cs5535: add pci id for AMD based CS5535 controllers
[cascardo/linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29
30 #include <asm/desc.h>
31
32 #include <asm/virtext.h>
33 #include "trace.h"
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define SVM_FEATURE_NPT  (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
49
50 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
51 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
52 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
53
54 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
55
56 /* Turn on to get debugging output*/
57 /* #define NESTED_DEBUG */
58
59 #ifdef NESTED_DEBUG
60 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
61 #else
62 #define nsvm_printk(fmt, args...) do {} while(0)
63 #endif
64
65 static const u32 host_save_user_msrs[] = {
66 #ifdef CONFIG_X86_64
67         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
68         MSR_FS_BASE,
69 #endif
70         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
71 };
72
73 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
74
75 struct kvm_vcpu;
76
77 struct nested_state {
78         struct vmcb *hsave;
79         u64 hsave_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87
88         /* cache for intercepts of the guest */
89         u16 intercept_cr_read;
90         u16 intercept_cr_write;
91         u16 intercept_dr_read;
92         u16 intercept_dr_write;
93         u32 intercept_exceptions;
94         u64 intercept;
95
96 };
97
98 struct vcpu_svm {
99         struct kvm_vcpu vcpu;
100         struct vmcb *vmcb;
101         unsigned long vmcb_pa;
102         struct svm_cpu_data *svm_data;
103         uint64_t asid_generation;
104         uint64_t sysenter_esp;
105         uint64_t sysenter_eip;
106
107         u64 next_rip;
108
109         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
110         u64 host_gs_base;
111
112         u32 *msrpm;
113
114         struct nested_state nested;
115 };
116
117 /* enable NPT for AMD64 and X86 with PAE */
118 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
119 static bool npt_enabled = true;
120 #else
121 static bool npt_enabled = false;
122 #endif
123 static int npt = 1;
124
125 module_param(npt, int, S_IRUGO);
126
127 static int nested = 1;
128 module_param(nested, int, S_IRUGO);
129
130 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
131 static void svm_complete_interrupts(struct vcpu_svm *svm);
132
133 static int nested_svm_exit_handled(struct vcpu_svm *svm);
134 static int nested_svm_vmexit(struct vcpu_svm *svm);
135 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
136                                       bool has_error_code, u32 error_code);
137
138 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
139 {
140         return container_of(vcpu, struct vcpu_svm, vcpu);
141 }
142
143 static inline bool is_nested(struct vcpu_svm *svm)
144 {
145         return svm->nested.vmcb;
146 }
147
148 static inline void enable_gif(struct vcpu_svm *svm)
149 {
150         svm->vcpu.arch.hflags |= HF_GIF_MASK;
151 }
152
153 static inline void disable_gif(struct vcpu_svm *svm)
154 {
155         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
156 }
157
158 static inline bool gif_set(struct vcpu_svm *svm)
159 {
160         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
161 }
162
163 static unsigned long iopm_base;
164
165 struct kvm_ldttss_desc {
166         u16 limit0;
167         u16 base0;
168         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
169         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
170         u32 base3;
171         u32 zero1;
172 } __attribute__((packed));
173
174 struct svm_cpu_data {
175         int cpu;
176
177         u64 asid_generation;
178         u32 max_asid;
179         u32 next_asid;
180         struct kvm_ldttss_desc *tss_desc;
181
182         struct page *save_area;
183 };
184
185 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
186 static uint32_t svm_features;
187
188 struct svm_init_data {
189         int cpu;
190         int r;
191 };
192
193 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
194
195 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
196 #define MSRS_RANGE_SIZE 2048
197 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
198
199 #define MAX_INST_SIZE 15
200
201 static inline u32 svm_has(u32 feat)
202 {
203         return svm_features & feat;
204 }
205
206 static inline void clgi(void)
207 {
208         asm volatile (__ex(SVM_CLGI));
209 }
210
211 static inline void stgi(void)
212 {
213         asm volatile (__ex(SVM_STGI));
214 }
215
216 static inline void invlpga(unsigned long addr, u32 asid)
217 {
218         asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
219 }
220
221 static inline void force_new_asid(struct kvm_vcpu *vcpu)
222 {
223         to_svm(vcpu)->asid_generation--;
224 }
225
226 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
227 {
228         force_new_asid(vcpu);
229 }
230
231 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
232 {
233         if (!npt_enabled && !(efer & EFER_LMA))
234                 efer &= ~EFER_LME;
235
236         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
237         vcpu->arch.shadow_efer = efer;
238 }
239
240 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
241                                 bool has_error_code, u32 error_code)
242 {
243         struct vcpu_svm *svm = to_svm(vcpu);
244
245         /* If we are within a nested VM we'd better #VMEXIT and let the
246            guest handle the exception */
247         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
248                 return;
249
250         svm->vmcb->control.event_inj = nr
251                 | SVM_EVTINJ_VALID
252                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
253                 | SVM_EVTINJ_TYPE_EXEPT;
254         svm->vmcb->control.event_inj_err = error_code;
255 }
256
257 static int is_external_interrupt(u32 info)
258 {
259         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
260         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
261 }
262
263 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
264 {
265         struct vcpu_svm *svm = to_svm(vcpu);
266         u32 ret = 0;
267
268         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
269                 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
270         return ret & mask;
271 }
272
273 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
274 {
275         struct vcpu_svm *svm = to_svm(vcpu);
276
277         if (mask == 0)
278                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
279         else
280                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
281
282 }
283
284 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
285 {
286         struct vcpu_svm *svm = to_svm(vcpu);
287
288         if (!svm->next_rip) {
289                 if (emulate_instruction(vcpu, vcpu->run, 0, 0, EMULTYPE_SKIP) !=
290                                 EMULATE_DONE)
291                         printk(KERN_DEBUG "%s: NOP\n", __func__);
292                 return;
293         }
294         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
295                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
296                        __func__, kvm_rip_read(vcpu), svm->next_rip);
297
298         kvm_rip_write(vcpu, svm->next_rip);
299         svm_set_interrupt_shadow(vcpu, 0);
300 }
301
302 static int has_svm(void)
303 {
304         const char *msg;
305
306         if (!cpu_has_svm(&msg)) {
307                 printk(KERN_INFO "has_svm: %s\n", msg);
308                 return 0;
309         }
310
311         return 1;
312 }
313
314 static void svm_hardware_disable(void *garbage)
315 {
316         cpu_svm_disable();
317 }
318
319 static void svm_hardware_enable(void *garbage)
320 {
321
322         struct svm_cpu_data *svm_data;
323         uint64_t efer;
324         struct descriptor_table gdt_descr;
325         struct desc_struct *gdt;
326         int me = raw_smp_processor_id();
327
328         if (!has_svm()) {
329                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
330                 return;
331         }
332         svm_data = per_cpu(svm_data, me);
333
334         if (!svm_data) {
335                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
336                        me);
337                 return;
338         }
339
340         svm_data->asid_generation = 1;
341         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
342         svm_data->next_asid = svm_data->max_asid + 1;
343
344         kvm_get_gdt(&gdt_descr);
345         gdt = (struct desc_struct *)gdt_descr.base;
346         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
347
348         rdmsrl(MSR_EFER, efer);
349         wrmsrl(MSR_EFER, efer | EFER_SVME);
350
351         wrmsrl(MSR_VM_HSAVE_PA,
352                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
353 }
354
355 static void svm_cpu_uninit(int cpu)
356 {
357         struct svm_cpu_data *svm_data
358                 = per_cpu(svm_data, raw_smp_processor_id());
359
360         if (!svm_data)
361                 return;
362
363         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
364         __free_page(svm_data->save_area);
365         kfree(svm_data);
366 }
367
368 static int svm_cpu_init(int cpu)
369 {
370         struct svm_cpu_data *svm_data;
371         int r;
372
373         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
374         if (!svm_data)
375                 return -ENOMEM;
376         svm_data->cpu = cpu;
377         svm_data->save_area = alloc_page(GFP_KERNEL);
378         r = -ENOMEM;
379         if (!svm_data->save_area)
380                 goto err_1;
381
382         per_cpu(svm_data, cpu) = svm_data;
383
384         return 0;
385
386 err_1:
387         kfree(svm_data);
388         return r;
389
390 }
391
392 static void set_msr_interception(u32 *msrpm, unsigned msr,
393                                  int read, int write)
394 {
395         int i;
396
397         for (i = 0; i < NUM_MSR_MAPS; i++) {
398                 if (msr >= msrpm_ranges[i] &&
399                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
400                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
401                                           msrpm_ranges[i]) * 2;
402
403                         u32 *base = msrpm + (msr_offset / 32);
404                         u32 msr_shift = msr_offset % 32;
405                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
406                         *base = (*base & ~(0x3 << msr_shift)) |
407                                 (mask << msr_shift);
408                         return;
409                 }
410         }
411         BUG();
412 }
413
414 static void svm_vcpu_init_msrpm(u32 *msrpm)
415 {
416         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
417
418 #ifdef CONFIG_X86_64
419         set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
420         set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
421         set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
422         set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
423         set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
424         set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
425 #endif
426         set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
427         set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
428 }
429
430 static void svm_enable_lbrv(struct vcpu_svm *svm)
431 {
432         u32 *msrpm = svm->msrpm;
433
434         svm->vmcb->control.lbr_ctl = 1;
435         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
436         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
437         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
438         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
