svm: bitwise vs logical op typo
[cascardo/linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37
38 #include <asm/apic.h>
39 #include <asm/perf_event.h>
40 #include <asm/tlbflush.h>
41 #include <asm/desc.h>
42 #include <asm/debugreg.h>
43 #include <asm/kvm_para.h>
44
45 #include <asm/virtext.h>
46 #include "trace.h"
47
48 #define __ex(x) __kvm_handle_fault_on_reboot(x)
49
50 MODULE_AUTHOR("Qumranet");
51 MODULE_LICENSE("GPL");
52
53 static const struct x86_cpu_id svm_cpu_id[] = {
54         X86_FEATURE_MATCH(X86_FEATURE_SVM),
55         {}
56 };
57 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
58
59 #define IOPM_ALLOC_ORDER 2
60 #define MSRPM_ALLOC_ORDER 1
61
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64
65 #define SVM_FEATURE_NPT            (1 <<  0)
66 #define SVM_FEATURE_LBRV           (1 <<  1)
67 #define SVM_FEATURE_SVML           (1 <<  2)
68 #define SVM_FEATURE_NRIP           (1 <<  3)
69 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
70 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
71 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
72 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
73 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
74
75 #define SVM_AVIC_DOORBELL       0xc001011b
76
77 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
78 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
79 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
80
81 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
82
83 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
84 #define TSC_RATIO_MIN           0x0000000000000001ULL
85 #define TSC_RATIO_MAX           0x000000ffffffffffULL
86
87 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
88
89 /*
90  * 0xff is broadcast, so the max index allowed for physical APIC ID
91  * table is 0xfe.  APIC IDs above 0xff are reserved.
92  */
93 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
94
95 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
96 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
97 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
98
99 static bool erratum_383_found __read_mostly;
100
101 static const u32 host_save_user_msrs[] = {
102 #ifdef CONFIG_X86_64
103         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
104         MSR_FS_BASE,
105 #endif
106         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
107         MSR_TSC_AUX,
108 };
109
110 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
111
112 struct kvm_vcpu;
113
114 struct nested_state {
115         struct vmcb *hsave;
116         u64 hsave_msr;
117         u64 vm_cr_msr;
118         u64 vmcb;
119
120         /* These are the merged vectors */
121         u32 *msrpm;
122
123         /* gpa pointers to the real vectors */
124         u64 vmcb_msrpm;
125         u64 vmcb_iopm;
126
127         /* A VMEXIT is required but not yet emulated */
128         bool exit_required;
129
130         /* cache for intercepts of the guest */
131         u32 intercept_cr;
132         u32 intercept_dr;
133         u32 intercept_exceptions;
134         u64 intercept;
135
136         /* Nested Paging related state */
137         u64 nested_cr3;
138 };
139
140 #define MSRPM_OFFSETS   16
141 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
142
143 /*
144  * Set osvw_len to higher value when updated Revision Guides
145  * are published and we know what the new status bits are
146  */
147 static uint64_t osvw_len = 4, osvw_status;
148
149 struct vcpu_svm {
150         struct kvm_vcpu vcpu;
151         struct vmcb *vmcb;
152         unsigned long vmcb_pa;
153         struct svm_cpu_data *svm_data;
154         uint64_t asid_generation;
155         uint64_t sysenter_esp;
156         uint64_t sysenter_eip;
157         uint64_t tsc_aux;
158
159         u64 next_rip;
160
161         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
162         struct {
163                 u16 fs;
164                 u16 gs;
165                 u16 ldt;
166                 u64 gs_base;
167         } host;
168
169         u32 *msrpm;
170
171         ulong nmi_iret_rip;
172
173         struct nested_state nested;
174
175         bool nmi_singlestep;
176
177         unsigned int3_injected;
178         unsigned long int3_rip;
179         u32 apf_reason;
180
181         /* cached guest cpuid flags for faster access */
182         bool nrips_enabled      : 1;
183
184         u32 ldr_reg;
185         struct page *avic_backing_page;
186         u64 *avic_physical_id_cache;
187         bool avic_is_running;
188 };
189
190 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
191 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
192
193 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
194 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
195 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
196 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
197
198 static DEFINE_PER_CPU(u64, current_tsc_ratio);
199 #define TSC_RATIO_DEFAULT       0x0100000000ULL
200
201 #define MSR_INVALID                     0xffffffffU
202
203 static const struct svm_direct_access_msrs {
204         u32 index;   /* Index of the MSR */
205         bool always; /* True if intercept is always on */
206 } direct_access_msrs[] = {
207         { .index = MSR_STAR,                            .always = true  },
208         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
209 #ifdef CONFIG_X86_64
210         { .index = MSR_GS_BASE,                         .always = true  },
211         { .index = MSR_FS_BASE,                         .always = true  },
212         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
213         { .index = MSR_LSTAR,                           .always = true  },
214         { .index = MSR_CSTAR,                           .always = true  },
215         { .index = MSR_SYSCALL_MASK,                    .always = true  },
216 #endif
217         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
218         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
219         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
220         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
221         { .index = MSR_INVALID,                         .always = false },
222 };
223
224 /* enable NPT for AMD64 and X86 with PAE */
225 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
226 static bool npt_enabled = true;
227 #else
228 static bool npt_enabled;
229 #endif
230
231 /* allow nested paging (virtualized MMU) for all guests */
232 static int npt = true;
233 module_param(npt, int, S_IRUGO);
234
235 /* allow nested virtualization in KVM/SVM */
236 static int nested = true;
237 module_param(nested, int, S_IRUGO);
238
239 /* enable / disable AVIC */
240 static int avic;
241 module_param(avic, int, S_IRUGO);
242
243 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
244 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
245 static void svm_complete_interrupts(struct vcpu_svm *svm);
246
247 static int nested_svm_exit_handled(struct vcpu_svm *svm);
248 static int nested_svm_intercept(struct vcpu_svm *svm);
249 static int nested_svm_vmexit(struct vcpu_svm *svm);
250 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
251                                       bool has_error_code, u32 error_code);
252
253 enum {
254         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
255                             pause filter count */
256         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
257         VMCB_ASID,       /* ASID */
258         VMCB_INTR,       /* int_ctl, int_vector */
259         VMCB_NPT,        /* npt_en, nCR3, gPAT */
260         VMCB_CR,         /* CR0, CR3, CR4, EFER */
261         VMCB_DR,         /* DR6, DR7 */
262         VMCB_DT,         /* GDT, IDT */
263         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
264         VMCB_CR2,        /* CR2 only */
265         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
266         VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
267                           * AVIC PHYSICAL_TABLE pointer,
268                           * AVIC LOGICAL_TABLE pointer
269                           */
270         VMCB_DIRTY_MAX,
271 };
272
273 /* TPR and CR2 are always written before VMRUN */
274 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
275
276 #define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
277
278 static inline void mark_all_dirty(struct vmcb *vmcb)
279 {
280         vmcb->control.clean = 0;
281 }
282
283 static inline void mark_all_clean(struct vmcb *vmcb)
284 {
285         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
286                                & ~VMCB_ALWAYS_DIRTY_MASK;
287 }
288
289 static inline void mark_dirty(struct vmcb *vmcb, int bit)
290 {
291         vmcb->control.clean &= ~(1 << bit);
292 }
293
294 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
295 {
296         return container_of(vcpu, struct vcpu_svm, vcpu);
297 }
298
299 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
300 {
301         svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
302         mark_dirty(svm->vmcb, VMCB_AVIC);
303 }
304
305 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
306 {
307         struct vcpu_svm *svm = to_svm(vcpu);
308         u64 *entry = svm->avic_physical_id_cache;
309
310         if (!entry)
311                 return false;
312
313         return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
314 }
315
316 static void recalc_intercepts(struct vcpu_svm *svm)
317 {
318         struct vmcb_control_area *c, *h;
319         struct nested_state *g;
320
321         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
322
323         if (!is_guest_mode(&svm->vcpu))
324                 return;
325
326         c = &svm->vmcb->control;
327         h = &svm->nested.hsave->control;
328         g = &svm->nested;
329
330         c->intercept_cr = h->intercept_cr | g->intercept_cr;
331         c->intercept_dr = h->intercept_dr | g->intercept_dr;
332         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
333         c->intercept = h->intercept | g->intercept;
334 }
335
336 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
337 {
338         if (is_guest_mode(&svm->vcpu))
339                 return svm->nested.hsave;
340         else
341                 return svm->vmcb;
342 }
343
344 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
345 {
346         struct vmcb *vmcb = get_host_vmcb(svm);
347
348         vmcb->control.intercept_cr |= (1U << bit);
349
350         recalc_intercepts(svm);
351 }
352
353 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
354 {
355         struct vmcb *vmcb = get_host_vmcb(svm);
356
357         vmcb->control.intercept_cr &= ~(1U << bit);
358
359         recalc_intercepts(svm);
360 }
361
362 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
363 {
364         struct vmcb *vmcb = get_host_vmcb(svm);
365
366         return vmcb->control.intercept_cr & (1U << bit);
367 }
368
369 static inline void set_dr_intercepts(struct vcpu_svm *svm)
370 {
371         struct vmcb *vmcb = get_host_vmcb(svm);
372
373         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
374                 | (1 << INTERCEPT_DR1_READ)
375                 | (1 << INTERCEPT_DR2_READ)
376                 | (1 << INTERCEPT_DR3_READ)
377                 | (1 << INTERCEPT_DR4_READ)
378                 | (1 << INTERCEPT_DR5_READ)
379                 | (1 << INTERCEPT_DR6_READ)
380                 | (1 << INTERCEPT_DR7_READ)
381                 | (1 << INTERCEPT_DR0_WRITE)
382                 | (1 << INTERCEPT_DR1_WRITE)
383                 | (1 << INTERCEPT_DR2_WRITE)
384                 | (1 << INTERCEPT_DR3_WRITE)
385                 | (1 << INTERCEPT_DR4_WRITE)
386                 | (1 << INTERCEPT_DR5_WRITE)
387                 | (1 << INTERCEPT_DR6_WRITE)
388                 | (1 << INTERCEPT_DR7_WRITE);
389
390         recalc_intercepts(svm);
391 }
392
393 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
394 {
395         struct vmcb *vmcb = get_host_vmcb(svm);
396
397         vmcb->control.intercept_dr = 0;
398
399         recalc_intercepts(svm);
400 }
401
402 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
403 {
404         struct vmcb *vmcb = get_host_vmcb(svm);
405
406         vmcb->control.intercept_exceptions |= (1U << bit);
407
408         recalc_intercepts(svm);
409 }
410
411 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
412 {
413         struct vmcb *vmcb = get_host_vmcb(svm);
414
415         vmcb->control.intercept_exceptions &= ~(1U << bit);
416
417         recalc_intercepts(svm);
418 }
419
420 static inline void set_intercept(struct vcpu_svm *svm, int bit)
421 {
422         struct vmcb *vmcb = get_host_vmcb(svm);
423
424         vmcb->control.intercept |= (1ULL << bit);
425
426         recalc_intercepts(svm);
427 }
428
429 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
430 {
431         struct vmcb *vmcb = get_host_vmcb(svm);
432
433         vmcb->control.intercept &= ~(1ULL << bit);
434
435         recalc_intercepts(svm);
436 }
437
438 static inline void enable_gif(struct vcpu_svm *svm)
439 {
440         svm->vcpu.arch.hflags |= HF_GIF_MASK;
441 }
442
443 static inline void disable_gif(struct vcpu_svm *svm)
444 {
445         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
446 }
447
448 static inline bool gif_set(struct vcpu_svm *svm)
449 {
450         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
451 }
452
453 static unsigned long iopm_base;
454
455 struct kvm_ldttss_desc {
456         u16 limit0;
457         u16 base0;
458         unsigned base1:8, type:5, dpl:2, p:1;
459         unsigned limit1:4, zero0:3, g:1, base2:8;
460         u32 base3;
461         u32 zero1;
462 } __attribute__((packed));
463
464 struct svm_cpu_data {
465         int cpu;
466
467         u64 asid_generation;
468         u32 max_asid;
469         u32 next_asid;
470         struct kvm_ldttss_desc *tss_desc;
471
472         struct page *save_area;
473 };
474
475 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
476
477 struct svm_init_data {
478         int cpu;
479         int r;
480 };
481
482 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
483
484 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
485 #define MSRS_RANGE_SIZE 2048
486 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
487
488 static u32 svm_msrpm_offset(u32 msr)
489 {
490         u32 offset;
491         int i;
492
493         for (i = 0; i < NUM_MSR_MAPS; i++) {
494                 if (msr < msrpm_ranges[i] ||
495                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
496                         continue;
497
498                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
499                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
500
501                 /* Now we have the u8 offset - but need the u32 offset */
502                 return offset / 4;
503         }
504
505         /* MSR not in any range */
506         return MSR_INVALID;
507 }
508
509 #define MAX_INST_SIZE 15
510
511 static inline void clgi(void)
512 {
513         asm volatile (__ex(SVM_CLGI));
514 }
515
516 static inline void stgi(void)
517 {
518         asm volatile (__ex(SVM_STGI));
519 }
520
521 static inline void invlpga(unsigned long addr, u32 asid)
522 {
523         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
524 }
525
526 static int get_npt_level(void)
527 {
528 #ifdef CONFIG_X86_64
529         return PT64_ROOT_LEVEL;
530 #else
531         return PT32E_ROOT_LEVEL;
532 #endif
533 }
534
535 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
536 {
537         vcpu->arch.efer = efer;
538         if (!npt_enabled && !(efer & EFER_LMA))
539                 efer &= ~EFER_LME;
540
541         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
542         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
543 }
544
545 static int is_external_interrupt(u32 info)
546 {
547         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
548         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
549 }
550
551 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
552 {
553         struct vcpu_svm *svm = to_svm(vcpu);
554         u32 ret = 0;
555
556         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
557                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
558         return ret;
559 }
560
561 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
562 {
563         struct vcpu_svm *svm = to_svm(vcpu);
564
565         if (mask == 0)
566                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
567         else
568                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
569
570 }
571
572 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
573 {
574         struct vcpu_svm *svm = to_svm(vcpu);
575
576         if (svm->vmcb->control.next_rip != 0) {
577                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
578                 svm->next_rip = svm->vmcb->control.next_rip;
579         }
580
581         if (!svm->next_rip) {
582                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
583                                 EMULATE_DONE)
584                         printk(KERN_DEBUG "%s: NOP\n", __func__);
585                 return;
586         }
587         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
588                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
589                        __func__, kvm_rip_read(vcpu), svm->next_rip);
590
591         kvm_rip_write(vcpu, svm->next_rip);
592         svm_set_interrupt_shadow(vcpu, 0);
593 }
594
595 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
596                                 bool has_error_code, u32 error_code,
597                                 bool reinject)
598 {
599         struct vcpu_svm *svm = to_svm(vcpu);
600
601         /*
602          * If we are within a nested VM we'd better #VMEXIT and let the guest
603          * handle the exception
604          */
605         if (!reinject &&
606             nested_svm_check_exception(svm, nr, has_error_code, error_code))
607                 return;
608
609         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
610                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
611
612                 /*
613                  * For guest debugging where we have to reinject #BP if some
614                  * INT3 is guest-owned:
615                  * Emulate nRIP by moving RIP forward. Will fail if injection
616                  * raises a fault that is not intercepted. Still better than
617                  * failing in all cases.
618                  */
619                 skip_emulated_instruction(&svm->vcpu);
620                 rip = kvm_rip_read(&svm->vcpu);
621                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
622                 svm->int3_injected = rip - old_rip;
623         }
624
625         svm->vmcb->control.event_inj = nr
626                 | SVM_EVTINJ_VALID
627                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
628                 | SVM_EVTINJ_TYPE_EXEPT;
629         svm->vmcb->control.event_inj_err = error_code;
630 }
631
632 static void svm_init_erratum_383(void)
633 {
634         u32 low, high;
635         int err;
636         u64 val;
637
638         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
639                 return;
640
641         /* Use _safe variants to not break nested virtualization */
642         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
643         if (err)
644                 return;
645
646         val |= (1ULL << 47);
647
648         low  = lower_32_bits(val);
649         high = upper_32_bits(val);
650
651         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
652
653         erratum_383_found = true;
654 }
655
656 static void svm_init_osvw(struct kvm_vcpu *vcpu)
657 {
658         /*
659          * Guests should see errata 400 and 415 as fixed (assuming that
660          * HLT and IO instructions are intercepted).
661          */
662         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
663         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
664
665         /*
666          * By increasing VCPU's osvw.length to 3 we are telling the guest that
667          * all osvw.status bits inside that length, including bit 0 (which is
668          * reserved for erratum 298), are valid. However, if host processor's
669          * osvw_len is 0 then osvw_status[0] carries no information. We need to
670          * be conservative here and therefore we tell the guest that erratum 298
671          * is present (because we really don't know).
672          */
673         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
674                 vcpu->arch.osvw.status |= 1;
675 }
676
677 static int has_svm(void)
678 {
679         const char *msg;
680
681         if (!cpu_has_svm(&msg)) {
682                 printk(KERN_INFO "has_svm: %s\n", msg);
683                 return 0;
684         }
685
686         return 1;
687 }
688
689 static void svm_hardware_disable(void)
690 {
691         /* Make sure we clean up behind us */
692         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
693                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
694
695         cpu_svm_disable();
696
697         amd_pmu_disable_virt();
698 }
699
700 static int svm_hardware_enable(void)
701 {
702
703         struct svm_cpu_data *sd;
704         uint64_t efer;
705         struct desc_ptr gdt_descr;
706         struct desc_struct *gdt;
707         int me = raw_smp_processor_id();
708
709         rdmsrl(MSR_EFER, efer);
710         if (efer & EFER_SVME)
711                 return -EBUSY;
712
713         if (!has_svm()) {
714                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
715                 return -EINVAL;
716         }
717         sd = per_cpu(svm_data, me);
718         if (!sd) {
719                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
720                 return -EINVAL;
721         }
722
723         sd->asid_generation = 1;
724         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
725         sd->next_asid = sd->max_asid + 1;
726
727         native_store_gdt(&gdt_descr);
728         gdt = (struct desc_struct *)gdt_descr.address;
729         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
730
731         wrmsrl(MSR_EFER, efer | EFER_SVME);
732
733         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
734
735         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
736                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
737                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
738         }
739
740
741         /*
742          * Get OSVW bits.
