
2297                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2298                         drop_parent_pte(child, spte);
2299                 }
2300                 return true;
2301         }
2302
2303         if (is_mmio_spte(pte))
2304                 mmu_spte_clear_no_track(spte);
2305
2306         return false;
2307 }
2308
2309 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2310                                          struct kvm_mmu_page *sp)
2311 {
2312         unsigned i;
2313
2314         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2315                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2316 }
2317
2318 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2319 {
2320         u64 *sptep;
2321         struct rmap_iterator iter;
2322
2323         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2324                 drop_parent_pte(sp, sptep);
2325 }
2326
2327 static int mmu_zap_unsync_children(struct kvm *kvm,
2328                                    struct kvm_mmu_page *parent,
2329                                    struct list_head *invalid_list)
2330 {
2331         int i, zapped = 0;
2332         struct mmu_page_path parents;
2333         struct kvm_mmu_pages pages;
2334
2335         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2336                 return 0;
2337
2338         while (mmu_unsync_walk(parent, &pages)) {
2339                 struct kvm_mmu_page *sp;
2340
2341                 for_each_sp(pages, sp, parents, i) {
2342                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2343                         mmu_pages_clear_parents(&parents);
2344                         zapped++;
2345                 }
2346         }
2347
2348         return zapped;
2349 }
2350
2351 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2352                                     struct list_head *invalid_list)
2353 {
2354         int ret;
2355
2356         trace_kvm_mmu_prepare_zap_page(sp);
2357         ++kvm->stat.mmu_shadow_zapped;
2358         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2359         kvm_mmu_page_unlink_children(kvm, sp);
2360         kvm_mmu_unlink_parents(kvm, sp);
2361
2362         if (!sp->role.invalid && !sp->role.direct)
2363                 unaccount_shadowed(kvm, sp);
2364
2365         if (sp->unsync)
2366                 kvm_unlink_unsync_page(kvm, sp);
2367         if (!sp->root_count) {
2368                 /* Count self */
2369                 ret++;
2370                 list_move(&sp->link, invalid_list);
2371                 kvm_mod_used_mmu_pages(kvm, -1);
2372         } else {
2373                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2374
2375                 /*
2376                  * The obsolete pages can not be used on any vcpus.
2377                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2378                  */
2379                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2380                         kvm_reload_remote_mmus(kvm);
2381         }
2382
2383         sp->role.invalid = 1;
2384         return ret;
2385 }
2386
2387 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2388                                     struct list_head *invalid_list)
2389 {
2390         struct kvm_mmu_page *sp, *nsp;
2391
2392         if (list_empty(invalid_list))
2393                 return;
2394
2395         /*
2396          * We need to make sure everyone sees our modifications to
2397          * the page tables and see changes to vcpu->mode here. The barrier
2398          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2399          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2400          *
2401          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2402          * guest mode and/or lockless shadow page table walks.
2403          */
2404         kvm_flush_remote_tlbs(kvm);
2405
2406         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2407                 WARN_ON(!sp->role.invalid || sp->root_count);
2408                 kvm_mmu_free_page(sp);
2409         }
2410 }
2411
2412 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2413                                         struct list_head *invalid_list)
2414 {
2415         struct kvm_mmu_page *sp;
2416
2417         if (list_empty(&kvm->arch.active_mmu_pages))
2418                 return false;
2419
2420         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2421                              struct kvm_mmu_page, link);
2422         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2423
2424         return true;
2425 }
2426
2427 /*
2428  * Changing the number of mmu pages allocated to the vm
2429  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2430  */
2431 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2432 {
2433         LIST_HEAD(invalid_list);
2434
2435         spin_lock(&kvm->mmu_lock);
2436
2437         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2438                 /* Need to free some mmu pages to achieve the goal. */
2439                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2440                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2441                                 break;
2442
2443                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2444                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2445         }
2446
2447         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2448
2449         spin_unlock(&kvm->mmu_lock);
2450 }
2451
2452 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2453 {
2454         struct kvm_mmu_page *sp;
2455         LIST_HEAD(invalid_list);
2456         int r;
2457
2458         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2459         r = 0;
2460         spin_lock(&kvm->mmu_lock);
2461         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2462                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2463                          sp->role.word);
2464                 r = 1;
2465                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2466         }
2467         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2468         spin_unlock(&kvm->mmu_lock);
2469
2470         return r;
2471 }
2472 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2473
2474 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2475 {
2476         trace_kvm_mmu_unsync_page(sp);
2477         ++vcpu->kvm->stat.mmu_unsync;
2478         sp->unsync = 1;
2479
2480         kvm_mmu_mark_parents_unsync(sp);
2481 }
2482
2483 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2484                                    bool can_unsync)
2485 {
2486         struct kvm_mmu_page *sp;
2487
2488         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2489                 return true;
2490
2491         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2492                 if (!can_unsync)
2493                         return true;
2494
2495                 if (sp->unsync)
2496                         continue;
2497
2498                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2499                 kvm_unsync_page(vcpu, sp);
2500         }
2501
2502         return false;
2503 }
2504
2505 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2506 {
2507         if (pfn_valid(pfn))
2508                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2509
2510         return true;
2511 }
2512
2513 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2514                     unsigned pte_access, int level,
2515                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2516                     bool can_unsync, bool host_writable)
2517 {
2518         u64 spte;
2519         int ret = 0;
2520
2521         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2522                 return 0;
2523
2524         spte = PT_PRESENT_MASK;
2525         if (!speculative)
2526                 spte |= shadow_accessed_mask;
2527
2528         if (pte_access & ACC_EXEC_MASK)
2529                 spte |= shadow_x_mask;
2530         else
2531                 spte |= shadow_nx_mask;
2532
2533         if (pte_access & ACC_USER_MASK)
2534                 spte |= shadow_user_mask;
2535
2536         if (level > PT_PAGE_TABLE_LEVEL)
2537                 spte |= PT_PAGE_SIZE_MASK;
2538         if (tdp_enabled)
2539                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2540                         kvm_is_mmio_pfn(pfn));
2541
2542         if (host_writable)
2543                 spte |= SPTE_HOST_WRITEABLE;
2544         else
2545                 pte_access &= ~ACC_WRITE_MASK;
2546
2547         spte |= (u64)pfn << PAGE_SHIFT;
2548
2549         if (pte_access & ACC_WRITE_MASK) {
2550
2551                 /*
2552                  * Other vcpu creates new sp in the window between
2553                  * mapping_level() and acquiring mmu-lock. We can
2554                  * allow guest to retry the access, the mapping can
2555                  * be fixed if guest refault.
2556                  */
2557                 if (level > PT_PAGE_TABLE_LEVEL &&
2558                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2559                         goto done;
2560
2561                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2562
2563                 /*
2564                  * Optimization: for pte sync, if spte was writable the hash
2565                  * lookup is unnecessary (and expensive). Write protection
2566                  * is responsibility of mmu_get_page / kvm_sync_page.
2567                  * Same reasoning can be applied to dirty page accounting.
2568                  */
2569                 if (!can_unsync && is_writable_pte(*sptep))
2570                         goto set_pte;
2571
2572                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2573                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2574                                  __func__, gfn);
2575                         ret = 1;
2576                         pte_access &= ~ACC_WRITE_MASK;
2577                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2578                 }
2579         }
2580
2581         if (pte_access & ACC_WRITE_MASK) {
2582                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2583                 spte |= shadow_dirty_mask;
2584         }
2585
2586 set_pte:
2587         if (mmu_spte_update(sptep, spte))
2588                 kvm_flush_remote_tlbs(vcpu->kvm);
2589 done:
2590         return ret;
2591 }
2592
2593 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2594                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2595                          bool speculative, bool host_writable)
2596 {
2597         int was_rmapped = 0;
2598         int rmap_count;
2599         bool emulate = false;
2600
2601         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2602                  *sptep, write_fault, gfn);
2603
2604         if (is_shadow_present_pte(*sptep)) {
2605                 /*
2606                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2607                  * the parent of the now unreachable PTE.
2608                  */
2609                 if (level > PT_PAGE_TABLE_LEVEL &&
2610                     !is_large_pte(*sptep)) {
2611                         struct kvm_mmu_page *child;
2612                         u64 pte = *sptep;
2613
2614                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2615                         drop_parent_pte(child, sptep);
2616                         kvm_flush_remote_tlbs(vcpu->kvm);
2617                 } else if (pfn != spte_to_pfn(*sptep)) {
2618                         pgprintk("hfn old %llx new %llx\n",
2619                                  spte_to_pfn(*sptep), pfn);
2620                         drop_spte(vcpu->kvm, sptep);
2621                         kvm_flush_remote_tlbs(vcpu->kvm);
2622                 } else
2623                         was_rmapped = 1;
2624         }
2625
2626         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2627               true, host_writable)) {
2628                 if (write_fault)
2629                         emulate = true;
2630                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2631         }
2632
2633         if (unlikely(is_mmio_spte(*sptep)))
2634                 emulate = true;
2635
2636         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2637         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2638                  is_large_pte(*sptep)? "2MB" : "4kB",
2639                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2640                  *sptep, sptep);
2641         if (!was_rmapped && is_large_pte(*sptep))
2642                 ++vcpu->kvm->stat.lpages;
2643
2644         if (is_shadow_present_pte(*sptep)) {
2645                 if (!was_rmapped) {
2646                         rmap_count = rmap_add(vcpu, sptep, gfn);
2647                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2648                                 rmap_recycle(vcpu, sptep, gfn);
2649                 }
2650         }
2651
2652         kvm_release_pfn_clean(pfn);
2653
2654         return emulate;
2655 }
2656
2657 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2658                                      bool no_dirty_log)
2659 {
2660         struct kvm_memory_slot *slot;
2661
2662         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2663         if (!slot)
2664                 return KVM_PFN_ERR_FAULT;
2665
2666         return gfn_to_pfn_memslot_atomic(slot, gfn);
2667 }
2668
2669 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2670                                     struct kvm_mmu_page *sp,
2671                                     u64 *start, u64 *end)
2672 {
2673         struct page *pages[PTE_PREFETCH_NUM];
2674         struct kvm_memory_slot *slot;
2675         unsigned access = sp->role.access;
2676         int i, ret;
2677         gfn_t gfn;
2678
2679         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2680         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2681         if (!slot)
2682                 return -1;
2683
2684         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2685         if (ret <= 0)
2686                 return -1;
2687
2688         for (i = 0; i < ret; i++, gfn++, start++)
2689                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2690                              page_to_pfn(pages[i]), true, true);
2691
2692         return 0;
2693 }
2694
2695 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2696                                   struct kvm_mmu_page *sp, u64 *sptep)
2697 {
2698         u64 *spte, *start = NULL;
2699         int i;
2700
2701         WARN_ON(!sp->role.direct);
2702
2703         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2704         spte = sp->spt + i;
2705
2706         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2707                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2708                         if (!start)
2709                                 continue;
2710                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2711                                 break;
2712                         start = NULL;
2713                 } else if (!start)
2714                         start = spte;
2715         }
2716 }
2717
2718 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2719 {
2720         struct kvm_mmu_page *sp;
2721
2722         /*
2723          * Since it's no accessed bit on EPT, it's no way to
2724          * distinguish between actually accessed translations
2725          * and prefetched, so disable pte prefetch if EPT is
2726          * enabled.