439 }
440
441 static void svm_disable_lbrv(struct vcpu_svm *svm)
442 {
443         u32 *msrpm = svm->msrpm;
444
445         svm->vmcb->control.lbr_ctl = 0;
446         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
447         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
448         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
449         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
450 }
451
452 static __init int svm_hardware_setup(void)
453 {
454         int cpu;
455         struct page *iopm_pages;
456         void *iopm_va;
457         int r;
458
459         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
460
461         if (!iopm_pages)
462                 return -ENOMEM;
463
464         iopm_va = page_address(iopm_pages);
465         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
466         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
467
468         if (boot_cpu_has(X86_FEATURE_NX))
469                 kvm_enable_efer_bits(EFER_NX);
470
471         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
472                 kvm_enable_efer_bits(EFER_FFXSR);
473
474         if (nested) {
475                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
476                 kvm_enable_efer_bits(EFER_SVME);
477         }
478
479         for_each_online_cpu(cpu) {
480                 r = svm_cpu_init(cpu);
481                 if (r)
482                         goto err;
483         }
484
485         svm_features = cpuid_edx(SVM_CPUID_FUNC);
486
487         if (!svm_has(SVM_FEATURE_NPT))
488                 npt_enabled = false;
489
490         if (npt_enabled && !npt) {
491                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
492                 npt_enabled = false;
493         }
494
495         if (npt_enabled) {
496                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
497                 kvm_enable_tdp();
498         } else
499                 kvm_disable_tdp();
500
501         return 0;
502
503 err:
504         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
505         iopm_base = 0;
506         return r;
507 }
508
509 static __exit void svm_hardware_unsetup(void)
510 {
511         int cpu;
512
513         for_each_online_cpu(cpu)
514                 svm_cpu_uninit(cpu);
515
516         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
517         iopm_base = 0;
518 }
519
520 static void init_seg(struct vmcb_seg *seg)
521 {
522         seg->selector = 0;
523         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
524                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
525         seg->limit = 0xffff;
526         seg->base = 0;
527 }
528
529 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
530 {
531         seg->selector = 0;
532         seg->attrib = SVM_SELECTOR_P_MASK | type;
533         seg->limit = 0xffff;
534         seg->base = 0;
535 }
536
537 static void init_vmcb(struct vcpu_svm *svm)
538 {
539         struct vmcb_control_area *control = &svm->vmcb->control;
540         struct vmcb_save_area *save = &svm->vmcb->save;
541
542         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
543                                         INTERCEPT_CR3_MASK |
544                                         INTERCEPT_CR4_MASK;
545
546         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
547                                         INTERCEPT_CR3_MASK |
548                                         INTERCEPT_CR4_MASK |
549                                         INTERCEPT_CR8_MASK;
550
551         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
552                                         INTERCEPT_DR1_MASK |
553                                         INTERCEPT_DR2_MASK |
554                                         INTERCEPT_DR3_MASK;
555
556         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
557                                         INTERCEPT_DR1_MASK |
558                                         INTERCEPT_DR2_MASK |
559                                         INTERCEPT_DR3_MASK |
560                                         INTERCEPT_DR5_MASK |
561                                         INTERCEPT_DR7_MASK;
562
563         control->intercept_exceptions = (1 << PF_VECTOR) |
564                                         (1 << UD_VECTOR) |
565                                         (1 << MC_VECTOR);
566
567
568         control->intercept =    (1ULL << INTERCEPT_INTR) |
569                                 (1ULL << INTERCEPT_NMI) |
570                                 (1ULL << INTERCEPT_SMI) |
571                                 (1ULL << INTERCEPT_CPUID) |
572                                 (1ULL << INTERCEPT_INVD) |
573                                 (1ULL << INTERCEPT_HLT) |
574                                 (1ULL << INTERCEPT_INVLPG) |
575                                 (1ULL << INTERCEPT_INVLPGA) |
576                                 (1ULL << INTERCEPT_IOIO_PROT) |
577                                 (1ULL << INTERCEPT_MSR_PROT) |
578                                 (1ULL << INTERCEPT_TASK_SWITCH) |
579                                 (1ULL << INTERCEPT_SHUTDOWN) |
580                                 (1ULL << INTERCEPT_VMRUN) |
581                                 (1ULL << INTERCEPT_VMMCALL) |
582                                 (1ULL << INTERCEPT_VMLOAD) |
583                                 (1ULL << INTERCEPT_VMSAVE) |
584                                 (1ULL << INTERCEPT_STGI) |
585                                 (1ULL << INTERCEPT_CLGI) |
586                                 (1ULL << INTERCEPT_SKINIT) |
587                                 (1ULL << INTERCEPT_WBINVD) |
588                                 (1ULL << INTERCEPT_MONITOR) |
589                                 (1ULL << INTERCEPT_MWAIT);
590
591         control->iopm_base_pa = iopm_base;
592         control->msrpm_base_pa = __pa(svm->msrpm);
593         control->tsc_offset = 0;
594         control->int_ctl = V_INTR_MASKING_MASK;
595
596         init_seg(&save->es);
597         init_seg(&save->ss);
598         init_seg(&save->ds);
599         init_seg(&save->fs);
600         init_seg(&save->gs);
601
602         save->cs.selector = 0xf000;
603         /* Executable/Readable Code Segment */
604         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
605                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
606         save->cs.limit = 0xffff;
607         /*
608          * cs.base should really be 0xffff0000, but vmx can't handle that, so
609          * be consistent with it.
610          *
611          * Replace when we have real mode working for vmx.
612          */
613         save->cs.base = 0xf0000;
614
615         save->gdtr.limit = 0xffff;
616         save->idtr.limit = 0xffff;
617
618         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
619         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
620
621         save->efer = EFER_SVME;
622         save->dr6 = 0xffff0ff0;
623         save->dr7 = 0x400;
624         save->rflags = 2;
625         save->rip = 0x0000fff0;
626         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
627
628         /*
629          * cr0 val on cpu init should be 0x60000010, we enable cpu
630          * cache by default. the orderly way is to enable cache in bios.
631          */
632         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
633         save->cr4 = X86_CR4_PAE;
634         /* rdx = ?? */
635
636         if (npt_enabled) {
637                 /* Setup VMCB for Nested Paging */
638                 control->nested_ctl = 1;
639                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
640                                         (1ULL << INTERCEPT_INVLPG));
641                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
642                 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
643                                                 INTERCEPT_CR3_MASK);
644                 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
645                                                  INTERCEPT_CR3_MASK);
646                 save->g_pat = 0x0007040600070406ULL;
647                 /* enable caching because the QEMU Bios doesn't enable it */
648                 save->cr0 = X86_CR0_ET;
649                 save->cr3 = 0;
650                 save->cr4 = 0;
651         }
652         force_new_asid(&svm->vcpu);
653
654         svm->nested.vmcb = 0;
655         svm->vcpu.arch.hflags = 0;
656
657         enable_gif(svm);
658 }
659
660 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
661 {
662         struct vcpu_svm *svm = to_svm(vcpu);
663
664         init_vmcb(svm);
665
666         if (!kvm_vcpu_is_bsp(vcpu)) {
667                 kvm_rip_write(vcpu, 0);
668                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
669                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
670         }
671         vcpu->arch.regs_avail = ~0;
672         vcpu->arch.regs_dirty = ~0;
673
674         return 0;
675 }
676
677 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
678 {
679         struct vcpu_svm *svm;
680         struct page *page;
681         struct page *msrpm_pages;
682         struct page *hsave_page;
683         struct page *nested_msrpm_pages;
684         int err;
685
686         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
687         if (!svm) {
688                 err = -ENOMEM;
689                 goto out;
690         }
691
692         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
693         if (err)
694                 goto free_svm;
695
696         page = alloc_page(GFP_KERNEL);
697         if (!page) {
698                 err = -ENOMEM;
699                 goto uninit;
700         }
701
702         err = -ENOMEM;
703         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
704         if (!msrpm_pages)
705                 goto uninit;
706
707         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
708         if (!nested_msrpm_pages)
709                 goto uninit;
710
711         svm->msrpm = page_address(msrpm_pages);
712         svm_vcpu_init_msrpm(svm->msrpm);
713
714         hsave_page = alloc_page(GFP_KERNEL);
715         if (!hsave_page)
716                 goto uninit;
717         svm->nested.hsave = page_address(hsave_page);
718
719         svm->nested.msrpm = page_address(nested_msrpm_pages);
720
721         svm->vmcb = page_address(page);
722         clear_page(svm->vmcb);
723         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
724         svm->asid_generation = 0;
725         init_vmcb(svm);
726
727         fx_init(&svm->vcpu);
728         svm->vcpu.fpu_active = 1;
729         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
730         if (kvm_vcpu_is_bsp(&svm->vcpu))
731                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
732
733         return &svm->vcpu;
734
735 uninit:
736         kvm_vcpu_uninit(&svm->vcpu);
737 free_svm:
738         kmem_cache_free(kvm_vcpu_cache, svm);
739 out:
740         return ERR_PTR(err);
741 }
742
743 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
744 {
745         struct vcpu_svm *svm = to_svm(vcpu);
746
747         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
748         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
749         __free_page(virt_to_page(svm->nested.hsave));
750         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
751         kvm_vcpu_uninit(vcpu);
752         kmem_cache_free(kvm_vcpu_cache, svm);
753 }
754
755 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
756 {
757         struct vcpu_svm *svm = to_svm(vcpu);
758         int i;
759
760         if (unlikely(cpu != vcpu->cpu)) {
761                 u64 tsc_this, delta;
762
763                 /*
764                  * Make sure that the guest sees a monotonically
765                  * increasing TSC.