743          *
744          * Note that it is possible to have a system with mixed processor
745          * revisions and therefore different OSVW bits. If bits are not the same
746          * on different processors then choose the worst case (i.e. if erratum
747          * is present on one processor and not on another then assume that the
748          * erratum is present everywhere).
749          */
750         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
751                 uint64_t len, status = 0;
752                 int err;
753
754                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
755                 if (!err)
756                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
757                                                       &err);
758
759                 if (err)
760                         osvw_status = osvw_len = 0;
761                 else {
762                         if (len < osvw_len)
763                                 osvw_len = len;
764                         osvw_status |= status;
765                         osvw_status &= (1ULL << osvw_len) - 1;
766                 }
767         } else
768                 osvw_status = osvw_len = 0;
769
770         svm_init_erratum_383();
771
772         amd_pmu_enable_virt();
773
774         return 0;
775 }
776
777 static void svm_cpu_uninit(int cpu)
778 {
779         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
780
781         if (!sd)
782                 return;
783
784         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
785         __free_page(sd->save_area);
786         kfree(sd);
787 }
788
789 static int svm_cpu_init(int cpu)
790 {
791         struct svm_cpu_data *sd;
792         int r;
793
794         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
795         if (!sd)
796                 return -ENOMEM;
797         sd->cpu = cpu;
798         sd->save_area = alloc_page(GFP_KERNEL);
799         r = -ENOMEM;
800         if (!sd->save_area)
801                 goto err_1;
802
803         per_cpu(svm_data, cpu) = sd;
804
805         return 0;
806
807 err_1:
808         kfree(sd);
809         return r;
810
811 }
812
813 static bool valid_msr_intercept(u32 index)
814 {
815         int i;
816
817         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
818                 if (direct_access_msrs[i].index == index)
819                         return true;
820
821         return false;
822 }
823
824 static void set_msr_interception(u32 *msrpm, unsigned msr,
825                                  int read, int write)
826 {
827         u8 bit_read, bit_write;
828         unsigned long tmp;
829         u32 offset;
830
831         /*
832          * If this warning triggers extend the direct_access_msrs list at the
833          * beginning of the file
834          */
835         WARN_ON(!valid_msr_intercept(msr));
836
837         offset    = svm_msrpm_offset(msr);
838         bit_read  = 2 * (msr & 0x0f);
839         bit_write = 2 * (msr & 0x0f) + 1;
840         tmp       = msrpm[offset];
841
842         BUG_ON(offset == MSR_INVALID);
843
844         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
845         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
846
847         msrpm[offset] = tmp;
848 }
849
850 static void svm_vcpu_init_msrpm(u32 *msrpm)
851 {
852         int i;
853
854         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
855
856         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
857                 if (!direct_access_msrs[i].always)
858                         continue;
859
860                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
861         }
862 }
863
864 static void add_msr_offset(u32 offset)
865 {
866         int i;
867
868         for (i = 0; i < MSRPM_OFFSETS; ++i) {
869
870                 /* Offset already in list? */
871                 if (msrpm_offsets[i] == offset)
872                         return;
873
874                 /* Slot used by another offset? */
875                 if (msrpm_offsets[i] != MSR_INVALID)
876                         continue;
877
878                 /* Add offset to list */
879                 msrpm_offsets[i] = offset;
880
881                 return;
882         }
883
884         /*
885          * If this BUG triggers the msrpm_offsets table has an overflow. Just
886          * increase MSRPM_OFFSETS in this case.
887          */
888         BUG();
889 }
890
891 static void init_msrpm_offsets(void)
892 {
893         int i;
894
895         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
896
897         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
898                 u32 offset;
899
900                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
901                 BUG_ON(offset == MSR_INVALID);
902
903                 add_msr_offset(offset);
904         }
905 }
906
907 static void svm_enable_lbrv(struct vcpu_svm *svm)
908 {
909         u32 *msrpm = svm->msrpm;
910
911         svm->vmcb->control.lbr_ctl = 1;
912         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
913         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
914         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
915         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
916 }
917
918 static void svm_disable_lbrv(struct vcpu_svm *svm)
919 {
920         u32 *msrpm = svm->msrpm;
921
922         svm->vmcb->control.lbr_ctl = 0;
923         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
924         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
925         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
926         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
927 }
928
929 static __init int svm_hardware_setup(void)
930 {
931         int cpu;
932         struct page *iopm_pages;
933         void *iopm_va;
934         int r;
935
936         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
937
938         if (!iopm_pages)
939                 return -ENOMEM;
940
941         iopm_va = page_address(iopm_pages);
942         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
943         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
944
945         init_msrpm_offsets();
946
947         if (boot_cpu_has(X86_FEATURE_NX))
948                 kvm_enable_efer_bits(EFER_NX);
949
950         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
951                 kvm_enable_efer_bits(EFER_FFXSR);
952
953         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
954                 kvm_has_tsc_control = true;
955                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
956                 kvm_tsc_scaling_ratio_frac_bits = 32;
957         }
958
959         if (nested) {
960                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
961                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
962         }
963
964         for_each_possible_cpu(cpu) {
965                 r = svm_cpu_init(cpu);
966                 if (r)
967                         goto err;
968         }
969
970         if (!boot_cpu_has(X86_FEATURE_NPT))
971                 npt_enabled = false;
972
973         if (npt_enabled && !npt) {
974                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
975                 npt_enabled = false;
976         }
977
978         if (npt_enabled) {
979                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
980                 kvm_enable_tdp();
981         } else
982                 kvm_disable_tdp();
983
984         if (avic && (!npt_enabled || !boot_cpu_has(X86_FEATURE_AVIC)))
985                 avic = false;
986
987         if (avic)
988                 pr_info("AVIC enabled\n");
989
990         return 0;
991
992 err:
993         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
994         iopm_base = 0;
995         return r;
996 }
997
998 static __exit void svm_hardware_unsetup(void)
999 {
1000         int cpu;
1001
1002         for_each_possible_cpu(cpu)
1003                 svm_cpu_uninit(cpu);
1004
1005         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1006         iopm_base = 0;
1007 }
1008
1009 static void init_seg(struct vmcb_seg *seg)
1010 {
1011         seg->selector = 0;
1012         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1013                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1014         seg->limit = 0xffff;
1015         seg->base = 0;
1016 }
1017
1018 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1019 {
1020         seg->selector = 0;
1021         seg->attrib = SVM_SELECTOR_P_MASK | type;
1022         seg->limit = 0xffff;
1023         seg->base = 0;
1024 }
1025
1026 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1027 {
1028         struct vcpu_svm *svm = to_svm(vcpu);
1029
1030         return svm->vmcb->control.tsc_offset;
1031 }
1032
1033 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1034 {
1035         struct vcpu_svm *svm = to_svm(vcpu);
1036         u64 g_tsc_offset = 0;
1037
1038         if (is_guest_mode(vcpu)) {
1039                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1040                                svm->nested.hsave->control.tsc_offset;
1041                 svm->nested.hsave->control.tsc_offset = offset;
1042         } else
1043                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1044                                            svm->vmcb->control.tsc_offset,
1045                                            offset);
1046
1047         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1048
1049         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1050 }
1051
1052 static void svm_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
1053 {
1054         struct vcpu_svm *svm = to_svm(vcpu);
1055
1056         svm->vmcb->control.tsc_offset += adjustment;
1057         if (is_guest_mode(vcpu))
1058                 svm->nested.hsave->control.tsc_offset += adjustment;
1059         else
1060                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1061                                      svm->vmcb->control.tsc_offset - adjustment,
1062                                      svm->vmcb->control.tsc_offset);
1063
1064         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1065 }
1066
1067 static void avic_init_vmcb(struct vcpu_svm *svm)
1068 {
1069         struct vmcb *vmcb = svm->vmcb;
1070         struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1071         phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1072         phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1073         phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1074
1075         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1076         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1077         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1078         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1079         vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1080         svm->vcpu.arch.apicv_active = true;
1081 }
1082
1083 static void init_vmcb(struct vcpu_svm *svm)
1084 {
1085         struct vmcb_control_area *control = &svm->vmcb->control;
1086         struct vmcb_save_area *save = &svm->vmcb->save;
1087
1088         svm->vcpu.fpu_active = 1;
1089         svm->vcpu.arch.hflags = 0;
1090
1091         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1092         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1093         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1094         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1095         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1096         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1097         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1098                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1099
1100         set_dr_intercepts(svm);
1101
1102         set_exception_intercept(svm, PF_VECTOR);
1103         set_exception_intercept(svm, UD_VECTOR);
1104         set_exception_intercept(svm, MC_VECTOR);
1105         set_exception_intercept(svm, AC_VECTOR);
1106         set_exception_intercept(svm, DB_VECTOR);
1107
1108         set_intercept(svm, INTERCEPT_INTR);
1109         set_intercept(svm, INTERCEPT_NMI);
1110         set_intercept(svm, INTERCEPT_SMI);
1111         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1112         set_intercept(svm, INTERCEPT_RDPMC);
1113         set_intercept(svm, INTERCEPT_CPUID);
1114         set_intercept(svm, INTERCEPT_INVD);
1115         set_intercept(svm, INTERCEPT_HLT);
1116         set_intercept(svm, INTERCEPT_INVLPG);
1117         set_intercept(svm, INTERCEPT_INVLPGA);
1118         set_intercept(svm, INTERCEPT_IOIO_PROT);
1119         set_intercept(svm, INTERCEPT_MSR_PROT);
1120         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1121         set_intercept(svm, INTERCEPT_SHUTDOWN);
1122         set_intercept(svm, INTERCEPT_VMRUN);
1123         set_intercept(svm, INTERCEPT_VMMCALL);
1124         set_intercept(svm, INTERCEPT_VMLOAD);
1125         set_intercept(svm, INTERCEPT_VMSAVE);
1126         set_intercept(svm, INTERCEPT_STGI);
1127         set_intercept(svm, INTERCEPT_CLGI);
1128         set_intercept(svm, INTERCEPT_SKINIT);
1129         set_intercept(svm, INTERCEPT_WBINVD);
1130         set_intercept(svm, INTERCEPT_MONITOR);
1131         set_intercept(svm, INTERCEPT_MWAIT);
1132         set_intercept(svm, INTERCEPT_XSETBV);
1133
1134         control->iopm_base_pa = iopm_base;
1135         control->msrpm_base_pa = __pa(svm->msrpm);
1136         control->int_ctl = V_INTR_MASKING_MASK;
1137
1138         init_seg(&save->es);
1139         init_seg(&save->ss);
1140         init_seg(&save->ds);
1141         init_seg(&save->fs);
1142         init_seg(&save->gs);
1143
1144         save->cs.selector = 0xf000;
1145         save->cs.base = 0xffff0000;
1146         /* Executable/Readable Code Segment */
1147         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1148                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1149         save->cs.limit = 0xffff;
1150
1151         save->gdtr.limit = 0xffff;
1152         save->idtr.limit = 0xffff;
1153
1154         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1155         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1156
1157         svm_set_efer(&svm->vcpu, 0);
1158         save->dr6 = 0xffff0ff0;
1159         kvm_set_rflags(&svm->vcpu, 2);
1160         save->rip = 0x0000fff0;
1161         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1162
1163         /*
1164          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1165          * It also updates the guest-visible cr0 value.
1166          */
1167         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1168         kvm_mmu_reset_context(&svm->vcpu);
1169
1170         save->cr4 = X86_CR4_PAE;
1171         /* rdx = ?? */
1172
1173         if (npt_enabled) {
1174                 /* Setup VMCB for Nested Paging */
1175                 control->nested_ctl = 1;
1176                 clr_intercept(svm, INTERCEPT_INVLPG);
1177                 clr_exception_intercept(svm, PF_VECTOR);
1178                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1179                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1180                 save->g_pat = svm->vcpu.arch.pat;
1181                 save->cr3 = 0;
1182                 save->cr4 = 0;
1183         }
1184         svm->asid_generation = 0;
1185
1186         svm->nested.vmcb = 0;
1187         svm->vcpu.arch.hflags = 0;
1188
1189         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1190                 control->pause_filter_count = 3000;
1191                 set_intercept(svm, INTERCEPT_PAUSE);
1192         }
1193
1194         if (avic)
1195                 avic_init_vmcb(svm);
1196
1197         mark_all_dirty(svm->vmcb);
1198
1199         enable_gif(svm);
1200
1201 }
1202
1203 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, int index)
1204 {
1205         u64 *avic_physical_id_table;
1206         struct kvm_arch *vm_data = &vcpu->kvm->arch;
1207
1208         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1209                 return NULL;
1210
1211         avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1212
1213         return &avic_physical_id_table[index];
1214 }
1215
1216 /**
1217  * Note:
1218  * AVIC hardware walks the nested page table to check permissions,
1219  * but does not use the SPA address specified in the leaf page
1220  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1221  * field of the VMCB. Therefore, we set up the
1222  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1223  */
1224 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1225 {
1226         struct kvm *kvm = vcpu->kvm;
1227         int ret;
1228
1229         if (kvm->arch.apic_access_page_done)
1230                 return 0;
1231
1232         ret = x86_set_memory_region(kvm,
1233                                     APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1234                                     APIC_DEFAULT_PHYS_BASE,
1235                                     PAGE_SIZE);
1236         if (ret)
1237                 return ret;
1238
1239         kvm->arch.apic_access_page_done = true;
1240         return 0;
1241 }
1242
1243 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1244 {
1245         int ret;
1246         u64 *entry, new_entry;
1247         int id = vcpu->vcpu_id;
1248         struct vcpu_svm *svm = to_svm(vcpu);
1249
1250         ret = avic_init_access_page(vcpu);
1251         if (ret)
1252                 return ret;
1253
1254         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1255                 return -EINVAL;
1256
1257         if (!svm->vcpu.arch.apic->regs)
1258                 return -EINVAL;
1259
1260         svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1261
1262         /* Setting AVIC backing page address in the phy APIC ID table */
1263         entry = avic_get_physical_id_entry(vcpu, id);
1264         if (!entry)
1265                 return -EINVAL;
1266
1267         new_entry = READ_ONCE(*entry);
1268         new_entry = (page_to_phys(svm->avic_backing_page) &
1269                      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1270                      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1271         WRITE_ONCE(*entry, new_entry);
1272
1273         svm->avic_physical_id_cache = entry;
1274
1275         return 0;
1276 }
1277
1278 static void avic_vm_destroy(struct kvm *kvm)
1279 {
1280         struct kvm_arch *vm_data = &kvm->arch;
1281
1282         if (vm_data->avic_logical_id_table_page)
1283                 __free_page(vm_data->avic_logical_id_table_page);
1284         if (vm_data->avic_physical_id_table_page)
1285                 __free_page(vm_data->avic_physical_id_table_page);
1286 }
1287
1288 static int avic_vm_init(struct kvm *kvm)
1289 {
1290         int err = -ENOMEM;
1291         struct kvm_arch *vm_data = &kvm->arch;
1292         struct page *p_page;
1293         struct page *l_page;
1294
1295         if (!avic)
1296                 return 0;
1297
1298         /* Allocating physical APIC ID table (4KB) */
1299         p_page = alloc_page(GFP_KERNEL);
1300         if (!p_page)
1301                 goto free_avic;
1302
1303         vm_data->avic_physical_id_table_page = p_page;
1304         clear_page(page_address(p_page));
1305
1306         /* Allocating logical APIC ID table (4KB) */
1307         l_page = alloc_page(GFP_KERNEL);
1308         if (!l_page)
1309                 goto free_avic;
1310
1311         vm_data->avic_logical_id_table_page = l_page;
1312         clear_page(page_address(l_page));
1313
1314         return 0;
1315
1316 free_avic:
1317         avic_vm_destroy(kvm);
1318         return err;
1319 }
1320
1321 /**
1322  * This function is called during VCPU halt/unhalt.
