Merge remote-tracking branches 'regulator/topic/pv88090', 'regulator/topic/qcom-smd...
[cascardo/linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50         X86_FEATURE_MATCH(X86_FEATURE_SVM),
51         {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT            (1 <<  0)
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_NRIP           (1 <<  3)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
72 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
73 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
78 #define TSC_RATIO_MIN           0x0000000000000001ULL
79 #define TSC_RATIO_MAX           0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86         MSR_FS_BASE,
87 #endif
88         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96         struct vmcb *hsave;
97         u64 hsave_msr;
98         u64 vm_cr_msr;
99         u64 vmcb;
100
101         /* These are the merged vectors */
102         u32 *msrpm;
103
104         /* gpa pointers to the real vectors */
105         u64 vmcb_msrpm;
106         u64 vmcb_iopm;
107
108         /* A VMEXIT is required but not yet emulated */
109         bool exit_required;
110
111         /* cache for intercepts of the guest */
112         u32 intercept_cr;
113         u32 intercept_dr;
114         u32 intercept_exceptions;
115         u64 intercept;
116
117         /* Nested Paging related state */
118         u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS   16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125  * Set osvw_len to higher value when updated Revision Guides
126  * are published and we know what the new status bits are
127  */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131         struct kvm_vcpu vcpu;
132         struct vmcb *vmcb;
133         unsigned long vmcb_pa;
134         struct svm_cpu_data *svm_data;
135         uint64_t asid_generation;
136         uint64_t sysenter_esp;
137         uint64_t sysenter_eip;
138
139         u64 next_rip;
140
141         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142         struct {
143                 u16 fs;
144                 u16 gs;
145                 u16 ldt;
146                 u64 gs_base;
147         } host;
148
149         u32 *msrpm;
150
151         ulong nmi_iret_rip;
152
153         struct nested_state nested;
154
155         bool nmi_singlestep;
156
157         unsigned int3_injected;
158         unsigned long int3_rip;
159         u32 apf_reason;
160
161         /* cached guest cpuid flags for faster access */
162         bool nrips_enabled      : 1;
163 };
164
165 static DEFINE_PER_CPU(u64, current_tsc_ratio);
166 #define TSC_RATIO_DEFAULT       0x0100000000ULL
167
168 #define MSR_INVALID                     0xffffffffU
169
170 static const struct svm_direct_access_msrs {
171         u32 index;   /* Index of the MSR */
172         bool always; /* True if intercept is always on */
173 } direct_access_msrs[] = {
174         { .index = MSR_STAR,                            .always = true  },
175         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
176 #ifdef CONFIG_X86_64
177         { .index = MSR_GS_BASE,                         .always = true  },
178         { .index = MSR_FS_BASE,                         .always = true  },
179         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
180         { .index = MSR_LSTAR,                           .always = true  },
181         { .index = MSR_CSTAR,                           .always = true  },
182         { .index = MSR_SYSCALL_MASK,                    .always = true  },
183 #endif
184         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
185         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
186         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
187         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
188         { .index = MSR_INVALID,                         .always = false },
189 };
190
191 /* enable NPT for AMD64 and X86 with PAE */
192 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
193 static bool npt_enabled = true;
194 #else
195 static bool npt_enabled;
196 #endif
197
198 /* allow nested paging (virtualized MMU) for all guests */
199 static int npt = true;
200 module_param(npt, int, S_IRUGO);
201
202 /* allow nested virtualization in KVM/SVM */
203 static int nested = true;
204 module_param(nested, int, S_IRUGO);
205
206 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
207 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
208 static void svm_complete_interrupts(struct vcpu_svm *svm);
209
210 static int nested_svm_exit_handled(struct vcpu_svm *svm);
211 static int nested_svm_intercept(struct vcpu_svm *svm);
212 static int nested_svm_vmexit(struct vcpu_svm *svm);
213 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
214                                       bool has_error_code, u32 error_code);
215
216 enum {
217         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
218                             pause filter count */
219         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
220         VMCB_ASID,       /* ASID */
221         VMCB_INTR,       /* int_ctl, int_vector */
222         VMCB_NPT,        /* npt_en, nCR3, gPAT */
223         VMCB_CR,         /* CR0, CR3, CR4, EFER */
224         VMCB_DR,         /* DR6, DR7 */
225         VMCB_DT,         /* GDT, IDT */
226         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
227         VMCB_CR2,        /* CR2 only */
228         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
229         VMCB_DIRTY_MAX,
230 };
231
232 /* TPR and CR2 are always written before VMRUN */
233 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
234
235 static inline void mark_all_dirty(struct vmcb *vmcb)
236 {
237         vmcb->control.clean = 0;
238 }
239
240 static inline void mark_all_clean(struct vmcb *vmcb)
241 {
242         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
243                                & ~VMCB_ALWAYS_DIRTY_MASK;
244 }
245
246 static inline void mark_dirty(struct vmcb *vmcb, int bit)
247 {
248         vmcb->control.clean &= ~(1 << bit);
249 }
250
251 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
252 {
253         return container_of(vcpu, struct vcpu_svm, vcpu);
254 }
255
256 static void recalc_intercepts(struct vcpu_svm *svm)
257 {
258         struct vmcb_control_area *c, *h;
259         struct nested_state *g;
260
261         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
262
263         if (!is_guest_mode(&svm->vcpu))
264                 return;
265
266         c = &svm->vmcb->control;
267         h = &svm->nested.hsave->control;
268         g = &svm->nested;
269
270         c->intercept_cr = h->intercept_cr | g->intercept_cr;
271         c->intercept_dr = h->intercept_dr | g->intercept_dr;
272         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
273         c->intercept = h->intercept | g->intercept;
274 }
275
276 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
277 {
278         if (is_guest_mode(&svm->vcpu))
279                 return svm->nested.hsave;
280         else
281                 return svm->vmcb;
282 }
283
284 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
285 {
286         struct vmcb *vmcb = get_host_vmcb(svm);
287
288         vmcb->control.intercept_cr |= (1U << bit);
289
290         recalc_intercepts(svm);
291 }
292
293 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
294 {
295         struct vmcb *vmcb = get_host_vmcb(svm);
296
297         vmcb->control.intercept_cr &= ~(1U << bit);
298
299         recalc_intercepts(svm);
300 }
301
302 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
303 {
304         struct vmcb *vmcb = get_host_vmcb(svm);
305
306         return vmcb->control.intercept_cr & (1U << bit);
307 }
308
309 static inline void set_dr_intercepts(struct vcpu_svm *svm)
310 {
311         struct vmcb *vmcb = get_host_vmcb(svm);
312
313         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
314                 | (1 << INTERCEPT_DR1_READ)
315                 | (1 << INTERCEPT_DR2_READ)
316                 | (1 << INTERCEPT_DR3_READ)
317                 | (1 << INTERCEPT_DR4_READ)
318                 | (1 << INTERCEPT_DR5_READ)
319                 | (1 << INTERCEPT_DR6_READ)
320                 | (1 << INTERCEPT_DR7_READ)
321                 | (1 << INTERCEPT_DR0_WRITE)
322                 | (1 << INTERCEPT_DR1_WRITE)
323                 | (1 << INTERCEPT_DR2_WRITE)
324                 | (1 << INTERCEPT_DR3_WRITE)
325                 | (1 << INTERCEPT_DR4_WRITE)
326                 | (1 << INTERCEPT_DR5_WRITE)
327                 | (1 << INTERCEPT_DR6_WRITE)
328                 | (1 << INTERCEPT_DR7_WRITE);
329
330         recalc_intercepts(svm);
331 }
332
333 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
334 {
335         struct vmcb *vmcb = get_host_vmcb(svm);
336
337         vmcb->control.intercept_dr = 0;
338
339         recalc_intercepts(svm);
340 }
341
342 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
343 {
344         struct vmcb *vmcb = get_host_vmcb(svm);
345
346         vmcb->control.intercept_exceptions |= (1U << bit);
347
348         recalc_intercepts(svm);
349 }
350
351 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
352 {
353         struct vmcb *vmcb = get_host_vmcb(svm);
354
355         vmcb->control.intercept_exceptions &= ~(1U << bit);
356
357         recalc_intercepts(svm);
358 }
359
360 static inline void set_intercept(struct vcpu_svm *svm, int bit)
361 {
362         struct vmcb *vmcb = get_host_vmcb(svm);
363
364         vmcb->control.intercept |= (1ULL << bit);
365
366         recalc_intercepts(svm);
367 }
368
369 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
370 {
371         struct vmcb *vmcb = get_host_vmcb(svm);
372
373         vmcb->control.intercept &= ~(1ULL << bit);
374
375         recalc_intercepts(svm);
376 }
377
378 static inline void enable_gif(struct vcpu_svm *svm)
379 {
380         svm->vcpu.arch.hflags |= HF_GIF_MASK;
381 }
382
383 static inline void disable_gif(struct vcpu_svm *svm)
384 {
385         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
386 }
387
388 static inline bool gif_set(struct vcpu_svm *svm)
389 {
390         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
391 }
392
393 static unsigned long iopm_base;
394
395 struct kvm_ldttss_desc {
396         u16 limit0;
397         u16 base0;
398         unsigned base1:8, type:5, dpl:2, p:1;
399         unsigned limit1:4, zero0:3, g:1, base2:8;
400         u32 base3;
401         u32 zero1;
402 } __attribute__((packed));
403
404 struct svm_cpu_data {
405         int cpu;
406
407         u64 asid_generation;
408         u32 max_asid;
409         u32 next_asid;
410         struct kvm_ldttss_desc *tss_desc;
411
412         struct page *save_area;
413 };
414
415 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
416
417 struct svm_init_data {
418         int cpu;
419         int r;
420 };
421
422 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
423
424 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
425 #define MSRS_RANGE_SIZE 2048
426 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
427
428 static u32 svm_msrpm_offset(u32 msr)
429 {
430         u32 offset;
431         int i;
432
433         for (i = 0; i < NUM_MSR_MAPS; i++) {
434                 if (msr < msrpm_ranges[i] ||
435                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
436                         continue;
437
438                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
439                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
440
441                 /* Now we have the u8 offset - but need the u32 offset */
442                 return offset / 4;
443         }
444
445         /* MSR not in any range */
446         return MSR_INVALID;
447 }
448
449 #define MAX_INST_SIZE 15
450
451 static inline void clgi(void)
452 {
453         asm volatile (__ex(SVM_CLGI));
454 }
455
456 static inline void stgi(void)
457 {
458         asm volatile (__ex(SVM_STGI));
459 }
460
461 static inline void invlpga(unsigned long addr, u32 asid)
462 {
463         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
464 }
465
466 static int get_npt_level(void)
467 {
468 #ifdef CONFIG_X86_64
469         return PT64_ROOT_LEVEL;
470 #else
471         return PT32E_ROOT_LEVEL;
472 #endif
473 }
474
475 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
476 {
477         vcpu->arch.efer = efer;
478         if (!npt_enabled && !(efer & EFER_LMA))
479                 efer &= ~EFER_LME;
480
481         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
482         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
483 }
484
485 static int is_external_interrupt(u32 info)
486 {
487         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
488         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
489 }
490
491 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
492 {
493         struct vcpu_svm *svm = to_svm(vcpu);
494         u32 ret = 0;
495
496         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
497                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
498         return ret;
499 }
500
501 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
502 {
503         struct vcpu_svm *svm = to_svm(vcpu);
504
505         if (mask == 0)
506                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
507         else
508                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
509
510 }
511
512 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
513 {
514         struct vcpu_svm *svm = to_svm(vcpu);
515
516         if (svm->vmcb->control.next_rip != 0) {
517                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
518                 svm->next_rip = svm->vmcb->control.next_rip;
519         }
520
521         if (!svm->next_rip) {
522                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
523                                 EMULATE_DONE)
524                         printk(KERN_DEBUG "%s: NOP\n", __func__);
525                 return;
526         }
527         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
528                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
529                        __func__, kvm_rip_read(vcpu), svm->next_rip);
530
531         kvm_rip_write(vcpu, svm->next_rip);
532         svm_set_interrupt_shadow(vcpu, 0);
533 }
534
535 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
536                                 bool has_error_code, u32 error_code,
537                                 bool reinject)
538 {
539         struct vcpu_svm *svm = to_svm(vcpu);
540
541         /*
542          * If we are within a nested VM we'd better #VMEXIT and let the guest
543          * handle the exception
544          */
545         if (!reinject &&
546             nested_svm_check_exception(svm, nr, has_error_code, error_code))
547                 return;
548
549         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
550                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
551
552                 /*
553                  * For guest debugging where we have to reinject #BP if some
554                  * INT3 is guest-owned:
555                  * Emulate nRIP by moving RIP forward. Will fail if injection
556                  * raises a fault that is not intercepted. Still better than
557                  * failing in all cases.
558                  */
559                 skip_emulated_instruction(&svm->vcpu);
560                 rip = kvm_rip_read(&svm->vcpu);
561                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
562                 svm->int3_injected = rip - old_rip;
563         }
564
565         svm->vmcb->control.event_inj = nr
566                 | SVM_EVTINJ_VALID
567                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
568                 | SVM_EVTINJ_TYPE_EXEPT;
569         svm->vmcb->control.event_inj_err = error_code;
570 }
571
572 static void svm_init_erratum_383(void)
573 {
574         u32 low, high;
575         int err;
576         u64 val;
577
578         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
579                 return;
580
581         /* Use _safe variants to not break nested virtualization */
582         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
583         if (err)
584                 return;
585
586         val |= (1ULL << 47);
587
588         low  = lower_32_bits(val);
589         high = upper_32_bits(val);
590
591         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
592
593         erratum_383_found = true;
594 }
595
596 static void svm_init_osvw(struct kvm_vcpu *vcpu)
597 {
598         /*
599          * Guests should see errata 400 and 415 as fixed (assuming that
600          * HLT and IO instructions are intercepted).
601          */
602         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
603         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
604
605         /*
606          * By increasing VCPU's osvw.length to 3 we are telling the guest that
607          * all osvw.status bits inside that length, including bit 0 (which is
608          * reserved for erratum 298), are valid. However, if host processor's
609          * osvw_len is 0 then osvw_status[0] carries no information. We need to
610          * be conservative here and therefore we tell the guest that erratum 298
611          * is present (because we really don't know).
612          */
613         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
614                 vcpu->arch.osvw.status |= 1;
615 }
616
617 static int has_svm(void)
618 {
619         const char *msg;
620
621         if (!cpu_has_svm(&msg)) {
622                 printk(KERN_INFO "has_svm: %s\n", msg);
623                 return 0;
624         }
625
626         return 1;
627 }
628
629 static void svm_hardware_disable(void)
630 {
631         /* Make sure we clean up behind us */
632         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
633                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
634
635         cpu_svm_disable();
636
637         amd_pmu_disable_virt();
638 }
639
640 static int svm_hardware_enable(void)
641 {
642
643         struct svm_cpu_data *sd;
644         uint64_t efer;
645         struct desc_ptr gdt_descr;
646         struct desc_struct *gdt;
647         int me = raw_smp_processor_id();
648
649         rdmsrl(MSR_EFER, efer);
650         if (efer & EFER_SVME)
651                 return -EBUSY;
652
653         if (!has_svm()) {
654                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
655                 return -EINVAL;
656         }
657         sd = per_cpu(svm_data, me);
658         if (!sd) {
659                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
660                 return -EINVAL;
661         }
662
663         sd->asid_generation = 1;
664         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
665         sd->next_asid = sd->max_asid + 1;
666
667         native_store_gdt(&gdt_descr);
668         gdt = (struct desc_struct *)gdt_descr.address;
669         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
670
671         wrmsrl(MSR_EFER, efer | EFER_SVME);
672
673         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
674
675         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
676                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
677                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
678         }
679
680
681         /*
682          * Get OSVW bits.