2727          */
2728         if (!shadow_accessed_mask)
2729                 return;
2730
2731         sp = page_header(__pa(sptep));
2732         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2733                 return;
2734
2735         __direct_pte_prefetch(vcpu, sp, sptep);
2736 }
2737
2738 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2739                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2740 {
2741         struct kvm_shadow_walk_iterator iterator;
2742         struct kvm_mmu_page *sp;
2743         int emulate = 0;
2744         gfn_t pseudo_gfn;
2745
2746         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2747                 return 0;
2748
2749         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2750                 if (iterator.level == level) {
2751                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2752                                                write, level, gfn, pfn, prefault,
2753                                                map_writable);
2754                         direct_pte_prefetch(vcpu, iterator.sptep);
2755                         ++vcpu->stat.pf_fixed;
2756                         break;
2757                 }
2758
2759                 drop_large_spte(vcpu, iterator.sptep);
2760                 if (!is_shadow_present_pte(*iterator.sptep)) {
2761                         u64 base_addr = iterator.addr;
2762
2763                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2764                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2765                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2766                                               iterator.level - 1, 1, ACC_ALL);
2767
2768                         link_shadow_page(vcpu, iterator.sptep, sp);
2769                 }
2770         }
2771         return emulate;
2772 }
2773
2774 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2775 {
2776         siginfo_t info;
2777
2778         info.si_signo   = SIGBUS;
2779         info.si_errno   = 0;
2780         info.si_code    = BUS_MCEERR_AR;
2781         info.si_addr    = (void __user *)address;
2782         info.si_addr_lsb = PAGE_SHIFT;
2783
2784         send_sig_info(SIGBUS, &info, tsk);
2785 }
2786
2787 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2788 {
2789         /*
2790          * Do not cache the mmio info caused by writing the readonly gfn
2791          * into the spte otherwise read access on readonly gfn also can
2792          * caused mmio page fault and treat it as mmio access.
2793          * Return 1 to tell kvm to emulate it.
2794          */
2795         if (pfn == KVM_PFN_ERR_RO_FAULT)
2796                 return 1;
2797
2798         if (pfn == KVM_PFN_ERR_HWPOISON) {
2799                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2800                 return 0;
2801         }
2802
2803         return -EFAULT;
2804 }
2805
2806 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2807                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2808                                         int *levelp)
2809 {
2810         kvm_pfn_t pfn = *pfnp;
2811         gfn_t gfn = *gfnp;
2812         int level = *levelp;
2813
2814         /*
2815          * Check if it's a transparent hugepage. If this would be an
2816          * hugetlbfs page, level wouldn't be set to
2817          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2818          * here.
2819          */
2820         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2821             level == PT_PAGE_TABLE_LEVEL &&
2822             PageTransCompoundMap(pfn_to_page(pfn)) &&
2823             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2824                 unsigned long mask;
2825                 /*
2826                  * mmu_notifier_retry was successful and we hold the
2827                  * mmu_lock here, so the pmd can't become splitting
2828                  * from under us, and in turn
2829                  * __split_huge_page_refcount() can't run from under
2830                  * us and we can safely transfer the refcount from
2831                  * PG_tail to PG_head as we switch the pfn to tail to
2832                  * head.
2833                  */
2834                 *levelp = level = PT_DIRECTORY_LEVEL;
2835                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2836                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2837                 if (pfn & mask) {
2838                         gfn &= ~mask;
2839                         *gfnp = gfn;
2840                         kvm_release_pfn_clean(pfn);
2841                         pfn &= ~mask;
2842                         kvm_get_pfn(pfn);
2843                         *pfnp = pfn;
2844                 }
2845         }
2846 }
2847
2848 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2849                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2850 {
2851         /* The pfn is invalid, report the error! */
2852         if (unlikely(is_error_pfn(pfn))) {
2853                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2854                 return true;
2855         }
2856
2857         if (unlikely(is_noslot_pfn(pfn)))
2858                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2859
2860         return false;
2861 }
2862
2863 static bool page_fault_can_be_fast(u32 error_code)
2864 {
2865         /*
2866          * Do not fix the mmio spte with invalid generation number which
2867          * need to be updated by slow page fault path.
2868          */
2869         if (unlikely(error_code & PFERR_RSVD_MASK))
2870                 return false;
2871
2872         /*
2873          * #PF can be fast only if the shadow page table is present and it
2874          * is caused by write-protect, that means we just need change the
2875          * W bit of the spte which can be done out of mmu-lock.
2876          */
2877         if (!(error_code & PFERR_PRESENT_MASK) ||
2878               !(error_code & PFERR_WRITE_MASK))
2879                 return false;
2880
2881         return true;
2882 }
2883
2884 static bool
2885 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2886                         u64 *sptep, u64 spte)
2887 {
2888         gfn_t gfn;
2889
2890         WARN_ON(!sp->role.direct);
2891
2892         /*
2893          * The gfn of direct spte is stable since it is calculated
2894          * by sp->gfn.
2895          */
2896         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2897
2898         /*
2899          * Theoretically we could also set dirty bit (and flush TLB) here in
2900          * order to eliminate unnecessary PML logging. See comments in
2901          * set_spte. But fast_page_fault is very unlikely to happen with PML
2902          * enabled, so we do not do this. This might result in the same GPA
2903          * to be logged in PML buffer again when the write really happens, and
2904          * eventually to be called by mark_page_dirty twice. But it's also no
2905          * harm. This also avoids the TLB flush needed after setting dirty bit
2906          * so non-PML cases won't be impacted.
2907          *
2908          * Compare with set_spte where instead shadow_dirty_mask is set.
2909          */
2910         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2911                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2912
2913         return true;
2914 }
2915
2916 /*
2917  * Return value:
2918  * - true: let the vcpu to access on the same address again.
2919  * - false: let the real page fault path to fix it.
2920  */
2921 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2922                             u32 error_code)
2923 {
2924         struct kvm_shadow_walk_iterator iterator;
2925         struct kvm_mmu_page *sp;
2926         bool ret = false;
2927         u64 spte = 0ull;
2928
2929         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2930                 return false;
2931
2932         if (!page_fault_can_be_fast(error_code))
2933                 return false;
2934
2935         walk_shadow_page_lockless_begin(vcpu);
2936         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2937                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2938                         break;
2939
2940         /*
2941          * If the mapping has been changed, let the vcpu fault on the
2942          * same address again.
2943          */
2944         if (!is_shadow_present_pte(spte)) {
2945                 ret = true;
2946                 goto exit;
2947         }
2948
2949         sp = page_header(__pa(iterator.sptep));
2950         if (!is_last_spte(spte, sp->role.level))
2951                 goto exit;
2952
2953         /*
2954          * Check if it is a spurious fault caused by TLB lazily flushed.
2955          *
2956          * Need not check the access of upper level table entries since
2957          * they are always ACC_ALL.
2958          */
2959          if (is_writable_pte(spte)) {
2960                 ret = true;
2961                 goto exit;
2962         }
2963
2964         /*
2965          * Currently, to simplify the code, only the spte write-protected
2966          * by dirty-log can be fast fixed.
2967          */
2968         if (!spte_is_locklessly_modifiable(spte))
2969                 goto exit;
2970
2971         /*
2972          * Do not fix write-permission on the large spte since we only dirty
2973          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2974          * that means other pages are missed if its slot is dirty-logged.
2975          *
2976          * Instead, we let the slow page fault path create a normal spte to
2977          * fix the access.
2978          *
2979          * See the comments in kvm_arch_commit_memory_region().
2980          */
2981         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2982                 goto exit;
2983
2984         /*
2985          * Currently, fast page fault only works for direct mapping since
2986          * the gfn is not stable for indirect shadow page.
2987          * See Documentation/virtual/kvm/locking.txt to get more detail.
2988          */
2989         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2990 exit:
2991         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2992                               spte, ret);
2993         walk_shadow_page_lockless_end(vcpu);
2994
2995         return ret;
2996 }
2997
2998 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2999                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3000 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3001
3002 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3003                          gfn_t gfn, bool prefault)
3004 {
3005         int r;
3006         int level;
3007         bool force_pt_level = false;
3008         kvm_pfn_t pfn;
3009         unsigned long mmu_seq;
3010         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3011
3012         level = mapping_level(vcpu, gfn, &force_pt_level);
3013         if (likely(!force_pt_level)) {
3014                 /*
3015                  * This path builds a PAE pagetable - so we can map
3016                  * 2mb pages at maximum. Therefore check if the level
3017                  * is larger than that.