1323  */
1324 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1325 {
1326         u64 entry;
1327         int h_physical_id = __default_cpu_present_to_apicid(vcpu->cpu);
1328         struct vcpu_svm *svm = to_svm(vcpu);
1329
1330         if (!kvm_vcpu_apicv_active(vcpu))
1331                 return;
1332
1333         svm->avic_is_running = is_run;
1334
1335         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1336         if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1337                 return;
1338
1339         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1340         WARN_ON(is_run == !!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK));
1341
1342         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1343         if (is_run)
1344                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1345         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1346 }
1347
1348 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1349 {
1350         u64 entry;
1351         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1352         int h_physical_id = __default_cpu_present_to_apicid(cpu);
1353         struct vcpu_svm *svm = to_svm(vcpu);
1354
1355         if (!kvm_vcpu_apicv_active(vcpu))
1356                 return;
1357
1358         if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1359                 return;
1360
1361         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1362         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1363
1364         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1365         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1366
1367         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1368         if (svm->avic_is_running)
1369                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1370
1371         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1372 }
1373
1374 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1375 {
1376         u64 entry;
1377         struct vcpu_svm *svm = to_svm(vcpu);
1378
1379         if (!kvm_vcpu_apicv_active(vcpu))
1380                 return;
1381
1382         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1383         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1384         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1385 }
1386
1387 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1388 {
1389         struct vcpu_svm *svm = to_svm(vcpu);
1390         u32 dummy;
1391         u32 eax = 1;
1392
1393         if (!init_event) {
1394                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1395                                            MSR_IA32_APICBASE_ENABLE;
1396                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1397                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1398         }
1399         init_vmcb(svm);
1400
1401         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1402         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1403
1404         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1405                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1406 }
1407
1408 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1409 {
1410         struct vcpu_svm *svm;
1411         struct page *page;
1412         struct page *msrpm_pages;
1413         struct page *hsave_page;
1414         struct page *nested_msrpm_pages;
1415         int err;
1416
1417         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1418         if (!svm) {
1419                 err = -ENOMEM;
1420                 goto out;
1421         }
1422
1423         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1424         if (err)
1425                 goto free_svm;
1426
1427         err = -ENOMEM;
1428         page = alloc_page(GFP_KERNEL);
1429         if (!page)
1430                 goto uninit;
1431
1432         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1433         if (!msrpm_pages)
1434                 goto free_page1;
1435
1436         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1437         if (!nested_msrpm_pages)
1438                 goto free_page2;
1439
1440         hsave_page = alloc_page(GFP_KERNEL);
1441         if (!hsave_page)
1442                 goto free_page3;
1443
1444         if (avic) {
1445                 err = avic_init_backing_page(&svm->vcpu);
1446                 if (err)
1447                         goto free_page4;
1448         }
1449
1450         /* We initialize this flag to true to make sure that the is_running
1451          * bit would be set the first time the vcpu is loaded.
1452          */
1453         svm->avic_is_running = true;
1454
1455         svm->nested.hsave = page_address(hsave_page);
1456
1457         svm->msrpm = page_address(msrpm_pages);
1458         svm_vcpu_init_msrpm(svm->msrpm);
1459
1460         svm->nested.msrpm = page_address(nested_msrpm_pages);
1461         svm_vcpu_init_msrpm(svm->nested.msrpm);
1462
1463         svm->vmcb = page_address(page);
1464         clear_page(svm->vmcb);
1465         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1466         svm->asid_generation = 0;
1467         init_vmcb(svm);
1468
1469         svm_init_osvw(&svm->vcpu);
1470
1471         return &svm->vcpu;
1472
1473 free_page4:
1474         __free_page(hsave_page);
1475 free_page3:
1476         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1477 free_page2:
1478         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1479 free_page1:
1480         __free_page(page);
1481 uninit:
1482         kvm_vcpu_uninit(&svm->vcpu);
1483 free_svm:
1484         kmem_cache_free(kvm_vcpu_cache, svm);
1485 out:
1486         return ERR_PTR(err);
1487 }
1488
1489 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1490 {
1491         struct vcpu_svm *svm = to_svm(vcpu);
1492
1493         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1494         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1495         __free_page(virt_to_page(svm->nested.hsave));
1496         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1497         kvm_vcpu_uninit(vcpu);
1498         kmem_cache_free(kvm_vcpu_cache, svm);
1499 }
1500
1501 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1502 {
1503         struct vcpu_svm *svm = to_svm(vcpu);
1504         int i;
1505
1506         if (unlikely(cpu != vcpu->cpu)) {
1507                 svm->asid_generation = 0;
1508                 mark_all_dirty(svm->vmcb);
1509         }
1510
1511 #ifdef CONFIG_X86_64
1512         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1513 #endif
1514         savesegment(fs, svm->host.fs);
1515         savesegment(gs, svm->host.gs);
1516         svm->host.ldt = kvm_read_ldt();
1517
1518         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1519                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1520
1521         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1522                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1523                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1524                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1525                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1526                 }
1527         }
1528         /* This assumes that the kernel never uses MSR_TSC_AUX */
1529         if (static_cpu_has(X86_FEATURE_RDTSCP))
1530                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1531
1532         avic_vcpu_load(vcpu, cpu);
1533 }
1534
1535 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1536 {
1537         struct vcpu_svm *svm = to_svm(vcpu);
1538         int i;
1539
1540         avic_vcpu_put(vcpu);
1541
1542         ++vcpu->stat.host_state_reload;
1543         kvm_load_ldt(svm->host.ldt);
1544 #ifdef CONFIG_X86_64
1545         loadsegment(fs, svm->host.fs);
1546         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1547         load_gs_index(svm->host.gs);
1548 #else
1549 #ifdef CONFIG_X86_32_LAZY_GS
1550         loadsegment(gs, svm->host.gs);
1551 #endif
1552 #endif
1553         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1554                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1555 }
1556
1557 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1558 {
1559         avic_set_running(vcpu, false);
1560 }
1561
1562 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1563 {
1564         avic_set_running(vcpu, true);
1565 }
1566
1567 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1568 {
1569         return to_svm(vcpu)->vmcb->save.rflags;
1570 }
1571
1572 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1573 {
1574        /*
1575         * Any change of EFLAGS.VM is accompained by a reload of SS
1576         * (caused by either a task switch or an inter-privilege IRET),
1577         * so we do not need to update the CPL here.
1578         */
1579         to_svm(vcpu)->vmcb->save.rflags = rflags;
1580 }
1581
1582 static u32 svm_get_pkru(struct kvm_vcpu *vcpu)
1583 {
1584         return 0;
1585 }
1586
1587 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1588 {
1589         switch (reg) {
1590         case VCPU_EXREG_PDPTR:
1591                 BUG_ON(!npt_enabled);
1592                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1593                 break;
1594         default:
1595                 BUG();
1596         }
1597 }
1598
1599 static void svm_set_vintr(struct vcpu_svm *svm)
1600 {
1601         set_intercept(svm, INTERCEPT_VINTR);
1602 }
1603
1604 static void svm_clear_vintr(struct vcpu_svm *svm)
1605 {
1606         clr_intercept(svm, INTERCEPT_VINTR);
1607 }
1608
1609 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1610 {
1611         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1612
1613         switch (seg) {
1614         case VCPU_SREG_CS: return &save->cs;
1615         case VCPU_SREG_DS: return &save->ds;
1616         case VCPU_SREG_ES: return &save->es;
1617         case VCPU_SREG_FS: return &save->fs;
1618         case VCPU_SREG_GS: return &save->gs;
1619         case VCPU_SREG_SS: return &save->ss;
1620         case VCPU_SREG_TR: return &save->tr;
1621         case VCPU_SREG_LDTR: return &save->ldtr;
1622         }
1623         BUG();
1624         return NULL;
1625 }
1626
1627 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1628 {
1629         struct vmcb_seg *s = svm_seg(vcpu, seg);
1630
1631         return s->base;
1632 }
1633
1634 static void svm_get_segment(struct kvm_vcpu *vcpu,
1635                             struct kvm_segment *var, int seg)
1636 {
1637         struct vmcb_seg *s = svm_seg(vcpu, seg);
1638
1639         var->base = s->base;
1640         var->limit = s->limit;
1641         var->selector = s->selector;
1642         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1643         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1644         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1645         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1646         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1647         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1648         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1649
1650         /*
1651          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1652          * However, the SVM spec states that the G bit is not observed by the
1653          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1654          * So let's synthesize a legal G bit for all segments, this helps
1655          * running KVM nested. It also helps cross-vendor migration, because
1656          * Intel's vmentry has a check on the 'G' bit.
1657          */
1658         var->g = s->limit > 0xfffff;
1659
1660         /*
1661          * AMD's VMCB does not have an explicit unusable field, so emulate it
1662          * for cross vendor migration purposes by "not present"
1663          */
1664         var->unusable = !var->present || (var->type == 0);
1665
1666         switch (seg) {
1667         case VCPU_SREG_TR:
1668                 /*
1669                  * Work around a bug where the busy flag in the tr selector
1670                  * isn't exposed
1671                  */
1672                 var->type |= 0x2;
1673                 break;
1674         case VCPU_SREG_DS:
1675         case VCPU_SREG_ES:
1676         case VCPU_SREG_FS:
1677         case VCPU_SREG_GS:
1678                 /*
1679                  * The accessed bit must always be set in the segment
1680                  * descriptor cache, although it can be cleared in the
1681                  * descriptor, the cached bit always remains at 1. Since
1682                  * Intel has a check on this, set it here to support
1683                  * cross-vendor migration.
1684                  */
1685                 if (!var->unusable)
1686                         var->type |= 0x1;
1687                 break;
1688         case VCPU_SREG_SS:
1689                 /*
1690                  * On AMD CPUs sometimes the DB bit in the segment
1691                  * descriptor is left as 1, although the whole segment has
1692                  * been made unusable. Clear it here to pass an Intel VMX
1693                  * entry check when cross vendor migrating.
1694                  */
1695                 if (var->unusable)
1696                         var->db = 0;
1697                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1698                 break;
1699         }
1700 }
1701
1702 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1703 {
1704         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1705
1706         return save->cpl;
1707 }
1708
1709 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1710 {
1711         struct vcpu_svm *svm = to_svm(vcpu);
1712
1713         dt->size = svm->vmcb->save.idtr.limit;
1714         dt->address = svm->vmcb->save.idtr.base;
1715 }
1716
1717 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1718 {
1719         struct vcpu_svm *svm = to_svm(vcpu);
1720
1721         svm->vmcb->save.idtr.limit = dt->size;
1722         svm->vmcb->save.idtr.base = dt->address ;
1723         mark_dirty(svm->vmcb, VMCB_DT);
1724 }
1725
1726 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1727 {
1728         struct vcpu_svm *svm = to_svm(vcpu);
1729
1730         dt->size = svm->vmcb->save.gdtr.limit;
1731         dt->address = svm->vmcb->save.gdtr.base;
1732 }
1733
1734 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1735 {
1736         struct vcpu_svm *svm = to_svm(vcpu);
1737
1738         svm->vmcb->save.gdtr.limit = dt->size;
1739         svm->vmcb->save.gdtr.base = dt->address ;
1740         mark_dirty(svm->vmcb, VMCB_DT);
1741 }
1742
1743 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1744 {
1745 }
1746
1747 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1748 {
1749 }
1750
1751 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1752 {
1753 }
1754
1755 static void update_cr0_intercept(struct vcpu_svm *svm)
1756 {
1757         ulong gcr0 = svm->vcpu.arch.cr0;
1758         u64 *hcr0 = &svm->vmcb->save.cr0;
1759
1760         if (!svm->vcpu.fpu_active)
1761                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1762         else
1763                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1764                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1765
1766         mark_dirty(svm->vmcb, VMCB_CR);
1767
1768         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1769                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1770                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1771         } else {
1772                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1773                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1774         }
1775 }
1776
1777 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1778 {
1779         struct vcpu_svm *svm = to_svm(vcpu);
1780
1781 #ifdef CONFIG_X86_64
1782         if (vcpu->arch.efer & EFER_LME) {
1783                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1784                         vcpu->arch.efer |= EFER_LMA;
1785                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1786                 }
1787
1788                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1789                         vcpu->arch.efer &= ~EFER_LMA;
1790                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1791                 }
1792         }
1793 #endif
1794         vcpu->arch.cr0 = cr0;
1795
1796         if (!npt_enabled)
1797                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1798
1799         if (!vcpu->fpu_active)
1800                 cr0 |= X86_CR0_TS;
1801         /*
1802          * re-enable caching here because the QEMU bios
1803          * does not do it - this results in some delay at
1804          * reboot
1805          */
1806         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1807                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1808         svm->vmcb->save.cr0 = cr0;
1809         mark_dirty(svm->vmcb, VMCB_CR);
1810         update_cr0_intercept(svm);
1811 }
1812
1813 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1814 {
1815         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1816         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1817
1818         if (cr4 & X86_CR4_VMXE)
1819                 return 1;
1820
1821         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1822                 svm_flush_tlb(vcpu);
1823
1824         vcpu->arch.cr4 = cr4;
1825         if (!npt_enabled)
1826                 cr4 |= X86_CR4_PAE;
1827         cr4 |= host_cr4_mce;
1828         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1829         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1830         return 0;
1831 }
1832
1833 static void svm_set_segment(struct kvm_vcpu *vcpu,
1834                             struct kvm_segment *var, int seg)
1835 {
1836         struct vcpu_svm *svm = to_svm(vcpu);
1837         struct vmcb_seg *s = svm_seg(vcpu, seg);
1838
1839         s->base = var->base;
1840         s->limit = var->limit;
1841         s->selector = var->selector;
1842         if (var->unusable)
1843                 s->attrib = 0;
1844         else {
1845                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1846                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1847                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1848                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1849                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1850                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1851                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1852                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1853         }
1854
1855         /*
1856          * This is always accurate, except if SYSRET returned to a segment
1857          * with SS.DPL != 3.  Intel does not have this quirk, and always
1858          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1859          * would entail passing the CPL to userspace and back.
1860          */
1861         if (seg == VCPU_SREG_SS)
1862                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1863
1864         mark_dirty(svm->vmcb, VMCB_SEG);
1865 }
1866
1867 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1868 {
1869         struct vcpu_svm *svm = to_svm(vcpu);
1870
1871         clr_exception_intercept(svm, BP_VECTOR);
1872
1873         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1874                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1875                         set_exception_intercept(svm, BP_VECTOR);
1876         } else
1877                 vcpu->guest_debug = 0;
1878 }
1879
1880 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1881 {
1882         if (sd->next_asid > sd->max_asid) {
1883                 ++sd->asid_generation;
1884                 sd->next_asid = 1;
1885                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1886         }
1887
1888         svm->asid_generation = sd->asid_generation;
1889         svm->vmcb->control.asid = sd->next_asid++;
1890
1891         mark_dirty(svm->vmcb, VMCB_ASID);
1892 }
1893
1894 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1895 {
1896         return to_svm(vcpu)->vmcb->save.dr6;
1897 }
1898
1899 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1900 {
1901         struct vcpu_svm *svm = to_svm(vcpu);
1902
1903         svm->vmcb->save.dr6 = value;
1904         mark_dirty(svm->vmcb, VMCB_DR);
1905 }
1906
1907 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1908 {
1909         struct vcpu_svm *svm = to_svm(vcpu);
1910
1911         get_debugreg(vcpu->arch.db[0], 0);
1912         get_debugreg(vcpu->arch.db[1], 1);
1913         get_debugreg(vcpu->arch.db[2], 2);
1914         get_debugreg(vcpu->arch.db[3], 3);
1915         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1916         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1917
1918         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1919         set_dr_intercepts(svm);
1920 }
1921
1922 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1923 {
1924         struct vcpu_svm *svm = to_svm(vcpu);
1925
1926         svm->vmcb->save.dr7 = value;
1927         mark_dirty(svm->vmcb, VMCB_DR);
1928 }
1929
1930 static int pf_interception(struct vcpu_svm *svm)
1931 {
1932         u64 fault_address = svm->vmcb->control.exit_info_2;
1933         u32 error_code;
1934         int r = 1;
1935
1936         switch (svm->apf_reason) {
1937         default:
1938                 error_code = svm->vmcb->control.exit_info_1;
1939
1940                 trace_kvm_page_fault(fault_address, error_code);
1941                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1942                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1943                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1944                         svm->vmcb->control.insn_bytes,
1945                         svm->vmcb->control.insn_len);
1946                 break;
1947         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1948                 svm->apf_reason = 0;
1949                 local_irq_disable();
1950                 kvm_async_pf_task_wait(fault_address);
1951                 local_irq_enable();
1952                 break;
1953         case KVM_PV_REASON_PAGE_READY:
1954                 svm->apf_reason = 0;
1955                 local_irq_disable();
1956                 kvm_async_pf_task_wake(fault_address);
1957                 local_irq_enable();
1958                 break;
1959         }
1960         return r;
1961 }
1962
1963 static int db_interception(struct vcpu_svm *svm)
1964 {
1965         struct kvm_run *kvm_run = svm->vcpu.run;
1966
1967         if (!(svm->vcpu.guest_debug &
1968               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1969                 !svm->nmi_singlestep) {
1970                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1971                 return 1;
1972         }
1973
1974         if (svm->nmi_singlestep) {
1975                 svm->nmi_singlestep = false;
1976                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1977                         svm->vmcb->save.rflags &=
1978                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1979         }
1980
1981         if (svm->vcpu.guest_debug &
1982             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1983                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1984                 kvm_run->debug.arch.pc =
1985                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1986                 kvm_run->debug.arch.exception = DB_VECTOR;
1987                 return 0;
1988         }
1989
1990         return 1;
1991 }
1992
1993 static int bp_interception(struct vcpu_svm *svm)
1994 {
1995         struct kvm_run *kvm_run = svm->vcpu.run;
1996
1997         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1998         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1999         kvm_run->debug.arch.exception = BP_VECTOR;
2000         return 0;
2001 }
2002
2003 static int ud_interception(struct vcpu_svm *svm)
2004 {
2005         int er;
2006
2007         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2008         if (er != EMULATE_DONE)
2009                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2010         return 1;
2011 }
2012
2013 static int ac_interception(struct vcpu_svm *svm)
2014 {
2015         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2016         return 1;
2017 }
2018
2019 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
2020 {
2021         struct vcpu_svm *svm = to_svm(vcpu);
2022
2023         clr_exception_intercept(svm, NM_VECTOR);
2024
2025         svm->vcpu.fpu_active = 1;
2026         update_cr0_intercept(svm);
2027 }
2028
2029 static int nm_interception(struct vcpu_svm *svm)
2030 {
2031         svm_fpu_activate(&svm->vcpu);
2032         return 1;
2033 }
2034
2035 static bool is_erratum_383(void)
2036 {
2037         int err, i;
2038         u64 value;
2039
2040         if (!erratum_383_found)
2041                 return false;
2042
2043         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2044         if (err)
2045                 return false;
2046
2047         /* Bit 62 may or may not be set for this mce */
2048         value &= ~(1ULL << 62);
2049
2050         if (value != 0xb600000000010015ULL)
2051                 return false;
2052
2053         /* Clear MCi_STATUS registers */
2054         for (i = 0; i < 6; ++i)
2055                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2056
2057         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2058         if (!err) {
2059                 u32 low, high;
2060
2061                 value &= ~(1ULL << 2);
2062                 low    = lower_32_bits(value);
2063                 high   = upper_32_bits(value);
2064
2065                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2066         }
2067
2068         /* Flush tlb to evict multi-match entries */
2069         __flush_tlb_all();
2070
2071         return true;
2072 }
2073
2074 static void svm_handle_mce(struct vcpu_svm *svm)
2075 {
2076         if (is_erratum_383()) {
2077                 /*
2078                  * Erratum 383 triggered. Guest state is corrupt so kill the
2079                  * guest.