683          *
684          * Note that it is possible to have a system with mixed processor
685          * revisions and therefore different OSVW bits. If bits are not the same
686          * on different processors then choose the worst case (i.e. if erratum
687          * is present on one processor and not on another then assume that the
688          * erratum is present everywhere).
689          */
690         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
691                 uint64_t len, status = 0;
692                 int err;
693
694                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
695                 if (!err)
696                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
697                                                       &err);
698
699                 if (err)
700                         osvw_status = osvw_len = 0;
701                 else {
702                         if (len < osvw_len)
703                                 osvw_len = len;
704                         osvw_status |= status;
705                         osvw_status &= (1ULL << osvw_len) - 1;
706                 }
707         } else
708                 osvw_status = osvw_len = 0;
709
710         svm_init_erratum_383();
711
712         amd_pmu_enable_virt();
713
714         return 0;
715 }
716
717 static void svm_cpu_uninit(int cpu)
718 {
719         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
720
721         if (!sd)
722                 return;
723
724         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
725         __free_page(sd->save_area);
726         kfree(sd);
727 }
728
729 static int svm_cpu_init(int cpu)
730 {
731         struct svm_cpu_data *sd;
732         int r;
733
734         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
735         if (!sd)
736                 return -ENOMEM;
737         sd->cpu = cpu;
738         sd->save_area = alloc_page(GFP_KERNEL);
739         r = -ENOMEM;
740         if (!sd->save_area)
741                 goto err_1;
742
743         per_cpu(svm_data, cpu) = sd;
744
745         return 0;
746
747 err_1:
748         kfree(sd);
749         return r;
750
751 }
752
753 static bool valid_msr_intercept(u32 index)
754 {
755         int i;
756
757         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
758                 if (direct_access_msrs[i].index == index)
759                         return true;
760
761         return false;
762 }
763
764 static void set_msr_interception(u32 *msrpm, unsigned msr,
765                                  int read, int write)
766 {
767         u8 bit_read, bit_write;
768         unsigned long tmp;
769         u32 offset;
770
771         /*
772          * If this warning triggers extend the direct_access_msrs list at the
773          * beginning of the file
774          */
775         WARN_ON(!valid_msr_intercept(msr));
776
777         offset    = svm_msrpm_offset(msr);
778         bit_read  = 2 * (msr & 0x0f);
779         bit_write = 2 * (msr & 0x0f) + 1;
780         tmp       = msrpm[offset];
781
782         BUG_ON(offset == MSR_INVALID);
783
784         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
785         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
786
787         msrpm[offset] = tmp;
788 }
789
790 static void svm_vcpu_init_msrpm(u32 *msrpm)
791 {
792         int i;
793
794         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
795
796         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
797                 if (!direct_access_msrs[i].always)
798                         continue;
799
800                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
801         }
802 }
803
804 static void add_msr_offset(u32 offset)
805 {
806         int i;
807
808         for (i = 0; i < MSRPM_OFFSETS; ++i) {
809
810                 /* Offset already in list? */
811                 if (msrpm_offsets[i] == offset)
812                         return;
813
814                 /* Slot used by another offset? */
815                 if (msrpm_offsets[i] != MSR_INVALID)
816                         continue;
817
818                 /* Add offset to list */
819                 msrpm_offsets[i] = offset;
820
821                 return;
822         }
823
824         /*
825          * If this BUG triggers the msrpm_offsets table has an overflow. Just
826          * increase MSRPM_OFFSETS in this case.
827          */
828         BUG();
829 }
830
831 static void init_msrpm_offsets(void)
832 {
833         int i;
834
835         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
836
837         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
838                 u32 offset;
839
840                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
841                 BUG_ON(offset == MSR_INVALID);
842
843                 add_msr_offset(offset);
844         }
845 }
846
847 static void svm_enable_lbrv(struct vcpu_svm *svm)
848 {
849         u32 *msrpm = svm->msrpm;
850
851         svm->vmcb->control.lbr_ctl = 1;
852         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
853         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
854         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
855         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
856 }
857
858 static void svm_disable_lbrv(struct vcpu_svm *svm)
859 {
860         u32 *msrpm = svm->msrpm;
861
862         svm->vmcb->control.lbr_ctl = 0;
863         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
864         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
865         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
866         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
867 }
868
869 static __init int svm_hardware_setup(void)
870 {
871         int cpu;
872         struct page *iopm_pages;
873         void *iopm_va;
874         int r;
875
876         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
877
878         if (!iopm_pages)
879                 return -ENOMEM;
880
881         iopm_va = page_address(iopm_pages);
882         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
883         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
884
885         init_msrpm_offsets();
886
887         if (boot_cpu_has(X86_FEATURE_NX))
888                 kvm_enable_efer_bits(EFER_NX);
889
890         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
891                 kvm_enable_efer_bits(EFER_FFXSR);
892
893         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
894                 kvm_has_tsc_control = true;
895                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
896                 kvm_tsc_scaling_ratio_frac_bits = 32;
897         }
898
899         if (nested) {
900                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
901                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
902         }
903
904         for_each_possible_cpu(cpu) {
905                 r = svm_cpu_init(cpu);
906                 if (r)
907                         goto err;
908         }
909
910         if (!boot_cpu_has(X86_FEATURE_NPT))
911                 npt_enabled = false;
912
913         if (npt_enabled && !npt) {
914                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
915                 npt_enabled = false;
916         }
917
918         if (npt_enabled) {
919                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
920                 kvm_enable_tdp();
921         } else
922                 kvm_disable_tdp();
923
924         return 0;
925
926 err:
927         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
928         iopm_base = 0;
929         return r;
930 }
931
932 static __exit void svm_hardware_unsetup(void)
933 {
934         int cpu;
935
936         for_each_possible_cpu(cpu)
937                 svm_cpu_uninit(cpu);
938
939         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
940         iopm_base = 0;
941 }
942
943 static void init_seg(struct vmcb_seg *seg)
944 {
945         seg->selector = 0;
946         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
947                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
948         seg->limit = 0xffff;
949         seg->base = 0;
950 }
951
952 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
953 {
954         seg->selector = 0;
955         seg->attrib = SVM_SELECTOR_P_MASK | type;
956         seg->limit = 0xffff;
957         seg->base = 0;
958 }
959
960 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
961 {
962         struct vcpu_svm *svm = to_svm(vcpu);
963
964         return svm->vmcb->control.tsc_offset;
965 }
966
967 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
968 {
969         struct vcpu_svm *svm = to_svm(vcpu);
970         u64 g_tsc_offset = 0;
971
972         if (is_guest_mode(vcpu)) {
973                 g_tsc_offset = svm->vmcb->control.tsc_offset -
974                                svm->nested.hsave->control.tsc_offset;
975                 svm->nested.hsave->control.tsc_offset = offset;
976         } else
977                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
978                                            svm->vmcb->control.tsc_offset,
979                                            offset);
980
981         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
982
983         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
984 }
985
986 static void svm_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
987 {
988         struct vcpu_svm *svm = to_svm(vcpu);
989
990         svm->vmcb->control.tsc_offset += adjustment;
991         if (is_guest_mode(vcpu))
992                 svm->nested.hsave->control.tsc_offset += adjustment;
993         else
994                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
995                                      svm->vmcb->control.tsc_offset - adjustment,
996                                      svm->vmcb->control.tsc_offset);
997
998         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
999 }
1000
1001 static void init_vmcb(struct vcpu_svm *svm)
1002 {
1003         struct vmcb_control_area *control = &svm->vmcb->control;
1004         struct vmcb_save_area *save = &svm->vmcb->save;
1005
1006         svm->vcpu.fpu_active = 1;
1007         svm->vcpu.arch.hflags = 0;
1008
1009         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1010         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1011         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1012         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1013         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1014         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1015         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1016
1017         set_dr_intercepts(svm);
1018
1019         set_exception_intercept(svm, PF_VECTOR);
1020         set_exception_intercept(svm, UD_VECTOR);
1021         set_exception_intercept(svm, MC_VECTOR);
1022         set_exception_intercept(svm, AC_VECTOR);
1023         set_exception_intercept(svm, DB_VECTOR);
1024
1025         set_intercept(svm, INTERCEPT_INTR);
1026         set_intercept(svm, INTERCEPT_NMI);
1027         set_intercept(svm, INTERCEPT_SMI);
1028         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1029         set_intercept(svm, INTERCEPT_RDPMC);
1030         set_intercept(svm, INTERCEPT_CPUID);
1031         set_intercept(svm, INTERCEPT_INVD);
1032         set_intercept(svm, INTERCEPT_HLT);
1033         set_intercept(svm, INTERCEPT_INVLPG);
1034         set_intercept(svm, INTERCEPT_INVLPGA);
1035         set_intercept(svm, INTERCEPT_IOIO_PROT);
1036         set_intercept(svm, INTERCEPT_MSR_PROT);
1037         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1038         set_intercept(svm, INTERCEPT_SHUTDOWN);
1039         set_intercept(svm, INTERCEPT_VMRUN);
1040         set_intercept(svm, INTERCEPT_VMMCALL);
1041         set_intercept(svm, INTERCEPT_VMLOAD);
1042         set_intercept(svm, INTERCEPT_VMSAVE);
1043         set_intercept(svm, INTERCEPT_STGI);
1044         set_intercept(svm, INTERCEPT_CLGI);
1045         set_intercept(svm, INTERCEPT_SKINIT);
1046         set_intercept(svm, INTERCEPT_WBINVD);
1047         set_intercept(svm, INTERCEPT_MONITOR);
1048         set_intercept(svm, INTERCEPT_MWAIT);
1049         set_intercept(svm, INTERCEPT_XSETBV);
1050
1051         control->iopm_base_pa = iopm_base;
1052         control->msrpm_base_pa = __pa(svm->msrpm);
1053         control->int_ctl = V_INTR_MASKING_MASK;
1054
1055         init_seg(&save->es);
1056         init_seg(&save->ss);
1057         init_seg(&save->ds);
1058         init_seg(&save->fs);
1059         init_seg(&save->gs);
1060
1061         save->cs.selector = 0xf000;
1062         save->cs.base = 0xffff0000;
1063         /* Executable/Readable Code Segment */
1064         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1065                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1066         save->cs.limit = 0xffff;
1067
1068         save->gdtr.limit = 0xffff;
1069         save->idtr.limit = 0xffff;
1070
1071         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1072         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1073
1074         svm_set_efer(&svm->vcpu, 0);
1075         save->dr6 = 0xffff0ff0;
1076         kvm_set_rflags(&svm->vcpu, 2);
1077         save->rip = 0x0000fff0;
1078         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1079
1080         /*
1081          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1082          * It also updates the guest-visible cr0 value.
1083          */
1084         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1085         kvm_mmu_reset_context(&svm->vcpu);
1086
1087         save->cr4 = X86_CR4_PAE;
1088         /* rdx = ?? */
1089
1090         if (npt_enabled) {
1091                 /* Setup VMCB for Nested Paging */
1092                 control->nested_ctl = 1;
1093                 clr_intercept(svm, INTERCEPT_INVLPG);
1094                 clr_exception_intercept(svm, PF_VECTOR);
1095                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1096                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1097                 save->g_pat = svm->vcpu.arch.pat;
1098                 save->cr3 = 0;
1099                 save->cr4 = 0;
1100         }
1101         svm->asid_generation = 0;
1102
1103         svm->nested.vmcb = 0;
1104         svm->vcpu.arch.hflags = 0;
1105
1106         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1107                 control->pause_filter_count = 3000;
1108                 set_intercept(svm, INTERCEPT_PAUSE);
1109         }
1110
1111         mark_all_dirty(svm->vmcb);
1112
1113         enable_gif(svm);
1114 }
1115
1116 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1117 {
1118         struct vcpu_svm *svm = to_svm(vcpu);
1119         u32 dummy;
1120         u32 eax = 1;
1121
1122         if (!init_event) {
1123                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1124                                            MSR_IA32_APICBASE_ENABLE;
1125                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1126                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1127         }
1128         init_vmcb(svm);
1129
1130         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1131         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1132 }
1133
1134 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1135 {
1136         struct vcpu_svm *svm;
1137         struct page *page;
1138         struct page *msrpm_pages;
1139         struct page *hsave_page;
1140         struct page *nested_msrpm_pages;
1141         int err;
1142
1143         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1144         if (!svm) {
1145                 err = -ENOMEM;
1146                 goto out;
1147         }
1148
1149         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1150         if (err)
1151                 goto free_svm;
1152
1153         err = -ENOMEM;
1154         page = alloc_page(GFP_KERNEL);
1155         if (!page)
1156                 goto uninit;
1157
1158         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1159         if (!msrpm_pages)
1160                 goto free_page1;
1161
1162         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1163         if (!nested_msrpm_pages)
1164                 goto free_page2;
1165
1166         hsave_page = alloc_page(GFP_KERNEL);
1167         if (!hsave_page)
1168                 goto free_page3;
1169
1170         svm->nested.hsave = page_address(hsave_page);
1171
1172         svm->msrpm = page_address(msrpm_pages);
1173         svm_vcpu_init_msrpm(svm->msrpm);
1174
1175         svm->nested.msrpm = page_address(nested_msrpm_pages);
1176         svm_vcpu_init_msrpm(svm->nested.msrpm);
1177
1178         svm->vmcb = page_address(page);
1179         clear_page(svm->vmcb);
1180         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1181         svm->asid_generation = 0;
1182         init_vmcb(svm);
1183
1184         svm_init_osvw(&svm->vcpu);
1185
1186         return &svm->vcpu;
1187
1188 free_page3:
1189         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1190 free_page2:
1191         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1192 free_page1:
1193         __free_page(page);
1194 uninit:
1195         kvm_vcpu_uninit(&svm->vcpu);
1196 free_svm:
1197         kmem_cache_free(kvm_vcpu_cache, svm);
1198 out:
1199         return ERR_PTR(err);
1200 }
1201
1202 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1203 {
1204         struct vcpu_svm *svm = to_svm(vcpu);
1205
1206         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1207         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1208         __free_page(virt_to_page(svm->nested.hsave));
1209         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1210         kvm_vcpu_uninit(vcpu);
1211         kmem_cache_free(kvm_vcpu_cache, svm);
1212 }
1213
1214 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1215 {
1216         struct vcpu_svm *svm = to_svm(vcpu);
1217         int i;
1218
1219         if (unlikely(cpu != vcpu->cpu)) {
1220                 svm->asid_generation = 0;
1221                 mark_all_dirty(svm->vmcb);
1222         }
1223
1224 #ifdef CONFIG_X86_64
1225         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1226 #endif
1227         savesegment(fs, svm->host.fs);
1228         savesegment(gs, svm->host.gs);
1229         svm->host.ldt = kvm_read_ldt();
1230
1231         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1232                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1233
1234         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1235                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1236                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1237                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1238                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1239                 }
1240         }
1241 }
1242
1243 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1244 {
1245         struct vcpu_svm *svm = to_svm(vcpu);
1246         int i;
1247
1248         ++vcpu->stat.host_state_reload;
1249         kvm_load_ldt(svm->host.ldt);
1250 #ifdef CONFIG_X86_64
1251         loadsegment(fs, svm->host.fs);
1252         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1253         load_gs_index(svm->host.gs);
1254 #else
1255 #ifdef CONFIG_X86_32_LAZY_GS
1256         loadsegment(gs, svm->host.gs);
1257 #endif
1258 #endif
1259         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1260                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1261 }
1262
1263 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1264 {
1265         return to_svm(vcpu)->vmcb->save.rflags;
1266 }
1267
1268 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1269 {
1270        /*
1271         * Any change of EFLAGS.VM is accompained by a reload of SS
1272         * (caused by either a task switch or an inter-privilege IRET),
1273         * so we do not need to update the CPL here.