3018                  */
3019                 if (level > PT_DIRECTORY_LEVEL)
3020                         level = PT_DIRECTORY_LEVEL;
3021
3022                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3023         }
3024
3025         if (fast_page_fault(vcpu, v, level, error_code))
3026                 return 0;
3027
3028         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3029         smp_rmb();
3030
3031         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3032                 return 0;
3033
3034         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3035                 return r;
3036
3037         spin_lock(&vcpu->kvm->mmu_lock);
3038         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3039                 goto out_unlock;
3040         make_mmu_pages_available(vcpu);
3041         if (likely(!force_pt_level))
3042                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3043         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3044         spin_unlock(&vcpu->kvm->mmu_lock);
3045
3046         return r;
3047
3048 out_unlock:
3049         spin_unlock(&vcpu->kvm->mmu_lock);
3050         kvm_release_pfn_clean(pfn);
3051         return 0;
3052 }
3053
3054
3055 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3056 {
3057         int i;
3058         struct kvm_mmu_page *sp;
3059         LIST_HEAD(invalid_list);
3060
3061         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3062                 return;
3063
3064         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3065             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3066              vcpu->arch.mmu.direct_map)) {
3067                 hpa_t root = vcpu->arch.mmu.root_hpa;
3068
3069                 spin_lock(&vcpu->kvm->mmu_lock);
3070                 sp = page_header(root);
3071                 --sp->root_count;
3072                 if (!sp->root_count && sp->role.invalid) {
3073                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3074                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3075                 }
3076                 spin_unlock(&vcpu->kvm->mmu_lock);
3077                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3078                 return;
3079         }
3080
3081         spin_lock(&vcpu->kvm->mmu_lock);
3082         for (i = 0; i < 4; ++i) {
3083                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3084
3085                 if (root) {
3086                         root &= PT64_BASE_ADDR_MASK;
3087                         sp = page_header(root);
3088                         --sp->root_count;
3089                         if (!sp->root_count && sp->role.invalid)
3090                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3091                                                          &invalid_list);
3092                 }
3093                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3094         }
3095         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3096         spin_unlock(&vcpu->kvm->mmu_lock);
3097         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3098 }
3099
3100 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3101 {
3102         int ret = 0;
3103
3104         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3105                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3106                 ret = 1;
3107         }
3108
3109         return ret;
3110 }
3111
3112 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3113 {
3114         struct kvm_mmu_page *sp;
3115         unsigned i;
3116
3117         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3118                 spin_lock(&vcpu->kvm->mmu_lock);
3119                 make_mmu_pages_available(vcpu);
3120                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3121                 ++sp->root_count;
3122                 spin_unlock(&vcpu->kvm->mmu_lock);
3123                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3124         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3125                 for (i = 0; i < 4; ++i) {
3126                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3127
3128                         MMU_WARN_ON(VALID_PAGE(root));
3129                         spin_lock(&vcpu->kvm->mmu_lock);
3130                         make_mmu_pages_available(vcpu);
3131                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3132                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3133                         root = __pa(sp->spt);
3134                         ++sp->root_count;
3135                         spin_unlock(&vcpu->kvm->mmu_lock);
3136                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3137                 }
3138                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3139         } else
3140                 BUG();
3141
3142         return 0;
3143 }
3144
3145 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3146 {
3147         struct kvm_mmu_page *sp;
3148         u64 pdptr, pm_mask;
3149         gfn_t root_gfn;
3150         int i;
3151
3152         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3153
3154         if (mmu_check_root(vcpu, root_gfn))
3155                 return 1;
3156
3157         /*
3158          * Do we shadow a long mode page table? If so we need to
3159          * write-protect the guests page table root.
3160          */
3161         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3162                 hpa_t root = vcpu->arch.mmu.root_hpa;
3163
3164                 MMU_WARN_ON(VALID_PAGE(root));
3165
3166                 spin_lock(&vcpu->kvm->mmu_lock);
3167                 make_mmu_pages_available(vcpu);
3168                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3169                                       0, ACC_ALL);
3170                 root = __pa(sp->spt);
3171                 ++sp->root_count;
3172                 spin_unlock(&vcpu->kvm->mmu_lock);
3173                 vcpu->arch.mmu.root_hpa = root;
3174                 return 0;
3175         }
3176
3177         /*
3178          * We shadow a 32 bit page table. This may be a legacy 2-level
3179          * or a PAE 3-level page table. In either case we need to be aware that
3180          * the shadow page table may be a PAE or a long mode page table.
3181          */
3182         pm_mask = PT_PRESENT_MASK;
3183         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3184                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3185
3186         for (i = 0; i < 4; ++i) {
3187                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3188
3189                 MMU_WARN_ON(VALID_PAGE(root));
3190                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3191                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3192                         if (!is_present_gpte(pdptr)) {
3193                                 vcpu->arch.mmu.pae_root[i] = 0;
3194                                 continue;
3195                         }
3196                         root_gfn = pdptr >> PAGE_SHIFT;
3197                         if (mmu_check_root(vcpu, root_gfn))
3198                                 return 1;
3199                 }
3200                 spin_lock(&vcpu->kvm->mmu_lock);
3201                 make_mmu_pages_available(vcpu);
3202                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3203                                       0, ACC_ALL);
3204                 root = __pa(sp->spt);
3205                 ++sp->root_count;
3206                 spin_unlock(&vcpu->kvm->mmu_lock);
3207
3208                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3209         }
3210         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3211
3212         /*
3213          * If we shadow a 32 bit page table with a long mode page
3214          * table we enter this path.
3215          */
3216         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3217                 if (vcpu->arch.mmu.lm_root == NULL) {
3218                         /*
3219                          * The additional page necessary for this is only
3220                          * allocated on demand.
3221                          */
3222
3223                         u64 *lm_root;
3224
3225                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3226                         if (lm_root == NULL)
3227                                 return 1;
3228
3229                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3230
3231                         vcpu->arch.mmu.lm_root = lm_root;
3232                 }
3233
3234                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3235         }
3236
3237         return 0;
3238 }
3239
3240 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3241 {
3242         if (vcpu->arch.mmu.direct_map)
3243                 return mmu_alloc_direct_roots(vcpu);
3244         else
3245                 return mmu_alloc_shadow_roots(vcpu);
3246 }
3247
3248 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3249 {
3250         int i;
3251         struct kvm_mmu_page *sp;
3252
3253         if (vcpu->arch.mmu.direct_map)
3254                 return;
3255
3256         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3257                 return;
3258
3259         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3260         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3261         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3262                 hpa_t root = vcpu->arch.mmu.root_hpa;
3263                 sp = page_header(root);
3264                 mmu_sync_children(vcpu, sp);
3265                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3266                 return;
3267         }
3268         for (i = 0; i < 4; ++i) {
3269                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3270
3271                 if (root && VALID_PAGE(root)) {
3272                         root &= PT64_BASE_ADDR_MASK;
3273                         sp = page_header(root);
3274                         mmu_sync_children(vcpu, sp);
3275                 }
3276         }
3277         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3278 }
3279
3280 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3281 {
3282         spin_lock(&vcpu->kvm->mmu_lock);
3283         mmu_sync_roots(vcpu);
3284         spin_unlock(&vcpu->kvm->mmu_lock);
3285 }
3286 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3287
3288 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3289                                   u32 access, struct x86_exception *exception)
3290 {
3291         if (exception)
3292                 exception->error_code = 0;
3293         return vaddr;
3294 }
3295
3296 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3297                                          u32 access,
3298                                          struct x86_exception *exception)
3299 {
3300         if (exception)
3301                 exception->error_code = 0;
3302         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3303 }
3304
3305 static bool
3306 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3307 {
3308         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3309
3310         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3311                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3312 }
3313
3314 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3315 {
3316         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3317 }
3318
3319 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3320 {
3321         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3322 }
3323
3324 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3325 {
3326         if (direct)
3327                 return vcpu_match_mmio_gpa(vcpu, addr);
3328
3329         return vcpu_match_mmio_gva(vcpu, addr);
3330 }
3331
3332 /* return true if reserved bit is detected on spte. */
3333 static bool
3334 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3335 {
3336         struct kvm_shadow_walk_iterator iterator;
3337         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3338         int root, leaf;
3339         bool reserved = false;
3340
3341         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3342                 goto exit;
3343
3344         walk_shadow_page_lockless_begin(vcpu);
3345
3346         for (shadow_walk_init(&iterator, vcpu, addr),
3347                  leaf = root = iterator.level;
3348              shadow_walk_okay(&iterator);
3349              __shadow_walk_next(&iterator, spte)) {
3350                 spte = mmu_spte_get_lockless(iterator.sptep);
3351
3352                 sptes[leaf - 1] = spte;
3353                 leaf--;
3354
3355                 if (!is_shadow_present_pte(spte))
3356                         break;
3357
3358                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3359                                                     iterator.level);
3360         }
3361
3362         walk_shadow_page_lockless_end(vcpu);
3363
3364         if (reserved) {
3365                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3366                        __func__, addr);
3367                 while (root > leaf) {
3368                         pr_err("------ spte 0x%llx level %d.\n",
3369                                sptes[root - 1], root);
3370                         root--;
3371                 }
3372         }
3373 exit:
3374         *sptep = spte;
3375         return reserved;
3376 }
3377
3378 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3379 {
3380         u64 spte;
3381         bool reserved;
3382
3383         if (mmio_info_in_cache(vcpu, addr, direct))
3384                 return RET_MMIO_PF_EMULATE;
3385
3386         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3387         if (WARN_ON(reserved))
3388                 return RET_MMIO_PF_BUG;
3389
3390         if (is_mmio_spte(spte)) {
3391                 gfn_t gfn = get_mmio_spte_gfn(spte);
3392                 unsigned access = get_mmio_spte_access(spte);
3393
3394                 if (!check_mmio_spte(vcpu, spte))
3395                         return RET_MMIO_PF_INVALID;
3396
3397                 if (direct)
3398                         addr = 0;
3399
3400                 trace_handle_mmio_page_fault(addr, gfn, access);
3401                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3402                 return RET_MMIO_PF_EMULATE;
3403         }
3404
3405         /*
3406          * If the page table is zapped by other cpus, let CPU fault again on
3407          * the address.