2080                  */
2081                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2082
2083                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2084
2085                 return;
2086         }
2087
2088         /*
2089          * On an #MC intercept the MCE handler is not called automatically in
2090          * the host. So do it by hand here.
2091          */
2092         asm volatile (
2093                 "int $0x12\n");
2094         /* not sure if we ever come back to this point */
2095
2096         return;
2097 }
2098
2099 static int mc_interception(struct vcpu_svm *svm)
2100 {
2101         return 1;
2102 }
2103
2104 static int shutdown_interception(struct vcpu_svm *svm)
2105 {
2106         struct kvm_run *kvm_run = svm->vcpu.run;
2107
2108         /*
2109          * VMCB is undefined after a SHUTDOWN intercept
2110          * so reinitialize it.
2111          */
2112         clear_page(svm->vmcb);
2113         init_vmcb(svm);
2114
2115         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2116         return 0;
2117 }
2118
2119 static int io_interception(struct vcpu_svm *svm)
2120 {
2121         struct kvm_vcpu *vcpu = &svm->vcpu;
2122         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2123         int size, in, string;
2124         unsigned port;
2125
2126         ++svm->vcpu.stat.io_exits;
2127         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2128         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2129         if (string || in)
2130                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2131
2132         port = io_info >> 16;
2133         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2134         svm->next_rip = svm->vmcb->control.exit_info_2;
2135         skip_emulated_instruction(&svm->vcpu);
2136
2137         return kvm_fast_pio_out(vcpu, size, port);
2138 }
2139
2140 static int nmi_interception(struct vcpu_svm *svm)
2141 {
2142         return 1;
2143 }
2144
2145 static int intr_interception(struct vcpu_svm *svm)
2146 {
2147         ++svm->vcpu.stat.irq_exits;
2148         return 1;
2149 }
2150
2151 static int nop_on_interception(struct vcpu_svm *svm)
2152 {
2153         return 1;
2154 }
2155
2156 static int halt_interception(struct vcpu_svm *svm)
2157 {
2158         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2159         return kvm_emulate_halt(&svm->vcpu);
2160 }
2161
2162 static int vmmcall_interception(struct vcpu_svm *svm)
2163 {
2164         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2165         return kvm_emulate_hypercall(&svm->vcpu);
2166 }
2167
2168 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2169 {
2170         struct vcpu_svm *svm = to_svm(vcpu);
2171
2172         return svm->nested.nested_cr3;
2173 }
2174
2175 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2176 {
2177         struct vcpu_svm *svm = to_svm(vcpu);
2178         u64 cr3 = svm->nested.nested_cr3;
2179         u64 pdpte;
2180         int ret;
2181
2182         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2183                                        offset_in_page(cr3) + index * 8, 8);
2184         if (ret)
2185                 return 0;
2186         return pdpte;
2187 }
2188
2189 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2190                                    unsigned long root)
2191 {
2192         struct vcpu_svm *svm = to_svm(vcpu);
2193
2194         svm->vmcb->control.nested_cr3 = root;
2195         mark_dirty(svm->vmcb, VMCB_NPT);
2196         svm_flush_tlb(vcpu);
2197 }
2198
2199 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2200                                        struct x86_exception *fault)
2201 {
2202         struct vcpu_svm *svm = to_svm(vcpu);
2203
2204         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2205                 /*
2206                  * TODO: track the cause of the nested page fault, and
2207                  * correctly fill in the high bits of exit_info_1.
2208                  */
2209                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2210                 svm->vmcb->control.exit_code_hi = 0;
2211                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2212                 svm->vmcb->control.exit_info_2 = fault->address;
2213         }
2214
2215         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2216         svm->vmcb->control.exit_info_1 |= fault->error_code;
2217
2218         /*
2219          * The present bit is always zero for page structure faults on real
2220          * hardware.
2221          */
2222         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2223                 svm->vmcb->control.exit_info_1 &= ~1;
2224
2225         nested_svm_vmexit(svm);
2226 }
2227
2228 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2229 {
2230         WARN_ON(mmu_is_nested(vcpu));
2231         kvm_init_shadow_mmu(vcpu);
2232         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2233         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2234         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2235         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2236         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2237         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2238         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2239 }
2240
2241 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2242 {
2243         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2244 }
2245
2246 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2247 {
2248         if (!(svm->vcpu.arch.efer & EFER_SVME)
2249             || !is_paging(&svm->vcpu)) {
2250                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2251                 return 1;
2252         }
2253
2254         if (svm->vmcb->save.cpl) {
2255                 kvm_inject_gp(&svm->vcpu, 0);
2256                 return 1;
2257         }
2258
2259        return 0;
2260 }
2261
2262 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2263                                       bool has_error_code, u32 error_code)
2264 {
2265         int vmexit;
2266
2267         if (!is_guest_mode(&svm->vcpu))
2268                 return 0;
2269
2270         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2271         svm->vmcb->control.exit_code_hi = 0;
2272         svm->vmcb->control.exit_info_1 = error_code;
2273         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2274
2275         vmexit = nested_svm_intercept(svm);
2276         if (vmexit == NESTED_EXIT_DONE)
2277                 svm->nested.exit_required = true;
2278
2279         return vmexit;
2280 }
2281
2282 /* This function returns true if it is save to enable the irq window */
2283 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2284 {
2285         if (!is_guest_mode(&svm->vcpu))
2286                 return true;
2287
2288         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2289                 return true;
2290
2291         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2292                 return false;
2293
2294         /*
2295          * if vmexit was already requested (by intercepted exception
2296          * for instance) do not overwrite it with "external interrupt"
2297          * vmexit.
2298          */
2299         if (svm->nested.exit_required)
2300                 return false;
2301
2302         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2303         svm->vmcb->control.exit_info_1 = 0;
2304         svm->vmcb->control.exit_info_2 = 0;
2305
2306         if (svm->nested.intercept & 1ULL) {
2307                 /*
2308                  * The #vmexit can't be emulated here directly because this
2309                  * code path runs with irqs and preemption disabled. A
2310                  * #vmexit emulation might sleep. Only signal request for
2311                  * the #vmexit here.
2312                  */
2313                 svm->nested.exit_required = true;
2314                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2315                 return false;
2316         }
2317
2318         return true;
2319 }
2320
2321 /* This function returns true if it is save to enable the nmi window */
2322 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2323 {
2324         if (!is_guest_mode(&svm->vcpu))
2325                 return true;
2326
2327         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2328                 return true;
2329
2330         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2331         svm->nested.exit_required = true;
2332
2333         return false;
2334 }
2335
2336 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2337 {
2338         struct page *page;
2339
2340         might_sleep();
2341
2342         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2343         if (is_error_page(page))
2344                 goto error;
2345
2346         *_page = page;
2347
2348         return kmap(page);
2349
2350 error:
2351         kvm_inject_gp(&svm->vcpu, 0);
2352
2353         return NULL;
2354 }
2355
2356 static void nested_svm_unmap(struct page *page)
2357 {
2358         kunmap(page);
2359         kvm_release_page_dirty(page);
2360 }
2361
2362 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2363 {
2364         unsigned port, size, iopm_len;
2365         u16 val, mask;
2366         u8 start_bit;
2367         u64 gpa;
2368
2369         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2370                 return NESTED_EXIT_HOST;
2371
2372         port = svm->vmcb->control.exit_info_1 >> 16;
2373         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2374                 SVM_IOIO_SIZE_SHIFT;
2375         gpa  = svm->nested.vmcb_iopm + (port / 8);
2376         start_bit = port % 8;
2377         iopm_len = (start_bit + size > 8) ? 2 : 1;
2378         mask = (0xf >> (4 - size)) << start_bit;
2379         val = 0;
2380
2381         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2382                 return NESTED_EXIT_DONE;
2383
2384         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2385 }
2386
2387 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2388 {
2389         u32 offset, msr, value;
2390         int write, mask;
2391
2392         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2393                 return NESTED_EXIT_HOST;
2394
2395         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2396         offset = svm_msrpm_offset(msr);
2397         write  = svm->vmcb->control.exit_info_1 & 1;
2398         mask   = 1 << ((2 * (msr & 0xf)) + write);
2399
2400         if (offset == MSR_INVALID)
2401                 return NESTED_EXIT_DONE;
2402
2403         /* Offset is in 32 bit units but need in 8 bit units */
2404         offset *= 4;
2405
2406         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2407                 return NESTED_EXIT_DONE;
2408
2409         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2410 }
2411
2412 static int nested_svm_exit_special(struct vcpu_svm *svm)
2413 {
2414         u32 exit_code = svm->vmcb->control.exit_code;
2415
2416         switch (exit_code) {
2417         case SVM_EXIT_INTR:
2418         case SVM_EXIT_NMI:
2419         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2420                 return NESTED_EXIT_HOST;
2421         case SVM_EXIT_NPF:
2422                 /* For now we are always handling NPFs when using them */
2423                 if (npt_enabled)
2424                         return NESTED_EXIT_HOST;
2425                 break;
2426         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2427                 /* When we're shadowing, trap PFs, but not async PF */
2428                 if (!npt_enabled && svm->apf_reason == 0)
2429                         return NESTED_EXIT_HOST;
2430                 break;
2431         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2432                 nm_interception(svm);
2433                 break;
2434         default:
2435                 break;
2436         }
2437
2438         return NESTED_EXIT_CONTINUE;
2439 }
2440
2441 /*
2442  * If this function returns true, this #vmexit was already handled
2443  */
2444 static int nested_svm_intercept(struct vcpu_svm *svm)
2445 {
2446         u32 exit_code = svm->vmcb->control.exit_code;
2447         int vmexit = NESTED_EXIT_HOST;
2448
2449         switch (exit_code) {
2450         case SVM_EXIT_MSR:
2451                 vmexit = nested_svm_exit_handled_msr(svm);
2452                 break;
2453         case SVM_EXIT_IOIO:
2454                 vmexit = nested_svm_intercept_ioio(svm);
2455                 break;
2456         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2457                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2458                 if (svm->nested.intercept_cr & bit)
2459                         vmexit = NESTED_EXIT_DONE;
2460                 break;
2461         }
2462         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2463                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2464                 if (svm->nested.intercept_dr & bit)
2465                         vmexit = NESTED_EXIT_DONE;
2466                 break;
2467         }
2468         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2469                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2470                 if (svm->nested.intercept_exceptions & excp_bits)
2471                         vmexit = NESTED_EXIT_DONE;
2472                 /* async page fault always cause vmexit */
2473                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2474                          svm->apf_reason != 0)
2475                         vmexit = NESTED_EXIT_DONE;
2476                 break;
2477         }
2478         case SVM_EXIT_ERR: {
2479                 vmexit = NESTED_EXIT_DONE;
2480                 break;
2481         }
2482         default: {
2483                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2484                 if (svm->nested.intercept & exit_bits)
2485                         vmexit = NESTED_EXIT_DONE;
2486         }
2487         }
2488
2489         return vmexit;
2490 }
2491
2492 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2493 {
2494         int vmexit;
2495
2496         vmexit = nested_svm_intercept(svm);
2497
2498         if (vmexit == NESTED_EXIT_DONE)
2499                 nested_svm_vmexit(svm);
2500
2501         return vmexit;
2502 }
2503
2504 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2505 {
2506         struct vmcb_control_area *dst  = &dst_vmcb->control;
2507         struct vmcb_control_area *from = &from_vmcb->control;
2508
2509         dst->intercept_cr         = from->intercept_cr;
2510         dst->intercept_dr         = from->intercept_dr;
2511         dst->intercept_exceptions = from->intercept_exceptions;
2512         dst->intercept            = from->intercept;
2513         dst->iopm_base_pa         = from->iopm_base_pa;
2514         dst->msrpm_base_pa        = from->msrpm_base_pa;
2515         dst->tsc_offset           = from->tsc_offset;
2516         dst->asid                 = from->asid;
2517         dst->tlb_ctl              = from->tlb_ctl;
2518         dst->int_ctl              = from->int_ctl;
2519         dst->int_vector           = from->int_vector;
2520         dst->int_state            = from->int_state;
2521         dst->exit_code            = from->exit_code;
2522         dst->exit_code_hi         = from->exit_code_hi;
2523         dst->exit_info_1          = from->exit_info_1;
2524         dst->exit_info_2          = from->exit_info_2;
2525         dst->exit_int_info        = from->exit_int_info;
2526         dst->exit_int_info_err    = from->exit_int_info_err;
2527         dst->nested_ctl           = from->nested_ctl;
2528         dst->event_inj            = from->event_inj;
2529         dst->event_inj_err        = from->event_inj_err;
2530         dst->nested_cr3           = from->nested_cr3;
2531         dst->lbr_ctl              = from->lbr_ctl;
2532 }
2533
2534 static int nested_svm_vmexit(struct vcpu_svm *svm)
2535 {
2536         struct vmcb *nested_vmcb;
2537         struct vmcb *hsave = svm->nested.hsave;
2538         struct vmcb *vmcb = svm->vmcb;
2539         struct page *page;
2540
2541         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2542                                        vmcb->control.exit_info_1,
2543                                        vmcb->control.exit_info_2,
2544                                        vmcb->control.exit_int_info,
2545                                        vmcb->control.exit_int_info_err,
2546                                        KVM_ISA_SVM);
2547
2548         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2549         if (!nested_vmcb)
2550                 return 1;
2551
2552         /* Exit Guest-Mode */
2553         leave_guest_mode(&svm->vcpu);
2554         svm->nested.vmcb = 0;
2555
2556         /* Give the current vmcb to the guest */
2557         disable_gif(svm);
2558
2559         nested_vmcb->save.es     = vmcb->save.es;
2560         nested_vmcb->save.cs     = vmcb->save.cs;
2561         nested_vmcb->save.ss     = vmcb->save.ss;
2562         nested_vmcb->save.ds     = vmcb->save.ds;
2563         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2564         nested_vmcb->save.idtr   = vmcb->save.idtr;
2565         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2566         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2567         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2568         nested_vmcb->save.cr2    = vmcb->save.cr2;
2569         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2570         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2571         nested_vmcb->save.rip    = vmcb->save.rip;
2572         nested_vmcb->save.rsp    = vmcb->save.rsp;
2573         nested_vmcb->save.rax    = vmcb->save.rax;
2574         nested_vmcb->save.dr7    = vmcb->save.dr7;
2575         nested_vmcb->save.dr6    = vmcb->save.dr6;
2576         nested_vmcb->save.cpl    = vmcb->save.cpl;
2577
2578         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2579         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2580         nested_vmcb->control.int_state         = vmcb->control.int_state;
2581         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2582         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2583         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2584         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2585         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2586         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2587
2588         if (svm->nrips_enabled)
2589                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2590
2591         /*
2592          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2593          * to make sure that we do not lose injected events. So check event_inj
2594          * here and copy it to exit_int_info if it is valid.
2595          * Exit_int_info and event_inj can't be both valid because the case
2596          * below only happens on a VMRUN instruction intercept which has
2597          * no valid exit_int_info set.