1274         */
1275         to_svm(vcpu)->vmcb->save.rflags = rflags;
1276 }
1277
1278 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1279 {
1280         switch (reg) {
1281         case VCPU_EXREG_PDPTR:
1282                 BUG_ON(!npt_enabled);
1283                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1284                 break;
1285         default:
1286                 BUG();
1287         }
1288 }
1289
1290 static void svm_set_vintr(struct vcpu_svm *svm)
1291 {
1292         set_intercept(svm, INTERCEPT_VINTR);
1293 }
1294
1295 static void svm_clear_vintr(struct vcpu_svm *svm)
1296 {
1297         clr_intercept(svm, INTERCEPT_VINTR);
1298 }
1299
1300 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1301 {
1302         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1303
1304         switch (seg) {
1305         case VCPU_SREG_CS: return &save->cs;
1306         case VCPU_SREG_DS: return &save->ds;
1307         case VCPU_SREG_ES: return &save->es;
1308         case VCPU_SREG_FS: return &save->fs;
1309         case VCPU_SREG_GS: return &save->gs;
1310         case VCPU_SREG_SS: return &save->ss;
1311         case VCPU_SREG_TR: return &save->tr;
1312         case VCPU_SREG_LDTR: return &save->ldtr;
1313         }
1314         BUG();
1315         return NULL;
1316 }
1317
1318 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1319 {
1320         struct vmcb_seg *s = svm_seg(vcpu, seg);
1321
1322         return s->base;
1323 }
1324
1325 static void svm_get_segment(struct kvm_vcpu *vcpu,
1326                             struct kvm_segment *var, int seg)
1327 {
1328         struct vmcb_seg *s = svm_seg(vcpu, seg);
1329
1330         var->base = s->base;
1331         var->limit = s->limit;
1332         var->selector = s->selector;
1333         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1334         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1335         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1336         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1337         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1338         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1339         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1340
1341         /*
1342          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1343          * However, the SVM spec states that the G bit is not observed by the
1344          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1345          * So let's synthesize a legal G bit for all segments, this helps
1346          * running KVM nested. It also helps cross-vendor migration, because
1347          * Intel's vmentry has a check on the 'G' bit.
1348          */
1349         var->g = s->limit > 0xfffff;
1350
1351         /*
1352          * AMD's VMCB does not have an explicit unusable field, so emulate it
1353          * for cross vendor migration purposes by "not present"
1354          */
1355         var->unusable = !var->present || (var->type == 0);
1356
1357         switch (seg) {
1358         case VCPU_SREG_TR:
1359                 /*
1360                  * Work around a bug where the busy flag in the tr selector
1361                  * isn't exposed
1362                  */
1363                 var->type |= 0x2;
1364                 break;
1365         case VCPU_SREG_DS:
1366         case VCPU_SREG_ES:
1367         case VCPU_SREG_FS:
1368         case VCPU_SREG_GS:
1369                 /*
1370                  * The accessed bit must always be set in the segment
1371                  * descriptor cache, although it can be cleared in the
1372                  * descriptor, the cached bit always remains at 1. Since
1373                  * Intel has a check on this, set it here to support
1374                  * cross-vendor migration.
1375                  */
1376                 if (!var->unusable)
1377                         var->type |= 0x1;
1378                 break;
1379         case VCPU_SREG_SS:
1380                 /*
1381                  * On AMD CPUs sometimes the DB bit in the segment
1382                  * descriptor is left as 1, although the whole segment has
1383                  * been made unusable. Clear it here to pass an Intel VMX
1384                  * entry check when cross vendor migrating.
1385                  */
1386                 if (var->unusable)
1387                         var->db = 0;
1388                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1389                 break;
1390         }
1391 }
1392
1393 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1394 {
1395         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1396
1397         return save->cpl;
1398 }
1399
1400 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1401 {
1402         struct vcpu_svm *svm = to_svm(vcpu);
1403
1404         dt->size = svm->vmcb->save.idtr.limit;
1405         dt->address = svm->vmcb->save.idtr.base;
1406 }
1407
1408 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1409 {
1410         struct vcpu_svm *svm = to_svm(vcpu);
1411
1412         svm->vmcb->save.idtr.limit = dt->size;
1413         svm->vmcb->save.idtr.base = dt->address ;
1414         mark_dirty(svm->vmcb, VMCB_DT);
1415 }
1416
1417 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1418 {
1419         struct vcpu_svm *svm = to_svm(vcpu);
1420
1421         dt->size = svm->vmcb->save.gdtr.limit;
1422         dt->address = svm->vmcb->save.gdtr.base;
1423 }
1424
1425 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1426 {
1427         struct vcpu_svm *svm = to_svm(vcpu);
1428
1429         svm->vmcb->save.gdtr.limit = dt->size;
1430         svm->vmcb->save.gdtr.base = dt->address ;
1431         mark_dirty(svm->vmcb, VMCB_DT);
1432 }
1433
1434 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1435 {
1436 }
1437
1438 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1439 {
1440 }
1441
1442 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1443 {
1444 }
1445
1446 static void update_cr0_intercept(struct vcpu_svm *svm)
1447 {
1448         ulong gcr0 = svm->vcpu.arch.cr0;
1449         u64 *hcr0 = &svm->vmcb->save.cr0;
1450
1451         if (!svm->vcpu.fpu_active)
1452                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1453         else
1454                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1455                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1456
1457         mark_dirty(svm->vmcb, VMCB_CR);
1458
1459         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1460                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1461                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1462         } else {
1463                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1464                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1465         }
1466 }
1467
1468 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1469 {
1470         struct vcpu_svm *svm = to_svm(vcpu);
1471
1472 #ifdef CONFIG_X86_64
1473         if (vcpu->arch.efer & EFER_LME) {
1474                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1475                         vcpu->arch.efer |= EFER_LMA;
1476                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1477                 }
1478
1479                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1480                         vcpu->arch.efer &= ~EFER_LMA;
1481                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1482                 }
1483         }
1484 #endif
1485         vcpu->arch.cr0 = cr0;
1486
1487         if (!npt_enabled)
1488                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1489
1490         if (!vcpu->fpu_active)
1491                 cr0 |= X86_CR0_TS;
1492         /*
1493          * re-enable caching here because the QEMU bios
1494          * does not do it - this results in some delay at
1495          * reboot
1496          */
1497         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1498                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1499         svm->vmcb->save.cr0 = cr0;
1500         mark_dirty(svm->vmcb, VMCB_CR);
1501         update_cr0_intercept(svm);
1502 }
1503
1504 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1505 {
1506         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1507         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1508
1509         if (cr4 & X86_CR4_VMXE)
1510                 return 1;
1511
1512         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1513                 svm_flush_tlb(vcpu);
1514
1515         vcpu->arch.cr4 = cr4;
1516         if (!npt_enabled)
1517                 cr4 |= X86_CR4_PAE;
1518         cr4 |= host_cr4_mce;
1519         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1520         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1521         return 0;
1522 }
1523
1524 static void svm_set_segment(struct kvm_vcpu *vcpu,
1525                             struct kvm_segment *var, int seg)
1526 {
1527         struct vcpu_svm *svm = to_svm(vcpu);
1528         struct vmcb_seg *s = svm_seg(vcpu, seg);
1529
1530         s->base = var->base;
1531         s->limit = var->limit;
1532         s->selector = var->selector;
1533         if (var->unusable)
1534                 s->attrib = 0;
1535         else {
1536                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1537                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1538                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1539                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1540                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1541                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1542                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1543                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1544         }
1545
1546         /*
1547          * This is always accurate, except if SYSRET returned to a segment
1548          * with SS.DPL != 3.  Intel does not have this quirk, and always
1549          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1550          * would entail passing the CPL to userspace and back.
1551          */
1552         if (seg == VCPU_SREG_SS)
1553                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1554
1555         mark_dirty(svm->vmcb, VMCB_SEG);
1556 }
1557
1558 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1559 {
1560         struct vcpu_svm *svm = to_svm(vcpu);
1561
1562         clr_exception_intercept(svm, BP_VECTOR);
1563
1564         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1565                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1566                         set_exception_intercept(svm, BP_VECTOR);
1567         } else
1568                 vcpu->guest_debug = 0;
1569 }
1570
1571 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1572 {
1573         if (sd->next_asid > sd->max_asid) {
1574                 ++sd->asid_generation;
1575                 sd->next_asid = 1;
1576                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1577         }
1578
1579         svm->asid_generation = sd->asid_generation;
1580         svm->vmcb->control.asid = sd->next_asid++;
1581
1582         mark_dirty(svm->vmcb, VMCB_ASID);
1583 }
1584
1585 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1586 {
1587         return to_svm(vcpu)->vmcb->save.dr6;
1588 }
1589
1590 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1591 {
1592         struct vcpu_svm *svm = to_svm(vcpu);
1593
1594         svm->vmcb->save.dr6 = value;
1595         mark_dirty(svm->vmcb, VMCB_DR);
1596 }
1597
1598 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1599 {
1600         struct vcpu_svm *svm = to_svm(vcpu);
1601
1602         get_debugreg(vcpu->arch.db[0], 0);
1603         get_debugreg(vcpu->arch.db[1], 1);
1604         get_debugreg(vcpu->arch.db[2], 2);
1605         get_debugreg(vcpu->arch.db[3], 3);
1606         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1607         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1608
1609         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1610         set_dr_intercepts(svm);
1611 }
1612
1613 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1614 {
1615         struct vcpu_svm *svm = to_svm(vcpu);
1616
1617         svm->vmcb->save.dr7 = value;
1618         mark_dirty(svm->vmcb, VMCB_DR);
1619 }
1620
1621 static int pf_interception(struct vcpu_svm *svm)
1622 {
1623         u64 fault_address = svm->vmcb->control.exit_info_2;
1624         u32 error_code;
1625         int r = 1;
1626
1627         switch (svm->apf_reason) {
1628         default:
1629                 error_code = svm->vmcb->control.exit_info_1;
1630
1631                 trace_kvm_page_fault(fault_address, error_code);
1632                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1633                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1634                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1635                         svm->vmcb->control.insn_bytes,
1636                         svm->vmcb->control.insn_len);
1637                 break;
1638         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1639                 svm->apf_reason = 0;
1640                 local_irq_disable();
1641                 kvm_async_pf_task_wait(fault_address);
1642                 local_irq_enable();
1643                 break;
1644         case KVM_PV_REASON_PAGE_READY:
1645                 svm->apf_reason = 0;
1646                 local_irq_disable();
1647                 kvm_async_pf_task_wake(fault_address);
1648                 local_irq_enable();
1649                 break;
1650         }
1651         return r;
1652 }
1653
1654 static int db_interception(struct vcpu_svm *svm)
1655 {
1656         struct kvm_run *kvm_run = svm->vcpu.run;
1657
1658         if (!(svm->vcpu.guest_debug &
1659               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1660                 !svm->nmi_singlestep) {
1661                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1662                 return 1;
1663         }
1664
1665         if (svm->nmi_singlestep) {
1666                 svm->nmi_singlestep = false;
1667                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1668                         svm->vmcb->save.rflags &=
1669                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1670         }
1671
1672         if (svm->vcpu.guest_debug &
1673             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1674                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1675                 kvm_run->debug.arch.pc =
1676                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1677                 kvm_run->debug.arch.exception = DB_VECTOR;
1678                 return 0;
1679         }
1680
1681         return 1;
1682 }
1683
1684 static int bp_interception(struct vcpu_svm *svm)
1685 {
1686         struct kvm_run *kvm_run = svm->vcpu.run;
1687
1688         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1689         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1690         kvm_run->debug.arch.exception = BP_VECTOR;
1691         return 0;
1692 }
1693
1694 static int ud_interception(struct vcpu_svm *svm)
1695 {
1696         int er;
1697
1698         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1699         if (er != EMULATE_DONE)
1700                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1701         return 1;
1702 }
1703
1704 static int ac_interception(struct vcpu_svm *svm)
1705 {
1706         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1707         return 1;
1708 }
1709
1710 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1711 {
1712         struct vcpu_svm *svm = to_svm(vcpu);
1713
1714         clr_exception_intercept(svm, NM_VECTOR);
1715
1716         svm->vcpu.fpu_active = 1;
1717         update_cr0_intercept(svm);
1718 }
1719
1720 static int nm_interception(struct vcpu_svm *svm)
1721 {
1722         svm_fpu_activate(&svm->vcpu);
1723         return 1;
1724 }
1725
1726 static bool is_erratum_383(void)
1727 {
1728         int err, i;
1729         u64 value;
1730
1731         if (!erratum_383_found)
1732                 return false;
1733
1734         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1735         if (err)
1736                 return false;
1737
1738         /* Bit 62 may or may not be set for this mce */
1739         value &= ~(1ULL << 62);
1740
1741         if (value != 0xb600000000010015ULL)
1742                 return false;
1743
1744         /* Clear MCi_STATUS registers */
1745         for (i = 0; i < 6; ++i)
1746                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1747
1748         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1749         if (!err) {
1750                 u32 low, high;
1751
1752                 value &= ~(1ULL << 2);
1753                 low    = lower_32_bits(value);
1754                 high   = upper_32_bits(value);
1755
1756                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1757         }
1758
1759         /* Flush tlb to evict multi-match entries */
1760         __flush_tlb_all();
1761
1762         return true;
1763 }
1764
1765 static void svm_handle_mce(struct vcpu_svm *svm)
1766 {
1767         if (is_erratum_383()) {
1768                 /*
1769                  * Erratum 383 triggered. Guest state is corrupt so kill the
1770                  * guest.
1771                  */
1772                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1773
1774                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1775
1776                 return;
1777         }
1778
1779         /*
1780          * On an #MC intercept the MCE handler is not called automatically in
1781          * the host. So do it by hand here.