766                  */
767                 rdtscll(tsc_this);
768                 delta = vcpu->arch.host_tsc - tsc_this;
769                 svm->vmcb->control.tsc_offset += delta;
770                 vcpu->cpu = cpu;
771                 kvm_migrate_timers(vcpu);
772                 svm->asid_generation = 0;
773         }
774
775         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
776                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
777 }
778
779 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
780 {
781         struct vcpu_svm *svm = to_svm(vcpu);
782         int i;
783
784         ++vcpu->stat.host_state_reload;
785         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
786                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
787
788         rdtscll(vcpu->arch.host_tsc);
789 }
790
791 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
792 {
793         return to_svm(vcpu)->vmcb->save.rflags;
794 }
795
796 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
797 {
798         to_svm(vcpu)->vmcb->save.rflags = rflags;
799 }
800
801 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
802 {
803         switch (reg) {
804         case VCPU_EXREG_PDPTR:
805                 BUG_ON(!npt_enabled);
806                 load_pdptrs(vcpu, vcpu->arch.cr3);
807                 break;
808         default:
809                 BUG();
810         }
811 }
812
813 static void svm_set_vintr(struct vcpu_svm *svm)
814 {
815         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
816 }
817
818 static void svm_clear_vintr(struct vcpu_svm *svm)
819 {
820         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
821 }
822
823 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
824 {
825         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
826
827         switch (seg) {
828         case VCPU_SREG_CS: return &save->cs;
829         case VCPU_SREG_DS: return &save->ds;
830         case VCPU_SREG_ES: return &save->es;
831         case VCPU_SREG_FS: return &save->fs;
832         case VCPU_SREG_GS: return &save->gs;
833         case VCPU_SREG_SS: return &save->ss;
834         case VCPU_SREG_TR: return &save->tr;
835         case VCPU_SREG_LDTR: return &save->ldtr;
836         }
837         BUG();
838         return NULL;
839 }
840
841 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
842 {
843         struct vmcb_seg *s = svm_seg(vcpu, seg);
844
845         return s->base;
846 }
847
848 static void svm_get_segment(struct kvm_vcpu *vcpu,
849                             struct kvm_segment *var, int seg)
850 {
851         struct vmcb_seg *s = svm_seg(vcpu, seg);
852
853         var->base = s->base;
854         var->limit = s->limit;
855         var->selector = s->selector;
856         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
857         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
858         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
859         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
860         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
861         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
862         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
863         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
864
865         /* AMD's VMCB does not have an explicit unusable field, so emulate it
866          * for cross vendor migration purposes by "not present"
867          */
868         var->unusable = !var->present || (var->type == 0);
869
870         switch (seg) {
871         case VCPU_SREG_CS:
872                 /*
873                  * SVM always stores 0 for the 'G' bit in the CS selector in
874                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
875                  * Intel's VMENTRY has a check on the 'G' bit.
876                  */
877                 var->g = s->limit > 0xfffff;
878                 break;
879         case VCPU_SREG_TR:
880                 /*
881                  * Work around a bug where the busy flag in the tr selector
882                  * isn't exposed
883                  */
884                 var->type |= 0x2;
885                 break;
886         case VCPU_SREG_DS:
887         case VCPU_SREG_ES:
888         case VCPU_SREG_FS:
889         case VCPU_SREG_GS:
890                 /*
891                  * The accessed bit must always be set in the segment
892                  * descriptor cache, although it can be cleared in the
893                  * descriptor, the cached bit always remains at 1. Since
894                  * Intel has a check on this, set it here to support
895                  * cross-vendor migration.
896                  */
897                 if (!var->unusable)
898                         var->type |= 0x1;
899                 break;
900         case VCPU_SREG_SS:
901                 /* On AMD CPUs sometimes the DB bit in the segment
902                  * descriptor is left as 1, although the whole segment has
903                  * been made unusable. Clear it here to pass an Intel VMX
904                  * entry check when cross vendor migrating.
905                  */
906                 if (var->unusable)
907                         var->db = 0;
908                 break;
909         }
910 }
911
912 static int svm_get_cpl(struct kvm_vcpu *vcpu)
913 {
914         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
915
916         return save->cpl;
917 }
918
919 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
920 {
921         struct vcpu_svm *svm = to_svm(vcpu);
922
923         dt->limit = svm->vmcb->save.idtr.limit;
924         dt->base = svm->vmcb->save.idtr.base;
925 }
926
927 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
928 {
929         struct vcpu_svm *svm = to_svm(vcpu);
930
931         svm->vmcb->save.idtr.limit = dt->limit;
932         svm->vmcb->save.idtr.base = dt->base ;
933 }
934
935 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
936 {
937         struct vcpu_svm *svm = to_svm(vcpu);
938
939         dt->limit = svm->vmcb->save.gdtr.limit;
940         dt->base = svm->vmcb->save.gdtr.base;
941 }
942
943 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
944 {
945         struct vcpu_svm *svm = to_svm(vcpu);
946
947         svm->vmcb->save.gdtr.limit = dt->limit;
948         svm->vmcb->save.gdtr.base = dt->base ;
949 }
950
951 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
952 {
953 }
954
955 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
956 {
957         struct vcpu_svm *svm = to_svm(vcpu);
958
959 #ifdef CONFIG_X86_64
960         if (vcpu->arch.shadow_efer & EFER_LME) {
961                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
962                         vcpu->arch.shadow_efer |= EFER_LMA;
963                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
964                 }
965
966                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
967                         vcpu->arch.shadow_efer &= ~EFER_LMA;
968                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
969                 }
970         }
971 #endif
972         if (npt_enabled)
973                 goto set;
974
975         if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
976                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
977                 vcpu->fpu_active = 1;
978         }
979
980         vcpu->arch.cr0 = cr0;
981         cr0 |= X86_CR0_PG | X86_CR0_WP;
982         if (!vcpu->fpu_active) {
983                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
984                 cr0 |= X86_CR0_TS;
985         }
986 set:
987         /*
988          * re-enable caching here because the QEMU bios
989          * does not do it - this results in some delay at
990          * reboot
991          */
992         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
993         svm->vmcb->save.cr0 = cr0;
994 }
995
996 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
997 {
998         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
999         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1000
1001         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1002                 force_new_asid(vcpu);
1003
1004         vcpu->arch.cr4 = cr4;
1005         if (!npt_enabled)
1006                 cr4 |= X86_CR4_PAE;
1007         cr4 |= host_cr4_mce;
1008         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1009 }
1010
1011 static void svm_set_segment(struct kvm_vcpu *vcpu,
1012                             struct kvm_segment *var, int seg)
1013 {
1014         struct vcpu_svm *svm = to_svm(vcpu);
1015         struct vmcb_seg *s = svm_seg(vcpu, seg);
1016
1017         s->base = var->base;
1018         s->limit = var->limit;
1019         s->selector = var->selector;
1020         if (var->unusable)
1021                 s->attrib = 0;
1022         else {
1023                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1024                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1025                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1026                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1027                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1028                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1029                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1030                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1031         }
1032         if (seg == VCPU_SREG_CS)
1033                 svm->vmcb->save.cpl
1034                         = (svm->vmcb->save.cs.attrib
1035                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1036
1037 }
1038
1039 static void update_db_intercept(struct kvm_vcpu *vcpu)
1040 {
1041         struct vcpu_svm *svm = to_svm(vcpu);
1042
1043         svm->vmcb->control.intercept_exceptions &=
1044                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1045
1046         if (vcpu->arch.singlestep)
1047                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1048
1049         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1050                 if (vcpu->guest_debug &
1051                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1052                         svm->vmcb->control.intercept_exceptions |=
1053                                 1 << DB_VECTOR;
1054                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1055                         svm->vmcb->control.intercept_exceptions |=
1056                                 1 << BP_VECTOR;
1057         } else
1058                 vcpu->guest_debug = 0;
1059 }
1060
1061 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1062 {
1063         int old_debug = vcpu->guest_debug;
1064         struct vcpu_svm *svm = to_svm(vcpu);
1065
1066         vcpu->guest_debug = dbg->control;
1067
1068         update_db_intercept(vcpu);
1069
1070         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1071                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1072         else
1073                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1074
1075         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1076                 svm->vmcb->save.rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1077         else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1078                 svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1079
1080         return 0;
1081 }
1082
1083 static void load_host_msrs(struct kvm_vcpu *vcpu)
1084 {
1085 #ifdef CONFIG_X86_64
1086         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1087 #endif
1088 }
1089
1090 static void save_host_msrs(struct kvm_vcpu *vcpu)
1091 {
1092 #ifdef CONFIG_X86_64
1093         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1094 #endif
1095 }
1096
1097 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
1098 {
1099         if (svm_data->next_asid > svm_data->max_asid) {
1100                 ++svm_data->asid_generation;
1101                 svm_data->next_asid = 1;
1102                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1103         }
1104
1105         svm->asid_generation = svm_data->asid_generation;
1106         svm->vmcb->control.asid = svm_data->next_asid++;
1107 }
1108
1109 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1110 {
1111         struct vcpu_svm *svm = to_svm(vcpu);
1112         unsigned long val;
1113
1114         switch (dr) {
1115         case 0 ... 3:
1116                 val = vcpu->arch.db[dr];
1117                 break;
1118         case 6:
1119                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120                         val = vcpu->arch.dr6;
1121                 else
1122                         val = svm->vmcb->save.dr6;
1123                 break;
1124         case 7:
1125                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1126                         val = vcpu->arch.dr7;
1127                 else
1128                         val = svm->vmcb->save.dr7;
1129                 break;
1130         default:
1131                 val = 0;
1132         }
1133
1134         return val;
1135 }
1136
1137 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1138                        int *exception)
1139 {
1140         struct vcpu_svm *svm = to_svm(vcpu);
1141
1142         *exception = 0;
1143
1144         switch (dr) {
1145         case 0 ... 3:
1146                 vcpu->arch.db[dr] = value;
1147                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1148                         vcpu->arch.eff_db[dr] = value;
1149                 return;
1150         case 4 ... 5:
1151                 if (vcpu->arch.cr4 & X86_CR4_DE)
1152                         *exception = UD_VECTOR;
1153                 return;
1154         case 6:
1155                 if (value & 0xffffffff00000000ULL) {
1156                         *exception = GP_VECTOR;
1157                         return;
1158                 }
1159                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1160                 return;
1161         case 7:
1162                 if (value & 0xffffffff00000000ULL) {
1163                         *exception = GP_VECTOR;
1164                         return;
1165                 }
1166                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1167                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1168                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1169                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1170                 }
1171                 return;
1172         default:
1173                 /* FIXME: Possible case? */
1174                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1175                        __func__, dr);
1176                 *exception = UD_VECTOR;
1177                 return;
1178         }
1179 }
1180
1181 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1182 {
1183         u64 fault_address;
1184         u32 error_code;
1185
1186         fault_address  = svm->vmcb->control.exit_info_2;
1187         error_code = svm->vmcb->control.exit_info_1;
1188
1189         trace_kvm_page_fault(fault_address, error_code);
1190         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1191                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1192         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1193 }
1194
1195 static int db_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1196 {
1197         if (!(svm->vcpu.guest_debug &
1198               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1199                 !svm->vcpu.arch.singlestep) {
1200                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1201                 return 1;
1202         }
1203
1204         if (svm->vcpu.arch.singlestep) {
1205                 svm->vcpu.arch.singlestep = false;
1206                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1207                         svm->vmcb->save.rflags &=
1208                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1209                 update_db_intercept(&svm->vcpu);
1210         }
1211
1212         if (svm->vcpu.guest_debug &
1213             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1214                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1215                 kvm_run->debug.arch.pc =
1216                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1217                 kvm_run->debug.arch.exception = DB_VECTOR;
1218                 return 0;
1219         }
1220
1221         return 1;
1222 }
1223
1224 static int bp_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1225 {
1226         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1227         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1228         kvm_run->debug.arch.exception = BP_VECTOR;
1229         return 0;
1230 }
1231
1232 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1233 {
1234         int er;
1235
1236         er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1237         if (er != EMULATE_DONE)
1238                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1239         return 1;
1240 }
1241
1242 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1243 {
1244         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1245         if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1246                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1247         svm->vcpu.fpu_active = 1;
1248
1249         return 1;
1250 }
1251
1252 static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1253 {
1254         /*
1255          * On an #MC intercept the MCE handler is not called automatically in
1256          * the host. So do it by hand here.
