8b2b3dfca1ae292742251dc434924c9ffe69517b
[cascardo/linux.git] / arch / x86 / kvm / mmu.h
1 #ifndef __KVM_X86_MMU_H
2 #define __KVM_X86_MMU_H
3
4 #include <linux/kvm_host.h>
5 #include "kvm_cache_regs.h"
6
7 #define PT64_PT_BITS 9
8 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
9 #define PT32_PT_BITS 10
10 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
11
12 #define PT_WRITABLE_SHIFT 1
13
14 #define PT_PRESENT_MASK (1ULL << 0)
15 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
16 #define PT_USER_MASK (1ULL << 2)
17 #define PT_PWT_MASK (1ULL << 3)
18 #define PT_PCD_MASK (1ULL << 4)
19 #define PT_ACCESSED_SHIFT 5
20 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
21 #define PT_DIRTY_SHIFT 6
22 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
23 #define PT_PAGE_SIZE_SHIFT 7
24 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
25 #define PT_PAT_MASK (1ULL << 7)
26 #define PT_GLOBAL_MASK (1ULL << 8)
27 #define PT64_NX_SHIFT 63
28 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
29
30 #define PT_PAT_SHIFT 7
31 #define PT_DIR_PAT_SHIFT 12
32 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
33
34 #define PT32_DIR_PSE36_SIZE 4
35 #define PT32_DIR_PSE36_SHIFT 13
36 #define PT32_DIR_PSE36_MASK \
37         (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
38
39 #define PT64_ROOT_LEVEL 4
40 #define PT32_ROOT_LEVEL 2
41 #define PT32E_ROOT_LEVEL 3
42
43 #define PT_PDPE_LEVEL 3
44 #define PT_DIRECTORY_LEVEL 2
45 #define PT_PAGE_TABLE_LEVEL 1
46 #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
47
48 static inline u64 rsvd_bits(int s, int e)
49 {
50         return ((1ULL << (e - s + 1)) - 1) << s;
51 }
52
53 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
54
55 void
56 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
57
58 /*
59  * Return values of handle_mmio_page_fault:
60  * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
61  *                      directly.
62  * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
63  *                      fault path update the mmio spte.
64  * RET_MMIO_PF_RETRY: let CPU fault again on the address.
65  * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
66  */
67 enum {
68         RET_MMIO_PF_EMULATE = 1,
69         RET_MMIO_PF_INVALID = 2,
70         RET_MMIO_PF_RETRY = 0,
71         RET_MMIO_PF_BUG = -1
72 };
73
74 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
75 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
76 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
77
78 static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
79 {
80         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
81                 return kvm->arch.n_max_mmu_pages -
82                         kvm->arch.n_used_mmu_pages;
83
84         return 0;
85 }
86
87 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
88 {
89         if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
90                 return 0;
91
92         return kvm_mmu_load(vcpu);
93 }
94
95 static inline int is_present_gpte(unsigned long pte)
96 {
97         return pte & PT_PRESENT_MASK;
98 }
99
100 /*
101  * Currently, we have two sorts of write-protection, a) the first one
102  * write-protects guest page to sync the guest modification, b) another one is
103  * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
104  * between these two sorts are:
105  * 1) the first case clears SPTE_MMU_WRITEABLE bit.
106  * 2) the first case requires flushing tlb immediately avoiding corrupting
107  *    shadow page table between all vcpus so it should be in the protection of
108  *    mmu-lock. And the another case does not need to flush tlb until returning
109  *    the dirty bitmap to userspace since it only write-protects the page
110  *    logged in the bitmap, that means the page in the dirty bitmap is not
111  *    missed, so it can flush tlb out of mmu-lock.
112  *
113  * So, there is the problem: the first case can meet the corrupted tlb caused
114  * by another case which write-protects pages but without flush tlb
115  * immediately. In order to making the first case be aware this problem we let
116  * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
117  * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
118  *
119  * Anyway, whenever a spte is updated (only permission and status bits are
120  * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
121  * readonly, if that happens, we need to flush tlb. Fortunately,
122  * mmu_spte_update() has already handled it perfectly.
123  *
124  * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
125  * - if we want to see if it has writable tlb entry or if the spte can be
126  *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
127  *   case, otherwise
128  * - if we fix page fault on the spte or do write-protection by dirty logging,
129  *   check PT_WRITABLE_MASK.
130  *
131  * TODO: introduce APIs to split these two cases.
132  */
133 static inline int is_writable_pte(unsigned long pte)
134 {
135         return pte & PT_WRITABLE_MASK;
136 }
137
138 static inline bool is_write_protection(struct kvm_vcpu *vcpu)
139 {
140         return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
141 }
142
143 /*
144  * Check if a given access (described through the I/D, W/R and U/S bits of a
145  * page fault error code pfec) causes a permission fault with the given PTE
146  * access rights (in ACC_* format).
147  *
148  * Return zero if the access does not fault; return the page fault error code
149  * if the access faults.
150  */
151 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
152                                   unsigned pte_access, unsigned pfec)
153 {
154         int cpl = kvm_x86_ops->get_cpl(vcpu);
155         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
156
157         /*
158          * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
159          *
160          * If CPL = 3, SMAP applies to all supervisor-mode data accesses
161          * (these are implicit supervisor accesses) regardless of the value
162          * of EFLAGS.AC.
163          *
164          * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
165          * the result in X86_EFLAGS_AC. We then insert it in place of
166          * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
167          * but it will be one in index if SMAP checks are being overridden.
168          * It is important to keep this branchless.
169          */
170         unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
171         int index = (pfec >> 1) +
172                     (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
173
174         WARN_ON(pfec & PFERR_RSVD_MASK);
175
176         pfec |= PFERR_PRESENT_MASK;
177         return -((mmu->permissions[index] >> pte_access) & 1) & pfec;
178 }
179
180 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
181 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
182
183 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
184 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
185 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
186                                     struct kvm_memory_slot *slot, u64 gfn);
187 #endif