1782          */
1783         asm volatile (
1784                 "int $0x12\n");
1785         /* not sure if we ever come back to this point */
1786
1787         return;
1788 }
1789
1790 static int mc_interception(struct vcpu_svm *svm)
1791 {
1792         return 1;
1793 }
1794
1795 static int shutdown_interception(struct vcpu_svm *svm)
1796 {
1797         struct kvm_run *kvm_run = svm->vcpu.run;
1798
1799         /*
1800          * VMCB is undefined after a SHUTDOWN intercept
1801          * so reinitialize it.
1802          */
1803         clear_page(svm->vmcb);
1804         init_vmcb(svm);
1805
1806         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1807         return 0;
1808 }
1809
1810 static int io_interception(struct vcpu_svm *svm)
1811 {
1812         struct kvm_vcpu *vcpu = &svm->vcpu;
1813         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1814         int size, in, string;
1815         unsigned port;
1816
1817         ++svm->vcpu.stat.io_exits;
1818         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1819         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1820         if (string || in)
1821                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1822
1823         port = io_info >> 16;
1824         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1825         svm->next_rip = svm->vmcb->control.exit_info_2;
1826         skip_emulated_instruction(&svm->vcpu);
1827
1828         return kvm_fast_pio_out(vcpu, size, port);
1829 }
1830
1831 static int nmi_interception(struct vcpu_svm *svm)
1832 {
1833         return 1;
1834 }
1835
1836 static int intr_interception(struct vcpu_svm *svm)
1837 {
1838         ++svm->vcpu.stat.irq_exits;
1839         return 1;
1840 }
1841
1842 static int nop_on_interception(struct vcpu_svm *svm)
1843 {
1844         return 1;
1845 }
1846
1847 static int halt_interception(struct vcpu_svm *svm)
1848 {
1849         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1850         return kvm_emulate_halt(&svm->vcpu);
1851 }
1852
1853 static int vmmcall_interception(struct vcpu_svm *svm)
1854 {
1855         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1856         kvm_emulate_hypercall(&svm->vcpu);
1857         return 1;
1858 }
1859
1860 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1861 {
1862         struct vcpu_svm *svm = to_svm(vcpu);
1863
1864         return svm->nested.nested_cr3;
1865 }
1866
1867 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1868 {
1869         struct vcpu_svm *svm = to_svm(vcpu);
1870         u64 cr3 = svm->nested.nested_cr3;
1871         u64 pdpte;
1872         int ret;
1873
1874         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1875                                        offset_in_page(cr3) + index * 8, 8);
1876         if (ret)
1877                 return 0;
1878         return pdpte;
1879 }
1880
1881 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1882                                    unsigned long root)
1883 {
1884         struct vcpu_svm *svm = to_svm(vcpu);
1885
1886         svm->vmcb->control.nested_cr3 = root;
1887         mark_dirty(svm->vmcb, VMCB_NPT);
1888         svm_flush_tlb(vcpu);
1889 }
1890
1891 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1892                                        struct x86_exception *fault)
1893 {
1894         struct vcpu_svm *svm = to_svm(vcpu);
1895
1896         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1897                 /*
1898                  * TODO: track the cause of the nested page fault, and
1899                  * correctly fill in the high bits of exit_info_1.
1900                  */
1901                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1902                 svm->vmcb->control.exit_code_hi = 0;
1903                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1904                 svm->vmcb->control.exit_info_2 = fault->address;
1905         }
1906
1907         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1908         svm->vmcb->control.exit_info_1 |= fault->error_code;
1909
1910         /*
1911          * The present bit is always zero for page structure faults on real
1912          * hardware.
1913          */
1914         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1915                 svm->vmcb->control.exit_info_1 &= ~1;
1916
1917         nested_svm_vmexit(svm);
1918 }
1919
1920 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1921 {
1922         WARN_ON(mmu_is_nested(vcpu));
1923         kvm_init_shadow_mmu(vcpu);
1924         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1925         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1926         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1927         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1928         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1929         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
1930         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1931 }
1932
1933 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1934 {
1935         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1936 }
1937
1938 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1939 {
1940         if (!(svm->vcpu.arch.efer & EFER_SVME)
1941             || !is_paging(&svm->vcpu)) {
1942                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1943                 return 1;
1944         }
1945
1946         if (svm->vmcb->save.cpl) {
1947                 kvm_inject_gp(&svm->vcpu, 0);
1948                 return 1;
1949         }
1950
1951        return 0;
1952 }
1953
1954 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1955                                       bool has_error_code, u32 error_code)
1956 {
1957         int vmexit;
1958
1959         if (!is_guest_mode(&svm->vcpu))
1960                 return 0;
1961
1962         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1963         svm->vmcb->control.exit_code_hi = 0;
1964         svm->vmcb->control.exit_info_1 = error_code;
1965         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1966
1967         vmexit = nested_svm_intercept(svm);
1968         if (vmexit == NESTED_EXIT_DONE)
1969                 svm->nested.exit_required = true;
1970
1971         return vmexit;
1972 }
1973
1974 /* This function returns true if it is save to enable the irq window */
1975 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1976 {
1977         if (!is_guest_mode(&svm->vcpu))
1978                 return true;
1979
1980         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1981                 return true;
1982
1983         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1984                 return false;
1985
1986         /*
1987          * if vmexit was already requested (by intercepted exception
1988          * for instance) do not overwrite it with "external interrupt"
1989          * vmexit.
1990          */
1991         if (svm->nested.exit_required)
1992                 return false;
1993
1994         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1995         svm->vmcb->control.exit_info_1 = 0;
1996         svm->vmcb->control.exit_info_2 = 0;
1997
1998         if (svm->nested.intercept & 1ULL) {
1999                 /*
2000                  * The #vmexit can't be emulated here directly because this
2001                  * code path runs with irqs and preemption disabled. A
2002                  * #vmexit emulation might sleep. Only signal request for
2003                  * the #vmexit here.
2004                  */
2005                 svm->nested.exit_required = true;
2006                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2007                 return false;
2008         }
2009
2010         return true;
2011 }
2012
2013 /* This function returns true if it is save to enable the nmi window */
2014 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2015 {
2016         if (!is_guest_mode(&svm->vcpu))
2017                 return true;
2018
2019         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2020                 return true;
2021
2022         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2023         svm->nested.exit_required = true;
2024
2025         return false;
2026 }
2027
2028 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2029 {
2030         struct page *page;
2031
2032         might_sleep();
2033
2034         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2035         if (is_error_page(page))
2036                 goto error;
2037
2038         *_page = page;
2039
2040         return kmap(page);
2041
2042 error:
2043         kvm_inject_gp(&svm->vcpu, 0);
2044
2045         return NULL;
2046 }
2047
2048 static void nested_svm_unmap(struct page *page)
2049 {
2050         kunmap(page);
2051         kvm_release_page_dirty(page);
2052 }
2053
2054 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2055 {
2056         unsigned port, size, iopm_len;
2057         u16 val, mask;
2058         u8 start_bit;
2059         u64 gpa;
2060
2061         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2062                 return NESTED_EXIT_HOST;
2063
2064         port = svm->vmcb->control.exit_info_1 >> 16;
2065         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2066                 SVM_IOIO_SIZE_SHIFT;
2067         gpa  = svm->nested.vmcb_iopm + (port / 8);
2068         start_bit = port % 8;
2069         iopm_len = (start_bit + size > 8) ? 2 : 1;
2070         mask = (0xf >> (4 - size)) << start_bit;
2071         val = 0;
2072
2073         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2074                 return NESTED_EXIT_DONE;
2075
2076         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2077 }
2078
2079 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2080 {
2081         u32 offset, msr, value;
2082         int write, mask;
2083
2084         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2085                 return NESTED_EXIT_HOST;
2086
2087         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2088         offset = svm_msrpm_offset(msr);
2089         write  = svm->vmcb->control.exit_info_1 & 1;
2090         mask   = 1 << ((2 * (msr & 0xf)) + write);
2091
2092         if (offset == MSR_INVALID)
2093                 return NESTED_EXIT_DONE;
2094
2095         /* Offset is in 32 bit units but need in 8 bit units */
2096         offset *= 4;
2097
2098         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2099                 return NESTED_EXIT_DONE;
2100
2101         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2102 }
2103
2104 static int nested_svm_exit_special(struct vcpu_svm *svm)
2105 {
2106         u32 exit_code = svm->vmcb->control.exit_code;
2107
2108         switch (exit_code) {
2109         case SVM_EXIT_INTR:
2110         case SVM_EXIT_NMI:
2111         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2112                 return NESTED_EXIT_HOST;
2113         case SVM_EXIT_NPF:
2114                 /* For now we are always handling NPFs when using them */
2115                 if (npt_enabled)
2116                         return NESTED_EXIT_HOST;
2117                 break;
2118         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2119                 /* When we're shadowing, trap PFs, but not async PF */
2120                 if (!npt_enabled && svm->apf_reason == 0)
2121                         return NESTED_EXIT_HOST;
2122                 break;
2123         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2124                 nm_interception(svm);
2125                 break;
2126         default:
2127                 break;
2128         }
2129
2130         return NESTED_EXIT_CONTINUE;
2131 }
2132
2133 /*
2134  * If this function returns true, this #vmexit was already handled
2135  */
2136 static int nested_svm_intercept(struct vcpu_svm *svm)
2137 {
2138         u32 exit_code = svm->vmcb->control.exit_code;
2139         int vmexit = NESTED_EXIT_HOST;
2140
2141         switch (exit_code) {
2142         case SVM_EXIT_MSR:
2143                 vmexit = nested_svm_exit_handled_msr(svm);
2144                 break;
2145         case SVM_EXIT_IOIO:
2146                 vmexit = nested_svm_intercept_ioio(svm);
2147                 break;
2148         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2149                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2150                 if (svm->nested.intercept_cr & bit)
2151                         vmexit = NESTED_EXIT_DONE;
2152                 break;
2153         }
2154         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2155                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2156                 if (svm->nested.intercept_dr & bit)
2157                         vmexit = NESTED_EXIT_DONE;
2158                 break;
2159         }
2160         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2161                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2162                 if (svm->nested.intercept_exceptions & excp_bits)
2163                         vmexit = NESTED_EXIT_DONE;
2164                 /* async page fault always cause vmexit */
2165                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2166                          svm->apf_reason != 0)
2167                         vmexit = NESTED_EXIT_DONE;
2168                 break;
2169         }
2170         case SVM_EXIT_ERR: {
2171                 vmexit = NESTED_EXIT_DONE;
2172                 break;
2173         }
2174         default: {
2175                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2176                 if (svm->nested.intercept & exit_bits)
2177                         vmexit = NESTED_EXIT_DONE;
2178         }
2179         }
2180
2181         return vmexit;
2182 }
2183
2184 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2185 {
2186         int vmexit;
2187
2188         vmexit = nested_svm_intercept(svm);
2189
2190         if (vmexit == NESTED_EXIT_DONE)
2191                 nested_svm_vmexit(svm);
2192
2193         return vmexit;
2194 }
2195
2196 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2197 {
2198         struct vmcb_control_area *dst  = &dst_vmcb->control;
2199         struct vmcb_control_area *from = &from_vmcb->control;
2200
2201         dst->intercept_cr         = from->intercept_cr;
2202         dst->intercept_dr         = from->intercept_dr;
2203         dst->intercept_exceptions = from->intercept_exceptions;
2204         dst->intercept            = from->intercept;
2205         dst->iopm_base_pa         = from->iopm_base_pa;
2206         dst->msrpm_base_pa        = from->msrpm_base_pa;
2207         dst->tsc_offset           = from->tsc_offset;
2208         dst->asid                 = from->asid;
2209         dst->tlb_ctl              = from->tlb_ctl;
2210         dst->int_ctl              = from->int_ctl;
2211         dst->int_vector           = from->int_vector;
2212         dst->int_state            = from->int_state;
2213         dst->exit_code            = from->exit_code;
2214         dst->exit_code_hi         = from->exit_code_hi;
2215         dst->exit_info_1          = from->exit_info_1;
2216         dst->exit_info_2          = from->exit_info_2;
2217         dst->exit_int_info        = from->exit_int_info;
2218         dst->exit_int_info_err    = from->exit_int_info_err;
2219         dst->nested_ctl           = from->nested_ctl;
2220         dst->event_inj            = from->event_inj;
2221         dst->event_inj_err        = from->event_inj_err;
2222         dst->nested_cr3           = from->nested_cr3;
2223         dst->lbr_ctl              = from->lbr_ctl;
2224 }
2225
2226 static int nested_svm_vmexit(struct vcpu_svm *svm)
2227 {
2228         struct vmcb *nested_vmcb;
2229         struct vmcb *hsave = svm->nested.hsave;
2230         struct vmcb *vmcb = svm->vmcb;
2231         struct page *page;
2232
2233         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2234                                        vmcb->control.exit_info_1,
2235                                        vmcb->control.exit_info_2,
2236                                        vmcb->control.exit_int_info,
2237                                        vmcb->control.exit_int_info_err,
2238                                        KVM_ISA_SVM);
2239
2240         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2241         if (!nested_vmcb)
2242                 return 1;
2243
2244         /* Exit Guest-Mode */
2245         leave_guest_mode(&svm->vcpu);
2246         svm->nested.vmcb = 0;
2247
2248         /* Give the current vmcb to the guest */
2249         disable_gif(svm);
2250
2251         nested_vmcb->save.es     = vmcb->save.es;
2252         nested_vmcb->save.cs     = vmcb->save.cs;
2253         nested_vmcb->save.ss     = vmcb->save.ss;
2254         nested_vmcb->save.ds     = vmcb->save.ds;
2255         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2256         nested_vmcb->save.idtr   = vmcb->save.idtr;
2257         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2258         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2259         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2260         nested_vmcb->save.cr2    = vmcb->save.cr2;
2261         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2262         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2263         nested_vmcb->save.rip    = vmcb->save.rip;
2264         nested_vmcb->save.rsp    = vmcb->save.rsp;
2265         nested_vmcb->save.rax    = vmcb->save.rax;
2266         nested_vmcb->save.dr7    = vmcb->save.dr7;
2267         nested_vmcb->save.dr6    = vmcb->save.dr6;
2268         nested_vmcb->save.cpl    = vmcb->save.cpl;
2269
2270         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2271         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2272         nested_vmcb->control.int_state         = vmcb->control.int_state;
2273         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2274         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2275         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2276         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2277         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2278         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2279
2280         if (svm->nrips_enabled)
2281                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2282
2283         /*
2284          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2285          * to make sure that we do not lose injected events. So check event_inj
2286          * here and copy it to exit_int_info if it is valid.
2287          * Exit_int_info and event_inj can't be both valid because the case
2288          * below only happens on a VMRUN instruction intercept which has
2289          * no valid exit_int_info set.