1257          */
1258         asm volatile (
1259                 "int $0x12\n");
1260         /* not sure if we ever come back to this point */
1261
1262         return 1;
1263 }
1264
1265 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1266 {
1267         /*
1268          * VMCB is undefined after a SHUTDOWN intercept
1269          * so reinitialize it.
1270          */
1271         clear_page(svm->vmcb);
1272         init_vmcb(svm);
1273
1274         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1275         return 0;
1276 }
1277
1278 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1279 {
1280         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1281         int size, in, string;
1282         unsigned port;
1283
1284         ++svm->vcpu.stat.io_exits;
1285
1286         svm->next_rip = svm->vmcb->control.exit_info_2;
1287
1288         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1289
1290         if (string) {
1291                 if (emulate_instruction(&svm->vcpu,
1292                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1293                         return 0;
1294                 return 1;
1295         }
1296
1297         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1298         port = io_info >> 16;
1299         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1300
1301         skip_emulated_instruction(&svm->vcpu);
1302         return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1303 }
1304
1305 static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1306 {
1307         return 1;
1308 }
1309
1310 static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1311 {
1312         ++svm->vcpu.stat.irq_exits;
1313         return 1;
1314 }
1315
1316 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1317 {
1318         return 1;
1319 }
1320
1321 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1322 {
1323         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1324         skip_emulated_instruction(&svm->vcpu);
1325         return kvm_emulate_halt(&svm->vcpu);
1326 }
1327
1328 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1329 {
1330         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1331         skip_emulated_instruction(&svm->vcpu);
1332         kvm_emulate_hypercall(&svm->vcpu);
1333         return 1;
1334 }
1335
1336 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1337 {
1338         if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1339             || !is_paging(&svm->vcpu)) {
1340                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1341                 return 1;
1342         }
1343
1344         if (svm->vmcb->save.cpl) {
1345                 kvm_inject_gp(&svm->vcpu, 0);
1346                 return 1;
1347         }
1348
1349        return 0;
1350 }
1351
1352 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1353                                       bool has_error_code, u32 error_code)
1354 {
1355         if (!is_nested(svm))
1356                 return 0;
1357
1358         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1359         svm->vmcb->control.exit_code_hi = 0;
1360         svm->vmcb->control.exit_info_1 = error_code;
1361         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1362
1363         return nested_svm_exit_handled(svm);
1364 }
1365
1366 static inline int nested_svm_intr(struct vcpu_svm *svm)
1367 {
1368         if (!is_nested(svm))
1369                 return 0;
1370
1371         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1372                 return 0;
1373
1374         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1375                 return 0;
1376
1377         svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1378
1379         if (nested_svm_exit_handled(svm)) {
1380                 nsvm_printk("VMexit -> INTR\n");
1381                 return 1;
1382         }
1383
1384         return 0;
1385 }
1386
1387 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1388 {
1389         struct page *page;
1390
1391         down_read(&current->mm->mmap_sem);
1392         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1393         up_read(&current->mm->mmap_sem);
1394
1395         if (is_error_page(page))
1396                 goto error;
1397
1398         return kmap_atomic(page, idx);
1399
1400 error:
1401         kvm_release_page_clean(page);
1402         kvm_inject_gp(&svm->vcpu, 0);
1403
1404         return NULL;
1405 }
1406
1407 static void nested_svm_unmap(void *addr, enum km_type idx)
1408 {
1409         struct page *page;
1410
1411         if (!addr)
1412                 return;
1413
1414         page = kmap_atomic_to_page(addr);
1415
1416         kunmap_atomic(addr, idx);
1417         kvm_release_page_dirty(page);
1418 }
1419
1420 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1421 {
1422         u32 param = svm->vmcb->control.exit_info_1 & 1;
1423         u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1424         bool ret = false;
1425         u32 t0, t1;
1426         u8 *msrpm;
1427
1428         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1429                 return false;
1430
1431         msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1432
1433         if (!msrpm)
1434                 goto out;
1435
1436         switch (msr) {
1437         case 0 ... 0x1fff:
1438                 t0 = (msr * 2) % 8;
1439                 t1 = msr / 8;
1440                 break;
1441         case 0xc0000000 ... 0xc0001fff:
1442                 t0 = (8192 + msr - 0xc0000000) * 2;
1443                 t1 = (t0 / 8);
1444                 t0 %= 8;
1445                 break;
1446         case 0xc0010000 ... 0xc0011fff:
1447                 t0 = (16384 + msr - 0xc0010000) * 2;
1448                 t1 = (t0 / 8);
1449                 t0 %= 8;
1450                 break;
1451         default:
1452                 ret = true;
1453                 goto out;
1454         }
1455
1456         ret = msrpm[t1] & ((1 << param) << t0);
1457
1458 out:
1459         nested_svm_unmap(msrpm, KM_USER0);
1460
1461         return ret;
1462 }
1463
1464 static int nested_svm_exit_special(struct vcpu_svm *svm)
1465 {
1466         u32 exit_code = svm->vmcb->control.exit_code;
1467
1468         switch (exit_code) {
1469         case SVM_EXIT_INTR:
1470         case SVM_EXIT_NMI:
1471                 return NESTED_EXIT_HOST;
1472                 /* For now we are always handling NPFs when using them */
1473         case SVM_EXIT_NPF:
1474                 if (npt_enabled)
1475                         return NESTED_EXIT_HOST;
1476                 break;
1477         /* When we're shadowing, trap PFs */
1478         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1479                 if (!npt_enabled)
1480                         return NESTED_EXIT_HOST;
1481                 break;
1482         default:
1483                 break;
1484         }
1485
1486         return NESTED_EXIT_CONTINUE;
1487 }
1488
1489 /*
1490  * If this function returns true, this #vmexit was already handled
1491  */
1492 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1493 {
1494         u32 exit_code = svm->vmcb->control.exit_code;
1495         int vmexit = NESTED_EXIT_HOST;
1496
1497         switch (exit_code) {
1498         case SVM_EXIT_MSR:
1499                 vmexit = nested_svm_exit_handled_msr(svm);
1500                 break;
1501         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1502                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1503                 if (svm->nested.intercept_cr_read & cr_bits)
1504                         vmexit = NESTED_EXIT_DONE;
1505                 break;
1506         }
1507         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1508                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1509                 if (svm->nested.intercept_cr_write & cr_bits)
1510                         vmexit = NESTED_EXIT_DONE;
1511                 break;
1512         }
1513         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1514                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1515                 if (svm->nested.intercept_dr_read & dr_bits)
1516                         vmexit = NESTED_EXIT_DONE;
1517                 break;
1518         }
1519         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1520                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1521                 if (svm->nested.intercept_dr_write & dr_bits)
1522                         vmexit = NESTED_EXIT_DONE;
1523                 break;
1524         }
1525         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1526                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1527                 if (svm->nested.intercept_exceptions & excp_bits)
1528                         vmexit = NESTED_EXIT_DONE;
1529                 break;
1530         }
1531         default: {
1532                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1533                 nsvm_printk("exit code: 0x%x\n", exit_code);
1534                 if (svm->nested.intercept & exit_bits)
1535                         vmexit = NESTED_EXIT_DONE;
1536         }
1537         }
1538
1539         if (vmexit == NESTED_EXIT_DONE) {
1540                 nsvm_printk("#VMEXIT reason=%04x\n", exit_code);
1541                 nested_svm_vmexit(svm);
1542         }
1543
1544         return vmexit;
1545 }
1546
1547 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1548 {
1549         struct vmcb_control_area *dst  = &dst_vmcb->control;
1550         struct vmcb_control_area *from = &from_vmcb->control;
1551
1552         dst->intercept_cr_read    = from->intercept_cr_read;
1553         dst->intercept_cr_write   = from->intercept_cr_write;
1554         dst->intercept_dr_read    = from->intercept_dr_read;
1555         dst->intercept_dr_write   = from->intercept_dr_write;
1556         dst->intercept_exceptions = from->intercept_exceptions;
1557         dst->intercept            = from->intercept;
1558         dst->iopm_base_pa         = from->iopm_base_pa;
1559         dst->msrpm_base_pa        = from->msrpm_base_pa;
1560         dst->tsc_offset           = from->tsc_offset;
1561         dst->asid                 = from->asid;
1562         dst->tlb_ctl              = from->tlb_ctl;
1563         dst->int_ctl              = from->int_ctl;
1564         dst->int_vector           = from->int_vector;
1565         dst->int_state            = from->int_state;
1566         dst->exit_code            = from->exit_code;
1567         dst->exit_code_hi         = from->exit_code_hi;
1568         dst->exit_info_1          = from->exit_info_1;
1569         dst->exit_info_2          = from->exit_info_2;
1570         dst->exit_int_info        = from->exit_int_info;
1571         dst->exit_int_info_err    = from->exit_int_info_err;
1572         dst->nested_ctl           = from->nested_ctl;
1573         dst->event_inj            = from->event_inj;
1574         dst->event_inj_err        = from->event_inj_err;
1575         dst->nested_cr3           = from->nested_cr3;
1576         dst->lbr_ctl              = from->lbr_ctl;
1577 }
1578
1579 static int nested_svm_vmexit(struct vcpu_svm *svm)
1580 {
1581         struct vmcb *nested_vmcb;
1582         struct vmcb *hsave = svm->nested.hsave;
1583         struct vmcb *vmcb = svm->vmcb;
1584
1585         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1586         if (!nested_vmcb)
1587                 return 1;
1588
1589         /* Give the current vmcb to the guest */
1590         disable_gif(svm);
1591
1592         nested_vmcb->save.es     = vmcb->save.es;
1593         nested_vmcb->save.cs     = vmcb->save.cs;
1594         nested_vmcb->save.ss     = vmcb->save.ss;
1595         nested_vmcb->save.ds     = vmcb->save.ds;
1596         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1597         nested_vmcb->save.idtr   = vmcb->save.idtr;
1598         if (npt_enabled)
1599                 nested_vmcb->save.cr3    = vmcb->save.cr3;
1600         nested_vmcb->save.cr2    = vmcb->save.cr2;
1601         nested_vmcb->save.rflags = vmcb->save.rflags;
1602         nested_vmcb->save.rip    = vmcb->save.rip;
1603         nested_vmcb->save.rsp    = vmcb->save.rsp;
1604         nested_vmcb->save.rax    = vmcb->save.rax;
1605         nested_vmcb->save.dr7    = vmcb->save.dr7;
1606         nested_vmcb->save.dr6    = vmcb->save.dr6;
1607         nested_vmcb->save.cpl    = vmcb->save.cpl;
1608
1609         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1610         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1611         nested_vmcb->control.int_state         = vmcb->control.int_state;
1612         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1613         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1614         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1615         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1616         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1617         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1618         nested_vmcb->control.tlb_ctl           = 0;