3408          */
3409         return RET_MMIO_PF_RETRY;
3410 }
3411 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3412
3413 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3414                                          u32 error_code, gfn_t gfn)
3415 {
3416         if (unlikely(error_code & PFERR_RSVD_MASK))
3417                 return false;
3418
3419         if (!(error_code & PFERR_PRESENT_MASK) ||
3420               !(error_code & PFERR_WRITE_MASK))
3421                 return false;
3422
3423         /*
3424          * guest is writing the page which is write tracked which can
3425          * not be fixed by page fault handler.
3426          */
3427         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3428                 return true;
3429
3430         return false;
3431 }
3432
3433 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3434 {
3435         struct kvm_shadow_walk_iterator iterator;
3436         u64 spte;
3437
3438         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3439                 return;
3440
3441         walk_shadow_page_lockless_begin(vcpu);
3442         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3443                 clear_sp_write_flooding_count(iterator.sptep);
3444                 if (!is_shadow_present_pte(spte))
3445                         break;
3446         }
3447         walk_shadow_page_lockless_end(vcpu);
3448 }
3449
3450 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3451                                 u32 error_code, bool prefault)
3452 {
3453         gfn_t gfn = gva >> PAGE_SHIFT;
3454         int r;
3455
3456         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3457
3458         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3459                 return 1;
3460
3461         r = mmu_topup_memory_caches(vcpu);
3462         if (r)
3463                 return r;
3464
3465         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3466
3467
3468         return nonpaging_map(vcpu, gva & PAGE_MASK,
3469                              error_code, gfn, prefault);
3470 }
3471
3472 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3473 {
3474         struct kvm_arch_async_pf arch;
3475
3476         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3477         arch.gfn = gfn;
3478         arch.direct_map = vcpu->arch.mmu.direct_map;
3479         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3480
3481         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3482 }
3483
3484 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3485 {
3486         if (unlikely(!lapic_in_kernel(vcpu) ||
3487                      kvm_event_needs_reinjection(vcpu)))
3488                 return false;
3489
3490         return kvm_x86_ops->interrupt_allowed(vcpu);
3491 }
3492
3493 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3494                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3495 {
3496         struct kvm_memory_slot *slot;
3497         bool async;
3498
3499         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3500         async = false;
3501         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3502         if (!async)
3503                 return false; /* *pfn has correct page already */
3504
3505         if (!prefault && can_do_async_pf(vcpu)) {
3506                 trace_kvm_try_async_get_page(gva, gfn);
3507                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3508                         trace_kvm_async_pf_doublefault(gva, gfn);
3509                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3510                         return true;
3511                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3512                         return true;
3513         }
3514
3515         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3516         return false;
3517 }
3518
3519 static bool
3520 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3521 {
3522         int page_num = KVM_PAGES_PER_HPAGE(level);
3523
3524         gfn &= ~(page_num - 1);
3525
3526         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3527 }
3528
3529 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3530                           bool prefault)
3531 {
3532         kvm_pfn_t pfn;
3533         int r;
3534         int level;
3535         bool force_pt_level;
3536         gfn_t gfn = gpa >> PAGE_SHIFT;
3537         unsigned long mmu_seq;
3538         int write = error_code & PFERR_WRITE_MASK;
3539         bool map_writable;
3540
3541         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3542
3543         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3544                 return 1;
3545
3546         r = mmu_topup_memory_caches(vcpu);
3547         if (r)
3548                 return r;
3549
3550         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3551                                                            PT_DIRECTORY_LEVEL);
3552         level = mapping_level(vcpu, gfn, &force_pt_level);
3553         if (likely(!force_pt_level)) {
3554                 if (level > PT_DIRECTORY_LEVEL &&
3555                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3556                         level = PT_DIRECTORY_LEVEL;
3557                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3558         }
3559
3560         if (fast_page_fault(vcpu, gpa, level, error_code))
3561                 return 0;
3562
3563         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3564         smp_rmb();
3565
3566         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3567                 return 0;
3568
3569         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3570                 return r;
3571
3572         spin_lock(&vcpu->kvm->mmu_lock);
3573         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3574                 goto out_unlock;
3575         make_mmu_pages_available(vcpu);
3576         if (likely(!force_pt_level))
3577                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3578         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3579         spin_unlock(&vcpu->kvm->mmu_lock);
3580
3581         return r;
3582
3583 out_unlock:
3584         spin_unlock(&vcpu->kvm->mmu_lock);
3585         kvm_release_pfn_clean(pfn);
3586         return 0;
3587 }
3588
3589 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3590                                    struct kvm_mmu *context)
3591 {
3592         context->page_fault = nonpaging_page_fault;
3593         context->gva_to_gpa = nonpaging_gva_to_gpa;
3594         context->sync_page = nonpaging_sync_page;
3595         context->invlpg = nonpaging_invlpg;
3596         context->update_pte = nonpaging_update_pte;
3597         context->root_level = 0;
3598         context->shadow_root_level = PT32E_ROOT_LEVEL;
3599         context->root_hpa = INVALID_PAGE;
3600         context->direct_map = true;
3601         context->nx = false;
3602 }
3603
3604 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3605 {
3606         mmu_free_roots(vcpu);
3607 }
3608
3609 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3610 {
3611         return kvm_read_cr3(vcpu);
3612 }
3613
3614 static void inject_page_fault(struct kvm_vcpu *vcpu,
3615                               struct x86_exception *fault)
3616 {
3617         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3618 }
3619
3620 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3621                            unsigned access, int *nr_present)
3622 {
3623         if (unlikely(is_mmio_spte(*sptep))) {
3624                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3625                         mmu_spte_clear_no_track(sptep);
3626                         return true;
3627                 }
3628
3629                 (*nr_present)++;
3630                 mark_mmio_spte(vcpu, sptep, gfn, access);
3631                 return true;
3632         }
3633
3634         return false;
3635 }
3636
3637 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3638                                 unsigned level, unsigned gpte)
3639 {
3640         /*
3641          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3642          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3643          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3644          */
3645         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3646
3647         /*
3648          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3649          * If it is clear, there are no large pages at this level, so clear
3650          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3651          */
3652         gpte &= level - mmu->last_nonleaf_level;
3653
3654         return gpte & PT_PAGE_SIZE_MASK;
3655 }
3656
3657 #define PTTYPE_EPT 18 /* arbitrary */
3658 #define PTTYPE PTTYPE_EPT
3659 #include "paging_tmpl.h"
3660 #undef PTTYPE
3661
3662 #define PTTYPE 64
3663 #include "paging_tmpl.h"
3664 #undef PTTYPE
3665
3666 #define PTTYPE 32
3667 #include "paging_tmpl.h"
3668 #undef PTTYPE
3669
3670 static void
3671 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3672                         struct rsvd_bits_validate *rsvd_check,
3673                         int maxphyaddr, int level, bool nx, bool gbpages,
3674                         bool pse, bool amd)
3675 {
3676         u64 exb_bit_rsvd = 0;
3677         u64 gbpages_bit_rsvd = 0;
3678         u64 nonleaf_bit8_rsvd = 0;
3679
3680         rsvd_check->bad_mt_xwr = 0;
3681
3682         if (!nx)
3683                 exb_bit_rsvd = rsvd_bits(63, 63);
3684         if (!gbpages)
3685                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3686
3687         /*
3688          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3689          * leaf entries) on AMD CPUs only.
3690          */
3691         if (amd)
3692                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3693
3694         switch (level) {
3695         case PT32_ROOT_LEVEL:
3696                 /* no rsvd bits for 2 level 4K page table entries */
3697                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3698                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3699                 rsvd_check->rsvd_bits_mask[1][0] =
3700                         rsvd_check->rsvd_bits_mask[0][0];
3701
3702                 if (!pse) {
3703                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3704                         break;
3705                 }
3706
3707                 if (is_cpuid_PSE36())
3708                         /* 36bits PSE 4MB page */
3709                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3710                 else
3711                         /* 32 bits PSE 4MB page */
3712                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3713                 break;
3714         case PT32E_ROOT_LEVEL:
3715                 rsvd_check->rsvd_bits_mask[0][2] =
3716                         rsvd_bits(maxphyaddr, 63) |
3717                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3718                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3719                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3720                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3721                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3722                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3723                         rsvd_bits(maxphyaddr, 62) |
3724                         rsvd_bits(13, 20);              /* large page */
3725                 rsvd_check->rsvd_bits_mask[1][0] =
3726                         rsvd_check->rsvd_bits_mask[0][0];
3727                 break;
3728         case PT64_ROOT_LEVEL:
3729                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3730                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3731                         rsvd_bits(maxphyaddr, 51);
3732                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3733                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3734                         rsvd_bits(maxphyaddr, 51);
3735                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3736                         rsvd_bits(maxphyaddr, 51);
3737                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3738                         rsvd_bits(maxphyaddr, 51);
3739                 rsvd_check->rsvd_bits_mask[1][3] =
3740                         rsvd_check->rsvd_bits_mask[0][3];
3741                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3742                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3743                         rsvd_bits(13, 29);
3744                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3745                         rsvd_bits(maxphyaddr, 51) |
3746                         rsvd_bits(13, 20);              /* large page */
3747                 rsvd_check->rsvd_bits_mask[1][0] =
3748                         rsvd_check->rsvd_bits_mask[0][0];
3749                 break;
3750         }
3751 }
3752
3753 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3754                                   struct kvm_mmu *context)
3755 {
3756         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3757                                 cpuid_maxphyaddr(vcpu), context->root_level,
3758                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3759                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3760 }
3761
3762 static void
3763 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3764                             int maxphyaddr, bool execonly)
3765 {
3766         u64 bad_mt_xwr;
3767
3768         rsvd_check->rsvd_bits_mask[0][3] =
3769                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3770         rsvd_check->rsvd_bits_mask[0][2] =
3771                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3772         rsvd_check->rsvd_bits_mask[0][1] =
3773                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3774         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3775
3776         /* large page */
3777         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3778         rsvd_check->rsvd_bits_mask[1][2] =
3779                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3780         rsvd_check->rsvd_bits_mask[1][1] =
3781                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3782         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3783
3784         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3785         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3786         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3787         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3788         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3789         if (!execonly) {
3790                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3791                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3792         }
3793         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3794 }
3795
3796 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3797                 struct kvm_mmu *context, bool execonly)
3798 {
3799         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3800                                     cpuid_maxphyaddr(vcpu), execonly);
3801 }
3802
3803 /*
3804  * the page table on host is the shadow page table for the page
3805  * table in guest or amd nested guest, its mmu features completely
3806  * follow the features in guest.