2290          */
2291         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2292                 struct vmcb_control_area *nc = &nested_vmcb->control;
2293
2294                 nc->exit_int_info     = vmcb->control.event_inj;
2295                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2296         }
2297
2298         nested_vmcb->control.tlb_ctl           = 0;
2299         nested_vmcb->control.event_inj         = 0;
2300         nested_vmcb->control.event_inj_err     = 0;
2301
2302         /* We always set V_INTR_MASKING and remember the old value in hflags */
2303         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2304                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2305
2306         /* Restore the original control entries */
2307         copy_vmcb_control_area(vmcb, hsave);
2308
2309         kvm_clear_exception_queue(&svm->vcpu);
2310         kvm_clear_interrupt_queue(&svm->vcpu);
2311
2312         svm->nested.nested_cr3 = 0;
2313
2314         /* Restore selected save entries */
2315         svm->vmcb->save.es = hsave->save.es;
2316         svm->vmcb->save.cs = hsave->save.cs;
2317         svm->vmcb->save.ss = hsave->save.ss;
2318         svm->vmcb->save.ds = hsave->save.ds;
2319         svm->vmcb->save.gdtr = hsave->save.gdtr;
2320         svm->vmcb->save.idtr = hsave->save.idtr;
2321         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2322         svm_set_efer(&svm->vcpu, hsave->save.efer);
2323         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2324         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2325         if (npt_enabled) {
2326                 svm->vmcb->save.cr3 = hsave->save.cr3;
2327                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2328         } else {
2329                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2330         }
2331         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2332         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2333         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2334         svm->vmcb->save.dr7 = 0;
2335         svm->vmcb->save.cpl = 0;
2336         svm->vmcb->control.exit_int_info = 0;
2337
2338         mark_all_dirty(svm->vmcb);
2339
2340         nested_svm_unmap(page);
2341
2342         nested_svm_uninit_mmu_context(&svm->vcpu);
2343         kvm_mmu_reset_context(&svm->vcpu);
2344         kvm_mmu_load(&svm->vcpu);
2345
2346         return 0;
2347 }
2348
2349 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2350 {
2351         /*
2352          * This function merges the msr permission bitmaps of kvm and the
2353          * nested vmcb. It is optimized in that it only merges the parts where
2354          * the kvm msr permission bitmap may contain zero bits
2355          */
2356         int i;
2357
2358         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2359                 return true;
2360
2361         for (i = 0; i < MSRPM_OFFSETS; i++) {
2362                 u32 value, p;
2363                 u64 offset;
2364
2365                 if (msrpm_offsets[i] == 0xffffffff)
2366                         break;
2367
2368                 p      = msrpm_offsets[i];
2369                 offset = svm->nested.vmcb_msrpm + (p * 4);
2370
2371                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2372                         return false;
2373
2374                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2375         }
2376
2377         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2378
2379         return true;
2380 }
2381
2382 static bool nested_vmcb_checks(struct vmcb *vmcb)
2383 {
2384         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2385                 return false;
2386
2387         if (vmcb->control.asid == 0)
2388                 return false;
2389
2390         if (vmcb->control.nested_ctl && !npt_enabled)
2391                 return false;
2392
2393         return true;
2394 }
2395
2396 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2397 {
2398         struct vmcb *nested_vmcb;
2399         struct vmcb *hsave = svm->nested.hsave;
2400         struct vmcb *vmcb = svm->vmcb;
2401         struct page *page;
2402         u64 vmcb_gpa;
2403
2404         vmcb_gpa = svm->vmcb->save.rax;
2405
2406         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2407         if (!nested_vmcb)
2408                 return false;
2409
2410         if (!nested_vmcb_checks(nested_vmcb)) {
2411                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2412                 nested_vmcb->control.exit_code_hi = 0;
2413                 nested_vmcb->control.exit_info_1  = 0;
2414                 nested_vmcb->control.exit_info_2  = 0;
2415
2416                 nested_svm_unmap(page);
2417
2418                 return false;
2419         }
2420
2421         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2422                                nested_vmcb->save.rip,
2423                                nested_vmcb->control.int_ctl,
2424                                nested_vmcb->control.event_inj,
2425                                nested_vmcb->control.nested_ctl);
2426
2427         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2428                                     nested_vmcb->control.intercept_cr >> 16,
2429                                     nested_vmcb->control.intercept_exceptions,
2430                                     nested_vmcb->control.intercept);
2431
2432         /* Clear internal status */
2433         kvm_clear_exception_queue(&svm->vcpu);
2434         kvm_clear_interrupt_queue(&svm->vcpu);
2435
2436         /*
2437          * Save the old vmcb, so we don't need to pick what we save, but can
2438          * restore everything when a VMEXIT occurs
2439          */
2440         hsave->save.es     = vmcb->save.es;
2441         hsave->save.cs     = vmcb->save.cs;
2442         hsave->save.ss     = vmcb->save.ss;
2443         hsave->save.ds     = vmcb->save.ds;
2444         hsave->save.gdtr   = vmcb->save.gdtr;
2445         hsave->save.idtr   = vmcb->save.idtr;
2446         hsave->save.efer   = svm->vcpu.arch.efer;
2447         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2448         hsave->save.cr4    = svm->vcpu.arch.cr4;
2449         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2450         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2451         hsave->save.rsp    = vmcb->save.rsp;
2452         hsave->save.rax    = vmcb->save.rax;
2453         if (npt_enabled)
2454                 hsave->save.cr3    = vmcb->save.cr3;
2455         else
2456                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2457
2458         copy_vmcb_control_area(hsave, vmcb);
2459
2460         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2461                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2462         else
2463                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2464
2465         if (nested_vmcb->control.nested_ctl) {
2466                 kvm_mmu_unload(&svm->vcpu);
2467                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2468                 nested_svm_init_mmu_context(&svm->vcpu);
2469         }
2470
2471         /* Load the nested guest state */
2472         svm->vmcb->save.es = nested_vmcb->save.es;
2473         svm->vmcb->save.cs = nested_vmcb->save.cs;
2474         svm->vmcb->save.ss = nested_vmcb->save.ss;
2475         svm->vmcb->save.ds = nested_vmcb->save.ds;
2476         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2477         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2478         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2479         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2480         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2481         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2482         if (npt_enabled) {
2483                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2484                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2485         } else
2486                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2487
2488         /* Guest paging mode is active - reset mmu */
2489         kvm_mmu_reset_context(&svm->vcpu);
2490
2491         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2492         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2493         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2494         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2495
2496         /* In case we don't even reach vcpu_run, the fields are not updated */
2497         svm->vmcb->save.rax = nested_vmcb->save.rax;
2498         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2499         svm->vmcb->save.rip = nested_vmcb->save.rip;
2500         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2501         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2502         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2503
2504         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2505         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2506
2507         /* cache intercepts */
2508         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2509         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2510         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2511         svm->nested.intercept            = nested_vmcb->control.intercept;
2512
2513         svm_flush_tlb(&svm->vcpu);
2514         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2515         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2516                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2517         else
2518                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2519
2520         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2521                 /* We only want the cr8 intercept bits of the guest */
2522                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2523                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2524         }
2525
2526         /* We don't want to see VMMCALLs from a nested guest */
2527         clr_intercept(svm, INTERCEPT_VMMCALL);
2528
2529         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2530         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2531         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2532         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2533         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2534         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2535
2536         nested_svm_unmap(page);
2537
2538         /* Enter Guest-Mode */
2539         enter_guest_mode(&svm->vcpu);
2540
2541         /*
2542          * Merge guest and host intercepts - must be called  with vcpu in
2543          * guest-mode to take affect here
2544          */
2545         recalc_intercepts(svm);
2546
2547         svm->nested.vmcb = vmcb_gpa;
2548
2549         enable_gif(svm);
2550
2551         mark_all_dirty(svm->vmcb);
2552
2553         return true;
2554 }
2555
2556 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2557 {
2558         to_vmcb->save.fs = from_vmcb->save.fs;
2559         to_vmcb->save.gs = from_vmcb->save.gs;
2560         to_vmcb->save.tr = from_vmcb->save.tr;
2561         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2562         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2563         to_vmcb->save.star = from_vmcb->save.star;
2564         to_vmcb->save.lstar = from_vmcb->save.lstar;
2565         to_vmcb->save.cstar = from_vmcb->save.cstar;
2566         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2567         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2568         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2569         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2570 }
2571
2572 static int vmload_interception(struct vcpu_svm *svm)
2573 {
2574         struct vmcb *nested_vmcb;
2575         struct page *page;
2576
2577         if (nested_svm_check_permissions(svm))
2578                 return 1;
2579
2580         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2581         if (!nested_vmcb)
2582                 return 1;
2583
2584         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2585         skip_emulated_instruction(&svm->vcpu);
2586
2587         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2588         nested_svm_unmap(page);
2589
2590         return 1;
2591 }
2592
2593 static int vmsave_interception(struct vcpu_svm *svm)
2594 {
2595         struct vmcb *nested_vmcb;
2596         struct page *page;
2597
2598         if (nested_svm_check_permissions(svm))
2599                 return 1;
2600
2601         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2602         if (!nested_vmcb)
2603                 return 1;
2604
2605         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2606         skip_emulated_instruction(&svm->vcpu);
2607
2608         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2609         nested_svm_unmap(page);
2610
2611         return 1;
2612 }
2613
2614 static int vmrun_interception(struct vcpu_svm *svm)
2615 {
2616         if (nested_svm_check_permissions(svm))
2617                 return 1;
2618
2619         /* Save rip after vmrun instruction */
2620         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2621
2622         if (!nested_svm_vmrun(svm))
2623                 return 1;
2624
2625         if (!nested_svm_vmrun_msrpm(svm))
2626                 goto failed;
2627
2628         return 1;
2629
2630 failed:
2631
2632         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2633         svm->vmcb->control.exit_code_hi = 0;
2634         svm->vmcb->control.exit_info_1  = 0;
2635         svm->vmcb->control.exit_info_2  = 0;
2636
2637         nested_svm_vmexit(svm);
2638
2639         return 1;
2640 }
2641
2642 static int stgi_interception(struct vcpu_svm *svm)
2643 {
2644         if (nested_svm_check_permissions(svm))
2645                 return 1;
2646
2647         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2648         skip_emulated_instruction(&svm->vcpu);
2649         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2650
2651         enable_gif(svm);
2652
2653         return 1;
2654 }
2655
2656 static int clgi_interception(struct vcpu_svm *svm)
2657 {
2658         if (nested_svm_check_permissions(svm))
2659                 return 1;
2660
2661         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2662         skip_emulated_instruction(&svm->vcpu);
2663
2664         disable_gif(svm);
2665
2666         /* After a CLGI no interrupts should come */
2667         svm_clear_vintr(svm);
2668         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2669
2670         mark_dirty(svm->vmcb, VMCB_INTR);
2671
2672         return 1;
2673 }
2674
2675 static int invlpga_interception(struct vcpu_svm *svm)
2676 {
2677         struct kvm_vcpu *vcpu = &svm->vcpu;
2678
2679         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2680                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2681
2682         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2683         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2684
2685         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2686         skip_emulated_instruction(&svm->vcpu);
2687         return 1;
2688 }
2689
2690 static int skinit_interception(struct vcpu_svm *svm)
2691 {
2692         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2693
2694         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2695         return 1;
2696 }
2697
2698 static int wbinvd_interception(struct vcpu_svm *svm)
2699 {
2700         kvm_emulate_wbinvd(&svm->vcpu);
2701         return 1;
2702 }
2703
2704 static int xsetbv_interception(struct vcpu_svm *svm)
2705 {
2706         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2707         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2708
2709         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2710                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2711                 skip_emulated_instruction(&svm->vcpu);
2712         }
2713
2714         return 1;
2715 }
2716
2717 static int task_switch_interception(struct vcpu_svm *svm)
2718 {
2719         u16 tss_selector;
2720         int reason;
2721         int int_type = svm->vmcb->control.exit_int_info &
2722                 SVM_EXITINTINFO_TYPE_MASK;
2723         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2724         uint32_t type =
2725                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2726         uint32_t idt_v =
2727                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2728         bool has_error_code = false;
2729         u32 error_code = 0;
2730
2731         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2732
2733         if (svm->vmcb->control.exit_info_2 &
2734             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2735                 reason = TASK_SWITCH_IRET;
2736         else if (svm->vmcb->control.exit_info_2 &
2737                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2738                 reason = TASK_SWITCH_JMP;
2739         else if (idt_v)
2740                 reason = TASK_SWITCH_GATE;
2741         else
2742                 reason = TASK_SWITCH_CALL;
2743
2744         if (reason == TASK_SWITCH_GATE) {
2745                 switch (type) {
2746                 case SVM_EXITINTINFO_TYPE_NMI:
2747                         svm->vcpu.arch.nmi_injected = false;
2748                         break;
2749                 case SVM_EXITINTINFO_TYPE_EXEPT:
2750                         if (svm->vmcb->control.exit_info_2 &
2751                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2752                                 has_error_code = true;
2753                                 error_code =
2754                                         (u32)svm->vmcb->control.exit_info_2;
2755                         }
2756                         kvm_clear_exception_queue(&svm->vcpu);
2757                         break;
2758                 case SVM_EXITINTINFO_TYPE_INTR:
2759                         kvm_clear_interrupt_queue(&svm->vcpu);
2760                         break;
2761                 default:
2762                         break;
2763                 }
2764         }
2765
2766         if (reason != TASK_SWITCH_GATE ||
2767             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2768             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2769              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2770                 skip_emulated_instruction(&svm->vcpu);
2771
2772         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2773                 int_vec = -1;
2774
2775         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2776                                 has_error_code, error_code) == EMULATE_FAIL) {
2777                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2778                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2779                 svm->vcpu.run->internal.ndata = 0;
2780                 return 0;
2781         }
2782         return 1;
2783 }
2784
2785 static int cpuid_interception(struct vcpu_svm *svm)
2786 {
2787         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2788         kvm_emulate_cpuid(&svm->vcpu);
2789         return 1;
2790 }
2791
2792 static int iret_interception(struct vcpu_svm *svm)
2793 {
2794         ++svm->vcpu.stat.nmi_window_exits;
2795         clr_intercept(svm, INTERCEPT_IRET);
2796         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2797         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2798         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2799         return 1;
2800 }
2801
2802 static int invlpg_interception(struct vcpu_svm *svm)
2803 {
2804         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2805                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2806
2807         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2808         skip_emulated_instruction(&svm->vcpu);
2809         return 1;
2810 }
2811
2812 static int emulate_on_interception(struct vcpu_svm *svm)
2813 {
2814         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2815 }
2816
2817 static int rdpmc_interception(struct vcpu_svm *svm)
2818 {
2819         int err;
2820
2821         if (!static_cpu_has(X86_FEATURE_NRIPS))
2822                 return emulate_on_interception(svm);
2823
2824         err = kvm_rdpmc(&svm->vcpu);
2825         kvm_complete_insn_gp(&svm->vcpu, err);
2826
2827         return 1;
2828 }
2829
2830 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2831                                             unsigned long val)
2832 {
2833         unsigned long cr0 = svm->vcpu.arch.cr0;
2834         bool ret = false;
2835         u64 intercept;
2836
2837         intercept = svm->nested.intercept;
2838
2839         if (!is_guest_mode(&svm->vcpu) ||
2840             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2841                 return false;
2842
2843         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2844         val &= ~SVM_CR0_SELECTIVE_MASK;
2845
2846         if (cr0 ^ val) {
2847                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2848                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2849         }
2850
2851         return ret;
2852 }
2853
2854 #define CR_VALID (1ULL << 63)
2855
2856 static int cr_interception(struct vcpu_svm *svm)
2857 {
2858         int reg, cr;
2859         unsigned long val;
2860         int err;
2861
2862         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2863                 return emulate_on_interception(svm);
2864
2865         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2866                 return emulate_on_interception(svm);
2867
2868         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2869         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2870                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2871         else
2872                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2873
2874         err = 0;
2875         if (cr >= 16) { /* mov to cr */
2876                 cr -= 16;
2877                 val = kvm_register_read(&svm->vcpu, reg);
2878                 switch (cr) {
2879                 case 0:
2880                         if (!check_selective_cr0_intercepted(svm, val))
2881                                 err = kvm_set_cr0(&svm->vcpu, val);
2882                         else
2883                                 return 1;
2884
2885                         break;
2886                 case 3:
2887                         err = kvm_set_cr3(&svm->vcpu, val);
2888                         break;
2889                 case 4:
2890                         err = kvm_set_cr4(&svm->vcpu, val);
2891                         break;
2892                 case 8:
2893                         err = kvm_set_cr8(&svm->vcpu, val);
2894                         break;
2895                 default:
2896                         WARN(1, "unhandled write to CR%d", cr);
2897                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2898                         return 1;
2899                 }
2900         } else { /* mov from cr */
2901                 switch (cr) {
2902                 case 0:
2903                         val = kvm_read_cr0(&svm->vcpu);
2904                         break;
2905                 case 2:
2906                         val = svm->vcpu.arch.cr2;
2907                         break;
2908                 case 3:
2909                         val = kvm_read_cr3(&svm->vcpu);
2910                         break;
2911                 case 4:
2912                         val = kvm_read_cr4(&svm->vcpu);
2913                         break;
2914                 case 8:
2915                         val = kvm_get_cr8(&svm->vcpu);
2916                         break;
2917                 default:
2918                         WARN(1, "unhandled read from CR%d", cr);
2919                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2920                         return 1;
2921                 }
2922                 kvm_register_write(&svm->vcpu, reg, val);
2923         }
2924         kvm_complete_insn_gp(&svm->vcpu, err);
2925
2926         return 1;
2927 }
2928
2929 static int dr_interception(struct vcpu_svm *svm)
2930 {
2931         int reg, dr;
2932         unsigned long val;
2933
2934         if (svm->vcpu.guest_debug == 0) {
2935                 /*
2936                  * No more DR vmexits; force a reload of the debug registers
2937                  * and reenter on this instruction.  The next vmexit will
2938                  * retrieve the full state of the debug registers.