2598          */
2599         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2600                 struct vmcb_control_area *nc = &nested_vmcb->control;
2601
2602                 nc->exit_int_info     = vmcb->control.event_inj;
2603                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2604         }
2605
2606         nested_vmcb->control.tlb_ctl           = 0;
2607         nested_vmcb->control.event_inj         = 0;
2608         nested_vmcb->control.event_inj_err     = 0;
2609
2610         /* We always set V_INTR_MASKING and remember the old value in hflags */
2611         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2612                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2613
2614         /* Restore the original control entries */
2615         copy_vmcb_control_area(vmcb, hsave);
2616
2617         kvm_clear_exception_queue(&svm->vcpu);
2618         kvm_clear_interrupt_queue(&svm->vcpu);
2619
2620         svm->nested.nested_cr3 = 0;
2621
2622         /* Restore selected save entries */
2623         svm->vmcb->save.es = hsave->save.es;
2624         svm->vmcb->save.cs = hsave->save.cs;
2625         svm->vmcb->save.ss = hsave->save.ss;
2626         svm->vmcb->save.ds = hsave->save.ds;
2627         svm->vmcb->save.gdtr = hsave->save.gdtr;
2628         svm->vmcb->save.idtr = hsave->save.idtr;
2629         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2630         svm_set_efer(&svm->vcpu, hsave->save.efer);
2631         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2632         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2633         if (npt_enabled) {
2634                 svm->vmcb->save.cr3 = hsave->save.cr3;
2635                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2636         } else {
2637                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2638         }
2639         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2640         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2641         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2642         svm->vmcb->save.dr7 = 0;
2643         svm->vmcb->save.cpl = 0;
2644         svm->vmcb->control.exit_int_info = 0;
2645
2646         mark_all_dirty(svm->vmcb);
2647
2648         nested_svm_unmap(page);
2649
2650         nested_svm_uninit_mmu_context(&svm->vcpu);
2651         kvm_mmu_reset_context(&svm->vcpu);
2652         kvm_mmu_load(&svm->vcpu);
2653
2654         return 0;
2655 }
2656
2657 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2658 {
2659         /*
2660          * This function merges the msr permission bitmaps of kvm and the
2661          * nested vmcb. It is optimized in that it only merges the parts where
2662          * the kvm msr permission bitmap may contain zero bits
2663          */
2664         int i;
2665
2666         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2667                 return true;
2668
2669         for (i = 0; i < MSRPM_OFFSETS; i++) {
2670                 u32 value, p;
2671                 u64 offset;
2672
2673                 if (msrpm_offsets[i] == 0xffffffff)
2674                         break;
2675
2676                 p      = msrpm_offsets[i];
2677                 offset = svm->nested.vmcb_msrpm + (p * 4);
2678
2679                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2680                         return false;
2681
2682                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2683         }
2684
2685         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2686
2687         return true;
2688 }
2689
2690 static bool nested_vmcb_checks(struct vmcb *vmcb)
2691 {
2692         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2693                 return false;
2694
2695         if (vmcb->control.asid == 0)
2696                 return false;
2697
2698         if (vmcb->control.nested_ctl && !npt_enabled)
2699                 return false;
2700
2701         return true;
2702 }
2703
2704 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2705 {
2706         struct vmcb *nested_vmcb;
2707         struct vmcb *hsave = svm->nested.hsave;
2708         struct vmcb *vmcb = svm->vmcb;
2709         struct page *page;
2710         u64 vmcb_gpa;
2711
2712         vmcb_gpa = svm->vmcb->save.rax;
2713
2714         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2715         if (!nested_vmcb)
2716                 return false;
2717
2718         if (!nested_vmcb_checks(nested_vmcb)) {
2719                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2720                 nested_vmcb->control.exit_code_hi = 0;
2721                 nested_vmcb->control.exit_info_1  = 0;
2722                 nested_vmcb->control.exit_info_2  = 0;
2723
2724                 nested_svm_unmap(page);
2725
2726                 return false;
2727         }
2728
2729         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2730                                nested_vmcb->save.rip,
2731                                nested_vmcb->control.int_ctl,
2732                                nested_vmcb->control.event_inj,
2733                                nested_vmcb->control.nested_ctl);
2734
2735         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2736                                     nested_vmcb->control.intercept_cr >> 16,
2737                                     nested_vmcb->control.intercept_exceptions,
2738                                     nested_vmcb->control.intercept);
2739
2740         /* Clear internal status */
2741         kvm_clear_exception_queue(&svm->vcpu);
2742         kvm_clear_interrupt_queue(&svm->vcpu);
2743
2744         /*
2745          * Save the old vmcb, so we don't need to pick what we save, but can
2746          * restore everything when a VMEXIT occurs
2747          */
2748         hsave->save.es     = vmcb->save.es;
2749         hsave->save.cs     = vmcb->save.cs;
2750         hsave->save.ss     = vmcb->save.ss;
2751         hsave->save.ds     = vmcb->save.ds;
2752         hsave->save.gdtr   = vmcb->save.gdtr;
2753         hsave->save.idtr   = vmcb->save.idtr;
2754         hsave->save.efer   = svm->vcpu.arch.efer;
2755         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2756         hsave->save.cr4    = svm->vcpu.arch.cr4;
2757         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2758         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2759         hsave->save.rsp    = vmcb->save.rsp;
2760         hsave->save.rax    = vmcb->save.rax;
2761         if (npt_enabled)
2762                 hsave->save.cr3    = vmcb->save.cr3;
2763         else
2764                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2765
2766         copy_vmcb_control_area(hsave, vmcb);
2767
2768         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2769                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2770         else
2771                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2772
2773         if (nested_vmcb->control.nested_ctl) {
2774                 kvm_mmu_unload(&svm->vcpu);
2775                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2776                 nested_svm_init_mmu_context(&svm->vcpu);
2777         }
2778
2779         /* Load the nested guest state */
2780         svm->vmcb->save.es = nested_vmcb->save.es;
2781         svm->vmcb->save.cs = nested_vmcb->save.cs;
2782         svm->vmcb->save.ss = nested_vmcb->save.ss;
2783         svm->vmcb->save.ds = nested_vmcb->save.ds;
2784         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2785         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2786         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2787         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2788         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2789         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2790         if (npt_enabled) {
2791                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2792                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2793         } else
2794                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2795
2796         /* Guest paging mode is active - reset mmu */
2797         kvm_mmu_reset_context(&svm->vcpu);
2798
2799         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2800         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2801         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2802         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2803
2804         /* In case we don't even reach vcpu_run, the fields are not updated */
2805         svm->vmcb->save.rax = nested_vmcb->save.rax;
2806         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2807         svm->vmcb->save.rip = nested_vmcb->save.rip;
2808         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2809         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2810         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2811
2812         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2813         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2814
2815         /* cache intercepts */
2816         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2817         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2818         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2819         svm->nested.intercept            = nested_vmcb->control.intercept;
2820
2821         svm_flush_tlb(&svm->vcpu);
2822         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2823         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2824                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2825         else
2826                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2827
2828         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2829                 /* We only want the cr8 intercept bits of the guest */
2830                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2831                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2832         }
2833
2834         /* We don't want to see VMMCALLs from a nested guest */
2835         clr_intercept(svm, INTERCEPT_VMMCALL);
2836
2837         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2838         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2839         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2840         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2841         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2842         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2843
2844         nested_svm_unmap(page);
2845
2846         /* Enter Guest-Mode */
2847         enter_guest_mode(&svm->vcpu);
2848
2849         /*
2850          * Merge guest and host intercepts - must be called  with vcpu in
2851          * guest-mode to take affect here
2852          */
2853         recalc_intercepts(svm);
2854
2855         svm->nested.vmcb = vmcb_gpa;
2856
2857         enable_gif(svm);
2858
2859         mark_all_dirty(svm->vmcb);
2860
2861         return true;
2862 }
2863
2864 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2865 {
2866         to_vmcb->save.fs = from_vmcb->save.fs;
2867         to_vmcb->save.gs = from_vmcb->save.gs;
2868         to_vmcb->save.tr = from_vmcb->save.tr;
2869         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2870         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2871         to_vmcb->save.star = from_vmcb->save.star;
2872         to_vmcb->save.lstar = from_vmcb->save.lstar;
2873         to_vmcb->save.cstar = from_vmcb->save.cstar;
2874         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2875         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2876         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2877         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2878 }
2879
2880 static int vmload_interception(struct vcpu_svm *svm)
2881 {
2882         struct vmcb *nested_vmcb;
2883         struct page *page;
2884
2885         if (nested_svm_check_permissions(svm))
2886                 return 1;
2887
2888         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2889         if (!nested_vmcb)
2890                 return 1;
2891
2892         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2893         skip_emulated_instruction(&svm->vcpu);
2894
2895         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2896         nested_svm_unmap(page);
2897
2898         return 1;
2899 }
2900
2901 static int vmsave_interception(struct vcpu_svm *svm)
2902 {
2903         struct vmcb *nested_vmcb;
2904         struct page *page;
2905
2906         if (nested_svm_check_permissions(svm))
2907                 return 1;
2908
2909         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2910         if (!nested_vmcb)
2911                 return 1;
2912
2913         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2914         skip_emulated_instruction(&svm->vcpu);
2915
2916         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2917         nested_svm_unmap(page);
2918
2919         return 1;
2920 }
2921
2922 static int vmrun_interception(struct vcpu_svm *svm)
2923 {
2924         if (nested_svm_check_permissions(svm))
2925                 return 1;
2926
2927         /* Save rip after vmrun instruction */
2928         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2929
2930         if (!nested_svm_vmrun(svm))
2931                 return 1;
2932
2933         if (!nested_svm_vmrun_msrpm(svm))
2934                 goto failed;
2935
2936         return 1;
2937
2938 failed:
2939
2940         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2941         svm->vmcb->control.exit_code_hi = 0;
2942         svm->vmcb->control.exit_info_1  = 0;
2943         svm->vmcb->control.exit_info_2  = 0;
2944
2945         nested_svm_vmexit(svm);
2946
2947         return 1;
2948 }
2949
2950 static int stgi_interception(struct vcpu_svm *svm)
2951 {
2952         if (nested_svm_check_permissions(svm))
2953                 return 1;
2954
2955         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2956         skip_emulated_instruction(&svm->vcpu);
2957         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2958
2959         enable_gif(svm);
2960
2961         return 1;
2962 }
2963
2964 static int clgi_interception(struct vcpu_svm *svm)
2965 {
2966         if (nested_svm_check_permissions(svm))
2967                 return 1;
2968
2969         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2970         skip_emulated_instruction(&svm->vcpu);
2971
2972         disable_gif(svm);
2973
2974         /* After a CLGI no interrupts should come */
2975         if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
2976                 svm_clear_vintr(svm);
2977                 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2978                 mark_dirty(svm->vmcb, VMCB_INTR);
2979         }
2980
2981         return 1;
2982 }
2983
2984 static int invlpga_interception(struct vcpu_svm *svm)
2985 {
2986         struct kvm_vcpu *vcpu = &svm->vcpu;
2987
2988         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2989                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2990
2991         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2992         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2993
2994         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2995         skip_emulated_instruction(&svm->vcpu);
2996         return 1;
2997 }
2998
2999 static int skinit_interception(struct vcpu_svm *svm)
3000 {
3001         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3002
3003         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3004         return 1;
3005 }
3006
3007 static int wbinvd_interception(struct vcpu_svm *svm)
3008 {
3009         kvm_emulate_wbinvd(&svm->vcpu);
3010         return 1;
3011 }
3012
3013 static int xsetbv_interception(struct vcpu_svm *svm)
3014 {
3015         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3016         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3017
3018         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3019                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3020                 skip_emulated_instruction(&svm->vcpu);
3021         }
3022
3023         return 1;
3024 }
3025
3026 static int task_switch_interception(struct vcpu_svm *svm)
3027 {
3028         u16 tss_selector;
3029         int reason;
3030         int int_type = svm->vmcb->control.exit_int_info &
3031                 SVM_EXITINTINFO_TYPE_MASK;
3032         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3033         uint32_t type =
3034                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3035         uint32_t idt_v =
3036                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3037         bool has_error_code = false;
3038         u32 error_code = 0;
3039
3040         tss_selector = (u16)svm->vmcb->control.exit_info_1;
3041
3042         if (svm->vmcb->control.exit_info_2 &
3043             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3044                 reason = TASK_SWITCH_IRET;
3045         else if (svm->vmcb->control.exit_info_2 &
3046                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3047                 reason = TASK_SWITCH_JMP;
3048         else if (idt_v)
3049                 reason = TASK_SWITCH_GATE;
3050         else
3051                 reason = TASK_SWITCH_CALL;
3052
3053         if (reason == TASK_SWITCH_GATE) {
3054                 switch (type) {
3055                 case SVM_EXITINTINFO_TYPE_NMI:
3056                         svm->vcpu.arch.nmi_injected = false;
3057                         break;
3058                 case SVM_EXITINTINFO_TYPE_EXEPT:
3059                         if (svm->vmcb->control.exit_info_2 &
3060                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3061                                 has_error_code = true;
3062                                 error_code =
3063                                         (u32)svm->vmcb->control.exit_info_2;
3064                         }
3065                         kvm_clear_exception_queue(&svm->vcpu);
3066                         break;
3067                 case SVM_EXITINTINFO_TYPE_INTR:
3068                         kvm_clear_interrupt_queue(&svm->vcpu);
3069                         break;
3070                 default:
3071                         break;
3072                 }
3073         }
3074
3075         if (reason != TASK_SWITCH_GATE ||
3076             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3077             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3078              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3079                 skip_emulated_instruction(&svm->vcpu);
3080
3081         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3082                 int_vec = -1;
3083
3084         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3085                                 has_error_code, error_code) == EMULATE_FAIL) {
3086                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3087                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3088                 svm->vcpu.run->internal.ndata = 0;
3089                 return 0;
3090         }
3091         return 1;
3092 }
3093
3094 static int cpuid_interception(struct vcpu_svm *svm)
3095 {
3096         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3097         kvm_emulate_cpuid(&svm->vcpu);
3098         return 1;
3099 }
3100
3101 static int iret_interception(struct vcpu_svm *svm)
3102 {
3103         ++svm->vcpu.stat.nmi_window_exits;
3104         clr_intercept(svm, INTERCEPT_IRET);
3105         svm->vcpu.arch.hflags |= HF_IRET_MASK;
3106         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3107         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3108         return 1;
3109 }
3110
3111 static int invlpg_interception(struct vcpu_svm *svm)
3112 {
3113         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3114                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3115
3116         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3117         skip_emulated_instruction(&svm->vcpu);
3118         return 1;
3119 }
3120
3121 static int emulate_on_interception(struct vcpu_svm *svm)
3122 {
3123         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3124 }
3125
3126 static int rdpmc_interception(struct vcpu_svm *svm)
3127 {
3128         int err;
3129
3130         if (!static_cpu_has(X86_FEATURE_NRIPS))
3131                 return emulate_on_interception(svm);
3132
3133         err = kvm_rdpmc(&svm->vcpu);
3134         kvm_complete_insn_gp(&svm->vcpu, err);
3135
3136         return 1;
3137 }
3138
3139 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3140                                             unsigned long val)
3141 {
3142         unsigned long cr0 = svm->vcpu.arch.cr0;
3143         bool ret = false;
3144         u64 intercept;
3145
3146         intercept = svm->nested.intercept;
3147
3148         if (!is_guest_mode(&svm->vcpu) ||
3149             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3150                 return false;
3151
3152         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3153         val &= ~SVM_CR0_SELECTIVE_MASK;
3154
3155         if (cr0 ^ val) {
3156                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3157                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3158         }
3159
3160         return ret;
3161 }
3162
3163 #define CR_VALID (1ULL << 63)
3164
3165 static int cr_interception(struct vcpu_svm *svm)
3166 {
3167         int reg, cr;
3168         unsigned long val;
3169         int err;
3170
3171         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3172                 return emulate_on_interception(svm);
3173
3174         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3175                 return emulate_on_interception(svm);
3176
3177         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3178         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3179                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3180         else
3181                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3182
3183         err = 0;
3184         if (cr >= 16) { /* mov to cr */
3185                 cr -= 16;
3186                 val = kvm_register_read(&svm->vcpu, reg);
3187                 switch (cr) {
3188                 case 0:
3189                         if (!check_selective_cr0_intercepted(svm, val))
3190                                 err = kvm_set_cr0(&svm->vcpu, val);
3191                         else
3192                                 return 1;
3193
3194                         break;
3195                 case 3:
3196                         err = kvm_set_cr3(&svm->vcpu, val);
3197                         break;
3198                 case 4:
3199                         err = kvm_set_cr4(&svm->vcpu, val);
3200                         break;
3201                 case 8:
3202                         err = kvm_set_cr8(&svm->vcpu, val);
3203                         break;
3204                 default:
3205                         WARN(1, "unhandled write to CR%d", cr);
3206                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3207                         return 1;
3208                 }
3209         } else { /* mov from cr */
3210                 switch (cr) {
3211                 case 0:
3212                         val = kvm_read_cr0(&svm->vcpu);
3213                         break;
3214                 case 2:
3215                         val = svm->vcpu.arch.cr2;
3216                         break;
3217                 case 3:
3218                         val = kvm_read_cr3(&svm->vcpu);
3219                         break;
3220                 case 4:
3221                         val = kvm_read_cr4(&svm->vcpu);
3222                         break;
3223                 case 8:
3224                         val = kvm_get_cr8(&svm->vcpu);
3225                         break;
3226                 default:
3227                         WARN(1, "unhandled read from CR%d", cr);
3228                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3229                         return 1;
3230                 }
3231                 kvm_register_write(&svm->vcpu, reg, val);
3232         }
3233         kvm_complete_insn_gp(&svm->vcpu, err);
3234
3235         return 1;
3236 }
3237
3238 static int dr_interception(struct vcpu_svm *svm)
3239 {
3240         int reg, dr;
3241         unsigned long val;
3242
3243         if (svm->vcpu.guest_debug == 0) {
3244                 /*
3245                  * No more DR vmexits; force a reload of the debug registers
3246                  * and reenter on this instruction.  The next vmexit will
3247                  * retrieve the full state of the debug registers.