3807  */
3808 void
3809 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3810 {
3811         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3812
3813         /*
3814          * Passing "true" to the last argument is okay; it adds a check
3815          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3816          */
3817         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3818                                 boot_cpu_data.x86_phys_bits,
3819                                 context->shadow_root_level, uses_nx,
3820                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3821                                 true);
3822 }
3823 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3824
3825 static inline bool boot_cpu_is_amd(void)
3826 {
3827         WARN_ON_ONCE(!tdp_enabled);
3828         return shadow_x_mask == 0;
3829 }
3830
3831 /*
3832  * the direct page table on host, use as much mmu features as
3833  * possible, however, kvm currently does not do execution-protection.
3834  */
3835 static void
3836 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3837                                 struct kvm_mmu *context)
3838 {
3839         if (boot_cpu_is_amd())
3840                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3841                                         boot_cpu_data.x86_phys_bits,
3842                                         context->shadow_root_level, false,
3843                                         boot_cpu_has(X86_FEATURE_GBPAGES),
3844                                         true, true);
3845         else
3846                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3847                                             boot_cpu_data.x86_phys_bits,
3848                                             false);
3849
3850 }
3851
3852 /*
3853  * as the comments in reset_shadow_zero_bits_mask() except it
3854  * is the shadow page table for intel nested guest.
3855  */
3856 static void
3857 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3858                                 struct kvm_mmu *context, bool execonly)
3859 {
3860         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3861                                     boot_cpu_data.x86_phys_bits, execonly);
3862 }
3863
3864 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3865                                       struct kvm_mmu *mmu, bool ept)
3866 {
3867         unsigned bit, byte, pfec;
3868         u8 map;
3869         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3870
3871         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3872         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3873         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3874                 pfec = byte << 1;
3875                 map = 0;
3876                 wf = pfec & PFERR_WRITE_MASK;
3877                 uf = pfec & PFERR_USER_MASK;
3878                 ff = pfec & PFERR_FETCH_MASK;
3879                 /*
3880                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3881                  * subject to SMAP restrictions, and cleared otherwise. The
3882                  * bit is only meaningful if the SMAP bit is set in CR4.
3883                  */
3884                 smapf = !(pfec & PFERR_RSVD_MASK);
3885                 for (bit = 0; bit < 8; ++bit) {
3886                         x = bit & ACC_EXEC_MASK;
3887                         w = bit & ACC_WRITE_MASK;
3888                         u = bit & ACC_USER_MASK;
3889
3890                         if (!ept) {
3891                                 /* Not really needed: !nx will cause pte.nx to fault */
3892                                 x |= !mmu->nx;
3893                                 /* Allow supervisor writes if !cr0.wp */
3894                                 w |= !is_write_protection(vcpu) && !uf;
3895                                 /* Disallow supervisor fetches of user code if cr4.smep */
3896                                 x &= !(cr4_smep && u && !uf);
3897
3898                                 /*
3899                                  * SMAP:kernel-mode data accesses from user-mode
3900                                  * mappings should fault. A fault is considered
3901                                  * as a SMAP violation if all of the following
3902                                  * conditions are ture:
3903                                  *   - X86_CR4_SMAP is set in CR4
3904                                  *   - An user page is accessed
3905                                  *   - Page fault in kernel mode
3906                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3907                                  *
3908                                  *   Here, we cover the first three conditions.
3909                                  *   The fourth is computed dynamically in
3910                                  *   permission_fault() and is in smapf.
3911                                  *
3912                                  *   Also, SMAP does not affect instruction
3913                                  *   fetches, add the !ff check here to make it
3914                                  *   clearer.
3915                                  */
3916                                 smap = cr4_smap && u && !uf && !ff;
3917                         } else
3918                                 /* Not really needed: no U/S accesses on ept  */
3919                                 u = 1;
3920
3921                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3922                                 (smapf && smap);
3923                         map |= fault << bit;
3924                 }
3925                 mmu->permissions[byte] = map;
3926         }
3927 }
3928
3929 /*
3930 * PKU is an additional mechanism by which the paging controls access to
3931 * user-mode addresses based on the value in the PKRU register.  Protection
3932 * key violations are reported through a bit in the page fault error code.
3933 * Unlike other bits of the error code, the PK bit is not known at the
3934 * call site of e.g. gva_to_gpa; it must be computed directly in
3935 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3936 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3937 *
3938 * In particular the following conditions come from the error code, the
3939 * page tables and the machine state:
3940 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3941 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3942 * - PK is always zero if U=0 in the page tables
3943 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3944 *
3945 * The PKRU bitmask caches the result of these four conditions.  The error
3946 * code (minus the P bit) and the page table's U bit form an index into the
3947 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
3948 * with the two bits of the PKRU register corresponding to the protection key.
3949 * For the first three conditions above the bits will be 00, thus masking
3950 * away both AD and WD.  For all reads or if the last condition holds, WD
3951 * only will be masked away.
3952 */
3953 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3954                                 bool ept)
3955 {
3956         unsigned bit;
3957         bool wp;
3958
3959         if (ept) {
3960                 mmu->pkru_mask = 0;
3961                 return;
3962         }
3963
3964         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3965         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3966                 mmu->pkru_mask = 0;
3967                 return;
3968         }
3969
3970         wp = is_write_protection(vcpu);
3971
3972         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3973                 unsigned pfec, pkey_bits;
3974                 bool check_pkey, check_write, ff, uf, wf, pte_user;
3975
3976                 pfec = bit << 1;
3977                 ff = pfec & PFERR_FETCH_MASK;
3978                 uf = pfec & PFERR_USER_MASK;
3979                 wf = pfec & PFERR_WRITE_MASK;
3980
3981                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3982                 pte_user = pfec & PFERR_RSVD_MASK;
3983
3984                 /*
3985                  * Only need to check the access which is not an
3986                  * instruction fetch and is to a user page.
3987                  */
3988                 check_pkey = (!ff && pte_user);
3989                 /*
3990                  * write access is controlled by PKRU if it is a
3991                  * user access or CR0.WP = 1.
3992                  */
3993                 check_write = check_pkey && wf && (uf || wp);
3994
3995                 /* PKRU.AD stops both read and write access. */
3996                 pkey_bits = !!check_pkey;
3997                 /* PKRU.WD stops write access. */
3998                 pkey_bits |= (!!check_write) << 1;
3999
4000                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4001         }
4002 }
4003
4004 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4005 {
4006         unsigned root_level = mmu->root_level;
4007
4008         mmu->last_nonleaf_level = root_level;
4009         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4010                 mmu->last_nonleaf_level++;
4011 }
4012
4013 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4014                                          struct kvm_mmu *context,
4015                                          int level)
4016 {
4017         context->nx = is_nx(vcpu);
4018         context->root_level = level;
4019
4020         reset_rsvds_bits_mask(vcpu, context);
4021         update_permission_bitmask(vcpu, context, false);
4022         update_pkru_bitmask(vcpu, context, false);
4023         update_last_nonleaf_level(vcpu, context);
4024
4025         MMU_WARN_ON(!is_pae(vcpu));
4026         context->page_fault = paging64_page_fault;
4027         context->gva_to_gpa = paging64_gva_to_gpa;
4028         context->sync_page = paging64_sync_page;
4029         context->invlpg = paging64_invlpg;
4030         context->update_pte = paging64_update_pte;
4031         context->shadow_root_level = level;
4032         context->root_hpa = INVALID_PAGE;
4033         context->direct_map = false;
4034 }
4035
4036 static void paging64_init_context(struct kvm_vcpu *vcpu,
4037                                   struct kvm_mmu *context)
4038 {
4039         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4040 }
4041
4042 static void paging32_init_context(struct kvm_vcpu *vcpu,
4043                                   struct kvm_mmu *context)
4044 {
4045         context->nx = false;
4046         context->root_level = PT32_ROOT_LEVEL;
4047
4048         reset_rsvds_bits_mask(vcpu, context);
4049         update_permission_bitmask(vcpu, context, false);
4050         update_pkru_bitmask(vcpu, context, false);
4051         update_last_nonleaf_level(vcpu, context);
4052
4053         context->page_fault = paging32_page_fault;
4054         context->gva_to_gpa = paging32_gva_to_gpa;
4055         context->sync_page = paging32_sync_page;
4056         context->invlpg = paging32_invlpg;
4057         context->update_pte = paging32_update_pte;
4058         context->shadow_root_level = PT32E_ROOT_LEVEL;
4059         context->root_hpa = INVALID_PAGE;
4060         context->direct_map = false;
4061 }
4062
4063 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4064                                    struct kvm_mmu *context)
4065 {
4066         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4067 }
4068
4069 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4070 {
4071         struct kvm_mmu *context = &vcpu->arch.mmu;
4072
4073         context->base_role.word = 0;
4074         context->base_role.smm = is_smm(vcpu);
4075         context->page_fault = tdp_page_fault;
4076         context->sync_page = nonpaging_sync_page;
4077         context->invlpg = nonpaging_invlpg;
4078         context->update_pte = nonpaging_update_pte;