2939                  */
2940                 clr_dr_intercepts(svm);
2941                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2942                 return 1;
2943         }
2944
2945         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2946                 return emulate_on_interception(svm);
2947
2948         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2949         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2950
2951         if (dr >= 16) { /* mov to DRn */
2952                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2953                         return 1;
2954                 val = kvm_register_read(&svm->vcpu, reg);
2955                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2956         } else {
2957                 if (!kvm_require_dr(&svm->vcpu, dr))
2958                         return 1;
2959                 kvm_get_dr(&svm->vcpu, dr, &val);
2960                 kvm_register_write(&svm->vcpu, reg, val);
2961         }
2962
2963         skip_emulated_instruction(&svm->vcpu);
2964
2965         return 1;
2966 }
2967
2968 static int cr8_write_interception(struct vcpu_svm *svm)
2969 {
2970         struct kvm_run *kvm_run = svm->vcpu.run;
2971         int r;
2972
2973         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2974         /* instruction emulation calls kvm_set_cr8() */
2975         r = cr_interception(svm);
2976         if (lapic_in_kernel(&svm->vcpu))
2977                 return r;
2978         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2979                 return r;
2980         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2981         return 0;
2982 }
2983
2984 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2985 {
2986         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2987         return vmcb->control.tsc_offset + host_tsc;
2988 }
2989
2990 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2991 {
2992         struct vcpu_svm *svm = to_svm(vcpu);
2993
2994         switch (msr_info->index) {
2995         case MSR_IA32_TSC: {
2996                 msr_info->data = svm->vmcb->control.tsc_offset +
2997                         kvm_scale_tsc(vcpu, rdtsc());
2998
2999                 break;
3000         }
3001         case MSR_STAR:
3002                 msr_info->data = svm->vmcb->save.star;
3003                 break;
3004 #ifdef CONFIG_X86_64
3005         case MSR_LSTAR:
3006                 msr_info->data = svm->vmcb->save.lstar;
3007                 break;
3008         case MSR_CSTAR:
3009                 msr_info->data = svm->vmcb->save.cstar;
3010                 break;
3011         case MSR_KERNEL_GS_BASE:
3012                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3013                 break;
3014         case MSR_SYSCALL_MASK:
3015                 msr_info->data = svm->vmcb->save.sfmask;
3016                 break;
3017 #endif
3018         case MSR_IA32_SYSENTER_CS:
3019                 msr_info->data = svm->vmcb->save.sysenter_cs;
3020                 break;
3021         case MSR_IA32_SYSENTER_EIP:
3022                 msr_info->data = svm->sysenter_eip;
3023                 break;
3024         case MSR_IA32_SYSENTER_ESP:
3025                 msr_info->data = svm->sysenter_esp;
3026                 break;
3027         /*
3028          * Nobody will change the following 5 values in the VMCB so we can
3029          * safely return them on rdmsr. They will always be 0 until LBRV is
3030          * implemented.
3031          */
3032         case MSR_IA32_DEBUGCTLMSR:
3033                 msr_info->data = svm->vmcb->save.dbgctl;
3034                 break;
3035         case MSR_IA32_LASTBRANCHFROMIP:
3036                 msr_info->data = svm->vmcb->save.br_from;
3037                 break;
3038         case MSR_IA32_LASTBRANCHTOIP:
3039                 msr_info->data = svm->vmcb->save.br_to;
3040                 break;
3041         case MSR_IA32_LASTINTFROMIP:
3042                 msr_info->data = svm->vmcb->save.last_excp_from;
3043                 break;
3044         case MSR_IA32_LASTINTTOIP:
3045                 msr_info->data = svm->vmcb->save.last_excp_to;
3046                 break;
3047         case MSR_VM_HSAVE_PA:
3048                 msr_info->data = svm->nested.hsave_msr;
3049                 break;
3050         case MSR_VM_CR:
3051                 msr_info->data = svm->nested.vm_cr_msr;
3052                 break;
3053         case MSR_IA32_UCODE_REV:
3054                 msr_info->data = 0x01000065;
3055                 break;
3056         default:
3057                 return kvm_get_msr_common(vcpu, msr_info);
3058         }
3059         return 0;
3060 }
3061
3062 static int rdmsr_interception(struct vcpu_svm *svm)
3063 {
3064         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3065         struct msr_data msr_info;
3066
3067         msr_info.index = ecx;
3068         msr_info.host_initiated = false;
3069         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3070                 trace_kvm_msr_read_ex(ecx);
3071                 kvm_inject_gp(&svm->vcpu, 0);
3072         } else {
3073                 trace_kvm_msr_read(ecx, msr_info.data);
3074
3075                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3076                                    msr_info.data & 0xffffffff);
3077                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3078                                    msr_info.data >> 32);
3079                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3080                 skip_emulated_instruction(&svm->vcpu);
3081         }
3082         return 1;
3083 }
3084
3085 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3086 {
3087         struct vcpu_svm *svm = to_svm(vcpu);
3088         int svm_dis, chg_mask;
3089
3090         if (data & ~SVM_VM_CR_VALID_MASK)
3091                 return 1;
3092
3093         chg_mask = SVM_VM_CR_VALID_MASK;
3094
3095         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3096                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3097
3098         svm->nested.vm_cr_msr &= ~chg_mask;
3099         svm->nested.vm_cr_msr |= (data & chg_mask);
3100
3101         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3102
3103         /* check for svm_disable while efer.svme is set */
3104         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3105                 return 1;
3106
3107         return 0;
3108 }
3109
3110 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3111 {
3112         struct vcpu_svm *svm = to_svm(vcpu);
3113
3114         u32 ecx = msr->index;
3115         u64 data = msr->data;
3116         switch (ecx) {
3117         case MSR_IA32_TSC:
3118                 kvm_write_tsc(vcpu, msr);
3119                 break;
3120         case MSR_STAR:
3121                 svm->vmcb->save.star = data;
3122                 break;
3123 #ifdef CONFIG_X86_64
3124         case MSR_LSTAR:
3125                 svm->vmcb->save.lstar = data;
3126                 break;
3127         case MSR_CSTAR:
3128                 svm->vmcb->save.cstar = data;
3129                 break;
3130         case MSR_KERNEL_GS_BASE:
3131                 svm->vmcb->save.kernel_gs_base = data;
3132                 break;
3133         case MSR_SYSCALL_MASK:
3134                 svm->vmcb->save.sfmask = data;
3135                 break;
3136 #endif
3137         case MSR_IA32_SYSENTER_CS:
3138                 svm->vmcb->save.sysenter_cs = data;
3139                 break;
3140         case MSR_IA32_SYSENTER_EIP:
3141                 svm->sysenter_eip = data;
3142                 svm->vmcb->save.sysenter_eip = data;
3143                 break;
3144         case MSR_IA32_SYSENTER_ESP:
3145                 svm->sysenter_esp = data;
3146                 svm->vmcb->save.sysenter_esp = data;
3147                 break;
3148         case MSR_IA32_DEBUGCTLMSR:
3149                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3150                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3151                                     __func__, data);
3152                         break;
3153                 }
3154                 if (data & DEBUGCTL_RESERVED_BITS)
3155                         return 1;
3156
3157                 svm->vmcb->save.dbgctl = data;
3158                 mark_dirty(svm->vmcb, VMCB_LBR);
3159                 if (data & (1ULL<<0))
3160                         svm_enable_lbrv(svm);
3161                 else
3162                         svm_disable_lbrv(svm);
3163                 break;
3164         case MSR_VM_HSAVE_PA:
3165                 svm->nested.hsave_msr = data;
3166                 break;
3167         case MSR_VM_CR:
3168                 return svm_set_vm_cr(vcpu, data);
3169         case MSR_VM_IGNNE:
3170                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3171                 break;
3172         default:
3173                 return kvm_set_msr_common(vcpu, msr);
3174         }
3175         return 0;
3176 }
3177
3178 static int wrmsr_interception(struct vcpu_svm *svm)
3179 {
3180         struct msr_data msr;
3181         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3182         u64 data = kvm_read_edx_eax(&svm->vcpu);
3183
3184         msr.data = data;
3185         msr.index = ecx;
3186         msr.host_initiated = false;
3187
3188         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3189         if (kvm_set_msr(&svm->vcpu, &msr)) {
3190                 trace_kvm_msr_write_ex(ecx, data);
3191                 kvm_inject_gp(&svm->vcpu, 0);
3192         } else {
3193                 trace_kvm_msr_write(ecx, data);
3194                 skip_emulated_instruction(&svm->vcpu);
3195         }
3196         return 1;
3197 }
3198
3199 static int msr_interception(struct vcpu_svm *svm)
3200 {
3201         if (svm->vmcb->control.exit_info_1)
3202                 return wrmsr_interception(svm);
3203         else
3204                 return rdmsr_interception(svm);
3205 }
3206
3207 static int interrupt_window_interception(struct vcpu_svm *svm)
3208 {
3209         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3210         svm_clear_vintr(svm);
3211         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3212         mark_dirty(svm->vmcb, VMCB_INTR);
3213         ++svm->vcpu.stat.irq_window_exits;
3214         return 1;
3215 }
3216
3217 static int pause_interception(struct vcpu_svm *svm)
3218 {
3219         kvm_vcpu_on_spin(&(svm->vcpu));
3220         return 1;
3221 }
3222
3223 static int nop_interception(struct vcpu_svm *svm)
3224 {
3225         skip_emulated_instruction(&(svm->vcpu));
3226         return 1;
3227 }
3228
3229 static int monitor_interception(struct vcpu_svm *svm)
3230 {
3231         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3232         return nop_interception(svm);
3233 }
3234
3235 static int mwait_interception(struct vcpu_svm *svm)
3236 {
3237         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3238         return nop_interception(svm);
3239 }
3240
3241 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3242         [SVM_EXIT_READ_CR0]                     = cr_interception,
3243         [SVM_EXIT_READ_CR3]                     = cr_interception,
3244         [SVM_EXIT_READ_CR4]                     = cr_interception,
3245         [SVM_EXIT_READ_CR8]                     = cr_interception,
3246         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3247         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3248         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3249         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3250         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3251         [SVM_EXIT_READ_DR0]                     = dr_interception,
3252         [SVM_EXIT_READ_DR1]                     = dr_interception,
3253         [SVM_EXIT_READ_DR2]                     = dr_interception,
3254         [SVM_EXIT_READ_DR3]                     = dr_interception,
3255         [SVM_EXIT_READ_DR4]                     = dr_interception,
3256         [SVM_EXIT_READ_DR5]                     = dr_interception,
3257         [SVM_EXIT_READ_DR6]                     = dr_interception,
3258         [SVM_EXIT_READ_DR7]                     = dr_interception,
3259         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3260         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3261         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3262         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3263         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3264         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3265         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3266         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3267         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3268         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3269         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3270         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3271         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3272         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3273         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3274         [SVM_EXIT_INTR]                         = intr_interception,
3275         [SVM_EXIT_NMI]                          = nmi_interception,
3276         [SVM_EXIT_SMI]                          = nop_on_interception,
3277         [SVM_EXIT_INIT]                         = nop_on_interception,
3278         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3279         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3280         [SVM_EXIT_CPUID]                        = cpuid_interception,
3281         [SVM_EXIT_IRET]                         = iret_interception,
3282         [SVM_EXIT_INVD]                         = emulate_on_interception,
3283         [SVM_EXIT_PAUSE]                        = pause_interception,
3284         [SVM_EXIT_HLT]                          = halt_interception,
3285         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3286         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3287         [SVM_EXIT_IOIO]                         = io_interception,
3288         [SVM_EXIT_MSR]                          = msr_interception,
3289         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3290         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3291         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3292         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3293         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3294         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3295         [SVM_EXIT_STGI]                         = stgi_interception,
3296         [SVM_EXIT_CLGI]                         = clgi_interception,
3297         [SVM_EXIT_SKINIT]                       = skinit_interception,
3298         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3299         [SVM_EXIT_MONITOR]                      = monitor_interception,
3300         [SVM_EXIT_MWAIT]                        = mwait_interception,
3301         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3302         [SVM_EXIT_NPF]                          = pf_interception,
3303         [SVM_EXIT_RSM]                          = emulate_on_interception,
3304 };
3305
3306 static void dump_vmcb(struct kvm_vcpu *vcpu)
3307 {
3308         struct vcpu_svm *svm = to_svm(vcpu);
3309         struct vmcb_control_area *control = &svm->vmcb->control;
3310         struct vmcb_save_area *save = &svm->vmcb->save;
3311
3312         pr_err("VMCB Control Area:\n");
3313         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3314         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3315         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3316         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3317         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3318         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3319         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3320         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3321         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3322         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3323         pr_err("%-20s%d\n", "asid:", control->asid);
3324         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3325         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3326         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3327         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3328         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3329         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3330         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3331         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3332         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3333         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3334         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3335         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3336         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3337         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3338         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3339         pr_err("VMCB State Save Area:\n");