1619         nested_vmcb->control.event_inj         = 0;
1620         nested_vmcb->control.event_inj_err     = 0;
1621
1622         /* We always set V_INTR_MASKING and remember the old value in hflags */
1623         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1624                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1625
1626         /* Restore the original control entries */
1627         copy_vmcb_control_area(vmcb, hsave);
1628
1629         /* Kill any pending exceptions */
1630         if (svm->vcpu.arch.exception.pending == true)
1631                 nsvm_printk("WARNING: Pending Exception\n");
1632
1633         kvm_clear_exception_queue(&svm->vcpu);
1634         kvm_clear_interrupt_queue(&svm->vcpu);
1635
1636         /* Restore selected save entries */
1637         svm->vmcb->save.es = hsave->save.es;
1638         svm->vmcb->save.cs = hsave->save.cs;
1639         svm->vmcb->save.ss = hsave->save.ss;
1640         svm->vmcb->save.ds = hsave->save.ds;
1641         svm->vmcb->save.gdtr = hsave->save.gdtr;
1642         svm->vmcb->save.idtr = hsave->save.idtr;
1643         svm->vmcb->save.rflags = hsave->save.rflags;
1644         svm_set_efer(&svm->vcpu, hsave->save.efer);
1645         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1646         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1647         if (npt_enabled) {
1648                 svm->vmcb->save.cr3 = hsave->save.cr3;
1649                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1650         } else {
1651                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1652         }
1653         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1654         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1655         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1656         svm->vmcb->save.dr7 = 0;
1657         svm->vmcb->save.cpl = 0;
1658         svm->vmcb->control.exit_int_info = 0;
1659
1660         /* Exit nested SVM mode */
1661         svm->nested.vmcb = 0;
1662
1663         nested_svm_unmap(nested_vmcb, KM_USER0);
1664
1665         kvm_mmu_reset_context(&svm->vcpu);
1666         kvm_mmu_load(&svm->vcpu);
1667
1668         return 0;
1669 }
1670
1671 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1672 {
1673         u32 *nested_msrpm;
1674         int i;
1675
1676         nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1677         if (!nested_msrpm)
1678                 return false;
1679
1680         for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1681                 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1682
1683         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1684
1685         nested_svm_unmap(nested_msrpm, KM_USER0);
1686
1687         return true;
1688 }
1689
1690 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1691 {
1692         struct vmcb *nested_vmcb;
1693         struct vmcb *hsave = svm->nested.hsave;
1694         struct vmcb *vmcb = svm->vmcb;
1695
1696         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1697         if (!nested_vmcb)
1698                 return false;
1699
1700         /* nested_vmcb is our indicator if nested SVM is activated */
1701         svm->nested.vmcb = svm->vmcb->save.rax;
1702
1703         /* Clear internal status */
1704         kvm_clear_exception_queue(&svm->vcpu);
1705         kvm_clear_interrupt_queue(&svm->vcpu);
1706
1707         /* Save the old vmcb, so we don't need to pick what we save, but
1708            can restore everything when a VMEXIT occurs */
1709         hsave->save.es     = vmcb->save.es;
1710         hsave->save.cs     = vmcb->save.cs;
1711         hsave->save.ss     = vmcb->save.ss;
1712         hsave->save.ds     = vmcb->save.ds;
1713         hsave->save.gdtr   = vmcb->save.gdtr;
1714         hsave->save.idtr   = vmcb->save.idtr;
1715         hsave->save.efer   = svm->vcpu.arch.shadow_efer;
1716         hsave->save.cr0    = svm->vcpu.arch.cr0;
1717         hsave->save.cr4    = svm->vcpu.arch.cr4;
1718         hsave->save.rflags = vmcb->save.rflags;
1719         hsave->save.rip    = svm->next_rip;
1720         hsave->save.rsp    = vmcb->save.rsp;
1721         hsave->save.rax    = vmcb->save.rax;
1722         if (npt_enabled)
1723                 hsave->save.cr3    = vmcb->save.cr3;
1724         else
1725                 hsave->save.cr3    = svm->vcpu.arch.cr3;
1726
1727         copy_vmcb_control_area(hsave, vmcb);
1728
1729         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1730                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1731         else
1732                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1733
1734         /* Load the nested guest state */
1735         svm->vmcb->save.es = nested_vmcb->save.es;
1736         svm->vmcb->save.cs = nested_vmcb->save.cs;
1737         svm->vmcb->save.ss = nested_vmcb->save.ss;
1738         svm->vmcb->save.ds = nested_vmcb->save.ds;
1739         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1740         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1741         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1742         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1743         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1744         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1745         if (npt_enabled) {
1746                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1747                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1748         } else {
1749                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1750                 kvm_mmu_reset_context(&svm->vcpu);
1751         }
1752         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1753         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1754         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1755         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1756         /* In case we don't even reach vcpu_run, the fields are not updated */
1757         svm->vmcb->save.rax = nested_vmcb->save.rax;
1758         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1759         svm->vmcb->save.rip = nested_vmcb->save.rip;
1760         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1761         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1762         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1763
1764         /* We don't want a nested guest to be more powerful than the guest,
1765            so all intercepts are ORed */
1766         svm->vmcb->control.intercept_cr_read |=
1767                 nested_vmcb->control.intercept_cr_read;
1768         svm->vmcb->control.intercept_cr_write |=
1769                 nested_vmcb->control.intercept_cr_write;
1770         svm->vmcb->control.intercept_dr_read |=
1771                 nested_vmcb->control.intercept_dr_read;
1772         svm->vmcb->control.intercept_dr_write |=
1773                 nested_vmcb->control.intercept_dr_write;
1774         svm->vmcb->control.intercept_exceptions |=
1775                 nested_vmcb->control.intercept_exceptions;
1776
1777         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1778
1779         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1780
1781         /* cache intercepts */
1782         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
1783         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
1784         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
1785         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
1786         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1787         svm->nested.intercept            = nested_vmcb->control.intercept;
1788
1789         force_new_asid(&svm->vcpu);
1790         svm->vmcb->control.exit_int_info = nested_vmcb->control.exit_int_info;
1791         svm->vmcb->control.exit_int_info_err = nested_vmcb->control.exit_int_info_err;
1792         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1793         if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
1794                 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1795                                 nested_vmcb->control.int_ctl);
1796         }
1797         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1798                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1799         else
1800                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1801
1802         nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1803                         nested_vmcb->control.exit_int_info,
1804                         nested_vmcb->control.int_state);
1805
1806         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1807         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1808         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1809         if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
1810                 nsvm_printk("Injecting Event: 0x%x\n",
1811                                 nested_vmcb->control.event_inj);
1812         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1813         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1814
1815         nested_svm_unmap(nested_vmcb, KM_USER0);
1816
1817         enable_gif(svm);
1818
1819         return true;
1820 }
1821
1822 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1823 {
1824         to_vmcb->save.fs = from_vmcb->save.fs;
1825         to_vmcb->save.gs = from_vmcb->save.gs;
1826         to_vmcb->save.tr = from_vmcb->save.tr;
1827         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1828         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1829         to_vmcb->save.star = from_vmcb->save.star;
1830         to_vmcb->save.lstar = from_vmcb->save.lstar;
1831         to_vmcb->save.cstar = from_vmcb->save.cstar;
1832         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1833         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1834         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1835         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1836 }
1837
1838 static int vmload_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1839 {
1840         struct vmcb *nested_vmcb;
1841
1842         if (nested_svm_check_permissions(svm))
1843                 return 1;
1844
1845         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1846         skip_emulated_instruction(&svm->vcpu);
1847
1848         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1849         if (!nested_vmcb)
1850                 return 1;
1851
1852         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1853         nested_svm_unmap(nested_vmcb, KM_USER0);
1854
1855         return 1;
1856 }
1857
1858 static int vmsave_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1859 {
1860         struct vmcb *nested_vmcb;
1861
1862         if (nested_svm_check_permissions(svm))
1863                 return 1;
1864
1865         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1866         skip_emulated_instruction(&svm->vcpu);
1867
1868         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1869         if (!nested_vmcb)
1870                 return 1;
1871
1872         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1873         nested_svm_unmap(nested_vmcb, KM_USER0);
1874
1875         return 1;
1876 }
1877
1878 static int vmrun_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1879 {
1880         nsvm_printk("VMrun\n");
1881
1882         if (nested_svm_check_permissions(svm))
1883                 return 1;
1884
1885         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1886         skip_emulated_instruction(&svm->vcpu);
1887
1888         if (!nested_svm_vmrun(svm))
1889                 return 1;
1890
1891         if (!nested_svm_vmrun_msrpm(svm))
1892                 goto failed;
1893
1894         return 1;
1895
1896 failed:
1897
1898         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
1899         svm->vmcb->control.exit_code_hi = 0;
1900         svm->vmcb->control.exit_info_1  = 0;
1901         svm->vmcb->control.exit_info_2  = 0;
1902
1903         nested_svm_vmexit(svm);
1904
1905         return 1;
1906 }
1907
1908 static int stgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1909 {
1910         if (nested_svm_check_permissions(svm))
1911                 return 1;
1912
1913         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1914         skip_emulated_instruction(&svm->vcpu);
1915
1916         enable_gif(svm);
1917
1918         return 1;
1919 }
1920
1921 static int clgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1922 {
1923         if (nested_svm_check_permissions(svm))
1924                 return 1;
1925
1926         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1927         skip_emulated_instruction(&svm->vcpu);
1928
1929         disable_gif(svm);
1930