3248                  */
3249                 clr_dr_intercepts(svm);
3250                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3251                 return 1;
3252         }
3253
3254         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3255                 return emulate_on_interception(svm);
3256
3257         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3258         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3259
3260         if (dr >= 16) { /* mov to DRn */
3261                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3262                         return 1;
3263                 val = kvm_register_read(&svm->vcpu, reg);
3264                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3265         } else {
3266                 if (!kvm_require_dr(&svm->vcpu, dr))
3267                         return 1;
3268                 kvm_get_dr(&svm->vcpu, dr, &val);
3269                 kvm_register_write(&svm->vcpu, reg, val);
3270         }
3271
3272         skip_emulated_instruction(&svm->vcpu);
3273
3274         return 1;
3275 }
3276
3277 static int cr8_write_interception(struct vcpu_svm *svm)
3278 {
3279         struct kvm_run *kvm_run = svm->vcpu.run;
3280         int r;
3281
3282         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3283         /* instruction emulation calls kvm_set_cr8() */
3284         r = cr_interception(svm);
3285         if (lapic_in_kernel(&svm->vcpu))
3286                 return r;
3287         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3288                 return r;
3289         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3290         return 0;
3291 }
3292
3293 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3294 {
3295         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3296         return vmcb->control.tsc_offset + host_tsc;
3297 }
3298
3299 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3300 {
3301         struct vcpu_svm *svm = to_svm(vcpu);
3302
3303         switch (msr_info->index) {
3304         case MSR_IA32_TSC: {
3305                 msr_info->data = svm->vmcb->control.tsc_offset +
3306                         kvm_scale_tsc(vcpu, rdtsc());
3307
3308                 break;
3309         }
3310         case MSR_STAR:
3311                 msr_info->data = svm->vmcb->save.star;
3312                 break;
3313 #ifdef CONFIG_X86_64
3314         case MSR_LSTAR:
3315                 msr_info->data = svm->vmcb->save.lstar;
3316                 break;
3317         case MSR_CSTAR:
3318                 msr_info->data = svm->vmcb->save.cstar;
3319                 break;
3320         case MSR_KERNEL_GS_BASE:
3321                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3322                 break;
3323         case MSR_SYSCALL_MASK:
3324                 msr_info->data = svm->vmcb->save.sfmask;
3325                 break;
3326 #endif
3327         case MSR_IA32_SYSENTER_CS:
3328                 msr_info->data = svm->vmcb->save.sysenter_cs;
3329                 break;
3330         case MSR_IA32_SYSENTER_EIP:
3331                 msr_info->data = svm->sysenter_eip;
3332                 break;
3333         case MSR_IA32_SYSENTER_ESP:
3334                 msr_info->data = svm->sysenter_esp;
3335                 break;
3336         case MSR_TSC_AUX:
3337                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3338                         return 1;
3339                 msr_info->data = svm->tsc_aux;
3340                 break;
3341         /*
3342          * Nobody will change the following 5 values in the VMCB so we can
3343          * safely return them on rdmsr. They will always be 0 until LBRV is
3344          * implemented.
3345          */
3346         case MSR_IA32_DEBUGCTLMSR:
3347                 msr_info->data = svm->vmcb->save.dbgctl;
3348                 break;
3349         case MSR_IA32_LASTBRANCHFROMIP:
3350                 msr_info->data = svm->vmcb->save.br_from;
3351                 break;
3352         case MSR_IA32_LASTBRANCHTOIP:
3353                 msr_info->data = svm->vmcb->save.br_to;
3354                 break;
3355         case MSR_IA32_LASTINTFROMIP:
3356                 msr_info->data = svm->vmcb->save.last_excp_from;
3357                 break;
3358         case MSR_IA32_LASTINTTOIP:
3359                 msr_info->data = svm->vmcb->save.last_excp_to;
3360                 break;
3361         case MSR_VM_HSAVE_PA:
3362                 msr_info->data = svm->nested.hsave_msr;
3363                 break;
3364         case MSR_VM_CR:
3365                 msr_info->data = svm->nested.vm_cr_msr;
3366                 break;
3367         case MSR_IA32_UCODE_REV:
3368                 msr_info->data = 0x01000065;
3369                 break;
3370         case MSR_F15H_IC_CFG: {
3371
3372                 int family, model;
3373
3374                 family = guest_cpuid_family(vcpu);
3375                 model  = guest_cpuid_model(vcpu);
3376
3377                 if (family < 0 || model < 0)
3378                         return kvm_get_msr_common(vcpu, msr_info);
3379
3380                 msr_info->data = 0;
3381
3382                 if (family == 0x15 &&
3383                     (model >= 0x2 && model < 0x20))
3384                         msr_info->data = 0x1E;
3385                 }
3386                 break;
3387         default:
3388                 return kvm_get_msr_common(vcpu, msr_info);
3389         }
3390         return 0;
3391 }
3392
3393 static int rdmsr_interception(struct vcpu_svm *svm)
3394 {
3395         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3396         struct msr_data msr_info;
3397
3398         msr_info.index = ecx;
3399         msr_info.host_initiated = false;
3400         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3401                 trace_kvm_msr_read_ex(ecx);
3402                 kvm_inject_gp(&svm->vcpu, 0);
3403         } else {
3404                 trace_kvm_msr_read(ecx, msr_info.data);
3405
3406                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3407                                    msr_info.data & 0xffffffff);
3408                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3409                                    msr_info.data >> 32);
3410                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3411                 skip_emulated_instruction(&svm->vcpu);
3412         }
3413         return 1;
3414 }
3415
3416 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3417 {
3418         struct vcpu_svm *svm = to_svm(vcpu);
3419         int svm_dis, chg_mask;
3420
3421         if (data & ~SVM_VM_CR_VALID_MASK)
3422                 return 1;
3423
3424         chg_mask = SVM_VM_CR_VALID_MASK;
3425
3426         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3427                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3428
3429         svm->nested.vm_cr_msr &= ~chg_mask;
3430         svm->nested.vm_cr_msr |= (data & chg_mask);
3431
3432         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3433
3434         /* check for svm_disable while efer.svme is set */
3435         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3436                 return 1;
3437
3438         return 0;
3439 }
3440
3441 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3442 {
3443         struct vcpu_svm *svm = to_svm(vcpu);
3444
3445         u32 ecx = msr->index;
3446         u64 data = msr->data;
3447         switch (ecx) {
3448         case MSR_IA32_TSC:
3449                 kvm_write_tsc(vcpu, msr);
3450                 break;
3451         case MSR_STAR:
3452                 svm->vmcb->save.star = data;
3453                 break;
3454 #ifdef CONFIG_X86_64
3455         case MSR_LSTAR:
3456                 svm->vmcb->save.lstar = data;
3457                 break;
3458         case MSR_CSTAR:
3459                 svm->vmcb->save.cstar = data;
3460                 break;
3461         case MSR_KERNEL_GS_BASE:
3462                 svm->vmcb->save.kernel_gs_base = data;
3463                 break;
3464         case MSR_SYSCALL_MASK:
3465                 svm->vmcb->save.sfmask = data;
3466                 break;
3467 #endif
3468         case MSR_IA32_SYSENTER_CS:
3469                 svm->vmcb->save.sysenter_cs = data;
3470                 break;
3471         case MSR_IA32_SYSENTER_EIP:
3472                 svm->sysenter_eip = data;
3473                 svm->vmcb->save.sysenter_eip = data;
3474                 break;
3475         case MSR_IA32_SYSENTER_ESP:
3476                 svm->sysenter_esp = data;
3477                 svm->vmcb->save.sysenter_esp = data;
3478                 break;
3479         case MSR_TSC_AUX:
3480                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3481                         return 1;
3482
3483                 /*
3484                  * This is rare, so we update the MSR here instead of using
3485                  * direct_access_msrs.  Doing that would require a rdmsr in
3486                  * svm_vcpu_put.
3487                  */
3488                 svm->tsc_aux = data;
3489                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3490                 break;
3491         case MSR_IA32_DEBUGCTLMSR:
3492                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3493                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3494                                     __func__, data);
3495                         break;
3496                 }
3497                 if (data & DEBUGCTL_RESERVED_BITS)
3498                         return 1;
3499
3500                 svm->vmcb->save.dbgctl = data;
3501                 mark_dirty(svm->vmcb, VMCB_LBR);
3502                 if (data & (1ULL<<0))
3503                         svm_enable_lbrv(svm);
3504                 else
3505                         svm_disable_lbrv(svm);
3506                 break;
3507         case MSR_VM_HSAVE_PA:
3508                 svm->nested.hsave_msr = data;
3509                 break;
3510         case MSR_VM_CR:
3511                 return svm_set_vm_cr(vcpu, data);
3512         case MSR_VM_IGNNE:
3513                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3514                 break;
3515         case MSR_IA32_APICBASE:
3516                 if (kvm_vcpu_apicv_active(vcpu))
3517                         avic_update_vapic_bar(to_svm(vcpu), data);
3518                 /* Follow through */
3519         default:
3520                 return kvm_set_msr_common(vcpu, msr);
3521         }
3522         return 0;
3523 }
3524
3525 static int wrmsr_interception(struct vcpu_svm *svm)
3526 {
3527         struct msr_data msr;
3528         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3529         u64 data = kvm_read_edx_eax(&svm->vcpu);
3530
3531         msr.data = data;
3532         msr.index = ecx;
3533         msr.host_initiated = false;
3534
3535         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3536         if (kvm_set_msr(&svm->vcpu, &msr)) {
3537                 trace_kvm_msr_write_ex(ecx, data);
3538                 kvm_inject_gp(&svm->vcpu, 0);
3539         } else {
3540                 trace_kvm_msr_write(ecx, data);
3541                 skip_emulated_instruction(&svm->vcpu);
3542         }
3543         return 1;
3544 }
3545
3546 static int msr_interception(struct vcpu_svm *svm)
3547 {
3548         if (svm->vmcb->control.exit_info_1)
3549                 return wrmsr_interception(svm);
3550         else
3551                 return rdmsr_interception(svm);
3552 }
3553
3554 static int interrupt_window_interception(struct vcpu_svm *svm)
3555 {
3556         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3557         svm_clear_vintr(svm);
3558         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3559         mark_dirty(svm->vmcb, VMCB_INTR);
3560         ++svm->vcpu.stat.irq_window_exits;
3561         return 1;
3562 }
3563
3564 static int pause_interception(struct vcpu_svm *svm)
3565 {
3566         kvm_vcpu_on_spin(&(svm->vcpu));
3567         return 1;
3568 }
3569
3570 static int nop_interception(struct vcpu_svm *svm)
3571 {
3572         skip_emulated_instruction(&(svm->vcpu));
3573         return 1;
3574 }
3575
3576 static int monitor_interception(struct vcpu_svm *svm)
3577 {
3578         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3579         return nop_interception(svm);
3580 }
3581
3582 static int mwait_interception(struct vcpu_svm *svm)
3583 {
3584         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3585         return nop_interception(svm);
3586 }
3587
3588 enum avic_ipi_failure_cause {
3589         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3590         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3591         AVIC_IPI_FAILURE_INVALID_TARGET,
3592         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3593 };
3594
3595 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3596 {
3597         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3598         u32 icrl = svm->vmcb->control.exit_info_1;
3599         u32 id = svm->vmcb->control.exit_info_2 >> 32;
3600         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3601         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3602
3603         trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3604
3605         switch (id) {
3606         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3607                 /*
3608                  * AVIC hardware handles the generation of
3609                  * IPIs when the specified Message Type is Fixed
3610                  * (also known as fixed delivery mode) and
3611                  * the Trigger Mode is edge-triggered. The hardware
3612                  * also supports self and broadcast delivery modes
3613                  * specified via the Destination Shorthand(DSH)
3614                  * field of the ICRL. Logical and physical APIC ID
3615                  * formats are supported. All other IPI types cause
3616                  * a #VMEXIT, which needs to emulated.
3617                  */
3618                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3619                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3620                 break;
3621         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3622                 int i;
3623                 struct kvm_vcpu *vcpu;
3624                 struct kvm *kvm = svm->vcpu.kvm;
3625                 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3626
3627                 /*
3628                  * At this point, we expect that the AVIC HW has already
3629                  * set the appropriate IRR bits on the valid target
3630                  * vcpus. So, we just need to kick the appropriate vcpu.
3631                  */
3632                 kvm_for_each_vcpu(i, vcpu, kvm) {
3633                         bool m = kvm_apic_match_dest(vcpu, apic,
3634                                                      icrl & KVM_APIC_SHORT_MASK,
3635                                                      GET_APIC_DEST_FIELD(icrh),
3636                                                      icrl & KVM_APIC_DEST_MASK);
3637
3638                         if (m && !avic_vcpu_is_running(vcpu))
3639                                 kvm_vcpu_wake_up(vcpu);
3640                 }
3641                 break;
3642         }
3643         case AVIC_IPI_FAILURE_INVALID_TARGET:
3644                 break;
3645         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3646                 WARN_ONCE(1, "Invalid backing page\n");
3647                 break;
3648         default:
3649                 pr_err("Unknown IPI interception\n");
3650         }
3651
3652         return 1;
3653 }
3654
3655 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3656 {
3657         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3658         int index;
3659         u32 *logical_apic_id_table;
3660         int dlid = GET_APIC_LOGICAL_ID(ldr);
3661
3662         if (!dlid)
3663                 return NULL;
3664
3665         if (flat) { /* flat */
3666                 index = ffs(dlid) - 1;
3667                 if (index > 7)
3668                         return NULL;
3669         } else { /* cluster */
3670                 int cluster = (dlid & 0xf0) >> 4;
3671                 int apic = ffs(dlid & 0x0f) - 1;
3672
3673                 if ((apic < 0) || (apic > 7) ||
3674                     (cluster >= 0xf))
3675                         return NULL;
3676                 index = (cluster << 2) + apic;
3677         }
3678
3679         logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3680
3681         return &logical_apic_id_table[index];
3682 }
3683
3684 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3685                           bool valid)
3686 {
3687         bool flat;
3688         u32 *entry, new_entry;
3689
3690         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3691         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3692         if (!entry)
3693                 return -EINVAL;
3694
3695         new_entry = READ_ONCE(*entry);
3696         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3697         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3698         if (valid)
3699                 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3700         else
3701                 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3702         WRITE_ONCE(*entry, new_entry);
3703
3704         return 0;
3705 }
3706
3707 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3708 {
3709         int ret;
3710         struct vcpu_svm *svm = to_svm(vcpu);
3711         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3712
3713         if (!ldr)
3714                 return 1;
3715
3716         ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3717         if (ret && svm->ldr_reg) {
3718                 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3719                 svm->ldr_reg = 0;
3720         } else {
3721                 svm->ldr_reg = ldr;
3722         }
3723         return ret;
3724 }
3725
3726 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3727 {
3728         u64 *old, *new;
3729         struct vcpu_svm *svm = to_svm(vcpu);
3730         u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3731         u32 id = (apic_id_reg >> 24) & 0xff;
3732
3733         if (vcpu->vcpu_id == id)
3734                 return 0;
3735
3736         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3737         new = avic_get_physical_id_entry(vcpu, id);
3738         if (!new || !old)
3739                 return 1;
3740
3741         /* We need to move physical_id_entry to new offset */
3742         *new = *old;
3743         *old = 0ULL;
3744         to_svm(vcpu)->avic_physical_id_cache = new;
3745
3746         /*
3747          * Also update the guest physical APIC ID in the logical
3748          * APIC ID table entry if already setup the LDR.
3749          */
3750         if (svm->ldr_reg)
3751                 avic_handle_ldr_update(vcpu);
3752
3753         return 0;
3754 }
3755
3756 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3757 {
3758         struct vcpu_svm *svm = to_svm(vcpu);
3759         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3760         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3761         u32 mod = (dfr >> 28) & 0xf;
3762
3763         /*
3764          * We assume that all local APICs are using the same type.
3765          * If this changes, we need to flush the AVIC logical
3766          * APID id table.