3340         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3341                "es:",
3342                save->es.selector, save->es.attrib,
3343                save->es.limit, save->es.base);
3344         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3345                "cs:",
3346                save->cs.selector, save->cs.attrib,
3347                save->cs.limit, save->cs.base);
3348         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3349                "ss:",
3350                save->ss.selector, save->ss.attrib,
3351                save->ss.limit, save->ss.base);
3352         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3353                "ds:",
3354                save->ds.selector, save->ds.attrib,
3355                save->ds.limit, save->ds.base);
3356         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3357                "fs:",
3358                save->fs.selector, save->fs.attrib,
3359                save->fs.limit, save->fs.base);
3360         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3361                "gs:",
3362                save->gs.selector, save->gs.attrib,
3363                save->gs.limit, save->gs.base);
3364         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3365                "gdtr:",
3366                save->gdtr.selector, save->gdtr.attrib,
3367                save->gdtr.limit, save->gdtr.base);
3368         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3369                "ldtr:",
3370                save->ldtr.selector, save->ldtr.attrib,
3371                save->ldtr.limit, save->ldtr.base);
3372         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3373                "idtr:",
3374                save->idtr.selector, save->idtr.attrib,
3375                save->idtr.limit, save->idtr.base);
3376         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3377                "tr:",
3378                save->tr.selector, save->tr.attrib,
3379                save->tr.limit, save->tr.base);
3380         pr_err("cpl:            %d                efer:         %016llx\n",
3381                 save->cpl, save->efer);
3382         pr_err("%-15s %016llx %-13s %016llx\n",
3383                "cr0:", save->cr0, "cr2:", save->cr2);
3384         pr_err("%-15s %016llx %-13s %016llx\n",
3385                "cr3:", save->cr3, "cr4:", save->cr4);
3386         pr_err("%-15s %016llx %-13s %016llx\n",
3387                "dr6:", save->dr6, "dr7:", save->dr7);
3388         pr_err("%-15s %016llx %-13s %016llx\n",
3389                "rip:", save->rip, "rflags:", save->rflags);
3390         pr_err("%-15s %016llx %-13s %016llx\n",
3391                "rsp:", save->rsp, "rax:", save->rax);
3392         pr_err("%-15s %016llx %-13s %016llx\n",
3393                "star:", save->star, "lstar:", save->lstar);
3394         pr_err("%-15s %016llx %-13s %016llx\n",
3395                "cstar:", save->cstar, "sfmask:", save->sfmask);
3396         pr_err("%-15s %016llx %-13s %016llx\n",
3397                "kernel_gs_base:", save->kernel_gs_base,
3398                "sysenter_cs:", save->sysenter_cs);
3399         pr_err("%-15s %016llx %-13s %016llx\n",
3400                "sysenter_esp:", save->sysenter_esp,
3401                "sysenter_eip:", save->sysenter_eip);
3402         pr_err("%-15s %016llx %-13s %016llx\n",
3403                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3404         pr_err("%-15s %016llx %-13s %016llx\n",
3405                "br_from:", save->br_from, "br_to:", save->br_to);
3406         pr_err("%-15s %016llx %-13s %016llx\n",
3407                "excp_from:", save->last_excp_from,
3408                "excp_to:", save->last_excp_to);
3409 }
3410
3411 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3412 {
3413         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3414
3415         *info1 = control->exit_info_1;
3416         *info2 = control->exit_info_2;
3417 }
3418
3419 static int handle_exit(struct kvm_vcpu *vcpu)
3420 {
3421         struct vcpu_svm *svm = to_svm(vcpu);
3422         struct kvm_run *kvm_run = vcpu->run;
3423         u32 exit_code = svm->vmcb->control.exit_code;
3424
3425         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3426
3427         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3428                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3429         if (npt_enabled)
3430                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3431
3432         if (unlikely(svm->nested.exit_required)) {
3433                 nested_svm_vmexit(svm);
3434                 svm->nested.exit_required = false;
3435
3436                 return 1;
3437         }
3438
3439         if (is_guest_mode(vcpu)) {
3440                 int vmexit;
3441
3442                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3443                                         svm->vmcb->control.exit_info_1,
3444                                         svm->vmcb->control.exit_info_2,
3445                                         svm->vmcb->control.exit_int_info,
3446                                         svm->vmcb->control.exit_int_info_err,
3447                                         KVM_ISA_SVM);
3448
3449                 vmexit = nested_svm_exit_special(svm);
3450
3451                 if (vmexit == NESTED_EXIT_CONTINUE)
3452                         vmexit = nested_svm_exit_handled(svm);
3453
3454                 if (vmexit == NESTED_EXIT_DONE)
3455                         return 1;
3456         }
3457
3458         svm_complete_interrupts(svm);
3459
3460         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3461                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3462                 kvm_run->fail_entry.hardware_entry_failure_reason
3463                         = svm->vmcb->control.exit_code;
3464                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3465                 dump_vmcb(vcpu);
3466                 return 0;
3467         }
3468
3469         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3470             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3471             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3472             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3473                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3474                        "exit_code 0x%x\n",
3475                        __func__, svm->vmcb->control.exit_int_info,
3476                        exit_code);
3477
3478         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3479             || !svm_exit_handlers[exit_code]) {
3480                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3481                 kvm_queue_exception(vcpu, UD_VECTOR);
3482                 return 1;
3483         }
3484
3485         return svm_exit_handlers[exit_code](svm);
3486 }
3487
3488 static void reload_tss(struct kvm_vcpu *vcpu)
3489 {
3490         int cpu = raw_smp_processor_id();
3491
3492         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3493         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3494         load_TR_desc();
3495 }
3496
3497 static void pre_svm_run(struct vcpu_svm *svm)
3498 {
3499         int cpu = raw_smp_processor_id();
3500
3501         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3502
3503         /* FIXME: handle wraparound of asid_generation */
3504         if (svm->asid_generation != sd->asid_generation)
3505                 new_asid(svm, sd);
3506 }
3507
3508 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3509 {
3510         struct vcpu_svm *svm = to_svm(vcpu);
3511
3512         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3513         vcpu->arch.hflags |= HF_NMI_MASK;
3514         set_intercept(svm, INTERCEPT_IRET);
3515         ++vcpu->stat.nmi_injections;
3516 }
3517
3518 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3519 {
3520         struct vmcb_control_area *control;
3521
3522         control = &svm->vmcb->control;
3523         control->int_vector = irq;
3524         control->int_ctl &= ~V_INTR_PRIO_MASK;
3525         control->int_ctl |= V_IRQ_MASK |
3526                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3527         mark_dirty(svm->vmcb, VMCB_INTR);
3528 }
3529
3530 static void svm_set_irq(struct kvm_vcpu *vcpu)
3531 {
3532         struct vcpu_svm *svm = to_svm(vcpu);
3533
3534         BUG_ON(!(gif_set(svm)));
3535
3536         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3537         ++vcpu->stat.irq_injections;
3538
3539         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3540                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3541 }
3542
3543 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3544 {
3545         struct vcpu_svm *svm = to_svm(vcpu);
3546
3547         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3548                 return;
3549
3550         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3551
3552         if (irr == -1)
3553                 return;
3554
3555         if (tpr >= irr)
3556                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3557 }
3558
3559 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3560 {
3561         return;
3562 }
3563
3564 static int svm_cpu_uses_apicv(struct kvm_vcpu *vcpu)
3565 {
3566         return 0;
3567 }
3568
3569 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu)
3570 {
3571         return;
3572 }
3573
3574 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3575 {
3576         return;
3577 }
3578
3579 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3580 {
3581         struct vcpu_svm *svm = to_svm(vcpu);
3582         struct vmcb *vmcb = svm->vmcb;
3583         int ret;
3584         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3585               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3586         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3587
3588         return ret;
3589 }
3590
3591 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3592 {
3593         struct vcpu_svm *svm = to_svm(vcpu);
3594
3595         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3596 }
3597
3598 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3599 {
3600         struct vcpu_svm *svm = to_svm(vcpu);
3601
3602         if (masked) {
3603                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3604                 set_intercept(svm, INTERCEPT_IRET);
3605         } else {
3606                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3607                 clr_intercept(svm, INTERCEPT_IRET);
3608         }
3609 }
3610
3611 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3612 {
3613         struct vcpu_svm *svm = to_svm(vcpu);
3614         struct vmcb *vmcb = svm->vmcb;
3615         int ret;
3616
3617         if (!gif_set(svm) ||
3618              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3619                 return 0;
3620
3621         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3622
3623         if (is_guest_mode(vcpu))
3624                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3625
3626         return ret;
3627 }
3628
3629 static void enable_irq_window(struct kvm_vcpu *vcpu)
3630 {
3631         struct vcpu_svm *svm = to_svm(vcpu);
3632
3633         /*
3634          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3635          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3636          * get that intercept, this function will be called again though and
3637          * we'll get the vintr intercept.
3638          */
3639         if (gif_set(svm) && nested_svm_intr(svm)) {
3640                 svm_set_vintr(svm);
3641                 svm_inject_irq(svm, 0x0);
3642         }
3643 }
3644
3645 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3646 {
3647         struct vcpu_svm *svm = to_svm(vcpu);
3648
3649         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3650             == HF_NMI_MASK)
3651                 return; /* IRET will cause a vm exit */
3652
3653         /*
3654          * Something prevents NMI from been injected. Single step over possible
3655          * problem (IRET or exception injection or interrupt shadow)
3656          */
3657         svm->nmi_singlestep = true;
3658         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3659 }
3660
3661 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3662 {
3663         return 0;
3664 }
3665
3666 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3667 {
3668         struct vcpu_svm *svm = to_svm(vcpu);
3669
3670         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3671                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3672         else
3673                 svm->asid_generation--;
3674 }
3675
3676 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3677 {
3678 }
3679
3680 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3681 {
3682         struct vcpu_svm *svm = to_svm(vcpu);
3683
3684         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3685                 return;
3686
3687         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3688                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3689                 kvm_set_cr8(vcpu, cr8);
3690         }
3691 }
3692
3693 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3694 {
3695         struct vcpu_svm *svm = to_svm(vcpu);
3696         u64 cr8;
3697
3698         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3699                 return;
3700
3701         cr8 = kvm_get_cr8(vcpu);
3702         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3703         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3704 }
3705
3706 static void svm_complete_interrupts(struct vcpu_svm *svm)
3707 {
3708         u8 vector;
3709         int type;
3710         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3711         unsigned int3_injected = svm->int3_injected;
3712
3713         svm->int3_injected = 0;
3714
3715         /*
3716          * If we've made progress since setting HF_IRET_MASK, we've
3717          * executed an IRET and can allow NMI injection.
3718          */
3719         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3720             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3721                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3722                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3723         }
3724
3725         svm->vcpu.arch.nmi_injected = false;
3726         kvm_clear_exception_queue(&svm->vcpu);
3727         kvm_clear_interrupt_queue(&svm->vcpu);
3728
3729         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3730                 return;
3731
3732         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3733
3734         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3735         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3736
3737         switch (type) {
3738         case SVM_EXITINTINFO_TYPE_NMI:
3739                 svm->vcpu.arch.nmi_injected = true;
3740                 break;
3741         case SVM_EXITINTINFO_TYPE_EXEPT:
3742                 /*
3743                  * In case of software exceptions, do not reinject the vector,
3744                  * but re-execute the instruction instead. Rewind RIP first
3745                  * if we emulated INT3 before.
3746                  */
3747                 if (kvm_exception_is_soft(vector)) {
3748                         if (vector == BP_VECTOR && int3_injected &&
3749                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3750                                 kvm_rip_write(&svm->vcpu,
3751                                               kvm_rip_read(&svm->vcpu) -
3752                                               int3_injected);
3753                         break;
3754                 }
3755                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3756                         u32 err = svm->vmcb->control.exit_int_info_err;
3757                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3758
3759                 } else
3760                         kvm_requeue_exception(&svm->vcpu, vector);
3761                 break;
3762         case SVM_EXITINTINFO_TYPE_INTR:
3763                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3764                 break;
3765         default:
3766                 break;
3767         }
3768 }
3769
3770 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3771 {
3772         struct vcpu_svm *svm = to_svm(vcpu);
3773         struct vmcb_control_area *control = &svm->vmcb->control;
3774
3775         control->exit_int_info = control->event_inj;
3776         control->exit_int_info_err = control->event_inj_err;
3777         control->event_inj = 0;
3778         svm_complete_interrupts(svm);
3779 }
3780
3781 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3782 {
3783         struct vcpu_svm *svm = to_svm(vcpu);
3784
3785         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3786         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3787         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3788
3789         /*
3790          * A vmexit emulation is required before the vcpu can be executed
3791          * again.