4079         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4080         context->root_hpa = INVALID_PAGE;
4081         context->direct_map = true;
4082         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4083         context->get_cr3 = get_cr3;
4084         context->get_pdptr = kvm_pdptr_read;
4085         context->inject_page_fault = kvm_inject_page_fault;
4086
4087         if (!is_paging(vcpu)) {
4088                 context->nx = false;
4089                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4090                 context->root_level = 0;
4091         } else if (is_long_mode(vcpu)) {
4092                 context->nx = is_nx(vcpu);
4093                 context->root_level = PT64_ROOT_LEVEL;
4094                 reset_rsvds_bits_mask(vcpu, context);
4095                 context->gva_to_gpa = paging64_gva_to_gpa;
4096         } else if (is_pae(vcpu)) {
4097                 context->nx = is_nx(vcpu);
4098                 context->root_level = PT32E_ROOT_LEVEL;
4099                 reset_rsvds_bits_mask(vcpu, context);
4100                 context->gva_to_gpa = paging64_gva_to_gpa;
4101         } else {
4102                 context->nx = false;
4103                 context->root_level = PT32_ROOT_LEVEL;
4104                 reset_rsvds_bits_mask(vcpu, context);
4105                 context->gva_to_gpa = paging32_gva_to_gpa;
4106         }
4107
4108         update_permission_bitmask(vcpu, context, false);
4109         update_pkru_bitmask(vcpu, context, false);
4110         update_last_nonleaf_level(vcpu, context);
4111         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4112 }
4113
4114 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4115 {
4116         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4117         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4118         struct kvm_mmu *context = &vcpu->arch.mmu;
4119
4120         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4121
4122         if (!is_paging(vcpu))
4123                 nonpaging_init_context(vcpu, context);
4124         else if (is_long_mode(vcpu))
4125                 paging64_init_context(vcpu, context);
4126         else if (is_pae(vcpu))
4127                 paging32E_init_context(vcpu, context);
4128         else
4129                 paging32_init_context(vcpu, context);
4130
4131         context->base_role.nxe = is_nx(vcpu);
4132         context->base_role.cr4_pae = !!is_pae(vcpu);
4133         context->base_role.cr0_wp  = is_write_protection(vcpu);
4134         context->base_role.smep_andnot_wp
4135                 = smep && !is_write_protection(vcpu);
4136         context->base_role.smap_andnot_wp
4137                 = smap && !is_write_protection(vcpu);
4138         context->base_role.smm = is_smm(vcpu);
4139         reset_shadow_zero_bits_mask(vcpu, context);
4140 }
4141 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4142
4143 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4144 {
4145         struct kvm_mmu *context = &vcpu->arch.mmu;
4146
4147         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4148
4149         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4150
4151         context->nx = true;
4152         context->page_fault = ept_page_fault;
4153         context->gva_to_gpa = ept_gva_to_gpa;
4154         context->sync_page = ept_sync_page;
4155         context->invlpg = ept_invlpg;
4156         context->update_pte = ept_update_pte;
4157         context->root_level = context->shadow_root_level;
4158         context->root_hpa = INVALID_PAGE;
4159         context->direct_map = false;
4160
4161         update_permission_bitmask(vcpu, context, true);
4162         update_pkru_bitmask(vcpu, context, true);
4163         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4164         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4165 }
4166 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4167
4168 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4169 {
4170         struct kvm_mmu *context = &vcpu->arch.mmu;
4171
4172         kvm_init_shadow_mmu(vcpu);
4173         context->set_cr3           = kvm_x86_ops->set_cr3;
4174         context->get_cr3           = get_cr3;
4175         context->get_pdptr         = kvm_pdptr_read;
4176         context->inject_page_fault = kvm_inject_page_fault;
4177 }
4178
4179 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4180 {
4181         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4182
4183         g_context->get_cr3           = get_cr3;
4184         g_context->get_pdptr         = kvm_pdptr_read;
4185         g_context->inject_page_fault = kvm_inject_page_fault;
4186
4187         /*
4188          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4189          * L1's nested page tables (e.g. EPT12). The nested translation
4190          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4191          * L2's page tables as the first level of translation and L1's
4192          * nested page tables as the second level of translation. Basically
4193          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4194          */
4195         if (!is_paging(vcpu)) {
4196                 g_context->nx = false;
4197                 g_context->root_level = 0;
4198                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4199         } else if (is_long_mode(vcpu)) {
4200                 g_context->nx = is_nx(vcpu);
4201                 g_context->root_level = PT64_ROOT_LEVEL;
4202                 reset_rsvds_bits_mask(vcpu, g_context);
4203                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4204         } else if (is_pae(vcpu)) {
4205                 g_context->nx = is_nx(vcpu);
4206                 g_context->root_level = PT32E_ROOT_LEVEL;
4207                 reset_rsvds_bits_mask(vcpu, g_context);
4208                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4209         } else {
4210                 g_context->nx = false;
4211                 g_context->root_level = PT32_ROOT_LEVEL;
4212                 reset_rsvds_bits_mask(vcpu, g_context);
4213                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4214         }
4215
4216         update_permission_bitmask(vcpu, g_context, false);
4217         update_pkru_bitmask(vcpu, g_context, false);
4218         update_last_nonleaf_level(vcpu, g_context);
4219 }
4220
4221 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4222 {
4223         if (mmu_is_nested(vcpu))
4224                 init_kvm_nested_mmu(vcpu);
4225         else if (tdp_enabled)
4226                 init_kvm_tdp_mmu(vcpu);
4227         else
4228                 init_kvm_softmmu(vcpu);
4229 }
4230
4231 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4232 {
4233         kvm_mmu_unload(vcpu);
4234         init_kvm_mmu(vcpu);
4235 }
4236 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4237
4238 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4239 {
4240         int r;
4241
4242         r = mmu_topup_memory_caches(vcpu);
4243         if (r)
4244                 goto out;
4245         r = mmu_alloc_roots(vcpu);
4246         kvm_mmu_sync_roots(vcpu);
4247         if (r)
4248                 goto out;
4249         /* set_cr3() should ensure TLB has been flushed */
4250         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4251 out:
4252         return r;
4253 }
4254 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4255
4256 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4257 {
4258         mmu_free_roots(vcpu);
4259         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4260 }
4261 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4262
4263 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4264                                   struct kvm_mmu_page *sp, u64 *spte,
4265                                   const void *new)
4266 {
4267         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4268                 ++vcpu->kvm->stat.mmu_pde_zapped;
4269                 return;
4270         }
4271
4272         ++vcpu->kvm->stat.mmu_pte_updated;
4273         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4274 }
4275
4276 static bool need_remote_flush(u64 old, u64 new)
4277 {
4278         if (!is_shadow_present_pte(old))
4279                 return false;
4280         if (!is_shadow_present_pte(new))
4281                 return true;
4282         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4283                 return true;
4284         old ^= shadow_nx_mask;
4285         new ^= shadow_nx_mask;
4286         return (old & ~new & PT64_PERM_MASK) != 0;
4287 }
4288
4289 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4290                                     const u8 *new, int *bytes)
4291 {
4292         u64 gentry;
4293         int r;
4294
4295         /*
4296          * Assume that the pte write on a page table of the same type
4297          * as the current vcpu paging mode since we update the sptes only
4298          * when they have the same mode.
4299          */
4300         if (is_pae(vcpu) && *bytes == 4) {
4301                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4302                 *gpa &= ~(gpa_t)7;
4303                 *bytes = 8;
4304                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4305                 if (r)
4306                         gentry = 0;
4307                 new = (const u8 *)&gentry;
4308         }
4309
4310         switch (*bytes) {
4311         case 4:
4312                 gentry = *(const u32 *)new;
4313                 break;
4314         case 8:
4315                 gentry = *(const u64 *)new;
4316                 break;
4317         default:
4318                 gentry = 0;
4319                 break;
4320         }
4321
4322         return gentry;
4323 }
4324
4325 /*
4326  * If we're seeing too many writes to a page, it may no longer be a page table,
4327  * or we may be forking, in which case it is better to unmap the page.
4328  */
4329 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4330 {
4331         /*
4332          * Skip write-flooding detected for the sp whose level is 1, because
4333          * it can become unsync, then the guest page is not write-protected.
4334          */
4335         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4336                 return false;
4337
4338         atomic_inc(&sp->write_flooding_count);
4339         return atomic_read(&sp->write_flooding_count) >= 3;
4340 }
4341
4342 /*
4343  * Misaligned accesses are too much trouble to fix up; also, they usually
4344  * indicate a page is not used as a page table.
4345  */
4346 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4347                                     int bytes)
4348 {
4349         unsigned offset, pte_size, misaligned;
4350
4351         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4352                  gpa, bytes, sp->role.word);
4353
4354         offset = offset_in_page(gpa);
4355         pte_size = sp->role.cr4_pae ? 8 : 4;
4356
4357         /*
4358          * Sometimes, the OS only writes the last one bytes to update status
4359          * bits, for example, in linux, andb instruction is used in clear_bit().
4360          */
4361         if (!(offset & (pte_size - 1)) && bytes == 1)
4362                 return false;
4363
4364         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4365         misaligned |= bytes < 4;
4366
4367         return misaligned;
4368 }
4369
4370 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4371 {
4372         unsigned page_offset, quadrant;
4373         u64 *spte;
4374         int level;
4375
4376         page_offset = offset_in_page(gpa);
4377         level = sp->role.level;
4378         *nspte = 1;
4379         if (!sp->role.cr4_pae) {
4380                 page_offset <<= 1;      /* 32->64 */
4381                 /*
4382                  * A 32-bit pde maps 4MB while the shadow pdes map
4383                  * only 2MB.  So we need to double the offset again
4384                  * and zap two pdes instead of one.