3767          */
3768         if (vm_data->ldr_mode == mod)
3769                 return 0;
3770
3771         clear_page(page_address(vm_data->avic_logical_id_table_page));
3772         vm_data->ldr_mode = mod;
3773
3774         if (svm->ldr_reg)
3775                 avic_handle_ldr_update(vcpu);
3776         return 0;
3777 }
3778
3779 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3780 {
3781         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3782         u32 offset = svm->vmcb->control.exit_info_1 &
3783                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3784
3785         switch (offset) {
3786         case APIC_ID:
3787                 if (avic_handle_apic_id_update(&svm->vcpu))
3788                         return 0;
3789                 break;
3790         case APIC_LDR:
3791                 if (avic_handle_ldr_update(&svm->vcpu))
3792                         return 0;
3793                 break;
3794         case APIC_DFR:
3795                 avic_handle_dfr_update(&svm->vcpu);
3796                 break;
3797         default:
3798                 break;
3799         }
3800
3801         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3802
3803         return 1;
3804 }
3805
3806 static bool is_avic_unaccelerated_access_trap(u32 offset)
3807 {
3808         bool ret = false;
3809
3810         switch (offset) {
3811         case APIC_ID:
3812         case APIC_EOI:
3813         case APIC_RRR:
3814         case APIC_LDR:
3815         case APIC_DFR:
3816         case APIC_SPIV:
3817         case APIC_ESR:
3818         case APIC_ICR:
3819         case APIC_LVTT:
3820         case APIC_LVTTHMR:
3821         case APIC_LVTPC:
3822         case APIC_LVT0:
3823         case APIC_LVT1:
3824         case APIC_LVTERR:
3825         case APIC_TMICT:
3826         case APIC_TDCR:
3827                 ret = true;
3828                 break;
3829         default:
3830                 break;
3831         }
3832         return ret;
3833 }
3834
3835 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
3836 {
3837         int ret = 0;
3838         u32 offset = svm->vmcb->control.exit_info_1 &
3839                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3840         u32 vector = svm->vmcb->control.exit_info_2 &
3841                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
3842         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
3843                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
3844         bool trap = is_avic_unaccelerated_access_trap(offset);
3845
3846         trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
3847                                             trap, write, vector);
3848         if (trap) {
3849                 /* Handling Trap */
3850                 WARN_ONCE(!write, "svm: Handling trap read.\n");
3851                 ret = avic_unaccel_trap_write(svm);
3852         } else {
3853                 /* Handling Fault */
3854                 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
3855         }
3856
3857         return ret;
3858 }
3859
3860 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3861         [SVM_EXIT_READ_CR0]                     = cr_interception,
3862         [SVM_EXIT_READ_CR3]                     = cr_interception,
3863         [SVM_EXIT_READ_CR4]                     = cr_interception,
3864         [SVM_EXIT_READ_CR8]                     = cr_interception,
3865         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3866         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3867         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3868         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3869         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3870         [SVM_EXIT_READ_DR0]                     = dr_interception,
3871         [SVM_EXIT_READ_DR1]                     = dr_interception,
3872         [SVM_EXIT_READ_DR2]                     = dr_interception,
3873         [SVM_EXIT_READ_DR3]                     = dr_interception,
3874         [SVM_EXIT_READ_DR4]                     = dr_interception,
3875         [SVM_EXIT_READ_DR5]                     = dr_interception,
3876         [SVM_EXIT_READ_DR6]                     = dr_interception,
3877         [SVM_EXIT_READ_DR7]                     = dr_interception,
3878         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3879         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3880         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3881         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3882         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3883         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3884         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3885         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3886         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3887         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3888         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3889         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3890         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3891         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3892         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3893         [SVM_EXIT_INTR]                         = intr_interception,
3894         [SVM_EXIT_NMI]                          = nmi_interception,
3895         [SVM_EXIT_SMI]                          = nop_on_interception,
3896         [SVM_EXIT_INIT]                         = nop_on_interception,
3897         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3898         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3899         [SVM_EXIT_CPUID]                        = cpuid_interception,
3900         [SVM_EXIT_IRET]                         = iret_interception,
3901         [SVM_EXIT_INVD]                         = emulate_on_interception,
3902         [SVM_EXIT_PAUSE]                        = pause_interception,
3903         [SVM_EXIT_HLT]                          = halt_interception,
3904         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3905         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3906         [SVM_EXIT_IOIO]                         = io_interception,
3907         [SVM_EXIT_MSR]                          = msr_interception,
3908         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3909         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3910         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3911         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3912         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3913         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3914         [SVM_EXIT_STGI]                         = stgi_interception,
3915         [SVM_EXIT_CLGI]                         = clgi_interception,
3916         [SVM_EXIT_SKINIT]                       = skinit_interception,
3917         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3918         [SVM_EXIT_MONITOR]                      = monitor_interception,
3919         [SVM_EXIT_MWAIT]                        = mwait_interception,
3920         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3921         [SVM_EXIT_NPF]                          = pf_interception,
3922         [SVM_EXIT_RSM]                          = emulate_on_interception,
3923         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3924         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3925 };
3926
3927 static void dump_vmcb(struct kvm_vcpu *vcpu)
3928 {
3929         struct vcpu_svm *svm = to_svm(vcpu);
3930         struct vmcb_control_area *control = &svm->vmcb->control;
3931         struct vmcb_save_area *save = &svm->vmcb->save;
3932
3933         pr_err("VMCB Control Area:\n");
3934         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3935         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3936         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3937         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3938         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3939         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3940         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3941         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3942         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3943         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3944         pr_err("%-20s%d\n", "asid:", control->asid);
3945         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3946         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3947         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3948         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3949         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3950         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3951         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3952         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3953         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3954         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3955         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3956         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3957         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3958         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3959         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3960         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3961         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3962         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3963         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3964         pr_err("VMCB State Save Area:\n");
3965         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3966                "es:",
3967                save->es.selector, save->es.attrib,
3968                save->es.limit, save->es.base);
3969         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3970                "cs:",
3971                save->cs.selector, save->cs.attrib,
3972                save->cs.limit, save->cs.base);
3973         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3974                "ss:",
3975                save->ss.selector, save->ss.attrib,
3976                save->ss.limit, save->ss.base);
3977         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3978                "ds:",
3979                save->ds.selector, save->ds.attrib,
3980                save->ds.limit, save->ds.base);
3981         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3982                "fs:",
3983                save->fs.selector, save->fs.attrib,
3984                save->fs.limit, save->fs.base);
3985         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3986                "gs:",
3987                save->gs.selector, save->gs.attrib,
3988                save->gs.limit, save->gs.base);
3989         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3990                "gdtr:",
3991                save->gdtr.selector, save->gdtr.attrib,
3992                save->gdtr.limit, save->gdtr.base);
3993         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3994                "ldtr:",
3995                save->ldtr.selector, save->ldtr.attrib,
3996                save->ldtr.limit, save->ldtr.base);
3997         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3998                "idtr:",
3999                save->idtr.selector, save->idtr.attrib,
4000                save->idtr.limit, save->idtr.base);
4001         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4002                "tr:",
4003                save->tr.selector, save->tr.attrib,
4004                save->tr.limit, save->tr.base);
4005         pr_err("cpl:            %d                efer:         %016llx\n",
4006                 save->cpl, save->efer);
4007         pr_err("%-15s %016llx %-13s %016llx\n",
4008                "cr0:", save->cr0, "cr2:", save->cr2);
4009         pr_err("%-15s %016llx %-13s %016llx\n",
4010                "cr3:", save->cr3, "cr4:", save->cr4);
4011         pr_err("%-15s %016llx %-13s %016llx\n",
4012                "dr6:", save->dr6, "dr7:", save->dr7);
4013         pr_err("%-15s %016llx %-13s %016llx\n",
4014                "rip:", save->rip, "rflags:", save->rflags);
4015         pr_err("%-15s %016llx %-13s %016llx\n",
4016                "rsp:", save->rsp, "rax:", save->rax);
4017         pr_err("%-15s %016llx %-13s %016llx\n",
4018                "star:", save->star, "lstar:", save->lstar);
4019         pr_err("%-15s %016llx %-13s %016llx\n",
4020                "cstar:", save->cstar, "sfmask:", save->sfmask);
4021         pr_err("%-15s %016llx %-13s %016llx\n",
4022                "kernel_gs_base:", save->kernel_gs_base,
4023                "sysenter_cs:", save->sysenter_cs);
4024         pr_err("%-15s %016llx %-13s %016llx\n",
4025                "sysenter_esp:", save->sysenter_esp,
4026                "sysenter_eip:", save->sysenter_eip);
4027         pr_err("%-15s %016llx %-13s %016llx\n",
4028                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4029         pr_err("%-15s %016llx %-13s %016llx\n",
4030                "br_from:", save->br_from, "br_to:", save->br_to);
4031         pr_err("%-15s %016llx %-13s %016llx\n",
4032                "excp_from:", save->last_excp_from,
4033                "excp_to:", save->last_excp_to);
4034 }
4035
4036 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4037 {
4038         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4039
4040         *info1 = control->exit_info_1;
4041         *info2 = control->exit_info_2;
4042 }
4043
4044 static int handle_exit(struct kvm_vcpu *vcpu)
4045 {
4046         struct vcpu_svm *svm = to_svm(vcpu);
4047         struct kvm_run *kvm_run = vcpu->run;
4048         u32 exit_code = svm->vmcb->control.exit_code;
4049
4050         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4051
4052         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4053                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4054         if (npt_enabled)
4055                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4056
4057         if (unlikely(svm->nested.exit_required)) {
4058                 nested_svm_vmexit(svm);
4059                 svm->nested.exit_required = false;
4060
4061                 return 1;
4062         }
4063
4064         if (is_guest_mode(vcpu)) {
4065                 int vmexit;
4066
4067                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4068                                         svm->vmcb->control.exit_info_1,
4069                                         svm->vmcb->control.exit_info_2,
4070                                         svm->vmcb->control.exit_int_info,
4071                                         svm->vmcb->control.exit_int_info_err,
4072                                         KVM_ISA_SVM);
4073
4074                 vmexit = nested_svm_exit_special(svm);
4075
4076                 if (vmexit == NESTED_EXIT_CONTINUE)
4077                         vmexit = nested_svm_exit_handled(svm);
4078
4079                 if (vmexit == NESTED_EXIT_DONE)
4080                         return 1;
4081         }
4082
4083         svm_complete_interrupts(svm);
4084
4085         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4086                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4087                 kvm_run->fail_entry.hardware_entry_failure_reason
4088                         = svm->vmcb->control.exit_code;
4089                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4090                 dump_vmcb(vcpu);
4091                 return 0;
4092         }
4093
4094         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4095             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4096             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4097             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4098                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4099                        "exit_code 0x%x\n",
4100                        __func__, svm->vmcb->control.exit_int_info,
4101                        exit_code);
4102
4103         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4104             || !svm_exit_handlers[exit_code]) {
4105                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4106                 kvm_queue_exception(vcpu, UD_VECTOR);
4107                 return 1;
4108         }
4109
4110         return svm_exit_handlers[exit_code](svm);
4111 }
4112
4113 static void reload_tss(struct kvm_vcpu *vcpu)
4114 {
4115         int cpu = raw_smp_processor_id();
4116
4117         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4118         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4119         load_TR_desc();
4120 }
4121
4122 static void pre_svm_run(struct vcpu_svm *svm)
4123 {
4124         int cpu = raw_smp_processor_id();
4125
4126         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4127
4128         /* FIXME: handle wraparound of asid_generation */
4129         if (svm->asid_generation != sd->asid_generation)
4130                 new_asid(svm, sd);
4131 }
4132
4133 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4134 {
4135         struct vcpu_svm *svm = to_svm(vcpu);
4136
4137         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4138         vcpu->arch.hflags |= HF_NMI_MASK;
4139         set_intercept(svm, INTERCEPT_IRET);
4140         ++vcpu->stat.nmi_injections;
4141 }
4142
4143 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4144 {
4145         struct vmcb_control_area *control;
4146
4147         /* The following fields are ignored when AVIC is enabled */
4148         control = &svm->vmcb->control;
4149         control->int_vector = irq;
4150         control->int_ctl &= ~V_INTR_PRIO_MASK;
4151         control->int_ctl |= V_IRQ_MASK |
4152                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4153         mark_dirty(svm->vmcb, VMCB_INTR);
4154 }
4155
4156 static void svm_set_irq(struct kvm_vcpu *vcpu)
4157 {
4158         struct vcpu_svm *svm = to_svm(vcpu);
4159
4160         BUG_ON(!(gif_set(svm)));
4161
4162         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4163         ++vcpu->stat.irq_injections;
4164
4165         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4166                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4167 }
4168
4169 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4170 {
4171         return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4172 }
4173
4174 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4175 {
4176         struct vcpu_svm *svm = to_svm(vcpu);
4177
4178         if (svm_nested_virtualize_tpr(vcpu) ||
4179             kvm_vcpu_apicv_active(vcpu))
4180                 return;
4181
4182         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4183
4184         if (irr == -1)
4185                 return;
4186
4187         if (tpr >= irr)
4188                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4189 }
4190
4191 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4192 {
4193         return;
4194 }
4195
4196 static bool svm_get_enable_apicv(void)
4197 {
4198         return avic;
4199 }
4200
4201 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4202 {
4203 }
4204
4205 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4206 {
4207 }
4208
4209 /* Note: Currently only used by Hyper-V. */
4210 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4211 {
4212         struct vcpu_svm *svm = to_svm(vcpu);
4213         struct vmcb *vmcb = svm->vmcb;
4214
4215         if (!avic)
4216                 return;
4217
4218         vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4219         mark_dirty(vmcb, VMCB_INTR);
4220 }
4221
4222 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4223 {
4224         return;
4225 }
4226
4227 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4228 {
4229         return;
4230 }
4231
4232 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4233 {
4234         kvm_lapic_set_irr(vec, vcpu->arch.apic);
4235         smp_mb__after_atomic();
4236
4237         if (avic_vcpu_is_running(vcpu))
4238                 wrmsrl(SVM_AVIC_DOORBELL,
4239                        __default_cpu_present_to_apicid(vcpu->cpu));
4240         else
4241                 kvm_vcpu_wake_up(vcpu);
4242 }
4243
4244 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4245 {
4246         struct vcpu_svm *svm = to_svm(vcpu);
4247         struct vmcb *vmcb = svm->vmcb;
4248         int ret;
4249         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4250               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4251         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4252
4253         return ret;
4254 }
4255
4256 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4257 {
4258         struct vcpu_svm *svm = to_svm(vcpu);
4259
4260         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4261 }
4262
4263 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4264 {
4265         struct vcpu_svm *svm = to_svm(vcpu);
4266
4267         if (masked) {
4268                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4269                 set_intercept(svm, INTERCEPT_IRET);
4270         } else {
4271                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4272                 clr_intercept(svm, INTERCEPT_IRET);
4273         }
4274 }
4275
4276 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4277 {
4278         struct vcpu_svm *svm = to_svm(vcpu);
4279         struct vmcb *vmcb = svm->vmcb;
4280         int ret;
4281
4282         if (!gif_set(svm) ||
4283              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4284                 return 0;
4285
4286         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4287
4288         if (is_guest_mode(vcpu))
4289                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4290
4291         return ret;
4292 }
4293
4294 static void enable_irq_window(struct kvm_vcpu *vcpu)
4295 {
4296         struct vcpu_svm *svm = to_svm(vcpu);
4297
4298         if (kvm_vcpu_apicv_active(vcpu))
4299                 return;
4300
4301         /*
4302          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4303          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
4304          * get that intercept, this function will be called again though and
4305          * we'll get the vintr intercept.
4306          */
4307         if (gif_set(svm) && nested_svm_intr(svm)) {
4308                 svm_set_vintr(svm);
4309                 svm_inject_irq(svm, 0x0);
4310         }
4311 }
4312
4313 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4314 {
4315         struct vcpu_svm *svm = to_svm(vcpu);
4316
4317         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4318             == HF_NMI_MASK)
4319                 return; /* IRET will cause a vm exit */
4320
4321         /*
4322          * Something prevents NMI from been injected. Single step over possible
4323          * problem (IRET or exception injection or interrupt shadow)
4324          */
4325         svm->nmi_singlestep = true;
4326         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4327 }
4328
4329 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4330 {
4331         return 0;
4332 }
4333
4334 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4335 {
4336         struct vcpu_svm *svm = to_svm(vcpu);
4337
4338         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4339                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4340         else
4341                 svm->asid_generation--;
4342 }
4343
4344 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4345 {
4346 }
4347
4348 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4349 {
4350         struct vcpu_svm *svm = to_svm(vcpu);
4351
4352         if (svm_nested_virtualize_tpr(vcpu))
4353                 return;
4354
4355         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4356                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4357                 kvm_set_cr8(vcpu, cr8);
4358         }
4359 }
4360
4361 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4362 {
4363         struct vcpu_svm *svm = to_svm(vcpu);
4364         u64 cr8;
4365
4366         if (svm_nested_virtualize_tpr(vcpu) ||
4367             kvm_vcpu_apicv_active(vcpu))
4368                 return;
4369
4370         cr8 = kvm_get_cr8(vcpu);
4371         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4372         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4373 }
4374
4375 static void svm_complete_interrupts(struct vcpu_svm *svm)
4376 {
4377         u8 vector;
4378         int type;
4379         u32 exitintinfo = svm->vmcb->control.exit_int_info;
4380         unsigned int3_injected = svm->int3_injected;
4381
4382         svm->int3_injected = 0;
4383
4384         /*
4385          * If we've made progress since setting HF_IRET_MASK, we've
4386          * executed an IRET and can allow NMI injection.
4387          */
4388         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4389             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4390                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4391                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4392         }
4393
4394         svm->vcpu.arch.nmi_injected = false;
4395         kvm_clear_exception_queue(&svm->vcpu);
4396         kvm_clear_interrupt_queue(&svm->vcpu);
4397
4398         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4399                 return;
4400
4401         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4402
4403         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4404         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4405
4406         switch (type) {
4407         case SVM_EXITINTINFO_TYPE_NMI:
4408                 svm->vcpu.arch.nmi_injected = true;
4409                 break;
4410         case SVM_EXITINTINFO_TYPE_EXEPT:
4411                 /*
4412                  * In case of software exceptions, do not reinject the vector,
4413                  * but re-execute the instruction instead. Rewind RIP first
4414                  * if we emulated INT3 before.
4415                  */
4416                 if (kvm_exception_is_soft(vector)) {
4417                         if (vector == BP_VECTOR && int3_injected &&
4418                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4419                                 kvm_rip_write(&svm->vcpu,
4420                                               kvm_rip_read(&svm->vcpu) -
4421                                               int3_injected);
4422                         break;
4423                 }
4424                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4425                         u32 err = svm->vmcb->control.exit_int_info_err;
4426                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
4427
4428                 } else
4429                         kvm_requeue_exception(&svm->vcpu, vector);
4430                 break;
4431         case SVM_EXITINTINFO_TYPE_INTR:
4432                 kvm_queue_interrupt(&svm->vcpu, vector, false);
4433                 break;
4434         default:
4435                 break;
4436         }
4437 }
4438
4439 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4440 {
4441         struct vcpu_svm *svm = to_svm(vcpu);
4442         struct vmcb_control_area *control = &svm->vmcb->control;
4443
4444         control->exit_int_info = control->event_inj;
4445         control->exit_int_info_err = control->event_inj_err;
4446         control->event_inj = 0;
4447         svm_complete_interrupts(svm);
4448 }
4449
4450 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4451 {
4452         struct vcpu_svm *svm = to_svm(vcpu);
4453
4454         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4455         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4456         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4457
4458         /*
4459          * A vmexit emulation is required before the vcpu can be executed
4460          * again.