3792          */
3793         if (unlikely(svm->nested.exit_required))
3794                 return;
3795
3796         pre_svm_run(svm);
3797
3798         sync_lapic_to_cr8(vcpu);
3799
3800         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3801
3802         clgi();
3803
3804         local_irq_enable();
3805
3806         asm volatile (
3807                 "push %%" _ASM_BP "; \n\t"
3808                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3809                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3810                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3811                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3812                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3813                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3814 #ifdef CONFIG_X86_64
3815                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3816                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3817                 "mov %c[r10](%[svm]), %%r10 \n\t"
3818                 "mov %c[r11](%[svm]), %%r11 \n\t"
3819                 "mov %c[r12](%[svm]), %%r12 \n\t"
3820                 "mov %c[r13](%[svm]), %%r13 \n\t"
3821                 "mov %c[r14](%[svm]), %%r14 \n\t"
3822                 "mov %c[r15](%[svm]), %%r15 \n\t"
3823 #endif
3824
3825                 /* Enter guest mode */
3826                 "push %%" _ASM_AX " \n\t"
3827                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3828                 __ex(SVM_VMLOAD) "\n\t"
3829                 __ex(SVM_VMRUN) "\n\t"
3830                 __ex(SVM_VMSAVE) "\n\t"
3831                 "pop %%" _ASM_AX " \n\t"
3832
3833                 /* Save guest registers, load host registers */
3834                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3835                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3836                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3837                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3838                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3839                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3840 #ifdef CONFIG_X86_64
3841                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3842                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3843                 "mov %%r10, %c[r10](%[svm]) \n\t"
3844                 "mov %%r11, %c[r11](%[svm]) \n\t"
3845                 "mov %%r12, %c[r12](%[svm]) \n\t"
3846                 "mov %%r13, %c[r13](%[svm]) \n\t"
3847                 "mov %%r14, %c[r14](%[svm]) \n\t"
3848                 "mov %%r15, %c[r15](%[svm]) \n\t"
3849 #endif
3850                 "pop %%" _ASM_BP
3851                 :
3852                 : [svm]"a"(svm),
3853                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3854                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3855                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3856                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3857                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3858                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3859                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3860 #ifdef CONFIG_X86_64
3861                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3862                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3863                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3864                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3865                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3866                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3867                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3868                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3869 #endif
3870                 : "cc", "memory"
3871 #ifdef CONFIG_X86_64
3872                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3873                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3874 #else
3875                 , "ebx", "ecx", "edx", "esi", "edi"
3876 #endif
3877                 );
3878
3879 #ifdef CONFIG_X86_64
3880         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3881 #else
3882         loadsegment(fs, svm->host.fs);
3883 #ifndef CONFIG_X86_32_LAZY_GS
3884         loadsegment(gs, svm->host.gs);
3885 #endif
3886 #endif
3887
3888         reload_tss(vcpu);
3889
3890         local_irq_disable();
3891
3892         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3893         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3894         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3895         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3896
3897         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3898                 kvm_before_handle_nmi(&svm->vcpu);
3899
3900         stgi();
3901
3902         /* Any pending NMI will happen here */
3903
3904         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3905                 kvm_after_handle_nmi(&svm->vcpu);
3906
3907         sync_cr8_to_lapic(vcpu);
3908
3909         svm->next_rip = 0;
3910
3911         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3912
3913         /* if exit due to PF check for async PF */
3914         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3915                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3916
3917         if (npt_enabled) {
3918                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3919                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3920         }
3921
3922         /*
3923          * We need to handle MC intercepts here before the vcpu has a chance to
3924          * change the physical cpu
3925          */
3926         if (unlikely(svm->vmcb->control.exit_code ==
3927                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3928                 svm_handle_mce(svm);
3929
3930         mark_all_clean(svm->vmcb);
3931 }
3932
3933 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3934 {
3935         struct vcpu_svm *svm = to_svm(vcpu);
3936
3937         svm->vmcb->save.cr3 = root;
3938         mark_dirty(svm->vmcb, VMCB_CR);
3939         svm_flush_tlb(vcpu);
3940 }
3941
3942 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3943 {
3944         struct vcpu_svm *svm = to_svm(vcpu);
3945
3946         svm->vmcb->control.nested_cr3 = root;
3947         mark_dirty(svm->vmcb, VMCB_NPT);
3948
3949         /* Also sync guest cr3 here in case we live migrate */
3950         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3951         mark_dirty(svm->vmcb, VMCB_CR);
3952
3953         svm_flush_tlb(vcpu);
3954 }
3955
3956 static int is_disabled(void)
3957 {
3958         u64 vm_cr;
3959
3960         rdmsrl(MSR_VM_CR, vm_cr);
3961         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3962                 return 1;
3963
3964         return 0;
3965 }
3966
3967 static void
3968 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3969 {
3970         /*
3971          * Patch in the VMMCALL instruction:
3972          */
3973         hypercall[0] = 0x0f;
3974         hypercall[1] = 0x01;
3975         hypercall[2] = 0xd9;
3976 }
3977
3978 static void svm_check_processor_compat(void *rtn)
3979 {
3980         *(int *)rtn = 0;
3981 }
3982
3983 static bool svm_cpu_has_accelerated_tpr(void)
3984 {
3985         return false;
3986 }
3987
3988 static bool svm_has_high_real_mode_segbase(void)
3989 {
3990         return true;
3991 }
3992
3993 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3994 {
3995         return 0;
3996 }
3997
3998 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3999 {
4000         struct vcpu_svm *svm = to_svm(vcpu);
4001
4002         /* Update nrips enabled cache */
4003         svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4004 }
4005
4006 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4007 {
4008         switch (func) {
4009         case 0x80000001:
4010                 if (nested)
4011                         entry->ecx |= (1 << 2); /* Set SVM bit */
4012                 break;
4013         case 0x8000000A:
4014                 entry->eax = 1; /* SVM revision 1 */
4015                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4016                                    ASID emulation to nested SVM */
4017                 entry->ecx = 0; /* Reserved */
4018                 entry->edx = 0; /* Per default do not support any
4019                                    additional features */
4020
4021                 /* Support next_rip if host supports it */
4022                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4023                         entry->edx |= SVM_FEATURE_NRIP;
4024
4025                 /* Support NPT for the guest if enabled */
4026                 if (npt_enabled)
4027                         entry->edx |= SVM_FEATURE_NPT;
4028
4029                 break;
4030         }
4031 }
4032
4033 static int svm_get_lpage_level(void)
4034 {
4035         return PT_PDPE_LEVEL;
4036 }
4037
4038 static bool svm_rdtscp_supported(void)
4039 {
4040         return false;
4041 }
4042
4043 static bool svm_invpcid_supported(void)
4044 {
4045         return false;
4046 }
4047
4048 static bool svm_mpx_supported(void)
4049 {
4050         return false;
4051 }
4052
4053 static bool svm_xsaves_supported(void)
4054 {
4055         return false;
4056 }
4057
4058 static bool svm_has_wbinvd_exit(void)
4059 {
4060         return true;
4061 }
4062
4063 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4064 {
4065         struct vcpu_svm *svm = to_svm(vcpu);
4066
4067         set_exception_intercept(svm, NM_VECTOR);
4068         update_cr0_intercept(svm);
4069 }
4070
4071 #define PRE_EX(exit)  { .exit_code = (exit), \
4072                         .stage = X86_ICPT_PRE_EXCEPT, }
4073 #define POST_EX(exit) { .exit_code = (exit), \
4074                         .stage = X86_ICPT_POST_EXCEPT, }
4075 #define POST_MEM(exit) { .exit_code = (exit), \
4076                         .stage = X86_ICPT_POST_MEMACCESS, }
4077
4078 static const struct __x86_intercept {
4079         u32 exit_code;
4080         enum x86_intercept_stage stage;
4081 } x86_intercept_map[] = {
4082         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4083         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4084         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4085         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4086         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4087         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4088         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4089         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4090         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4091         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4092         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4093         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4094         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4095         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4096         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4097         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4098         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4099         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4100         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4101         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4102         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4103         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4104         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4105         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4106         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4107         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4108         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4109         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4110         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4111         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4112         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4113         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4114         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4115         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4116         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4117         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4118         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4119         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4120         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4121         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4122         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4123         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4124         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4125         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4126         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4127         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4128 };
4129
4130 #undef PRE_EX
4131 #undef POST_EX
4132 #undef POST_MEM
4133
4134 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4135                                struct x86_instruction_info *info,
4136                                enum x86_intercept_stage stage)
4137 {
4138         struct vcpu_svm *svm = to_svm(vcpu);
4139         int vmexit, ret = X86EMUL_CONTINUE;
4140         struct __x86_intercept icpt_info;
4141         struct vmcb *vmcb = svm->vmcb;
4142
4143         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4144                 goto out;
4145
4146         icpt_info = x86_intercept_map[info->intercept];
4147
4148         if (stage != icpt_info.stage)
4149                 goto out;
4150
4151         switch (icpt_info.exit_code) {
4152         case SVM_EXIT_READ_CR0:
4153                 if (info->intercept == x86_intercept_cr_read)
4154                         icpt_info.exit_code += info->modrm_reg;
4155                 break;
4156         case SVM_EXIT_WRITE_CR0: {
4157                 unsigned long cr0, val;
4158                 u64 intercept;
4159
4160                 if (info->intercept == x86_intercept_cr_write)
4161                         icpt_info.exit_code += info->modrm_reg;
4162
4163                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4164                     info->intercept == x86_intercept_clts)
4165                         break;
4166
4167                 intercept = svm->nested.intercept;
4168
4169                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4170                         break;
4171
4172                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4173                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4174
4175                 if (info->intercept == x86_intercept_lmsw) {
4176                         cr0 &= 0xfUL;
4177                         val &= 0xfUL;
4178                         /* lmsw can't clear PE - catch this here */
4179                         if (cr0 & X86_CR0_PE)
4180                                 val |= X86_CR0_PE;
4181                 }
4182
4183                 if (cr0 ^ val)
4184                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4185
4186                 break;
4187         }
4188         case SVM_EXIT_READ_DR0:
4189         case SVM_EXIT_WRITE_DR0:
4190                 icpt_info.exit_code += info->modrm_reg;
4191                 break;
4192         case SVM_EXIT_MSR:
4193                 if (info->intercept == x86_intercept_wrmsr)
4194                         vmcb->control.exit_info_1 = 1;
4195                 else
4196                         vmcb->control.exit_info_1 = 0;
4197                 break;
4198         case SVM_EXIT_PAUSE:
4199                 /*
4200                  * We get this for NOP only, but pause
4201                  * is rep not, check this here
4202                  */
4203                 if (info->rep_prefix != REPE_PREFIX)
4204                         goto out;
4205         case SVM_EXIT_IOIO: {
4206                 u64 exit_info;
4207                 u32 bytes;
4208
4209                 if (info->intercept == x86_intercept_in ||
4210                     info->intercept == x86_intercept_ins) {
4211                         exit_info = ((info->src_val & 0xffff) << 16) |
4212                                 SVM_IOIO_TYPE_MASK;
4213                         bytes = info->dst_bytes;
4214                 } else {
4215                         exit_info = (info->dst_val & 0xffff) << 16;
4216                         bytes = info->src_bytes;
4217                 }
4218
4219                 if (info->intercept == x86_intercept_outs ||
4220                     info->intercept == x86_intercept_ins)
4221                         exit_info |= SVM_IOIO_STR_MASK;
4222
4223                 if (info->rep_prefix)
4224                         exit_info |= SVM_IOIO_REP_MASK;
4225
4226                 bytes = min(bytes, 4u);
4227
4228                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4229
4230                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4231
4232                 vmcb->control.exit_info_1 = exit_info;
4233                 vmcb->control.exit_info_2 = info->next_rip;
4234
4235                 break;
4236         }
4237         default:
4238                 break;
4239         }
4240
4241         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4242         if (static_cpu_has(X86_FEATURE_NRIPS))
4243                 vmcb->control.next_rip  = info->next_rip;
4244         vmcb->control.exit_code = icpt_info.exit_code;
4245         vmexit = nested_svm_exit_handled(svm);
4246
4247         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4248                                            : X86EMUL_CONTINUE;
4249
4250 out:
4251         return ret;
4252 }
4253
4254 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4255 {
4256         local_irq_enable();
4257 }
4258
4259 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4260 {
4261 }
4262
4263 static struct kvm_x86_ops svm_x86_ops = {
4264         .cpu_has_kvm_support = has_svm,
4265         .disabled_by_bios = is_disabled,
4266         .hardware_setup = svm_hardware_setup,
4267         .hardware_unsetup = svm_hardware_unsetup,
4268         .check_processor_compatibility = svm_check_processor_compat,
4269         .hardware_enable = svm_hardware_enable,
4270         .hardware_disable = svm_hardware_disable,
4271         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4272         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4273
4274         .vcpu_create = svm_create_vcpu,
4275         .vcpu_free = svm_free_vcpu,
4276         .vcpu_reset = svm_vcpu_reset,
4277
4278         .prepare_guest_switch = svm_prepare_guest_switch,
4279         .vcpu_load = svm_vcpu_load,
4280         .vcpu_put = svm_vcpu_put,
4281
4282         .update_bp_intercept = update_bp_intercept,
4283         .get_msr = svm_get_msr,
4284         .set_msr = svm_set_msr,
4285         .get_segment_base = svm_get_segment_base,
4286         .get_segment = svm_get_segment,
4287         .set_segment = svm_set_segment,
4288         .get_cpl = svm_get_cpl,
4289         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4290         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4291         .decache_cr3 = svm_decache_cr3,
4292         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4293         .set_cr0 = svm_set_cr0,
4294         .set_cr3 = svm_set_cr3,
4295         .set_cr4 = svm_set_cr4,
4296         .set_efer = svm_set_efer,
4297         .get_idt = svm_get_idt,
4298         .set_idt = svm_set_idt,
4299         .get_gdt = svm_get_gdt,
4300         .set_gdt = svm_set_gdt,
4301         .get_dr6 = svm_get_dr6,
4302         .set_dr6 = svm_set_dr6,
4303         .set_dr7 = svm_set_dr7,
4304         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4305         .cache_reg = svm_cache_reg,
4306         .get_rflags = svm_get_rflags,
4307         .set_rflags = svm_set_rflags,
4308         .fpu_activate = svm_fpu_activate,
4309         .fpu_deactivate = svm_fpu_deactivate,
4310
4311         .tlb_flush = svm_flush_tlb,
4312
4313         .run = svm_vcpu_run,
4314         .handle_exit = handle_exit,
4315         .skip_emulated_instruction = skip_emulated_instruction,
4316         .set_interrupt_shadow = svm_set_interrupt_shadow,
4317         .get_interrupt_shadow = svm_get_interrupt_shadow,
4318         .patch_hypercall = svm_patch_hypercall,
4319         .set_irq = svm_set_irq,
4320         .set_nmi = svm_inject_nmi,
4321         .queue_exception = svm_queue_exception,
4322         .cancel_injection = svm_cancel_injection,
4323         .interrupt_allowed = svm_interrupt_allowed,
4324         .nmi_allowed = svm_nmi_allowed,
4325         .get_nmi_mask = svm_get_nmi_mask,
4326         .set_nmi_mask = svm_set_nmi_mask,
4327         .enable_nmi_window = enable_nmi_window,
4328         .enable_irq_window = enable_irq_window,
4329         .update_cr8_intercept = update_cr8_intercept,
4330         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4331         .cpu_uses_apicv = svm_cpu_uses_apicv,
4332         .load_eoi_exitmap = svm_load_eoi_exitmap,
4333         .sync_pir_to_irr = svm_sync_pir_to_irr,
4334
4335         .set_tss_addr = svm_set_tss_addr,
4336         .get_tdp_level = get_npt_level,
4337         .get_mt_mask = svm_get_mt_mask,
4338
4339         .get_exit_info = svm_get_exit_info,
4340
4341         .get_lpage_level = svm_get_lpage_level,
4342
4343         .cpuid_update = svm_cpuid_update,
4344
4345         .rdtscp_supported = svm_rdtscp_supported,
4346         .invpcid_supported = svm_invpcid_supported,
4347         .mpx_supported = svm_mpx_supported,
4348         .xsaves_supported = svm_xsaves_supported,
4349
4350         .set_supported_cpuid = svm_set_supported_cpuid,
4351
4352         .has_wbinvd_exit = svm_has_wbinvd_exit,
4353
4354         .read_tsc_offset = svm_read_tsc_offset,
4355         .write_tsc_offset = svm_write_tsc_offset,
4356         .adjust_tsc_offset_guest = svm_adjust_tsc_offset_guest,
4357         .read_l1_tsc = svm_read_l1_tsc,
4358
4359         .set_tdp_cr3 = set_tdp_cr3,
4360
4361         .check_intercept = svm_check_intercept,
4362         .handle_external_intr = svm_handle_external_intr,
4363
4364         .sched_in = svm_sched_in,
4365
4366         .pmu_ops = &amd_pmu_ops,
4367 };
4368
4369 static int __init svm_init(void)
4370 {
4371         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4372                         __alignof__(struct vcpu_svm), THIS_MODULE);
4373 }
4374
4375 static void __exit svm_exit(void)
4376 {
4377         kvm_exit();
4378 }
4379
4380 module_init(svm_init)
4381 module_exit(svm_exit)