4385                  */
4386                 if (level == PT32_ROOT_LEVEL) {
4387                         page_offset &= ~7; /* kill rounding error */
4388                         page_offset <<= 1;
4389                         *nspte = 2;
4390                 }
4391                 quadrant = page_offset >> PAGE_SHIFT;
4392                 page_offset &= ~PAGE_MASK;
4393                 if (quadrant != sp->role.quadrant)
4394                         return NULL;
4395         }
4396
4397         spte = &sp->spt[page_offset / sizeof(*spte)];
4398         return spte;
4399 }
4400
4401 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4402                               const u8 *new, int bytes)
4403 {
4404         gfn_t gfn = gpa >> PAGE_SHIFT;
4405         struct kvm_mmu_page *sp;
4406         LIST_HEAD(invalid_list);
4407         u64 entry, gentry, *spte;
4408         int npte;
4409         bool remote_flush, local_flush;
4410         union kvm_mmu_page_role mask = { };
4411
4412         mask.cr0_wp = 1;
4413         mask.cr4_pae = 1;
4414         mask.nxe = 1;
4415         mask.smep_andnot_wp = 1;
4416         mask.smap_andnot_wp = 1;
4417         mask.smm = 1;
4418
4419         /*
4420          * If we don't have indirect shadow pages, it means no page is
4421          * write-protected, so we can exit simply.
4422          */
4423         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4424                 return;
4425
4426         remote_flush = local_flush = false;
4427
4428         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4429
4430         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4431
4432         /*
4433          * No need to care whether allocation memory is successful
4434          * or not since pte prefetch is skiped if it does not have
4435          * enough objects in the cache.
4436          */
4437         mmu_topup_memory_caches(vcpu);
4438
4439         spin_lock(&vcpu->kvm->mmu_lock);
4440         ++vcpu->kvm->stat.mmu_pte_write;
4441         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4442
4443         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4444                 if (detect_write_misaligned(sp, gpa, bytes) ||
4445                       detect_write_flooding(sp)) {
4446                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4447                         ++vcpu->kvm->stat.mmu_flooded;
4448                         continue;
4449                 }
4450
4451                 spte = get_written_sptes(sp, gpa, &npte);
4452                 if (!spte)
4453                         continue;
4454
4455                 local_flush = true;
4456                 while (npte--) {
4457                         entry = *spte;
4458                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4459                         if (gentry &&
4460                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4461                               & mask.word) && rmap_can_add(vcpu))
4462                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4463                         if (need_remote_flush(entry, *spte))
4464                                 remote_flush = true;
4465                         ++spte;
4466                 }
4467         }
4468         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4469         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4470         spin_unlock(&vcpu->kvm->mmu_lock);
4471 }
4472
4473 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4474 {
4475         gpa_t gpa;
4476         int r;
4477
4478         if (vcpu->arch.mmu.direct_map)
4479                 return 0;
4480
4481         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4482
4483         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4484
4485         return r;
4486 }
4487 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4488
4489 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4490 {
4491         LIST_HEAD(invalid_list);
4492
4493         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4494                 return;
4495
4496         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4497                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4498                         break;
4499
4500                 ++vcpu->kvm->stat.mmu_recycled;
4501         }
4502         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4503 }
4504
4505 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4506                        void *insn, int insn_len)
4507 {
4508         int r, emulation_type = EMULTYPE_RETRY;
4509         enum emulation_result er;
4510         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4511
4512         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4513                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4514                 if (r == RET_MMIO_PF_EMULATE) {
4515                         emulation_type = 0;
4516                         goto emulate;
4517                 }
4518                 if (r == RET_MMIO_PF_RETRY)
4519                         return 1;
4520                 if (r < 0)
4521                         return r;
4522         }
4523
4524         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4525         if (r < 0)
4526                 return r;
4527         if (!r)
4528                 return 1;
4529
4530         if (mmio_info_in_cache(vcpu, cr2, direct))
4531                 emulation_type = 0;
4532 emulate:
4533         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4534
4535         switch (er) {
4536         case EMULATE_DONE:
4537                 return 1;
4538         case EMULATE_USER_EXIT:
4539                 ++vcpu->stat.mmio_exits;
4540                 /* fall through */
4541         case EMULATE_FAIL:
4542                 return 0;
4543         default:
4544                 BUG();
4545         }
4546 }
4547 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4548
4549 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4550 {
4551         vcpu->arch.mmu.invlpg(vcpu, gva);
4552         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4553         ++vcpu->stat.invlpg;
4554 }
4555 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4556
4557 void kvm_enable_tdp(void)
4558 {
4559         tdp_enabled = true;
4560 }
4561 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4562
4563 void kvm_disable_tdp(void)
4564 {
4565         tdp_enabled = false;
4566 }
4567 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4568
4569 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4570 {
4571         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4572         if (vcpu->arch.mmu.lm_root != NULL)
4573                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4574 }
4575
4576 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4577 {
4578         struct page *page;
4579         int i;
4580
4581         /*
4582          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4583          * Therefore we need to allocate shadow page tables in the first
4584          * 4GB of memory, which happens to fit the DMA32 zone.
4585          */
4586         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4587         if (!page)
4588                 return -ENOMEM;
4589
4590         vcpu->arch.mmu.pae_root = page_address(page);
4591         for (i = 0; i < 4; ++i)
4592                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4593
4594         return 0;
4595 }
4596
4597 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4598 {
4599         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4600         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4601         vcpu->arch.mmu.translate_gpa = translate_gpa;
4602         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4603
4604         return alloc_mmu_pages(vcpu);
4605 }
4606
4607 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4608 {
4609         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4610
4611         init_kvm_mmu(vcpu);
4612 }
4613
4614 void kvm_mmu_init_vm(struct kvm *kvm)
4615 {
4616         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4617
4618         node->track_write = kvm_mmu_pte_write;
4619         kvm_page_track_register_notifier(kvm, node);
4620 }
4621
4622 void kvm_mmu_uninit_vm(struct kvm *kvm)
4623 {
4624         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4625
4626         kvm_page_track_unregister_notifier(kvm, node);
4627 }
4628
4629 /* The return value indicates if tlb flush on all vcpus is needed. */
4630 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4631
4632 /* The caller should hold mmu-lock before calling this function. */
4633 static bool
4634 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4635                         slot_level_handler fn, int start_level, int end_level,
4636                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4637 {
4638         struct slot_rmap_walk_iterator iterator;
4639         bool flush = false;
4640
4641         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4642                         end_gfn, &iterator) {
4643                 if (iterator.rmap)
4644                         flush |= fn(kvm, iterator.rmap);
4645
4646                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4647                         if (flush && lock_flush_tlb) {
4648                                 kvm_flush_remote_tlbs(kvm);
4649                                 flush = false;
4650                         }
4651                         cond_resched_lock(&kvm->mmu_lock);
4652                 }
4653         }
4654
4655         if (flush && lock_flush_tlb) {
4656                 kvm_flush_remote_tlbs(kvm);
4657                 flush = false;
4658         }
4659
4660         return flush;
4661 }
4662
4663 static bool
4664 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4665                   slot_level_handler fn, int start_level, int end_level,
4666                   bool lock_flush_tlb)
4667 {
4668         return slot_handle_level_range(kvm, memslot, fn, start_level,
4669                         end_level, memslot->base_gfn,
4670                         memslot->base_gfn + memslot->npages - 1,
4671                         lock_flush_tlb);
4672 }
4673
4674 static bool
4675 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4676                       slot_level_handler fn, bool lock_flush_tlb)
4677 {
4678         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4679                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4680 }
4681
4682 static bool
4683 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4684                         slot_level_handler fn, bool lock_flush_tlb)
4685 {
4686         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4687                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4688 }
4689
4690 static bool
4691 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4692                  slot_level_handler fn, bool lock_flush_tlb)
4693 {
4694         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4695                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4696 }
4697
4698 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4699 {
4700         struct kvm_memslots *slots;
4701         struct kvm_memory_slot *memslot;
4702         int i;
4703
4704         spin_lock(&kvm->mmu_lock);
4705         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4706                 slots = __kvm_memslots(kvm, i);
4707                 kvm_for_each_memslot(memslot, slots) {
4708                         gfn_t start, end;
4709
4710                         start = max(gfn_start, memslot->base_gfn);
4711                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4712                         if (start >= end)
4713                                 continue;
4714
4715                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4716                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4717                                                 start, end - 1, true);
4718                 }
4719         }
4720
4721         spin_unlock(&kvm->mmu_lock);
4722 }
4723
4724 static bool slot_rmap_write_protect(struct kvm *kvm,
4725                                     struct kvm_rmap_head *rmap_head)
4726 {
4727         return __rmap_write_protect(kvm, rmap_head, false);
4728 }
4729
4730 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4731                                       struct kvm_memory_slot *memslot)
4732 {
4733         bool flush;
4734
4735         spin_lock(&kvm->mmu_lock);
4736         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4737                                       false);
4738         spin_unlock(&kvm->mmu_lock);
4739
4740         /*
4741          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4742          * which do tlb flush out of mmu-lock should be serialized by
4743          * kvm->slots_lock otherwise tlb flush would be missed.
4744          */
4745         lockdep_assert_held(&kvm->slots_lock);
4746
4747         /*
4748          * We can flush all the TLBs out of the mmu lock without TLB
4749          * corruption since we just change the spte from writable to
4750          * readonly so that we only need to care the case of changing
4751          * spte from present to present (changing the spte from present
4752          * to nonpresent will flush all the TLBs immediately), in other
4753          * words, the only case we care is mmu_spte_update() where we
4754          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4755          * instead of PT_WRITABLE_MASK, that means it does not depend
4756          * on PT_WRITABLE_MASK anymore.