1931         /* After a CLGI no interrupts should come */
1932         svm_clear_vintr(svm);
1933         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1934
1935         return 1;
1936 }
1937
1938 static int invlpga_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1939 {
1940         struct kvm_vcpu *vcpu = &svm->vcpu;
1941         nsvm_printk("INVLPGA\n");
1942
1943         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1944         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1945
1946         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1947         skip_emulated_instruction(&svm->vcpu);
1948         return 1;
1949 }
1950
1951 static int invalid_op_interception(struct vcpu_svm *svm,
1952                                    struct kvm_run *kvm_run)
1953 {
1954         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1955         return 1;
1956 }
1957
1958 static int task_switch_interception(struct vcpu_svm *svm,
1959                                     struct kvm_run *kvm_run)
1960 {
1961         u16 tss_selector;
1962         int reason;
1963         int int_type = svm->vmcb->control.exit_int_info &
1964                 SVM_EXITINTINFO_TYPE_MASK;
1965         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
1966         uint32_t type =
1967                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
1968         uint32_t idt_v =
1969                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
1970
1971         tss_selector = (u16)svm->vmcb->control.exit_info_1;
1972
1973         if (svm->vmcb->control.exit_info_2 &
1974             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1975                 reason = TASK_SWITCH_IRET;
1976         else if (svm->vmcb->control.exit_info_2 &
1977                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1978                 reason = TASK_SWITCH_JMP;
1979         else if (idt_v)
1980                 reason = TASK_SWITCH_GATE;
1981         else
1982                 reason = TASK_SWITCH_CALL;
1983
1984         if (reason == TASK_SWITCH_GATE) {
1985                 switch (type) {
1986                 case SVM_EXITINTINFO_TYPE_NMI:
1987                         svm->vcpu.arch.nmi_injected = false;
1988                         break;
1989                 case SVM_EXITINTINFO_TYPE_EXEPT:
1990                         kvm_clear_exception_queue(&svm->vcpu);
1991                         break;
1992                 case SVM_EXITINTINFO_TYPE_INTR:
1993                         kvm_clear_interrupt_queue(&svm->vcpu);
1994                         break;
1995                 default:
1996                         break;
1997                 }
1998         }
1999
2000         if (reason != TASK_SWITCH_GATE ||
2001             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2002             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2003              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2004                 skip_emulated_instruction(&svm->vcpu);
2005
2006         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2007 }
2008
2009 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2010 {
2011         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2012         kvm_emulate_cpuid(&svm->vcpu);
2013         return 1;
2014 }
2015
2016 static int iret_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2017 {
2018         ++svm->vcpu.stat.nmi_window_exits;
2019         svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2020         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2021         return 1;
2022 }
2023
2024 static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2025 {
2026         if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
2027                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2028         return 1;
2029 }
2030
2031 static int emulate_on_interception(struct vcpu_svm *svm,
2032                                    struct kvm_run *kvm_run)
2033 {
2034         if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
2035                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2036         return 1;
2037 }
2038
2039 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2040 {
2041         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2042         /* instruction emulation calls kvm_set_cr8() */
2043         emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
2044         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2045                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2046                 return 1;
2047         }
2048         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2049                 return 1;
2050         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2051         return 0;
2052 }
2053
2054 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2055 {
2056         struct vcpu_svm *svm = to_svm(vcpu);
2057
2058         switch (ecx) {
2059         case MSR_IA32_TSC: {
2060                 u64 tsc;
2061
2062                 rdtscll(tsc);
2063                 *data = svm->vmcb->control.tsc_offset + tsc;
2064                 break;
2065         }
2066         case MSR_K6_STAR:
2067                 *data = svm->vmcb->save.star;
2068                 break;
2069 #ifdef CONFIG_X86_64
2070         case MSR_LSTAR:
2071                 *data = svm->vmcb->save.lstar;
2072                 break;
2073         case MSR_CSTAR:
2074                 *data = svm->vmcb->save.cstar;
2075                 break;
2076         case MSR_KERNEL_GS_BASE:
2077                 *data = svm->vmcb->save.kernel_gs_base;
2078                 break;
2079         case MSR_SYSCALL_MASK:
2080                 *data = svm->vmcb->save.sfmask;
2081                 break;
2082 #endif
2083         case MSR_IA32_SYSENTER_CS:
2084                 *data = svm->vmcb->save.sysenter_cs;
2085                 break;
2086         case MSR_IA32_SYSENTER_EIP:
2087                 *data = svm->sysenter_eip;
2088                 break;
2089         case MSR_IA32_SYSENTER_ESP:
2090                 *data = svm->sysenter_esp;
2091                 break;
2092         /* Nobody will change the following 5 values in the VMCB so
2093            we can safely return them on rdmsr. They will always be 0
2094            until LBRV is implemented. */
2095         case MSR_IA32_DEBUGCTLMSR:
2096                 *data = svm->vmcb->save.dbgctl;
2097                 break;
2098         case MSR_IA32_LASTBRANCHFROMIP:
2099                 *data = svm->vmcb->save.br_from;
2100                 break;
2101         case MSR_IA32_LASTBRANCHTOIP:
2102                 *data = svm->vmcb->save.br_to;
2103                 break;
2104         case MSR_IA32_LASTINTFROMIP:
2105                 *data = svm->vmcb->save.last_excp_from;
2106                 break;
2107         case MSR_IA32_LASTINTTOIP:
2108                 *data = svm->vmcb->save.last_excp_to;
2109                 break;
2110         case MSR_VM_HSAVE_PA:
2111                 *data = svm->nested.hsave_msr;
2112                 break;
2113         case MSR_VM_CR:
2114                 *data = 0;
2115                 break;
2116         case MSR_IA32_UCODE_REV:
2117                 *data = 0x01000065;
2118                 break;
2119         default:
2120                 return kvm_get_msr_common(vcpu, ecx, data);
2121         }
2122         return 0;
2123 }
2124
2125 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2126 {
2127         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2128         u64 data;
2129
2130         if (svm_get_msr(&svm->vcpu, ecx, &data))
2131                 kvm_inject_gp(&svm->vcpu, 0);
2132         else {
2133                 trace_kvm_msr_read(ecx, data);
2134
2135                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2136                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2137                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2138                 skip_emulated_instruction(&svm->vcpu);
2139         }
2140         return 1;
2141 }
2142
2143 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2144 {
2145         struct vcpu_svm *svm = to_svm(vcpu);
2146
2147         switch (ecx) {
2148         case MSR_IA32_TSC: {
2149                 u64 tsc;
2150
2151                 rdtscll(tsc);
2152                 svm->vmcb->control.tsc_offset = data - tsc;
2153                 break;
2154         }
2155         case MSR_K6_STAR:
2156                 svm->vmcb->save.star = data;
2157                 break;
2158 #ifdef CONFIG_X86_64
2159         case MSR_LSTAR:
2160                 svm->vmcb->save.lstar = data;
2161                 break;
2162         case MSR_CSTAR:
2163                 svm->vmcb->save.cstar = data;
2164                 break;
2165         case MSR_KERNEL_GS_BASE:
2166                 svm->vmcb->save.kernel_gs_base = data;
2167                 break;
2168         case MSR_SYSCALL_MASK:
2169                 svm->vmcb->save.sfmask = data;
2170                 break;
2171 #endif
2172         case MSR_IA32_SYSENTER_CS:
2173                 svm->vmcb->save.sysenter_cs = data;
2174                 break;
2175         case MSR_IA32_SYSENTER_EIP:
2176                 svm->sysenter_eip = data;
2177                 svm->vmcb->save.sysenter_eip = data;
2178                 break;
2179         case MSR_IA32_SYSENTER_ESP:
2180                 svm->sysenter_esp = data;
2181                 svm->vmcb->save.sysenter_esp = data;
2182                 break;
2183         case MSR_IA32_DEBUGCTLMSR:
2184                 if (!svm_has(SVM_FEATURE_LBRV)) {
2185                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2186                                         __func__, data);
2187                         break;
2188                 }
2189                 if (data & DEBUGCTL_RESERVED_BITS)
2190                         return 1;
2191
2192                 svm->vmcb->save.dbgctl = data;
2193                 if (data & (1ULL<<0))
2194                         svm_enable_lbrv(svm);
2195                 else
2196                         svm_disable_lbrv(svm);
2197                 break;
2198         case MSR_VM_HSAVE_PA:
2199                 svm->nested.hsave_msr = data;
2200                 break;
2201         case MSR_VM_CR:
2202         case MSR_VM_IGNNE:
2203                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2204                 break;
2205         default:
2206                 return kvm_set_msr_common(vcpu, ecx, data);
2207         }
2208         return 0;
2209 }
2210
2211 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2212 {
2213         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2214         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2215                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2216
2217         trace_kvm_msr_write(ecx, data);
2218
2219         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2220         if (svm_set_msr(&svm->vcpu, ecx, data))
2221                 kvm_inject_gp(&svm->vcpu, 0);
2222         else
2223                 skip_emulated_instruction(&svm->vcpu);
2224         return 1;
2225 }
2226
2227 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2228 {
2229         if (svm->vmcb->control.exit_info_1)
2230                 return wrmsr_interception(svm, kvm_run);
2231         else
2232                 return rdmsr_interception(svm, kvm_run);
2233 }
2234
2235 static int interrupt_window_interception(struct vcpu_svm *svm,
2236                                    struct kvm_run *kvm_run)
2237 {
2238         svm_clear_vintr(svm);
2239         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2240         /*
2241          * If the user space waits to inject interrupts, exit as soon as
2242          * possible
2243          */
2244         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2245             kvm_run->request_interrupt_window &&
2246             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2247                 ++svm->vcpu.stat.irq_window_exits;
2248                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2249                 return 0;
2250         }
2251
2252         return 1;
2253 }
2254
2255 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
2256                                       struct kvm_run *kvm_run) = {
2257         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2258         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2259         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2260         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2261         /* for now: */