4461          */
4462         if (unlikely(svm->nested.exit_required))
4463                 return;
4464
4465         pre_svm_run(svm);
4466
4467         sync_lapic_to_cr8(vcpu);
4468
4469         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4470
4471         clgi();
4472
4473         local_irq_enable();
4474
4475         asm volatile (
4476                 "push %%" _ASM_BP "; \n\t"
4477                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4478                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4479                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4480                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4481                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4482                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4483 #ifdef CONFIG_X86_64
4484                 "mov %c[r8](%[svm]),  %%r8  \n\t"
4485                 "mov %c[r9](%[svm]),  %%r9  \n\t"
4486                 "mov %c[r10](%[svm]), %%r10 \n\t"
4487                 "mov %c[r11](%[svm]), %%r11 \n\t"
4488                 "mov %c[r12](%[svm]), %%r12 \n\t"
4489                 "mov %c[r13](%[svm]), %%r13 \n\t"
4490                 "mov %c[r14](%[svm]), %%r14 \n\t"
4491                 "mov %c[r15](%[svm]), %%r15 \n\t"
4492 #endif
4493
4494                 /* Enter guest mode */
4495                 "push %%" _ASM_AX " \n\t"
4496                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4497                 __ex(SVM_VMLOAD) "\n\t"
4498                 __ex(SVM_VMRUN) "\n\t"
4499                 __ex(SVM_VMSAVE) "\n\t"
4500                 "pop %%" _ASM_AX " \n\t"
4501
4502                 /* Save guest registers, load host registers */
4503                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4504                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4505                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4506                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4507                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4508                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4509 #ifdef CONFIG_X86_64
4510                 "mov %%r8,  %c[r8](%[svm]) \n\t"
4511                 "mov %%r9,  %c[r9](%[svm]) \n\t"
4512                 "mov %%r10, %c[r10](%[svm]) \n\t"
4513                 "mov %%r11, %c[r11](%[svm]) \n\t"
4514                 "mov %%r12, %c[r12](%[svm]) \n\t"
4515                 "mov %%r13, %c[r13](%[svm]) \n\t"
4516                 "mov %%r14, %c[r14](%[svm]) \n\t"
4517                 "mov %%r15, %c[r15](%[svm]) \n\t"
4518 #endif
4519                 "pop %%" _ASM_BP
4520                 :
4521                 : [svm]"a"(svm),
4522                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4523                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4524                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4525                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4526                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4527                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4528                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4529 #ifdef CONFIG_X86_64
4530                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4531                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4532                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4533                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4534                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4535                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4536                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4537                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4538 #endif
4539                 : "cc", "memory"
4540 #ifdef CONFIG_X86_64
4541                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4542                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4543 #else
4544                 , "ebx", "ecx", "edx", "esi", "edi"
4545 #endif
4546                 );
4547
4548 #ifdef CONFIG_X86_64
4549         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4550 #else
4551         loadsegment(fs, svm->host.fs);
4552 #ifndef CONFIG_X86_32_LAZY_GS
4553         loadsegment(gs, svm->host.gs);
4554 #endif
4555 #endif
4556
4557         reload_tss(vcpu);
4558
4559         local_irq_disable();
4560
4561         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4562         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4563         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4564         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4565
4566         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4567                 kvm_before_handle_nmi(&svm->vcpu);
4568
4569         stgi();
4570
4571         /* Any pending NMI will happen here */
4572
4573         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4574                 kvm_after_handle_nmi(&svm->vcpu);
4575
4576         sync_cr8_to_lapic(vcpu);
4577
4578         svm->next_rip = 0;
4579
4580         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4581
4582         /* if exit due to PF check for async PF */
4583         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4584                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4585
4586         if (npt_enabled) {
4587                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4588                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4589         }
4590
4591         /*
4592          * We need to handle MC intercepts here before the vcpu has a chance to
4593          * change the physical cpu
4594          */
4595         if (unlikely(svm->vmcb->control.exit_code ==
4596                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4597                 svm_handle_mce(svm);
4598
4599         mark_all_clean(svm->vmcb);
4600 }
4601
4602 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4603 {
4604         struct vcpu_svm *svm = to_svm(vcpu);
4605
4606         svm->vmcb->save.cr3 = root;
4607         mark_dirty(svm->vmcb, VMCB_CR);
4608         svm_flush_tlb(vcpu);
4609 }
4610
4611 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4612 {
4613         struct vcpu_svm *svm = to_svm(vcpu);
4614
4615         svm->vmcb->control.nested_cr3 = root;
4616         mark_dirty(svm->vmcb, VMCB_NPT);
4617
4618         /* Also sync guest cr3 here in case we live migrate */
4619         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4620         mark_dirty(svm->vmcb, VMCB_CR);
4621
4622         svm_flush_tlb(vcpu);
4623 }
4624
4625 static int is_disabled(void)
4626 {
4627         u64 vm_cr;
4628
4629         rdmsrl(MSR_VM_CR, vm_cr);
4630         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4631                 return 1;
4632
4633         return 0;
4634 }
4635
4636 static void
4637 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4638 {
4639         /*
4640          * Patch in the VMMCALL instruction:
4641          */
4642         hypercall[0] = 0x0f;
4643         hypercall[1] = 0x01;
4644         hypercall[2] = 0xd9;
4645 }
4646
4647 static void svm_check_processor_compat(void *rtn)
4648 {
4649         *(int *)rtn = 0;
4650 }
4651
4652 static bool svm_cpu_has_accelerated_tpr(void)
4653 {
4654         return false;
4655 }
4656
4657 static bool svm_has_high_real_mode_segbase(void)
4658 {
4659         return true;
4660 }
4661
4662 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4663 {
4664         return 0;
4665 }
4666
4667 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4668 {
4669         struct vcpu_svm *svm = to_svm(vcpu);
4670         struct kvm_cpuid_entry2 *entry;
4671
4672         /* Update nrips enabled cache */
4673         svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4674
4675         if (!kvm_vcpu_apicv_active(vcpu))
4676                 return;
4677
4678         entry = kvm_find_cpuid_entry(vcpu, 1, 0);
4679         if (entry)
4680                 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4681 }
4682
4683 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4684 {
4685         switch (func) {
4686         case 0x1:
4687                 if (avic)
4688                         entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4689                 break;
4690         case 0x80000001:
4691                 if (nested)
4692                         entry->ecx |= (1 << 2); /* Set SVM bit */
4693                 break;
4694         case 0x8000000A:
4695                 entry->eax = 1; /* SVM revision 1 */
4696                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4697                                    ASID emulation to nested SVM */
4698                 entry->ecx = 0; /* Reserved */
4699                 entry->edx = 0; /* Per default do not support any
4700                                    additional features */
4701
4702                 /* Support next_rip if host supports it */
4703                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4704                         entry->edx |= SVM_FEATURE_NRIP;
4705
4706                 /* Support NPT for the guest if enabled */
4707                 if (npt_enabled)
4708                         entry->edx |= SVM_FEATURE_NPT;
4709
4710                 break;
4711         }
4712 }
4713
4714 static int svm_get_lpage_level(void)
4715 {
4716         return PT_PDPE_LEVEL;
4717 }
4718
4719 static bool svm_rdtscp_supported(void)
4720 {
4721         return boot_cpu_has(X86_FEATURE_RDTSCP);
4722 }
4723
4724 static bool svm_invpcid_supported(void)
4725 {
4726         return false;
4727 }
4728
4729 static bool svm_mpx_supported(void)
4730 {
4731         return false;
4732 }
4733
4734 static bool svm_xsaves_supported(void)
4735 {
4736         return false;
4737 }
4738
4739 static bool svm_has_wbinvd_exit(void)
4740 {
4741         return true;
4742 }
4743
4744 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4745 {
4746         struct vcpu_svm *svm = to_svm(vcpu);
4747
4748         set_exception_intercept(svm, NM_VECTOR);
4749         update_cr0_intercept(svm);
4750 }
4751
4752 #define PRE_EX(exit)  { .exit_code = (exit), \
4753                         .stage = X86_ICPT_PRE_EXCEPT, }
4754 #define POST_EX(exit) { .exit_code = (exit), \
4755                         .stage = X86_ICPT_POST_EXCEPT, }
4756 #define POST_MEM(exit) { .exit_code = (exit), \
4757                         .stage = X86_ICPT_POST_MEMACCESS, }
4758
4759 static const struct __x86_intercept {
4760         u32 exit_code;
4761         enum x86_intercept_stage stage;
4762 } x86_intercept_map[] = {
4763         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4764         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4765         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4766         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4767         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4768         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4769         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4770         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4771         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4772         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4773         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4774         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4775         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4776         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4777         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4778         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4779         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4780         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4781         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4782         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4783         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4784         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4785         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4786         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4787         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4788         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4789         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4790         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4791         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4792         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4793         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4794         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4795         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4796         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4797         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4798         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4799         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4800         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4801         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4802         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4803         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4804         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4805         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4806         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4807         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4808         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4809 };
4810
4811 #undef PRE_EX
4812 #undef POST_EX
4813 #undef POST_MEM
4814
4815 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4816                                struct x86_instruction_info *info,
4817                                enum x86_intercept_stage stage)
4818 {
4819         struct vcpu_svm *svm = to_svm(vcpu);
4820         int vmexit, ret = X86EMUL_CONTINUE;
4821         struct __x86_intercept icpt_info;
4822         struct vmcb *vmcb = svm->vmcb;
4823
4824         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4825                 goto out;
4826
4827         icpt_info = x86_intercept_map[info->intercept];
4828
4829         if (stage != icpt_info.stage)
4830                 goto out;
4831
4832         switch (icpt_info.exit_code) {
4833         case SVM_EXIT_READ_CR0:
4834                 if (info->intercept == x86_intercept_cr_read)
4835                         icpt_info.exit_code += info->modrm_reg;
4836                 break;
4837         case SVM_EXIT_WRITE_CR0: {
4838                 unsigned long cr0, val;
4839                 u64 intercept;
4840
4841                 if (info->intercept == x86_intercept_cr_write)
4842                         icpt_info.exit_code += info->modrm_reg;
4843
4844                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4845                     info->intercept == x86_intercept_clts)
4846                         break;
4847
4848                 intercept = svm->nested.intercept;
4849
4850                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4851                         break;
4852
4853                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4854                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4855
4856                 if (info->intercept == x86_intercept_lmsw) {
4857                         cr0 &= 0xfUL;
4858                         val &= 0xfUL;
4859                         /* lmsw can't clear PE - catch this here */
4860                         if (cr0 & X86_CR0_PE)
4861                                 val |= X86_CR0_PE;
4862                 }
4863
4864                 if (cr0 ^ val)
4865                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4866
4867                 break;
4868         }
4869         case SVM_EXIT_READ_DR0:
4870         case SVM_EXIT_WRITE_DR0:
4871                 icpt_info.exit_code += info->modrm_reg;
4872                 break;
4873         case SVM_EXIT_MSR:
4874                 if (info->intercept == x86_intercept_wrmsr)
4875                         vmcb->control.exit_info_1 = 1;
4876                 else
4877                         vmcb->control.exit_info_1 = 0;
4878                 break;
4879         case SVM_EXIT_PAUSE:
4880                 /*
4881                  * We get this for NOP only, but pause
4882                  * is rep not, check this here
4883                  */
4884                 if (info->rep_prefix != REPE_PREFIX)
4885                         goto out;
4886         case SVM_EXIT_IOIO: {
4887                 u64 exit_info;
4888                 u32 bytes;
4889
4890                 if (info->intercept == x86_intercept_in ||
4891                     info->intercept == x86_intercept_ins) {
4892                         exit_info = ((info->src_val & 0xffff) << 16) |
4893                                 SVM_IOIO_TYPE_MASK;
4894                         bytes = info->dst_bytes;
4895                 } else {
4896                         exit_info = (info->dst_val & 0xffff) << 16;
4897                         bytes = info->src_bytes;
4898                 }
4899
4900                 if (info->intercept == x86_intercept_outs ||
4901                     info->intercept == x86_intercept_ins)
4902                         exit_info |= SVM_IOIO_STR_MASK;
4903
4904                 if (info->rep_prefix)
4905                         exit_info |= SVM_IOIO_REP_MASK;
4906
4907                 bytes = min(bytes, 4u);
4908
4909                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4910
4911                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4912
4913                 vmcb->control.exit_info_1 = exit_info;
4914                 vmcb->control.exit_info_2 = info->next_rip;
4915
4916                 break;
4917         }
4918         default:
4919                 break;
4920         }
4921
4922         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4923         if (static_cpu_has(X86_FEATURE_NRIPS))
4924                 vmcb->control.next_rip  = info->next_rip;
4925         vmcb->control.exit_code = icpt_info.exit_code;
4926         vmexit = nested_svm_exit_handled(svm);
4927
4928         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4929                                            : X86EMUL_CONTINUE;
4930
4931 out:
4932         return ret;
4933 }
4934
4935 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4936 {
4937         local_irq_enable();
4938 }
4939
4940 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4941 {
4942 }
4943
4944 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
4945 {
4946         if (avic_handle_apic_id_update(vcpu) != 0)
4947                 return;
4948         if (avic_handle_dfr_update(vcpu) != 0)
4949                 return;
4950         avic_handle_ldr_update(vcpu);
4951 }
4952
4953 static struct kvm_x86_ops svm_x86_ops = {
4954         .cpu_has_kvm_support = has_svm,
4955         .disabled_by_bios = is_disabled,
4956         .hardware_setup = svm_hardware_setup,
4957         .hardware_unsetup = svm_hardware_unsetup,
4958         .check_processor_compatibility = svm_check_processor_compat,
4959         .hardware_enable = svm_hardware_enable,
4960         .hardware_disable = svm_hardware_disable,
4961         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4962         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4963
4964         .vcpu_create = svm_create_vcpu,
4965         .vcpu_free = svm_free_vcpu,
4966         .vcpu_reset = svm_vcpu_reset,
4967
4968         .vm_init = avic_vm_init,
4969         .vm_destroy = avic_vm_destroy,
4970
4971         .prepare_guest_switch = svm_prepare_guest_switch,
4972         .vcpu_load = svm_vcpu_load,
4973         .vcpu_put = svm_vcpu_put,
4974         .vcpu_blocking = svm_vcpu_blocking,
4975         .vcpu_unblocking = svm_vcpu_unblocking,
4976
4977         .update_bp_intercept = update_bp_intercept,
4978         .get_msr = svm_get_msr,
4979         .set_msr = svm_set_msr,
4980         .get_segment_base = svm_get_segment_base,
4981         .get_segment = svm_get_segment,
4982         .set_segment = svm_set_segment,
4983         .get_cpl = svm_get_cpl,
4984         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4985         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4986         .decache_cr3 = svm_decache_cr3,
4987         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4988         .set_cr0 = svm_set_cr0,
4989         .set_cr3 = svm_set_cr3,
4990         .set_cr4 = svm_set_cr4,
4991         .set_efer = svm_set_efer,
4992         .get_idt = svm_get_idt,
4993         .set_idt = svm_set_idt,
4994         .get_gdt = svm_get_gdt,
4995         .set_gdt = svm_set_gdt,
4996         .get_dr6 = svm_get_dr6,
4997         .set_dr6 = svm_set_dr6,
4998         .set_dr7 = svm_set_dr7,
4999         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5000         .cache_reg = svm_cache_reg,
5001         .get_rflags = svm_get_rflags,
5002         .set_rflags = svm_set_rflags,
5003
5004         .get_pkru = svm_get_pkru,
5005
5006         .fpu_activate = svm_fpu_activate,
5007         .fpu_deactivate = svm_fpu_deactivate,
5008
5009         .tlb_flush = svm_flush_tlb,
5010
5011         .run = svm_vcpu_run,
5012         .handle_exit = handle_exit,
5013         .skip_emulated_instruction = skip_emulated_instruction,
5014         .set_interrupt_shadow = svm_set_interrupt_shadow,
5015         .get_interrupt_shadow = svm_get_interrupt_shadow,
5016         .patch_hypercall = svm_patch_hypercall,
5017         .set_irq = svm_set_irq,
5018         .set_nmi = svm_inject_nmi,
5019         .queue_exception = svm_queue_exception,
5020         .cancel_injection = svm_cancel_injection,
5021         .interrupt_allowed = svm_interrupt_allowed,
5022         .nmi_allowed = svm_nmi_allowed,
5023         .get_nmi_mask = svm_get_nmi_mask,
5024         .set_nmi_mask = svm_set_nmi_mask,
5025         .enable_nmi_window = enable_nmi_window,
5026         .enable_irq_window = enable_irq_window,
5027         .update_cr8_intercept = update_cr8_intercept,
5028         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5029         .get_enable_apicv = svm_get_enable_apicv,
5030         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5031         .load_eoi_exitmap = svm_load_eoi_exitmap,
5032         .sync_pir_to_irr = svm_sync_pir_to_irr,
5033         .hwapic_irr_update = svm_hwapic_irr_update,
5034         .hwapic_isr_update = svm_hwapic_isr_update,
5035         .apicv_post_state_restore = avic_post_state_restore,
5036
5037         .set_tss_addr = svm_set_tss_addr,
5038         .get_tdp_level = get_npt_level,
5039         .get_mt_mask = svm_get_mt_mask,
5040
5041         .get_exit_info = svm_get_exit_info,
5042
5043         .get_lpage_level = svm_get_lpage_level,
5044
5045         .cpuid_update = svm_cpuid_update,
5046
5047         .rdtscp_supported = svm_rdtscp_supported,
5048         .invpcid_supported = svm_invpcid_supported,
5049         .mpx_supported = svm_mpx_supported,
5050         .xsaves_supported = svm_xsaves_supported,
5051
5052         .set_supported_cpuid = svm_set_supported_cpuid,
5053
5054         .has_wbinvd_exit = svm_has_wbinvd_exit,
5055
5056         .read_tsc_offset = svm_read_tsc_offset,
5057         .write_tsc_offset = svm_write_tsc_offset,
5058         .adjust_tsc_offset_guest = svm_adjust_tsc_offset_guest,
5059         .read_l1_tsc = svm_read_l1_tsc,
5060
5061         .set_tdp_cr3 = set_tdp_cr3,
5062
5063         .check_intercept = svm_check_intercept,
5064         .handle_external_intr = svm_handle_external_intr,
5065
5066         .sched_in = svm_sched_in,
5067
5068         .pmu_ops = &amd_pmu_ops,
5069         .deliver_posted_interrupt = svm_deliver_avic_intr,
5070 };
5071
5072 static int __init svm_init(void)
5073 {
5074         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5075                         __alignof__(struct vcpu_svm), THIS_MODULE);
5076 }
5077
5078 static void __exit svm_exit(void)
5079 {
5080         kvm_exit();
5081 }
5082
5083 module_init(svm_init)
5084 module_exit(svm_exit)