4757          */
4758         if (flush)
4759                 kvm_flush_remote_tlbs(kvm);
4760 }
4761
4762 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4763                                          struct kvm_rmap_head *rmap_head)
4764 {
4765         u64 *sptep;
4766         struct rmap_iterator iter;
4767         int need_tlb_flush = 0;
4768         kvm_pfn_t pfn;
4769         struct kvm_mmu_page *sp;
4770
4771 restart:
4772         for_each_rmap_spte(rmap_head, &iter, sptep) {
4773                 sp = page_header(__pa(sptep));
4774                 pfn = spte_to_pfn(*sptep);
4775
4776                 /*
4777                  * We cannot do huge page mapping for indirect shadow pages,
4778                  * which are found on the last rmap (level = 1) when not using
4779                  * tdp; such shadow pages are synced with the page table in
4780                  * the guest, and the guest page table is using 4K page size
4781                  * mapping if the indirect sp has level = 1.
4782                  */
4783                 if (sp->role.direct &&
4784                         !kvm_is_reserved_pfn(pfn) &&
4785                         PageTransCompoundMap(pfn_to_page(pfn))) {
4786                         drop_spte(kvm, sptep);
4787                         need_tlb_flush = 1;
4788                         goto restart;
4789                 }
4790         }
4791
4792         return need_tlb_flush;
4793 }
4794
4795 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4796                                    const struct kvm_memory_slot *memslot)
4797 {
4798         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4799         spin_lock(&kvm->mmu_lock);
4800         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4801                          kvm_mmu_zap_collapsible_spte, true);
4802         spin_unlock(&kvm->mmu_lock);
4803 }
4804
4805 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4806                                    struct kvm_memory_slot *memslot)
4807 {
4808         bool flush;
4809
4810         spin_lock(&kvm->mmu_lock);
4811         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4812         spin_unlock(&kvm->mmu_lock);
4813
4814         lockdep_assert_held(&kvm->slots_lock);
4815
4816         /*
4817          * It's also safe to flush TLBs out of mmu lock here as currently this
4818          * function is only used for dirty logging, in which case flushing TLB
4819          * out of mmu lock also guarantees no dirty pages will be lost in
4820          * dirty_bitmap.
4821          */
4822         if (flush)
4823                 kvm_flush_remote_tlbs(kvm);
4824 }
4825 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4826
4827 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4828                                         struct kvm_memory_slot *memslot)
4829 {
4830         bool flush;
4831
4832         spin_lock(&kvm->mmu_lock);
4833         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4834                                         false);
4835         spin_unlock(&kvm->mmu_lock);
4836
4837         /* see kvm_mmu_slot_remove_write_access */
4838         lockdep_assert_held(&kvm->slots_lock);
4839
4840         if (flush)
4841                 kvm_flush_remote_tlbs(kvm);
4842 }
4843 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4844
4845 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4846                             struct kvm_memory_slot *memslot)
4847 {
4848         bool flush;
4849
4850         spin_lock(&kvm->mmu_lock);
4851         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4852         spin_unlock(&kvm->mmu_lock);
4853
4854         lockdep_assert_held(&kvm->slots_lock);
4855
4856         /* see kvm_mmu_slot_leaf_clear_dirty */
4857         if (flush)
4858                 kvm_flush_remote_tlbs(kvm);
4859 }
4860 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4861
4862 #define BATCH_ZAP_PAGES 10
4863 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4864 {
4865         struct kvm_mmu_page *sp, *node;
4866         int batch = 0;
4867
4868 restart:
4869         list_for_each_entry_safe_reverse(sp, node,
4870               &kvm->arch.active_mmu_pages, link) {
4871                 int ret;
4872
4873                 /*
4874                  * No obsolete page exists before new created page since
4875                  * active_mmu_pages is the FIFO list.
4876                  */
4877                 if (!is_obsolete_sp(kvm, sp))
4878                         break;
4879
4880                 /*
4881                  * Since we are reversely walking the list and the invalid
4882                  * list will be moved to the head, skip the invalid page
4883                  * can help us to avoid the infinity list walking.
4884                  */
4885                 if (sp->role.invalid)
4886                         continue;
4887
4888                 /*
4889                  * Need not flush tlb since we only zap the sp with invalid
4890                  * generation number.
4891                  */
4892                 if (batch >= BATCH_ZAP_PAGES &&
4893                       cond_resched_lock(&kvm->mmu_lock)) {
4894                         batch = 0;
4895                         goto restart;
4896                 }
4897
4898                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4899                                 &kvm->arch.zapped_obsolete_pages);
4900                 batch += ret;
4901
4902                 if (ret)
4903                         goto restart;
4904         }
4905
4906         /*
4907          * Should flush tlb before free page tables since lockless-walking
4908          * may use the pages.
4909          */
4910         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4911 }
4912
4913 /*
4914  * Fast invalidate all shadow pages and use lock-break technique
4915  * to zap obsolete pages.
4916  *
4917  * It's required when memslot is being deleted or VM is being
4918  * destroyed, in these cases, we should ensure that KVM MMU does
4919  * not use any resource of the being-deleted slot or all slots
4920  * after calling the function.
4921  */
4922 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4923 {
4924         spin_lock(&kvm->mmu_lock);
4925         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4926         kvm->arch.mmu_valid_gen++;
4927
4928         /*
4929          * Notify all vcpus to reload its shadow page table
4930          * and flush TLB. Then all vcpus will switch to new
4931          * shadow page table with the new mmu_valid_gen.
4932          *
4933          * Note: we should do this under the protection of
4934          * mmu-lock, otherwise, vcpu would purge shadow page
4935          * but miss tlb flush.
4936          */
4937         kvm_reload_remote_mmus(kvm);
4938
4939         kvm_zap_obsolete_pages(kvm);
4940         spin_unlock(&kvm->mmu_lock);
4941 }
4942
4943 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4944 {
4945         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4946 }
4947
4948 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4949 {
4950         /*
4951          * The very rare case: if the generation-number is round,
4952          * zap all shadow pages.
4953          */
4954         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4955                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4956                 kvm_mmu_invalidate_zap_all_pages(kvm);
4957         }
4958 }
4959
4960 static unsigned long
4961 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4962 {
4963         struct kvm *kvm;
4964         int nr_to_scan = sc->nr_to_scan;
4965         unsigned long freed = 0;
4966
4967         spin_lock(&kvm_lock);
4968
4969         list_for_each_entry(kvm, &vm_list, vm_list) {
4970                 int idx;
4971                 LIST_HEAD(invalid_list);
4972
4973                 /*
4974                  * Never scan more than sc->nr_to_scan VM instances.
4975                  * Will not hit this condition practically since we do not try
4976                  * to shrink more than one VM and it is very unlikely to see
4977                  * !n_used_mmu_pages so many times.
4978                  */
4979                 if (!nr_to_scan--)
4980                         break;
4981                 /*
4982                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4983                  * here. We may skip a VM instance errorneosly, but we do not
4984                  * want to shrink a VM that only started to populate its MMU
4985                  * anyway.
4986                  */
4987                 if (!kvm->arch.n_used_mmu_pages &&
4988                       !kvm_has_zapped_obsolete_pages(kvm))
4989                         continue;
4990
4991                 idx = srcu_read_lock(&kvm->srcu);
4992                 spin_lock(&kvm->mmu_lock);
4993
4994                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4995                         kvm_mmu_commit_zap_page(kvm,
4996                               &kvm->arch.zapped_obsolete_pages);
4997                         goto unlock;
4998                 }
4999
5000                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5001                         freed++;
5002                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5003
5004 unlock:
5005                 spin_unlock(&kvm->mmu_lock);
5006                 srcu_read_unlock(&kvm->srcu, idx);
5007
5008                 /*
5009                  * unfair on small ones
5010                  * per-vm shrinkers cry out
5011                  * sadness comes quickly
5012                  */
5013                 list_move_tail(&kvm->vm_list, &vm_list);
5014                 break;
5015         }
5016
5017         spin_unlock(&kvm_lock);
5018         return freed;
5019 }
5020
5021 static unsigned long
5022 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5023 {
5024         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5025 }
5026
5027 static struct shrinker mmu_shrinker = {
5028         .count_objects = mmu_shrink_count,
5029         .scan_objects = mmu_shrink_scan,
5030         .seeks = DEFAULT_SEEKS * 10,
5031 };
5032
5033 static void mmu_destroy_caches(void)
5034 {
5035         if (pte_list_desc_cache)
5036                 kmem_cache_destroy(pte_list_desc_cache);
5037         if (mmu_page_header_cache)
5038                 kmem_cache_destroy(mmu_page_header_cache);
5039 }
5040
5041 int kvm_mmu_module_init(void)
5042 {
5043         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5044                                             sizeof(struct pte_list_desc),
5045                                             0, 0, NULL);
5046         if (!pte_list_desc_cache)
5047                 goto nomem;
5048
5049         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5050                                                   sizeof(struct kvm_mmu_page),
5051                                                   0, 0, NULL);
5052         if (!mmu_page_header_cache)
5053                 goto nomem;
5054
5055         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5056                 goto nomem;
5057
5058         register_shrinker(&mmu_shrinker);
5059
5060         return 0;
5061
5062 nomem:
5063         mmu_destroy_caches();
5064         return -ENOMEM;
5065 }
5066
5067 /*
5068  * Caculate mmu pages needed for kvm.
5069  */
5070 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5071 {
5072         unsigned int nr_mmu_pages;
5073         unsigned int  nr_pages = 0;
5074         struct kvm_memslots *slots;
5075         struct kvm_memory_slot *memslot;
5076         int i;
5077
5078         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5079                 slots = __kvm_memslots(kvm, i);
5080
5081                 kvm_for_each_memslot(memslot, slots)
5082                         nr_pages += memslot->npages;
5083         }
5084
5085         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5086         nr_mmu_pages = max(nr_mmu_pages,
5087                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5088
5089         return nr_mmu_pages;
5090 }
5091
5092 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5093 {
5094         kvm_mmu_unload(vcpu);
5095         free_mmu_pages(vcpu);
5096         mmu_free_memory_caches(vcpu);
5097 }
5098
5099 void kvm_mmu_module_exit(void)
5100 {
5101         mmu_destroy_caches();
5102         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5103         unregister_shrinker(&mmu_shrinker);
5104         mmu_audit_disable();
5105 }