2262         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2263         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2264         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2265         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2266         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2267         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2268         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2269         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2270         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2271         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2272         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2273         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2274         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2275         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2276         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2277         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2278         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2279         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2280         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2281         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2282         [SVM_EXIT_INTR]                         = intr_interception,
2283         [SVM_EXIT_NMI]                          = nmi_interception,
2284         [SVM_EXIT_SMI]                          = nop_on_interception,
2285         [SVM_EXIT_INIT]                         = nop_on_interception,
2286         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2287         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
2288         [SVM_EXIT_CPUID]                        = cpuid_interception,
2289         [SVM_EXIT_IRET]                         = iret_interception,
2290         [SVM_EXIT_INVD]                         = emulate_on_interception,
2291         [SVM_EXIT_HLT]                          = halt_interception,
2292         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2293         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2294         [SVM_EXIT_IOIO]                         = io_interception,
2295         [SVM_EXIT_MSR]                          = msr_interception,
2296         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2297         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2298         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2299         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2300         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2301         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2302         [SVM_EXIT_STGI]                         = stgi_interception,
2303         [SVM_EXIT_CLGI]                         = clgi_interception,
2304         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
2305         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2306         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2307         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2308         [SVM_EXIT_NPF]                          = pf_interception,
2309 };
2310
2311 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2312 {
2313         struct vcpu_svm *svm = to_svm(vcpu);
2314         u32 exit_code = svm->vmcb->control.exit_code;
2315
2316         trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2317
2318         if (is_nested(svm)) {
2319                 int vmexit;
2320
2321                 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2322                             exit_code, svm->vmcb->control.exit_info_1,
2323                             svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
2324
2325                 vmexit = nested_svm_exit_special(svm);
2326
2327                 if (vmexit == NESTED_EXIT_CONTINUE)
2328                         vmexit = nested_svm_exit_handled(svm);
2329
2330                 if (vmexit == NESTED_EXIT_DONE)
2331                         return 1;
2332         }
2333
2334         svm_complete_interrupts(svm);
2335
2336         if (npt_enabled) {
2337                 int mmu_reload = 0;
2338                 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2339                         svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2340                         mmu_reload = 1;
2341                 }
2342                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2343                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2344                 if (mmu_reload) {
2345                         kvm_mmu_reset_context(vcpu);
2346                         kvm_mmu_load(vcpu);
2347                 }
2348         }
2349
2350
2351         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2352                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2353                 kvm_run->fail_entry.hardware_entry_failure_reason
2354                         = svm->vmcb->control.exit_code;
2355                 return 0;
2356         }
2357
2358         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2359             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2360             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2361                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2362                        "exit_code 0x%x\n",
2363                        __func__, svm->vmcb->control.exit_int_info,
2364                        exit_code);
2365
2366         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2367             || !svm_exit_handlers[exit_code]) {
2368                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2369                 kvm_run->hw.hardware_exit_reason = exit_code;
2370                 return 0;
2371         }
2372
2373         return svm_exit_handlers[exit_code](svm, kvm_run);
2374 }
2375
2376 static void reload_tss(struct kvm_vcpu *vcpu)
2377 {
2378         int cpu = raw_smp_processor_id();
2379
2380         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2381         svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
2382         load_TR_desc();
2383 }
2384
2385 static void pre_svm_run(struct vcpu_svm *svm)
2386 {
2387         int cpu = raw_smp_processor_id();
2388
2389         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2390
2391         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2392         /* FIXME: handle wraparound of asid_generation */
2393         if (svm->asid_generation != svm_data->asid_generation)
2394                 new_asid(svm, svm_data);
2395 }
2396
2397 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2398 {
2399         struct vcpu_svm *svm = to_svm(vcpu);
2400
2401         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2402         vcpu->arch.hflags |= HF_NMI_MASK;
2403         svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2404         ++vcpu->stat.nmi_injections;
2405 }
2406
2407 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2408 {
2409         struct vmcb_control_area *control;
2410
2411         trace_kvm_inj_virq(irq);
2412
2413         ++svm->vcpu.stat.irq_injections;
2414         control = &svm->vmcb->control;
2415         control->int_vector = irq;
2416         control->int_ctl &= ~V_INTR_PRIO_MASK;
2417         control->int_ctl |= V_IRQ_MASK |
2418                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2419 }
2420
2421 static void svm_set_irq(struct kvm_vcpu *vcpu)
2422 {
2423         struct vcpu_svm *svm = to_svm(vcpu);
2424
2425         BUG_ON(!(gif_set(svm)));
2426
2427         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2428                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2429 }
2430
2431 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2432 {
2433         struct vcpu_svm *svm = to_svm(vcpu);
2434
2435         if (irr == -1)
2436                 return;
2437
2438         if (tpr >= irr)
2439                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2440 }
2441
2442 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2443 {
2444         struct vcpu_svm *svm = to_svm(vcpu);
2445         struct vmcb *vmcb = svm->vmcb;
2446         return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2447                 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2448 }
2449
2450 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2451 {
2452         struct vcpu_svm *svm = to_svm(vcpu);
2453         struct vmcb *vmcb = svm->vmcb;
2454         return (vmcb->save.rflags & X86_EFLAGS_IF) &&
2455                 !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2456                 gif_set(svm) &&
2457                 !(is_nested(svm) && (svm->vcpu.arch.hflags & HF_VINTR_MASK));
2458 }
2459
2460 static void enable_irq_window(struct kvm_vcpu *vcpu)
2461 {
2462         struct vcpu_svm *svm = to_svm(vcpu);
2463         nsvm_printk("Trying to open IRQ window\n");
2464
2465         nested_svm_intr(svm);
2466
2467         /* In case GIF=0 we can't rely on the CPU to tell us when
2468          * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2469          * The next time we get that intercept, this function will be
2470          * called again though and we'll get the vintr intercept. */
2471         if (gif_set(svm)) {
2472                 svm_set_vintr(svm);
2473                 svm_inject_irq(svm, 0x0);
2474         }
2475 }
2476
2477 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2478 {
2479         struct vcpu_svm *svm = to_svm(vcpu);
2480
2481         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2482             == HF_NMI_MASK)
2483                 return; /* IRET will cause a vm exit */
2484
2485         /* Something prevents NMI from been injected. Single step over
2486            possible problem (IRET or exception injection or interrupt
2487            shadow) */
2488         vcpu->arch.singlestep = true;
2489         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2490         update_db_intercept(vcpu);
2491 }
2492
2493 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2494 {
2495         return 0;
2496 }
2497
2498 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2499 {
2500         force_new_asid(vcpu);
2501 }
2502
2503 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2504 {
2505 }
2506
2507 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2508 {
2509         struct vcpu_svm *svm = to_svm(vcpu);
2510
2511         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2512                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2513                 kvm_set_cr8(vcpu, cr8);
2514         }
2515 }
2516
2517 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2518 {
2519         struct vcpu_svm *svm = to_svm(vcpu);
2520         u64 cr8;
2521
2522         cr8 = kvm_get_cr8(vcpu);
2523         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2524         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2525 }
2526
2527 static void svm_complete_interrupts(struct vcpu_svm *svm)
2528 {
2529         u8 vector;
2530         int type;
2531         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2532
2533         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2534                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2535
2536         svm->vcpu.arch.nmi_injected = false;
2537         kvm_clear_exception_queue(&svm->vcpu);
2538         kvm_clear_interrupt_queue(&svm->vcpu);
2539
2540         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2541                 return;
2542
2543         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2544         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2545
2546         switch (type) {
2547         case SVM_EXITINTINFO_TYPE_NMI:
2548                 svm->vcpu.arch.nmi_injected = true;
2549                 break;
2550         case SVM_EXITINTINFO_TYPE_EXEPT:
2551                 /* In case of software exception do not reinject an exception
2552                    vector, but re-execute and instruction instead */
2553                 if (is_nested(svm))
2554                         break;
2555                 if (kvm_exception_is_soft(vector))
2556                         break;
2557                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2558                         u32 err = svm->vmcb->control.exit_int_info_err;
2559                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2560
2561                 } else
2562                         kvm_queue_exception(&svm->vcpu, vector);
2563                 break;
2564         case SVM_EXITINTINFO_TYPE_INTR:
2565                 kvm_queue_interrupt(&svm->vcpu, vector, false);
2566                 break;
2567         default:
2568                 break;
2569         }
2570 }
2571
2572 #ifdef CONFIG_X86_64
2573 #define R "r"
2574 #else
2575 #define R "e"
2576 #endif
2577
2578 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2579 {
2580         struct vcpu_svm *svm = to_svm(vcpu);
2581         u16 fs_selector;
2582         u16 gs_selector;
2583         u16 ldt_selector;
2584
2585         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2586         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2587         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2588
2589         pre_svm_run(svm);
2590
2591         sync_lapic_to_cr8(vcpu);
2592
2593         save_host_msrs(vcpu);
2594         fs_selector = kvm_read_fs();
2595         gs_selector = kvm_read_gs();
2596         ldt_selector = kvm_read_ldt();
2597         svm->vmcb->save.cr2 = vcpu->arch.cr2;
2598         /* required for live migration with NPT */
2599         if (npt_enabled)
2600                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2601
2602         clgi();
2603
2604         local_irq_enable();
2605
2606         asm volatile (
2607                 "push %%"R"bp; \n\t"
2608                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2609                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2610                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2611                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2612                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2613                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2614 #ifdef CONFIG_X86_64
2615                 "mov %c[r8](%[svm]),  %%r8  \n\t"
2616                 "mov %c[r9](%[svm]),  %%r9  \n\t"
2617                 "mov %c[r10](%[svm]), %%r10 \n\t"
2618                 "mov %c[r11](%[svm]), %%r11 \n\t"
2619                 "mov %c[r12](%[svm]), %%r12 \n\t"
2620                 "mov %c[r13](%[svm]), %%r13 \n\t"
2621                 "mov %c[r14](%[svm]), %%r14 \n\t"
2622                 "mov %c[r15](%[svm]), %%r15 \n\t"
2623 #endif
2624
2625                 /* Enter guest mode */
2626                 "push %%"R"ax \n\t"
2627                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2628                 __ex(SVM_VMLOAD) "\n\t"
2629                 __ex(SVM_VMRUN) "\n\t"
2630                 __ex(SVM_VMSAVE) "\n\t"
2631                 "pop %%"R"ax \n\t"
2632
2633                 /* Save guest registers, load host registers */
2634                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2635                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2636                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2637                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2638                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2639                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2640 #ifdef CONFIG_X86_64
2641                 "mov %%r8,  %c[r8](%[svm]) \n\t"
2642                 "mov %%r9,  %c[r9](%[svm]) \n\t"
2643                 "mov %%r10, %c[r10](%[svm]) \n\t"
2644                 "mov %%r11, %c[r11](%[svm]) \n\t"
2645                 "mov %%r12, %c[r12](%[svm]) \n\t"
2646                 "mov %%r13, %c[r13](%[svm]) \n\t"
2647                 "mov %%r14, %c[r14](%[svm]) \n\t"
2648                 "mov %%r15, %c[r15](%[svm]) \n\t"
2649 #endif
2650                 "pop %%"R"bp"
2651                 :
2652                 : [svm]"a"(svm),
2653                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2654                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2655                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2656                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2657                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2658                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2659                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2660 #ifdef CONFIG_X86_64
2661                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2662                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2663                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2664                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2665                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2666                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2667                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2668                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2669 #endif
2670                 : "cc", "memory"
2671                 , R"bx", R"cx", R"dx", R"si", R"di"
2672 #ifdef CONFIG_X86_64
2673                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2674 #endif
2675                 );
2676
2677         vcpu->arch.cr2 = svm->vmcb->save.cr2;
2678         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2679         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2680         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2681
2682         kvm_load_fs(fs_selector);
2683         kvm_load_gs(gs_selector);
2684         kvm_load_ldt(ldt_selector);
2685         load_host_msrs(vcpu);
2686
2687         reload_tss(vcpu);
2688
2689         local_irq_disable();
2690
2691         stgi();
2692
2693         sync_cr8_to_lapic(vcpu);
2694
2695         svm->next_rip = 0;
2696
2697         if (npt_enabled) {
2698                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2699                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2700         }
2701 }
2702
2703 #undef R
2704
2705 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2706 {
2707         struct vcpu_svm *svm = to_svm(vcpu);
2708
2709         if (npt_enabled) {
2710                 svm->vmcb->control.nested_cr3 = root;
2711                 force_new_asid(vcpu);
2712                 return;
2713         }
2714
2715         svm->vmcb->save.cr3 = root;
2716         force_new_asid(vcpu);
2717
2718         if (vcpu->fpu_active) {
2719                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2720                 svm->vmcb->save.cr0 |= X86_CR0_TS;
2721                 vcpu->fpu_active = 0;
2722         }
2723 }
2724
2725 static int is_disabled(void)
2726 {
2727         u64 vm_cr;
2728
2729         rdmsrl(MSR_VM_CR, vm_cr);
2730         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2731                 return 1;
2732
2733         return 0;
2734 }
2735
2736 static void
2737 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2738 {
2739         /*
2740          * Patch in the VMMCALL instruction:
2741          */
2742         hypercall[0] = 0x0f;
2743         hypercall[1] = 0x01;
2744         hypercall[2] = 0xd9;
2745 }
2746
2747 static void svm_check_processor_compat(void *rtn)
2748 {
2749         *(int *)rtn = 0;
2750 }
2751
2752 static bool svm_cpu_has_accelerated_tpr(void)
2753 {
2754         return false;
2755 }
2756
2757 static int get_npt_level(void)
2758 {
2759 #ifdef CONFIG_X86_64
2760         return PT64_ROOT_LEVEL;
2761 #else
2762         return PT32E_ROOT_LEVEL;
2763 #endif
2764 }
2765
2766 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2767 {
2768         return 0;
2769 }
2770
2771 static const struct trace_print_flags svm_exit_reasons_str[] = {
2772         { SVM_EXIT_READ_CR0,                    "read_cr0" },
2773         { SVM_EXIT_READ_CR3,                    "read_cr3" },
2774         { SVM_EXIT_READ_CR4,                    "read_cr4" },
2775         { SVM_EXIT_READ_CR8,                    "read_cr8" },
2776         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
2777         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
2778         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
2779         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
2780         { SVM_EXIT_READ_DR0,                    "read_dr0" },
2781         { SVM_EXIT_READ_DR1,                    "read_dr1" },
2782         { SVM_EXIT_READ_DR2,                    "read_dr2" },
2783         { SVM_EXIT_READ_DR3,                    "read_dr3" },
2784         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
2785         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
2786         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
2787         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
2788         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
2789         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
2790         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
2791         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
2792         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
2793         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
2794         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
2795         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
2796         { SVM_EXIT_INTR,                        "interrupt" },
2797         { SVM_EXIT_NMI,                         "nmi" },
2798         { SVM_EXIT_SMI,                         "smi" },
2799         { SVM_EXIT_INIT,                        "init" },
2800         { SVM_EXIT_VINTR,                       "vintr" },
2801         { SVM_EXIT_CPUID,                       "cpuid" },
2802         { SVM_EXIT_INVD,                        "invd" },
2803         { SVM_EXIT_HLT,                         "hlt" },
2804         { SVM_EXIT_INVLPG,                      "invlpg" },
2805         { SVM_EXIT_INVLPGA,                     "invlpga" },
2806         { SVM_EXIT_IOIO,                        "io" },
2807         { SVM_EXIT_MSR,                         "msr" },
2808         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
2809         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
2810         { SVM_EXIT_VMRUN,                       "vmrun" },
2811         { SVM_EXIT_VMMCALL,                     "hypercall" },
2812         { SVM_EXIT_VMLOAD,                      "vmload" },
2813         { SVM_EXIT_VMSAVE,                      "vmsave" },
2814         { SVM_EXIT_STGI,                        "stgi" },
2815         { SVM_EXIT_CLGI,                        "clgi" },
2816         { SVM_EXIT_SKINIT,                      "skinit" },
2817         { SVM_EXIT_WBINVD,                      "wbinvd" },
2818         { SVM_EXIT_MONITOR,                     "monitor" },
2819         { SVM_EXIT_MWAIT,                       "mwait" },
2820         { SVM_EXIT_NPF,                         "npf" },
2821         { -1, NULL }
2822 };
2823
2824 static bool svm_gb_page_enable(void)
2825 {
2826         return true;
2827 }
2828
2829 static struct kvm_x86_ops svm_x86_ops = {
2830         .cpu_has_kvm_support = has_svm,
2831         .disabled_by_bios = is_disabled,
2832         .hardware_setup = svm_hardware_setup,
2833         .hardware_unsetup = svm_hardware_unsetup,
2834         .check_processor_compatibility = svm_check_processor_compat,
2835         .hardware_enable = svm_hardware_enable,
2836         .hardware_disable = svm_hardware_disable,
2837         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2838
2839         .vcpu_create = svm_create_vcpu,
2840         .vcpu_free = svm_free_vcpu,
2841         .vcpu_reset = svm_vcpu_reset,
2842
2843         .prepare_guest_switch = svm_prepare_guest_switch,
2844         .vcpu_load = svm_vcpu_load,
2845         .vcpu_put = svm_vcpu_put,
2846
2847         .set_guest_debug = svm_guest_debug,
2848         .get_msr = svm_get_msr,
2849         .set_msr = svm_set_msr,
2850         .get_segment_base = svm_get_segment_base,
2851         .get_segment = svm_get_segment,
2852         .set_segment = svm_set_segment,
2853         .get_cpl = svm_get_cpl,
2854         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2855         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2856         .set_cr0 = svm_set_cr0,
2857         .set_cr3 = svm_set_cr3,
2858         .set_cr4 = svm_set_cr4,
2859         .set_efer = svm_set_efer,
2860         .get_idt = svm_get_idt,
2861         .set_idt = svm_set_idt,
2862         .get_gdt = svm_get_gdt,
2863         .set_gdt = svm_set_gdt,
2864         .get_dr = svm_get_dr,
2865         .set_dr = svm_set_dr,
2866         .cache_reg = svm_cache_reg,
2867         .get_rflags = svm_get_rflags,
2868         .set_rflags = svm_set_rflags,
2869
2870         .tlb_flush = svm_flush_tlb,
2871
2872         .run = svm_vcpu_run,
2873         .handle_exit = handle_exit,
2874         .skip_emulated_instruction = skip_emulated_instruction,
2875         .set_interrupt_shadow = svm_set_interrupt_shadow,
2876         .get_interrupt_shadow = svm_get_interrupt_shadow,
2877         .patch_hypercall = svm_patch_hypercall,
2878         .set_irq = svm_set_irq,
2879         .set_nmi = svm_inject_nmi,
2880         .queue_exception = svm_queue_exception,
2881         .interrupt_allowed = svm_interrupt_allowed,
2882         .nmi_allowed = svm_nmi_allowed,
2883         .enable_nmi_window = enable_nmi_window,
2884         .enable_irq_window = enable_irq_window,
2885         .update_cr8_intercept = update_cr8_intercept,
2886
2887         .set_tss_addr = svm_set_tss_addr,
2888         .get_tdp_level = get_npt_level,
2889         .get_mt_mask = svm_get_mt_mask,
2890
2891         .exit_reasons_str = svm_exit_reasons_str,
2892         .gb_page_enable = svm_gb_page_enable,
2893 };
2894
2895 static int __init svm_init(void)
2896 {
2897         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2898                               THIS_MODULE);
2899 }
2900
2901 static void __exit svm_exit(void)
2902 {
2903         kvm_exit();
2904 }
2905
2906 module_init(svm_init)
2907 module_exit(svm_exit)